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ABSTRACT:

Project EOS is studying the problems of building adaptable real-time
embedded operating systems for the scientific missions of NASA. Choices, a Class
Hierarchical Open Interface for Custom Embedded Systems, is an operating sys-
tem designed and built by Project EOS to address the following specific issues:
the software architecture for adaptable embedded parallel operating sys-
tems, the achievement of high—performance and real-time operation, the
simplification of interprocess communications, the isolation of operating
systemm mechanisms from one another, and the separation of mechanisms
from policy decisions. Choices is written in C++ and runs on a ten processor
Encore Multimax. The system is intended for use in constructing specialized
computer applications and research on advanced operating system features
including fault-tolerance and parallelism.

One of the applications made possible by our research is a software system
that allows workstation applications to be closely integrated with software run-
ning on specialized computers like a supercomputer or supermini. CLASP is a
mechanism that allows the virtual memory space of a workstation to be
shared with a high-performance computer. CLASP implements a ecross—
architecture procedure call that allows an application on a workstation tran-
sparently to invoke procedures on the high-performance machine. The method
allows existing software packages to be decomposed without change onto a
compatible workstation supercomputer or supermini computer pair. Ray Essick’s
Ph.D. thesis documents this work.
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1. Introduction.

Project EOS is investigating the design and construction of embedded real-time
systems for applications in NASA'’s aerospace programs. The results of our study in pre-
vious years is documented in the bibliography in Appendix A. In the first six months of
the current grant period, we built a prototype adaptable embedded real-time operating
system for parallel computers called Choices, designed and built CLASP, a mechanism
that uses virtual memory to implement a flexible remote procedure call, and, to satisfy
several requests for previous Project EOS work, created a new release of the Path Pascal
compiler for Berkeley UNIX®™ BSD 4.3. An interface compiler for Choices has been
designed, but is not yet implemented.

2. Choices

Choices is an experimental real-time embedded operating system for parallel and
distributed computer systems in aerospace applications. The initial prototype has been
built on a ten processor Encore Multimax. The system is designed to support:

e the object-oriented organization of user applications,
e applications requiring custom designed operating systems,

e diverse hardware architectures (both networked computers and shared memory
multiprocessors),

e parallel computation where performance is an issue,

e  persistent objects,

e  protection,

e real-time operation of applications,

e research and applications requiring specialized operating system functions.

The design of the operating system reflects an object—oriented approach. The code
is organized to meet a number of objectives:

e The software is to be placed in the public domain.

e The software is organized as a hierarchy of classes written in C++. C++ is imple-
mented, currently, as a preprocessor for C.

e Classes separate operating system mechanism from policy and allow reuse of
modules.

e The classes used in Choices may be specialized or modified to create new operating
system features without jeopardizing the architectural integrity of the system and

UNIX is a Registered Trademark of AT&T.
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should encourage advanced operating system research.

e The systems programming language C++ has not been extended or modified; all
process, exception and communication mechanisms are written using classes. This
encourages portability.

e Hardware and application specific features are encapsulated in classes and separated
from device independent and application independent code.

e Many operating system services execute in application space, reducing the size of
the Choices kernel.

e The system and its applications use UNIX loader formats and can be built under
UNIX. .

The system is intended to support future investigations of real-time software organ-
ization, fault-tolerance, networked computers, and load balancing. Much of the design
of Choices can be translated into Ada™ or other non object—oriented languages. This
would permit “high—quality production’ implementations of the code. However, for the
purposes of this research, C++ has been excellent. The subclassing and generic func-
tions of C++ have many advantages in prototyping and maintaining code consistency.
C++ produces good, fast code, it aids and speeds recompiling and software reuse, and it
has been ported to a large number of machines. It is available at a minimal cost for a
license to research organizations. The source of the compiler, linkers, and other utilities

are available. At this point in time, C++ has many advantages for our experimental
operating system work.

Choices is discussed further in Appendix B. The prototype code for Choices (as of
May 21, 1987) can be found in Appendix C.

3. CLASP

CLASP, provides a new implementation of the traditional process model. It allows
portions of the process to execute on the most appropriate processor architecture.
CLASP isolates a practical level of homogeneity necessary to implement this sharing; it

also mitigates dissimilarities between the processor architectures — such as register sets
and stack frame formats.

CLASP makes the address space of a single process available to heterogeneous
CPUs with potentially different instruction sets and performance characteristics. Where
other approaches have concentrated on enhancing addressing to include the concept of
remote addresses, CLASP makes a single address space accessible to multiple heterogene-
ous CPUs. A novel aspect of the CLASP architecture is the inclusion of instructions for
different processor architectures within the same address space. The CLASP system
introduces a new construct, the Cross Architecture Procedure Call, to transfer a
process’s control thread between CPUs. The Cross Architecture Procedure Call — or

Ada is a Registered Trademark of the Department of Defense.
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CAPC — uses each CPU'’s subroutine call and return instructions to implement control
transfers between CPUs. This control transfer mechanism and the shared address space
make CAPCs more transparent than Remote Procedure Calls (RPCs), which require spe-
cial stub routines and system.calls to implement control transfers between CPUs.

To use the CLASP architecture, a special CLASP loader links separately compiled
routines. The CLASP loader recognizes the different object formats for various proces-
sor architectures and resolves the cross—architecture references. It provides the operating
system kernel with the information necessary to detect control transfers (e.g., procedure
and function calls) that cross architecture boundaries. Routines to execute on specific
architectures are compiled for those architectures. Some frequently called routines (e.g.,
sqrt()) are replicated. Duplicate copies of these routines, each compiled for a different
architecture, are loaded into the executable file. Calls to any of these routines can be
directed to the local instance of that routine, saving the network overhead of a remote
call. This replication is a loader operation.

CLASP subroutine libraries may contain routines for several architectures. Specific
routines within a library can be compiled for the most appropriate processor architec-
tures. A library of subroutines to manipulate large arrays may contain code for several
architectures; for example, routines that manipulate the array may be compiled for high
performance vector architectures, such as that provided by the Convex C-1. Other rou-

tines in the library, which do not perform large calculations, may be compiled for the

workstation architecture.!

Trees, lists, and other pointer-based data structures are difficult and sometimes
impractical to implement in distributed computing models without a shared address
space. The SUN Remote Procedure Call dereferences pointers to pass individual ele-
ments of a pointer-based structure. Pointer dereferencing is adequate for situations
where single structures are passed by pointer instead of value. Nelson advocates the use
of subroutines to encapsulate access to pointer—based structures. This approach implies
changing (or deliberately designing) the applications program to encapsulate accesses to
these structures. The CLASP software architecture addresses this problem by ensuring
that the context for a pointer (i.e., its address space) is in effect on the remote processor.
Applications may use pointers as handles to objects and for true pointer—based struc-
tures without concern about where a procedure is implemented.

Many RPC implementations package the entire argument list and send it to the
remote host. Datagram based RPC implementations send the entire argument list to the
server in a single packet. Therefore, the argument list must be small enough to fit into a
single packet. Some implementations provide larger argument lists by supporting
stream based connections. CLASP supports arbitrary sized argument lists. CLASP uses

! These routines also might be compiled for both client and server architectures. Calls to the replicat-
ed routine can be directed to the local instance of that routine and avoid the overhead of a network tran-
saction. As was pointed out in the above paragraph, the loader performs this replication and resolves

references to send most calls to that routine to a local instance of the routine.
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demand paging to move arguments and data to the server only on request for access by
the remote procedure. As an example, binary searches through large sorted arrays can
be efficient because only the accessed portions of the array are transferred to the remote
processor. Pages, once transferred to the server, remain on the server until they are
required by the client processor. By leaving the pages on the server, most data eventu-
ally becomes local to a particular computer system. Pages used only by the client
remain on the client; pages used only by the server will be transferred to and remain on
the server. Pages of data used by both processors will migrate between hosts as needed.

Although CLASP appears to be an approach to distributed computing, it is actually
an extension of the traditional single-system model onto a new underlying implementa-
tion for greater performance and ease of use. CLASP mimics a single processor model
but allows the most appropriate CPU to process appropriate parts of the problem. The
application program is neither restructured nor recompiled. The choice of which proces-
sor performs a specific routine affects only the processing rate for that procedure. The
choice does not alter the semantics for that procedure nor its interactions with other
procedures in the address space.

CLASP has been implemented between SUN 3 systems under UNIX. In the next
year, CLASP will be implemented in Choices. Appendix D contains Ray Essick’s Ph.D.
thesis on CLASP which details the work done in the last six months.

4. Path Pascal Release

A new release of Path Pascal for Berkeley UNIX BSD 4.3 was made this Spring.
The release was prompted by a number of requests for Path Pascal for SUN worksta-
tions. The new release corrected a number of bugs in the BSD 4.2 version. The new
release of Path Pascal has been used for the operating system class at the University of
Illinois. The new release has been distributed to five sites including the Electrical
Engineering Department at Cornell where it was used in a network simulation class.
The new release can be obtained on request from Professor Campbell.

5. The Choices Interface Compiler

In Choices, there are a large number of operations that may be conceived of as
being wrapped around user—described operations. For example, a call to a persistent
object involves remapping the address space as part of the call and (possibly) again as
part of the return. Parameter transmission across this interface in some cases (for exam-
ple, when the object is remote) is not straightforward.

There are many other examples of this type of "wrapped" interface. The implemen-
tor of an object may well want to impose a synchronization discipline upon its callers, as
in the Open Path Expressions used with Path Pascal. This is also best described as
actions to be taken before and after executing the called procedure; in this case, the

actions are the appropriate operations on synchronization objects (such as semaphores or
events).
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A remote procedure call is a more complex example of the same sort of "wrapped”
interface. The action that takes place before a call is to prepare a description of the
called procedure and the parameters for transmission to the server; the action on return
is to get the description of return value and result parameters from the server and for-
mat them correctly for the caller again. The server’s logic to handle the specific remote
procedure call is also a "wrapped” interface with a similar flavor.

There are many other examples, such as preserving atomicity, journalization of
input and output letters in a transaction processing system, and establishing commit-
ment points in a database manager, that are all examples of "wrapped” interfaces. The
common factors for all of these are:

1  The procedure to be executed consists of taking some action, eventually cal-
ling another procedure with the same calling sequence as the first, and then
taking some other action before returning.

2  The procedure can be generated from a knowledge of its calling sequence,
without needing to be adapted to the specific application. For example, all
calls to an operating system kernel can be translated to the corresponding
trap operations without knowledge of the function of any particular call.

If both of these requirements are met, the procedure is a candidate for interface
compiling.

The Interface Compiler

The interface compiler is a program that has, as input, a description of the object
or objects to be adapted (a C++ #include file), and a description of how to generate
the type of interface required (kernel calls, remote procedure calls, or whatever). It pro-
duces any number of source files as output; these files give the code needed to implement
the interface. Multiple source files are often required because the interface may need to
be compiled into multiple object modules; for instance, the server and client ends of a
remote procedure call.

8. Summary

Based on our prior research and in cooperation with Ed Foudriat, Project EOS has
built Choices, a prototype experimental embedded real-time system for parallel and net-
work computer architectures. The system has been implemented on a 10 node Encore
Multimax. The organization of the software is novel and demonstrates that operating
systems can be constructed using an object—oriented methodology. The current system
includes parallel execution of Threads on the Multimax, implementation of Spaces, and
handling of exceptions and interrupts. Future work will extend this operating system
with servers, real-time features, and networking.

Many of the networking aspects of Choices has been prototyped in the CLASP sys-
tem. This architecture and software system allows a virtual memory to be shared
between several processors. An implementation of CLASP was built for the SUN 3
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workstation.

A new release of Path Pascal was created for Berkeley UNIX BSD 4.3 because of
popular demand.

Finally, progress is being made in the design and development of a Choices inter-

face compiler that will aid the construction of network servers, debugging tools, and
other utilities and services.
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Choices

(Class Hierarchical Open Interface for Custom Embedded Systems!)
Roy Campbell, Gary Johnston, Vincent Russo

University of lllinois at Urbana—-Champaign
Department of Computer Science, 1304 W. Springfield Ave., Urbana, IL, 618012987

1. Introduction

This paper describes the design for an operating system family called Choices being built for
the Embedded Operating System (EOS) project at the University of Illinois at Urbana-
Champaign. Choices embodies the notion of customized operating systems that are tailored for
particular hardware configurations and for particular applications. Within one large computing
system, many different specialized application servers may be integrated to form a general pur-
pose computing environment. We have implemented a Choices Kernel on an Encore Multimax.

Choices, a Class Hierarchical Open Interface for Custom Embedded Systems, provides a
foundation upon which to construct sophisticated scientific and experimental software. Unlike
more conventional operating systems, Choices is intended to exploit very large multi-processors
interconnected by shared memory or high-speed networks. Uses include applications where
high-performance is essential like data reduction or real-time control. It provides a set of
software classes that may be used to build specialized software components for particular appli-
cations. Choices uses a class hierarchy and inheritance to represent the notion of a family of
operating systems and to allow the proper abstraction for deriving and building new instances of
a Choices system. At the basis of the class hierarchy are multiprocessing and communication
objects that unite diverse specialized instances of the operating system in particular computing
environments.

The operating system was developed as a result of studying the problems of building adap-
tive real-time embedded operating systems for the scientific missions of NASA. Major design
objectives are to facilitate the construction of specialized computer systems, to allow the study of
advanced operating system features, and to support parallelism on shared memory and
networked multiprocessor machines. Example specialized computer systems include support for
robotics applications, network controllers, aerospace applications, high-performance numerical
computations, parallel language processor servers for IFP[13], Prolog, Smalltalk, and
reconfigurable systems. Examples of advanced operating system features include fault-tolerance
in asynchronous systems, real-time fault-tolerant features, load balancing and coordination of
very large numbers of processes, atomic transactions and protection. Example hardware archi-
tectures include shared memory multiprocessors like the Encore Multimax and networked com-
puters like the Intel Hypercube.

Choices was designed to address the following specific issues: the software architecture for
parallel operating systems; the achievement of high-performance and real-time operation; the
simplification and improved performance of interprocess communications; the isolation of
mechenisms from one another and the separation of mechanisms from policy decisions.

! This work was supported in part by NASA under grant no. NSG1471 and by AT&T METRONET.



Of particular concern during the development of the system, was whether the class
hierarchical approach would support the construction of entire operating systems. C++ was
chosen because it supported classes while imposing negligible performance overhead at run—time.
In particular, we decided to construct all parallel and synchronization features using C++ classes
rather than by introducing new language primitives. Thus Choices is also a study of the ade-
quacy of class hierarchies to abstract and support parallelism and other operating system con-
cepts and to allow specializations of classes that facilitate efficient support for applications.

Fortunately for the designers of Choices, there has been a lot of operating system develop-
ment that is directly applicable to our goals. However, this development work often produced
implementations buried within the bowels of large, successful operating systems. Abstracting the
ideas from many different systems and reorganizing them into Choices has been a major concern
of our design team.

Choices has been influenced considerably by UNIX® and MULTICS. Indeed, many of the
standard UNIX system compilers, linkers and utility programs have been used to produce the
Choices software. However, to structure Choices to allow multiple processes running simultane-
ously on a multiprocessor with a high degree of parallelism and communication, we have had to
abandon the UNIX organization of the kernel. Similarly, the UNIX process supports the sequen-
tial execution of a program running within its own address space. To support real-time and
high-performance applications, we have opted for a lightweight process. Multiple lightweight
processes can run on multiple processors within the same virtual address space. Communication
performance in UNIX is limited by coroutining within the kernel and by copying information into
and out of user space. In Choices, we have attempted to eliminate these bottlenecks.

The open architecture of Choices is influenced by the ideas used to build CEDAR [16]. The
notion of a lightweight process is very similar in Choices and CEDAR, although in Choices it is
provided through a class abstraction and is not built into the systems language. The Choices
notion of a lightweight process may be specialized through the subclassing mechanism and this is
used in the software to distinguish user and system processes. Choices permits a virtual address
space to be shared by multiple processors. It offers concurrent applications protection from one
another and hence is, in CEDAR terminology, a closed operating system. However, user created
operating system policies and mechanisms (like a file system) are provided by the open interface
of Choices that is supported through the notion of persistent objects. CEDAR is not completely
built as an object—oriented system although the MESA language is oriented towards encapsulated
data structures which influences the organization of the system.

Many current operating system designs address the problem of distributed computing.
Choices owes several of these systems many of its ideas, but the support of applications on paral-
lel processors has caused us to implement these ideas in different ways. Many
distributed /multiprocessor UNIXs (UNIX United (3], LOCUS [10], Mach [1], RFS [13], RIDE [9],
NFS (18], Encore Multimax UNIX (UMAX) [7], Sequent Balance 8000 UNIX [14]) still impose
UNIX limitations on the parallelism and performance of applications. Multiprogramming on a
cached multiprocessor can have undesirable side effects in the form of additional caching and
cache flushing overhead. Message-oriented kernels like the V System kernel [6], Accent, Amoeba
[17], and Micros [19] build specific communication schemes into the lowest structures in the ker-
nel, restricting the possibilities of specializing kernel features to take advantage of communica-
tion patterns of the application or communication mechanisms of the hardware. For example,

@ UNIX is a Registered Trademark of AT&T.




systems implement a few ways of providing ‘‘virtual’” messages like ‘‘fetch on access.” However,
these systems are not easy to adapt to support other approaches like ‘‘send on write”, “send on
execute”’, and ‘“remote procedure call on execute.”” Many systems suffer overhead from copying
messages into and out of virtual memory. Cached systems may pay a double overhead.

Real-time interrupts and global multiprocessor interrupts pose organizational problems in
traditional operating system architectures like UNIX. Most operating systems do not include
parallel programming primitives (for example, the parallel creation of parallel processes), nor can
they be built easily out of the primitives that exist in such systems. Error recovery is difficult to
provide in current operating system architectures when used for parallel processing without res-
tricting parallelism because atomicity constraints cannot be imposed easily.

The Clouds operating system [2] includes many concepts that have been useful in developing
Choices. In particular, its notion of a user process accessing a user object is similar to processes
accessing persistent objects in Choices. Choices differs in not supplying a kernel level atomic
transaction.

One of the goals of Choices is to permit the custom design of operating systems for specific
hardware and applications. General purpose operating systems employ delayed bindings within
their architectures to provide flexibility. Examples include communication schemes, file systems
and additional kernel code to handle different architectures and configurations. Choices, on the
other hand, is aimed at providing the smallest operating system that will support a particular
application on a particular hardware. Where several applications need to coexist within the same
computing system, Choices allows these applications to each run on their own custom-built
Choices operating system. Any communication required between the applications is supported
by common Choices primitives and shared persistent objects.

The design of Choices is based upon several assumptions:

e Embedded, real-time, and server computing services will be provided by large numbers of
fast processors connected together by shared memory or by a fast network.

e A computational facility is multitasked (it supports several concurrent applications), where
each task may use multiple processors.

e  Processes in an application have a high degree of communication.

e  Each application may need to intercommunicate with other applications. Applications com-
municate less frequently than lightweight processes within a particular application.

¢  Communication overheads are small but significant.

e  Even though hardware technology will provide large multiprocessors with very fast proces-
sors, performance of the applications will remain a critical issue.

e  Small lightweight operating systems are desirable in real-time and high-performance appli-
cations.

e  Processors within a multiprocessor may be dynamically partitioned to execute different
applications.

e  Each application may need basic support and specialized support from the operating sys-
tem.

e  The hardware will support very large virtual address spaces.

Choices is designed to support specialized applications like embedded real-time systems,
numerical programs and specialized computing environments like FP or parallel logic programs.
A Choices system could be embedded as a node within a network of workstations.



In the subsequent sections, we discuss the class hierarchical organization of Choices and the
various classes we have built to implement virtual memory, the concept of process, the notion of
a persistent object and exception handling.

2. The Choices Class Hierarchy Model

Several problems emerge when designing an extensible family of operating systems where
each member can be specialized or customized for a particular application or hardware
configuration. Each module within the system may have many different versions tailored for
each different member of the family of operating systems. However, since the different versions
of a module for different machines or applications all perform a similar function, large portions of
different versions of a module will be identical. Customizing an operating system for a new

application requires access to particular aspects of the code that may reside in many different
modules.

A class hierarchy provides an ideal solution to these problems. Particular instances of
classes in the hierarchy are chosen and combined to produce a customized operating system for a
specific architecture and application. Class inheritance provides for code re—use and enforcement
of common interfaces. Customization of the operating system for new applications is guided and
aided by the structure induced upon the system by the class hierarchy.

A class hierarchy gives more than ease of customization. It also gives us a conceptual view
of how portions of an operating system interrelate. It is easier to understand and more flexible
than traditional layered approaches to operating system design. A class hierarchy allows concep-
tual "chunking” of knowledge about portions of a system by learning the function of parent
classes and inferring functionality about subclasses. Traditional layered approaches conceptually

group large sections of functionality into a layer, but the interrelations of the layers are often -

complex and poorly understood. Also changing a piece of a layer is in no way facilitated by the
layering. However, in a well designed Class Hierarchical model only the top few classes would
need to be mastered to achieve a good overall view of the system. Class derivation gives a
method to change specific parts without adversely effecting the whole structure.

The Choices support for applications is divided into two portions. The Germ is a set of
classes that encapsulates the major hardware dependencies of Choices and provides an “‘ideal-
ized”’ hardware architecture to the rest of the classes in the hierarchy. It provides the mechan-
tsms for managing and maintaining the physical resources of the computer. A Kernelis a collec-

tion of classes that supports the execution of applications and implements resource allocation pol-
tctes using the Germ mechanisms.

Individual customized systems will consist of derived classes from the Germ classes defined
by Choices appropriate for the particular hardware of the system, plus the specifically tailored
Kernel classes the system builder desires. Once this hierarchy is laid down, individual applica-

tions that run on top of the new Kernel can further augment the class hierarchy with their own
classes.

In the following sections, we will describe some of the classes that constitute Choices. The
first set of classes we will discuss provides an abstraction for physical and virtual memory.

3. Stores and Spaces

Stores and Spaces are classes of objects which the Choices Germ provides for memory
management. A Store object encapsulates the management of physical memory. An instance of
a Store manages a range of contiguous physical memory addresses. Operations are provided for
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Store instantiation, Store destruction, page allocation, and page deallocation. One application of
multiple Store objects is to manage memories with different properties, for example, local
memory, shared memory within a multiprocessor, or global memory shared between multiproces-
sors.

A Space object encapsulates the management of virtual memory. An instance of a Space
manages a range of contiguous virtual memory addresses. Operations are provided for Space
instantiation, Space destruction, allocation and deallocation of page table entries, changing pro-
tection flags on page table entries, mapping a page table entry to a physical page of memory
within a Store, and mapping virtual memory addressing faults on specific page table entries to
appropriate exception handlers (see the section on Exception Handling in Choices.)

Many non-overlapping Spaces may be mapped into the virtual address range of a processor
at any one time. The aggregate of the Spaces addressable in a processors virtual memory is
represented and managed by an instance of the Untverse class.

Spaces implement protection of the virtual memory they contain by means of the available
virtual memory hardware protection mechanisms. Protection ensures that a process can only
access a Space according to the access rights it possesses for that Space. A process may have
rights to access a Space as a Primitive Space (in the case that it contains a process stack, code, or
local data) or as a Derived Space containing persistent objects. Primitive Spaces are protected
from invalid read, write, or execute access. A Derived Space can only be accessed by the methods

of the persistent objects that it contains.? The next section discusses the Choices concept’of a
process.

4. The Choices Proceas Concept: Threads

Choices is designed to support real-time multiprocessing and parallel computing on large
numbers of processors. The Choices system supports the concept of a computation that is com-
posed of a potentially large number of lightweight parallel processes termed Threads. Each
Thread represents a small independent sequential computation.

Interrupt and real-time processing requires the ability to switch between Threads with a
minimum of context switching overhead. A Thread is implemented with a stack pointer, a pro-
gram counter and a set of register contents. As the Thread executes, it will access its stack, code,
and data from addresses within various Spaces. To accommodate real-time and interrupt pro-
cessing, Spaces may lock their pages to be resident in physical memory. In addition, a Universe
may lock a Space to be resident in virtual memory. A context switch to a Thread that executes
and addresses only resident pages in resident virtual memory requires minimal overhead. Inter-
rupt handlers and real-time processes can be implemented in this manner, if desired. Such
processes may be protected from other applications by setting the memory protection of the
Spaces they access to exclude access in user mode and by running the processes in the supervisor
state of the processor. Most Threads, however, will need to access addresses that are not always
resident in memory or in the Universe. Switching between Threads of this type will usually
involve at least a partial virtual memory context switch.

? A Derived Space is created from a Primitive Space by granting processes access rights to the methods of the objects within the
Space. In Choices, such objects are called persistent because their existence becomes independent of the lifetime of any one process (see
the section on Persistent Objects.) We emphasize the distinction between a Derived Space and a persistent object. Although a
Derived Space can contain persistent objects, the Space iiself is a Germ object.



A real-time application may use multiple communicating Threads to achieve concurrency
and parallelism. A Task is a collection of Threads that have common sets of Spaces to minimize
context switching. Little or no virtual memory context switching or memory cache flushing
should be needed to switch between two Threads in a Task. Kernel scheduling algorithms can
exploit Tasks to achieve high performance. Tasks also provide a framework within which
Thread execution may be prioritized; perhaps to optimize the execution of a parallel processing
user application.

A Space Access List is maintained by the Germ for each Thread. This list specifies the
Spaces a Thread must access in order to execute, as well as the access rights that a Thread has to
those Spaces. The protection specified by the Space Access List is implemented by a combination
of hardware and software. For Primitive Spaces, read, write, and execute protection is provided
directly by the Space through the page table and the paging hardware and memory management
unit. For Derived Spaces, the protection is achieved by providing ‘“‘gated’ procedure calls to the
methods of the objects in the Space. As the Thread invokes a gated call, the call is validated,
and if valid, the Space Access List of the Thread is updated to reflect the protection domain of
the persistent object. On return, the Space Access List is restored to reflect the original protec-
tion domain. The Germ supports efficient operations on the Space Access List that are similar to
the rules in a capability model [15, 20].

Communication can be achieved by means of shared Spaces. Popular shared memory and
message passing communication schemes exist in the system as part of the operating system pro-
vided class hierarchy. Other user defined communication schemes can be built by extending the

class hierarchy. An interface compiler for C++ enriches the possible communication schemes. .

Currently, we have included a Path C++ class (named after Path Pascal [4]), monitors, sema-
phores, messages, and simple varieties of guarded commands.

Protected communication can be achieved by means of shared Derived Spaces containing
persistent objects. The methods of such objects may enforce particular communication protocols
upon the Threads that use them and the protection provided the objects prevents misuse.

Since a Thread may execute in any Space, a persistent object may include a Thread and be
active. Active objects can be used to implement name servers and to send asynchronous mes-
sages. Several persistent system objects augment the shared persistent objects and provide
high-performance communication channels between Threads and between Threads and devices.
System objects are implemented in the Kernel or Germ. They can support stream-based com-

munications, broadcasts, multicasts, and block I/O. Persistent objects are discussed further in
the next section.

5. Persistent Objects

Choices is designed with the objective of placing many operating system and subsystem
components in a protected Space rather than in a kernel as is done in traditional systems. This is
done to reduce the interdependences among operating system components and to increase the
coherence of the components themselves. Such components are implemented as Choices per-
sistent objects. That is, instances of classes that reside in memory for periods that exceed the
execution of a particular Thread and that may be shared between multiple Threads. Persistent
objects may be mapped into the virtual memory of several processors at the same time. In a
sense, the Germ is a collection of persistent objects that are always resident and accessible in the
address space of every processor.




A full description of the protection scheme used in Choices is beyond the scope of this short
paper. However, we must introduce enough of the scheme here in order to describe access to and
the invocation of a persistent object. Each Thread executes within a protection domain that dic-
tates what the Thread may access. The protection domain of a Thread is dynamic and may
change by adding or removing Spaces. Initially, the protection domain depends upon the protec-
tion of the executable file that the Thread is created from and the protection domain of the
parent Thread. A Thread that executes a method of a persistent object enters a new protection
domain that depends upon the protection of the Derived Space and the protection domain of the
Thread. When the Thread returns from the method invocation, its previous protection domain is
restored.

For example, policy modules of the operating system that traditionally are part of the ker-
nel, may be implemented as persistent objects. A Thread executing one of the methods within
these persistent objects may require access to Germ data structures. This is possible by having
the Thread enter Supervisor state to execute the method. The gate mechanism changes the pro-
tection domain by altering the execution level.

Threads access persistent objects using an object descriptor and method. A Thread must
obtain the object descriptor before use. Object descriptors are provided from user or system
name servers.

Name servers are persistent objects. Choices includes “standard name servers” that are in
the Kernel and may be accessed by every Thread. These name servers provide basic facilities like
the standard file system and intertask communication. Other user defined name servers must be
accessed through the standard name server utilities.

On request, the name server grants the Thread access to the object and returns the object
descriptor. The grant operation is implemented in the Germ and checks Kernel protection policy
to determine if the name server/Thread grant operation is valid. The name server must have
appropriate access rights to the persistent object. If the operation is valid, the Germ adds the
Space of the persistent object to the Space Access List of the Thread, updates the Thread’s
Universe, and returns the Space address and gate information to the name server. The name
server packages an object descriptor which includes the persistent object, Space and gat§ infor-
mation and returns.

An operation on a persistent object is invoked through a gated request. The Germ ensures
that the object descriptor and method used by the Thread gated request correspond to the valid
persistent object address and method entry point within the Space. The Space Access List of the
Thread is changed to reflect the protection domain requirements of the Space.

In hardware architectures with limited virtual memory, the gated method of invoking a per-
sistent object allows many different Spaces to share the same virtual memory address range. The
Space and the persistent objects it contains can be mapped into and out of the same address

range on demand®. In such implementations, the Space Access List will contain each Space, but
only one of the Spaces will be present in the Universe at any one time.

! In many hardware architectures, a persistent object must be relocated by a link editor to allow it to execute within a specific
address range. This implies that once it is activated, it cannot be moved to a new address range.



6. Exception Handling in Choices

Exceptions in Choices are managed by the Ezception class and its various subclasses. The
parent class of Exception defines the method, handle, to manage or correct the exception condi-
tion. Upon an exception condition, the Choices Germ manages the task of converting the machine
dependent details of exception processing into an invocation of the handle method for the Excep-
tion object managing the exception. Various subclasses of Exception define the behavior of handle
in different ways. Some subclasses of Exception are actually container classes which, based on
other inputs, send the handle message to another Exception object contained within.

Two subclasses of Exception of interest are Trap and Interrupt. The Trap class provides
Choices with a mechanism for handling traps that a Thread may generate as a direct result of its
execution. This includes machine traps (that is, divide-by-zero or illegal instruction), virtual

memory access and protection errors (that is, page faults of various types), and explicit program
traps (for example, a “system call”).

The basic function of a Trap handler is to, if possible, service the exception condition within
the context of the faulting Thread, otherwise to terminate the execution of the faulting Thread.

Interrupts occur asynchronously and, in general, have nothing to do with the currently exe-
cuting Thread. In Choices, an Interrupt can be awaited by a Thread (and must be awaited if it is
not to be missed). The handle method of the Interrupt class saves the details of the interrupted
Thread and resumes the Thread awaiting the occurrence of the interrupt. The Choices Germ has
no requirement that all interrupts be handled by the class Interrupt. A Choices kernel implemen-
tor can choose to have any type of Exception object handle an interrupt. In future work, various
user—oriented exception schemes will be implemented as classes and by the interface compiler.
Examples of such schemes can be found in {5)].

7. Summary

A Choices Kernel currently runs on a 10 processor Encore Multimax that supports the
Store/Space/Universe model of memory management as well as the Task/Thread process con-
cepts. Current effort is devoted towards improvement and further implementation of communi-
cation and persistent object support. Future plans include an object—oriented file system, an
advanced interface compiler, and tools for configuring Choices systems. Once Choices is stable,

the code will be placed in the public domain to promote research into customized operating sys-
tems.
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APPENDIX C
Choices Code
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¢ 2% 25:35 1387 /h/Cbrect. 2 Pige L

Cbject.n: defiaition 2f the Jbject parent ¢lis5s .che pareat of ali classes,

SHeader: =bject.h.v 11.3 37,05/2L 15 43 85 russo Exp 3
SLocker: §

The destructor for Jdbject 1s made virtuai so all destructors throughout
the system will be likewise. This allows collections Of objects

to be kept and deleted, whils assuring the proper destructors will be
called for each class. It 1ncreases the size of every object 1in the
system by the size of a pointer but who cares, memory is cheap

Modif:ication Histroy:

SLog: dbject.h, v §
Revision 1l.9 87,/05/21 15:349:35 russo
Console ipput and private stores

Revision 10.0 87,/04/22 07:33:38 russo
Naw 3Spaces. Jnivaersz2s and CPJ objacts work, Finally!

ORIGINAL PAGE IS
OF POOR QUALITY,

Revision 9.3 37/04,74 15:35: 34 £US50
Mult:ple threads and tTimer 1aterrupts.

Revision 3.4 97,03/29 16.34:12 russo
added dummy ianline constructoar.

Revision 8.3 87/03/29 16:47:50 russo
added Object as parent class

Revision 8.1 87/03/29 15:35:45 russo
1ai1tial revision.
/

fndef Object_h
2fine Object_h

388 Qbject |

public:

Object:) (1}
virtual 'cb]ect\}; // seae comment above

tendif Objact_h

May 26 J35:75 1987 /h/Assert.h Page 1

/

% ® 2w v e A B W EO SO BDRTO O AE NSO

[ RS

te

te

Assert.h - Assertiouns.

$Header: Assert.h,v 11.0 87/05/31 15:49:16 russo Exp 3
SLocker: §

~

Modification history:

$Log: Assert.h,v §
Revision 11.0 87,/05/31 15:49:16 russo
Console 1nput and private stores.

Revision 10.0 87/04/22 07:33:01 russo
New Spaces, Universes and CPU objects work, Finally!

Revision 9.0 87/04/04 15:05:03 russo
Multiple threads and timer interrupts.

Revision 8 0 87/03/29 15:28:38 russo
_new and _delete added for memory management. Also, class interrupts work.

Revision 7.0 87/03/725 12:45:45 russo
Fault handler hierarchy works, so does interprocessor vectored interrupts.

Revision 1.1 87/023/23 18:31:32 johaston
Iaitial revision
, .

fondef Assert _h

fdefine Asserc_h

f1fdef ASSERT

extern void _Assert( char * exp, char * file. 1int line ),

tdefine Assert exp) 1f( exp )} ;. else _Assert( “exp". __ FILE__ _ LINE__ )
const int NOTREACHED = ¢

telse

fdefine Assert/exp)

ndif ASSEIRT

ndif Assert_h




‘May 2§ 35-3% 1387 . /n,0ebug a Paze L

Cebug.a - Depugginy stuff

$Header: Debug.h.v 11.J 87/05,21 15-49:33 risss
SLocker:

s/

Modification history

$Leg: Debug.h.v §
Revision 11.0 37/95/21 15:49:33 russo
Console input and private storess.

Revision 13.9 97/04/22 07.33:20 russo
New 3paces. Jniverses and CPU objects work, Fianally'

Revision 3.1 37/04,20 13:42:26 russo
changed debug to user CPUPrintf

Revision 9.0 87/04/04 18:25:13 r1$80
Multiple threads and -imaz .ntazrupts.

Rawvision 3 2 37/23/,23 15:29-45 1330
i _new and _delets added f£Oor memory manajement. Als0. Class INTAYXrupts work

e x4 4 % 2 % e x oA 4 AR &Aoo

} « Ravision 7 0 37,037,298 12:45:.37 russo

pov Faule nandler hierarcany works., 50 does interproc2ssor vecrored laterrupts
"
¢ Revision 1 1 87,02/23 18:31:32 Johnston
* Initial revision

Py

|

|¥ifncet d=bug &

14 define Debug n

axtern void Printf( char *, . I
=xtern vord CPUPrincf: char ~, Loy
2xtarn void PanicPrintf( char « S

P 1fdef DEBUG
tdefine Debug CPUPrintf
§ else DEBUG

/7 This 1s int instead of voi:d to avoid "“sorry. not implemented" things.
inline /* should be void ¥/ int Debug( char *, ... )} { return (0;;

I endif DEBUG

fend:f Debug_h

May 26 05:05 1987 ./h/VM.h Page L
s
* YM.h - Virtual memory manigement (MMU, page tables, virtual addresses, etc.).
«
. $Header: VM.h,v 11.0 87/05/21 15:50:27 russo Exp §
. $Locker: H
.

~

Modification history

SLog: VM.h,7 §
Revision 11.0 87/95/21 15:50:27 russo
Console input and private stores.

Revision 10.0 87/04/22 Q7:331:59 russo
New Spaces, Universas and CPU objects work, Finally!

Revision 9.7 87,/04/21 05:42:03 johnston
Make shift arguments unsigned to avoid sign extension.

Revision 9.4 87,0430 09:37:26 russo
added inlines for zonversioa from addresses to pages and frames

Revision 9.2 87/04/16 16:13:59 Johnston
Added page/pointer table typedefs and better 1initialization routine
declarations.

Revision 9 0 87,/04/04 15:06:10 russo . ORIGINAI: P-KGE m
Mul%:ple threads and timer interrupts. OF P(x)R QUALITY

Revision 8.0 87,03/39 15:30:16 russo
_new and _delete added for memory management. Alsc. class lnterrupts work.

Revision 7.0 87,03/25 12:146:47 russo
Fault handler hierarchy works, 350 does i1nterprocessor vectored lnterrupts.

Revision 4.0 97,03/10 14:)2:37 johmston
All new for 1987°
/

P A I N

tifndef VM_h
fdefine VM_h

tinclude 'md_constants.h’

tinclude "Debug.h”

tinclude "Assert.h”

finclude “Object.h® // parent class of YA and PTE (for now;

/'
» Build i1nline function returning the value of the named field.

*/
fdefine FIELDFUNC( name ) unsigned name(; \
{ return ¢ data field name ; }
/e
* Yvirtual address.
*/




'

/E/VM.h Page 2

l:lass VA
; uni2n |
unsigned all:
szruct {
unsigned offset 9: // Pige offset.
unsigned secondlevallIndex 7: // Level 2 index.
unsigned firstlevelIadex 8: // Level 1l 1index
unsigned reserved 8. // RESERVED by hardware.
} field;
} data;
unsigned assign( unsigned all )
{
Assert( ((VA *; salli~->data.field resarved == J ):

return ( data.all = all ;.
H

unsigned assign( unsigned llix, unsigned
{

(VA *) sva)->data.fieid.offset
racuxrn { assign( va ) ).

i

public:

VA()
{ assagn( 0 ); }

7A: unsigned va )
{ assigp( va ). |}

VA VA & va )
{ data,all 7 va.data.all: }.

{ assign¢ llix., 121x. offset
JA( chair * va )

{ assign( (unsigned) va ); |
YA( void * wva )

{ assiga( (unsigned) wva }; }
unsi3jned operator=( unsigned va )

{ raturn ( assigni va ) ); }
unsigned operator=( VA va )

operator unsigned()
{ retura ( data.all ;; !} [ ]

FIELDFUNC{ firstLevellndex )
FIELDFUNC( secondLevelIndex )
FIELDFUNC; offset )

7oid printf().

_

12:x, unsigned offsexr )

Aszsext( ll: < 256 ad 4
As;::‘.{ 12 L: < 28 s ORIGINAL PAGE B
Asserc( offsez < 512 [J}\I‘I

d 9 = 0 l !
?73;??T s;:)—>data.fxeld.fLrSCLeve;:ndex = 1llix; ()I? })()()I{ CQ
((VA *) &va)->data.field.secondlLevallndax = 121x:

= offset,

VA( unsigned liix, unsigned 121X, unsigned offsat

i

{ zr=turn ( data.all = va.data.all ): }

May 25 05:05 1987 ../h/VM.h Page 3

s
* Address conversions.
v/
inline unsigned int

addrToPage( void ¢ addr )

{

return( ((unsigned int) addr) >> PAGESHI

1

inline void ¢
pageToAddr( unsigned int pageNumber |
{

}

inline unsigned int
addrTofFrame( void * addr )
{
return( ((unsigned 1int) addr) >> 16 3,
i
inline voi:d
frameToAddr( unsigned int frameNumber )
/

{

}

Z
* Page rounding.
v/

overload PageFloor,

ILanne unsigned iat
PageFloor( unsigned a )
{
return ( o & ~(PAGESIZE -~ 1) ):
}

inlinpe unsigned 1iat

PageFloor( void * a )
{
¥

return ( PageFloor( (unsigned) a ) );

overload PageCeiling;

inline unsigned int
PageCeiling( unsigned n )
{
unsigned £ = PageFloor{ a ),
return ( {(n == £) > a : (f + PAGESIZE) )
!

inline unsigned int
PageCe1lling{ void * a )

ET )/

return( (vold *) ( pageNumber << PAGESHIFT . ).

return! (void *) ( frameNumber << 16 ) ).




recurn ( Pagaele:l:ng: /unsigned; a

I
* Page table entry.
*/

const unsigned MAXBANDLERS = 16 // Ouly 4 bits =0 work With 1in the PTE. !

class PTE [
unlon {
unsigned all:
struct {
unsigned valid :
unsigned protectionLeval:
unsigned raferenced :
unsigned modif.ed
unsigned handlerindex
. unsigned cagaNumbar
-1 } fia2ld:
; data;
-

// Vaiid

// Protection ieval.
Referanced.

// Modified.

// Fault handler 1ndex.
S/ Page Irame aumber.

P e
~
~

~

public: ‘e |
2TEL) i
; { data.all = 0: }

PTE( PTE & pte ) |
iR )
i {

i data all = prte.data.all;
data.field . raferenced
data.fi1eld modified = 0,

3

PTE{ insigned ote ORIGINAI: PAGE Is
L da:a.a;l = pte; OF POOR QUALI’I.Y

data.field referenced = J.
data field modified = C.

i

unsigned operatcr=( PTE pte )

'

{
data.all = pte.data.all;
data.fizld. referenced 9
data.field modified =
return ( data.all

uasigned operators; unsigned pte
data.all = pte.:
data.field referenced

data.field modified = 0
return ( data.all ).,

3

i
May 26 35:05 1987 ../h/VM.h Page 3

operator umsigned(;
{ return ( data.all ;; }

vold map({ unsigned pn, unsigned pl )
{

Assert{ pn ¢ 2x8007 ). // Page number in range.
Assert( pl < O0x4 ); // Protection level 1in range.
Assert( 'data. field.valid ); // Page not alr=ady mapped.

: data . field pageNumber = pn:

data.f1ield protactionlevel = pl;

data.field. valid = 1;
data.field.referenced = 0,
data.field modified = 0,

}

void map( unsigned pn )
{

' Assert{ pn ¢ 0x8000 ) // Page number ia range.

| Assert( 'data.field.valid ). // Page not already mapped.
! data. field pageNumber = pn;

i data.field.valid = 1;

! data.field.refarenced = 0;

| data.field modified = 0;

l

I

|

void unmap()

{

Assert( data.field.valid ),
data.field valid = 0.

. '

void handle( unsigned hi. insigned pl
{

Assert( hl1 < MAXHANDLERS), /7 Handler index 1n range.
Assert( pl < x4 ), // Protection level :n range.
data.field handlerIndex = 11,

data.freld . protectionlevel = pi;

data.field. raferenced = 3

data.fieid modified = C;

i

FIELDFUNC( pageNumber );
FIELDFUNC( handlerlndex ),
FIELDFUNC({ modified ),
FIELDFUNC( referenced );
FIELDFUNC( protectionlevel );
FIELDFUNC( walid ):

void printf().
e

/.
* Page table initialization routines.
v/

‘typedef PTE PageTable([256). !




N

sB/VM Y Page

Eexce:n void
axtarn vold

le: pPageTabl
Tabla( Point

axtern PTE * InitFizstlevelPageTable( PTE « ).
2xtarn PTE * InitSecondlavelPageTabla: PTE *

unsigned all;
struct {
unsigned iddress
unsigned resstved
unsigned txPTB
i field;
T data;

unsigned 2ssi1gn( unsigned eia }
{

return { data.all = =21a ).
}

{

operator unsigned()
{ return ( data.all ): }

Hd A 0L

oy
rTabls & ;.

// Walking history.

/7 Fault address

/; PTBO/L did translatae.

unsigred assign( unsigned txPTB, unsigned address
R

Asserz( .txPTB == 0) {{ (£xPT3 == 1, );
Assert( address < 2x1C00002 ).
unsigned ei1a = 0
{(EIA *) &teira)->data.fileld.£xPT3 = <xPT8

S(EIA *) seraj)->data.  fi21d. asddress = addrass
raTurn( assign{ eia ; );

}

public:

EIA()
{ assign¢ 0 ): }

EIA{ .nsigned eia )
{ assign( eia ). }

EIA( EIA & =12 )
{ data.all = eia.data.all; }

EIA( unsigned tXPTB., unsiyned address )
{ assign( txPTB. aiddress ); 1}

unsigned operator=( unsigned eia )
{ return( assign( esi1a } ); }

unsigned operator={ EIA ela )
{ return( data.all = eia.data.all ). }

s ¢ RESERVED by hardware

ORIGINAL PAGE 1§
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unsijned address()

{ return | data.field.addrass
unsigned txPTB()

{ return ( data.field.txPTB );

void praintf();
b

/e
* Memory status register.
*/

class MSR {
union {

unsigned all;

struct {
unsigned txErroxr
unsigaed mag:ic
uns:gned BPTError :
unsigned ProtLevelError:
unsigned L1PTEError
uasigned LIPTEError
unsigoed BPR
unsigned reservedl
‘unsigned readError
unsigned BPTReadError
unsigaed txstatError
unsigned BPTStatError
unsigned txUser
unsigaed txSupervisor
unsaigned userPTB
unsigned override
unsigned BPTEnable
unsigned 3PTUserOnly
uns:igoed ai
unsigned flowTrace
unsigned flowUserOnly
uns:gned noaoseqTrap
unsigned reservedl

} field;

R L R S Sy )

} data,
unsigned assign( unsigoed msr )

Assert(
Assert( ((MSR *) wmsr)->data.f
return ( data.all = msr ),

1

unsigned assign( unsigned magic. unsig
unsigned txSupervisor
{

Assert( (magic 2 |
Assert( (txUser == 0)
Assert( (txSupervisor

((MSR *) smsr)-rdata.field. zeserved

yo o}
}

// Addrass translation error.
// Climar MSR.

// Breakpoint error.

// Protection level =rror.
// First level PTE error.

// Second level PTE =rrorxr.

// B3PR 3/l caused error.

/7 RESERVED by hardware.

s/ Writa read error

/ Write/read breakpoint 2rror.
/7 Trapnslation pus cycle erxor>
// Breakpoint bus cycle error>
// Translate user addresses.

7/ Translate supervisor addrs.
<, 7se PTBO/1 for user.

/7 JTse super. prots. for user.
“/ Inable breakpoints.
s/ 3reazpolnt 1in user mode only.
7/ Abort/NMI trap?
// Enaple flow tracing.
// TLow trace in user mode only.
// inable nonseq. flow traps’
// RESERVED oy hardware.

1
1eld. reservedl

ned txUser
unsigned userPTB

| (txUser
=0y I

‘ (magic == 1) 3;
|

1
txSupervisor == 1} ):
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3% 25 1937 sh/MM . 2 Page 3
Assert. “32rp’8 =3 I f 1s=2r?T8 2= 1
unsigaed msr = o

(MSB v smsr)-.odata
MSR *) smsr ->data
!MSR *; amsr)->data
tMSR *) smsr)--data

ratura( assign{ msr ; .

MSR: )
{ assign{ 2 ): }
MSR{ unsigned msr
{ assign{ msr j; }
YSR/ MSR & msz
{ data.all = msr.data. all, K }
MSR¢ unsigned Magi¢. uns:.gned :txUser
unsigred txSupervisor, unsigyned us2rPTB )
{ assign( magic, txUser ctxSupervisor, userPTB |-

unsigned Speratd>r= ! unsiyn
{ razura. assiga. m
insiyned sperators MSR ms
{ recurn({ data.all
operator unsigned(
{ resura( data.all ),

ELIDFUNC{ txError .,
ELDFUNC! magic ),
ELDFUNC; BPTEzror ).
ELDFUNC( ProtlevelError ):
ELDFUNC({ LIPTEError ).
ELDFUNC/ L2PTEError i:
ELDFINC. BPR

ELIFUNC! raservedl
ELCFUNC: readError ).
ELDFUNC: BPTReadError ):
ELDFUNC/ txStiatError ;.
ELDFUNC; 2PTStatfrror
FIELDFUNC| txUser ,
FIELDFUNC{ txSuperv:sor };
TIELDFUNC! user?PTB
FIELDFUNC. ovarr:ids ).
FIELDFUNC{ BPTEnable ;;
FIELDFUNC({ BPTUserOnly }:
FIELOFUNC! a1 }:
FIELDFUNC( flowTrace ,;
FIELDFUNC( flowUserOnly ).
FIESLOFUNC( nonrseqTrap ;;
FIELDFUNC; raservedl ),

vo1d printf() .

register read/write routines.

May 25

extearn
extern
exTarn
extern

extern
extern
extsarn
extern

lendaif

05:05 1987 ../h/VM.h Page 9

vo1d WriteEIA( EIA eia );
unsigned ReadEIA{):
void WriteMSR! MSR msr );
unsiyned ReadMSR();

// THESE 4 ARE SUSPICIOUS

vold WritePTBO( void * ptb ),
vo1d WritePTBl( void * ptb )
void * ReadPTBO()
void * ReadPTBl();

YM_h

ORIGINAL PAGE IS
OF POOR QUALITY




Stcze.h - Physicail memdry allscation.

3Header: Store 2, v l1 9 87-05/21 15:30:13 russo Exp

EEE R R
w

~

Modification h1story:

SLog: Store . v §
Revision 11.0 87/95/21 15:30:13 russo
Zornsole 1pput and private stores.

Revision 19.4 87/05/1% 26:53:34 johnston
Added anotherxr :in3tore.

Revision 19.2 37/05/1%5 236:17:3% sohnston
fixed offsez prodblem i1n the mark functions.

Ravistion

t9.1 97,05/13 24:43:345 johnston
Redid Stoxe

Revision 10.9 87,/0%/22 37:33:35 russo
Waw 3paces. Universes and CPU objects work, Finally’

Ravision 2.2 37704715 15:139:34 johnston
F1xed constructor to use physical memory cages to allocate 1tself

Ravision 9.7 37/04/04 15:05:20 russo
Multiple threads and timer interrupts.

Revision 8.0 87/03/2% 15:30:04 russo

n 87,03/25 12:46:3) russo
a

Revision 1.1 87/02/23 13:31:34 johnston
Taiti1al rev:ision

P T I T B A I

~

i
|
l:fndef Store_h
,tdefine Store_ h

finclude "Assert h”
itinciude "Debug.a”
i¥include "Lock.n*
!#1nclude “Object.n”
1lxnclude "VM.h'

class Store : publiz Object |
Lock lock:
unsigned basePige,
unsigned highPage;
unsigned freepPigeCount;
unsigned setEntryGount;
unsigned pagesPerSetEntry:

2
ndler hierarchy works, so does interprocessor vectorsd :inter

_new and _deleste added for memory management. Also, class intarrupts work.

rupts.

May 26 05:05 1987 ../h/Store.h1 Page 2

unsigned set{l]:

|

]

!

|

i 701d marx( ussigned page ):
i void unmagk( unsiyned page );
i 1nt marked( unsigned page ).
|

|

|

)

i

|

unsigned nextFree( unsigned lowPage ),
unsigned contiguous( unsigned lowPags, unsigned pageCount };

Store( unsigned basePage,
unsigned pageCount,
unsigned ® stateBasePage ).
“Store{):

char ® allocate( unsigned pageCount ),
7o1d deallocate( char * bassAddr, unsigned pageCount ),
void reserve: unsigned bhassPage, unsigned pageCoust };

I int 1nStore( unsiyned page )
P int inStaze( <char * addr };

iinline int
Store::inStore( unsigoed page )
.

return { - page >= this->basePage ) && ( page ¢ this->highPage

,ialine iat

Store:::.nStore( char * addr
il

i

1
h

return { this->1nStore( addrToPage( (char *) Pagefloor: addz )

|

jinliae iat

.Stere: :marked! unsiyned page )

il

H Assert( =his->1nStore( page ) ;,

unsigned offsetPage = page - this->basePage;

recurn ( this->set{ offsetPage / this->pagesPerSetintry 1o
)

|
I ( Ixl << ( offsetPage % this->pagesPerSetintry | )i
|

inline void
!Store: :mark( unsigned page )
{

!
| Assert( this->inStore( page ) };
Assert{ ' this- >mar ( page ) )i
unsigned offsetPage = page - this->basePade;
this-»>set| offsetPage / this->pagesPerSetEncry ) =
I ; 0xl << ( offsetPage % this->pagesPerSetiatry ) }:
i Asserz( this->marked( page ) ):
Asserc( this->freePageCount '= 0 ):

this->freePageCount--.

y o)

Yoy o1
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insigned zsage

Assart: this->inStore( page e
Assert( %this->marked( page } ).
unsigyned offsetPage = pajye - this->basePage:
this->set{ offsetPage ,/ this->pagesPerSetEnzry | i=
T 9xl (¢ ¢ offsetPage & this->pagesPer3etEntry 1 :;

$Header: md_tuneable . h,v 11.9 87/05/21 15:50:40 russo Exp §
SlLocker. S

Modification history

SLog: md_tuneable h.v §
Revision 11.0 37/05/21 15:50:40 <zusso
Console 1nput and private stores.

Revision 10.7 87/04/22 07:34:08 russo
New Spaces. Jniverses and CPU objects work, Finally!

Revision 3.9 87/04/04 15:06:19 russo
Multiple threads and timer interrupts.

Rewision 8.2 87/03/29 15:30:25 russo
_uew and _deletes added for memory management. Also. class interrupts work.

Revision 7.0 87,/03/25 12:46:58 russo
Fiult handler hierarchy works, so does interprocessor vectored interrupts.

Revision 4.1 87,03/09 12:42:47 johnston
Izit:ial ravisicm.
/

P N I N I A S S R A X

t1fadef md_tuneable h
tdef:ne md_tuneable h

.
* Page frame ranges and addresses.
x

NOTE: A 'frame" 1is the space mapped by a single «first-level* page tabie
- 2ntry (54K bytes, here).
«;
const int NFRAMES = 256; 7/ Complete address space :0..255
// This 1s 64k ¢ 256 = _6M bytes.
7/ This *mustr be (= 25§.

const i:nt GKLOWFRAME = 2x000900, // Germ/Kernel (0..126).
const int GKLOWPAGE = 9x000000

const int GKLOWADDR = 2x000000

const 1nt GKHIGHFRAME = 9x00007¢£,

const int GRKEIGHPAGE = GKHIGHFRAME << 7.

const 1nt GEEIGHADDR = CKHIGHFRAME << 16

const int STACKLCWFRAME = GKHIGHFRAME // System stack (127).
const 1nt STACKLOWPAGE = GKHIGHPAGE .

const 1nt STACKLOWADDR = CKHIGHADDR,

const int STACKHIGHFRAME dx000080;
const 1nt STACKHIGHPAGE STACKHIGHFRAME <<
const :nt STACKHIGHADOR = STACKHIGHFRAME <<

nou

Ass2r=z( ' this->marked{ page ) )
Assert( this->freePageCount < ( this->highPage - this->basePage ) ),
tals-»>fresPagafount++;
i .
tend.f
i
{
1
1
May 26 05:05 1337 ../b/md_tuneable . h Page 1
/
md_tuneable.h - Machine-dependent, tuneable paramet=rs
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'ccast int TASKLOWERAME = STACKHIGHFRAME ;s Task L 128..251%.
!canst 1% TASKLOWPAGE = STACXHIGHPAGE
;consc 10t TASKLOWADDR = STACKHIGHADDR

ast int TASKHIGHFRAME = 0x0000fc:

const 1nt THREADSTACKFRAME = 251.

ast int TASKHIGHPAGE

= TASKHIGHFRAME <<
nst int TASKHIGHADDR =

TASKIICHFRAME << 15;

‘:onst int HWLOWFRAME = TASKEIGHFRAME . s/ HW - 252..255)
jconst int HWLOWPAGE = TASKHIGHPAGE :
const 1nt HWLOWADDR = TASKHIGHADDR:

const int HWHIGHF RAME
iconst int. AWHIGHPACGE
iconst int HWHICHADDR =

+ 7 2x0001900;
HWHIGHFRAME <<
HWHICHFRAME <«

>

-

%Iendxt md_tunzable_h

@

// Thread stack inside of Task space)

|[May 26 05:05 1987 ../h/mi_tuneable.h Page 1
i
iy
* mi_tuneable.h: Machine-independent, tuneable parameters.
.
. $Header: m1l_tuneable h,v 11.0 87/05/21 15:50:43 russo Exp §
. SLocker: §
./

4 4t 2 @ 0% 00002 RO 0B TO O tO RN E N

¥s>dification History:

SLog: m1_%tuneable h,w §
Revision 11.0 87,/05/21 15:50:43 russo
Console input and private stores.

Revision 10.1 87/05/07 05:42:15 johnston
Changed MAXCPUS from 32 to 64.

Revision 10.0 87/04/22 07:34:11 russo
New Spaces, Universes and CPU objects work, Finally!

Revision 9.1 87/04/15 15:45:40 johnston
Added MAXKERNELS.

Revision 9.0 87/04/04 15:06:21 russo
Multiple threads and timer interrupts.

Revision 8.0 87/23/29 15:30:27 russo

_new and delete added for memory management. Also. class lntaerrupts work.

Revision 7.0 87,/,03/25 12:47:01 —zrussc

Fault handler hierarchy works, so does 1nterprocessor vectored interrupts.

Revision 4.1 87/03/09 12:43:02 johnston
initial revision.
s

{f1fndet m1_tuneable

.'tdefine mi_tuneable_h

[tdefine MAXCPUS 64
iidefine MAXREBNELS 2

i
|teadif mi_tuneable_h
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Modification history
Log: md_constants. h.v §

Consola input and private stores.

1dded LASTADDRESSABLELOCATICN

Revision 9.2 37704/04 15:36
Multipla =hreads aad timer :n

Rewision 3 C 87-03/29 15:10:21 <zusso
_new and _dei=te added for memory
Revision T 3 37/03/25 12:46:54

Faul® handler hierarchy works, so

Initial revision.
/

R I T O O B I R R B N IR

}

!

[11tadet md_coastancts_h
ildefine md_coanstants_h
i

‘tdefine INITIALMSR 9%x00070002 /

‘fdefine LASTADDRESSABLELOCATION O0xQQffffff

1ldeflne PAGESIZE 512 /*
tdefine PRGESHIFT 9 A
f
[Idef:ne PSR_%_3IT 9

ildefine PSR_U 256

!¥define PSR_C_BIT 0

Itdetine PSR_C 1L

jldefine PSR_I_BIT 1l

itdefine PSR _I 2048

itdefine PSR_S_BIT 9

|tdefine PSR_5 512

‘|de£xne PSR_S_BIT 9%

|tdefine PSR_3 312

fdefine PSR_T_BIT 1

Ildet:'e PSR_T 2

itdefine PSR_F_BIT 5

'¥#define PSR_F 32

L

/hs/ad_comstants.a Page L

md_conrstancs.h - Machine-dependent constants
SHeader: md_constacts.2 v 11.90 37/95/21 15:30 .17 russo Exp $
SLockar: B

Revis:ion 11.9 §7/05/21 15:50:37 russo
Revision 12.1 37,95/18 23:35:35 russo

Revision 12.0 87/04/22 07:334:05 russo
New 3paces. Universes and CPU objects work, Finally’

groc2sscr vectored interru

Ravision 4.1 87,/03/0% 12:42:25 johnston

Initiali value to load 1nto the

Number of bytes per page v/
Number of bits for page offset

Also. class LRterrupts work

MSR

*/

ORIGINAL PAGE 15
OE POOR QUALITY
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VAl
* DPC contzrol/status registers
./

tdefine DPC_STATUS

tdefine DPC_CONTROL

OxfLffffffc
Oxfefffeds
tdefine DPC_STATUS_VBUS_BUSY 9x8000000
e
* DPC Vector Bus registers.
./
tdefine DPC_VBUS_CLASS
fdefine DPC_VBUS_TX

oxfLLfed2
oxfrrrre2s
Je

* Encore stuff -+

.

.

. v

./

[Idefine IO_BASE
{fdetine IS534_BASE
(¥define SL_BASE

i#define SYS_CLOCK

jtdefine COUNTER

0x800000 /*
01800060 /*
I534_BASE /*
(I533_BASE+4) /*
(IS34_BASE+6)  /*

{tdefine MAXCOUNTER oxtt /e
itdefine DSD_WADDR 0x00bc00 A
itdefine DSD_WIO 0x800beO Al
{

|$define ICU_BASE Ixf££e00 /*
‘tdetine IL_BASE 3z800000 Al
{define PPI_BASE 3xc00020 VA
tdefine CPU_NMIREG PPI_BASE Vad
tdefine GENNMI 2x0d *
fdefine ARMNMI 9x0¢ VA
itdefine CPU_IPIREG {PPI_BASE+2) /*
'tdefine CPU_IDREG (PPI_BASE+4) /*
.ldefine CPU_ID o0x7 /*
tdefine FPI_CTL (PPI_BASE+6) /e
tdefine PPINIT 0xBl /*
fdefin= ROMEKILL O0xle /*
tdefine CPU_SWREG 0xc00030 s
ldefine SW_BOOTCPU 7 /
fdefine SW_CLOCK § A
ldefine SW_NET S /*
ldefine SW_DISK 4 /*
tdefine SW_SERIAL 3 /*
ldefine CPU_MCHECEREG  0xc00030 /e
ldefine CPU_MPARREG_BASE 0x800040 /*

fdefine NUMSYSINTRS 256
'

./h/md_constants.h Page 2

/* DPC status register. <
/* DPC control register.

/* Vector bus busy. */

/* Class register. */
/* Transmit register. »/

Base of I/0 space ¢/

Base 1f 4-line asynch card */
Seri1al line base */

System clock address */

/
*/

Frae running counter iddress */

Maximum value 5f cdunter */

DSD wakeup addrass */
DSD wakeup I/0 address */

Interrupt Control Tanit +/
InterLAN NI3OLl3 +/

3ase of Parallel Ports */

CPU ami r=gister */

Generate nmi code */

Arm nmi code */

Intercopu i1nterrupt register +/
CPU identifier register ¢/
Mask for cpu 1d ¢/

Control register +/

Init ccde */

Kill rom code code */

CPU switch register */

Boot processor */

Clock interrupt processor */
Network interrupt cpu */
Disk 1interrupt cpu */

Serial line interrupt cpu */
Machine check register ¢/

Memory Parity register base +/
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L5
_ 24 163513072

_ ounter 3-1396395
JPCREG_CTL -440

CPCRESG_NMI -304

tdefine DPCREG_STS -4

tdefine OPCREG_3ASE -312

tdefina DPCREG_SENDVEC -476

DPCCTL NMI_DISABLE 4096
DPCTTL_GEN_SYSNMI 2097152
CPCCTL_FIX 50830208
JPC3T5_CPYID 1

DPCSTS_3L27ID 50
DPCSTS_OUTPUT_READY 25841335455

DPCSTS_YECBUS_TXREQ_BIT 27

oPCSTS_FIX -336858112
DPCREG_VECTOR -512

SPCREG_FIFO -472

DPCSTS_ PRESENT 1573741324

2PCREG_ 3B ) -39
CPCREG_SBXDATACS -313
SPCREG_IBXACTLL =311
fdefins DPCREG_SBXDATAL -307
{tdefin2 DPCREG_TSEVECWRITE -463
tdef DPCREG_TSECTL -i51
DPCRIG_TSECNTL -453
tdefine DPCREG_TSECNT2 -453
tdefine SPC_FIFOSIZE 17
tdefine DPCSBXCTL_TXRDY_BIT 2
tdefine DPCSBXCTL_RXRDY_BIT 0

f2ndif md_constants_h

ORIGINAL PAGE IS
OF POOR QUALITY
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Task h: task class description
SHeader: Task.h.v 11.0 87/05/31 15:

SLocker H

Modification History:

$Log: Task.h,v §
Revision i1.0 87/05/21 15:50:16 russo
Console input and praivate stores

Revision 10.3 87/05/12 15:06:54 russo
sdd=d i1nitialThread member function

Bevisica 10.0 87,/04/22 07:133:48 <russo
Revision 9.1 87/%4720 13:25:57 russo
added a1 lock to the instances

Revision 3.0 87/04/04 15:06:02 russo
Multiple threads and timer interrupts.

Revision 8 Q0 37,/03/29 15:30:08 russo

Revision 7.0 87/03/25 12:46:36 russo

Revision 4.1

50:16 russo Exp §

New Spaces, Universes and CPU objects work, Finally'

_aew and _delete added for memory management. Also, class :interrupts work.

Fault dandler hieraxchy works, so does lLnterprocessor vectored interrupts.

tnitial
/

P T T S e S T IR SRR SR AR

finclude F

class Task

public:

tinclude "Object.h"

revision.

itifadef Task_h
tdefine Task_h

14
AuitHandler . h™

tinclude "Lock.h"
tinclude "Space.n”
tinclude “Thread.h"

typedef woid (* TPEV) ()

public Object |

Space % space;
Lock lock:

TaultHandler ® stackFaultHandler;
Thread * threads;

Task( Space * space, T
“Task():

Thread * initialThread().
Thread * startThread(
Space ® getSpace() { return( space ): !}

97/03/0% 16:13:10 russo

parent class

PFV initialEntryPoint

TPFV entrypPolnt. int argument ! ;
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t2ndif Task_h

L

May 26 35:35 1987 /h/Thraad . h Page 1
s
+ Taread.h: thread class description
"
. $Header: Thread.h,v 11.2 87/05/21 23:25:39 russo Txp §
. SLocker: §
"

~

Modification history:

$Log: Thread.h,v §
Revision 11.2 87/05/21 23:25:39 russo
removed unneded method

Revision 11.1 87,/05/21 23:23:10 russo
added 1nstance variable to save the initial JSP.

Revision 11.0 87/05/21 15:50:19 russo
Console i1nput and private stores.

Revision 10.13 37,/05/13 18:55:39 <russo
made GeraThread a subclass cf Thread, not KerneiThread.

Revision 10.11 87,/05/12 09:50:59 russo
added new CermThread subclass

Revision 10 10 87,/05/10 231:95:28 russo
each thread now carries arocund a small interrupt stack of 1ts own.

Revision 10.90 87,/04/22 07:.33:51 russo
New Spaces, Universes and CPU objects work. Fihally'

Revision 9.0 87,/04/04 15:06:05 russo
Multiple threads and timer iaterrupts

Revision 8.9 37/04/01 16:15:00 russo
added offsets for assembler to use

Ravision 8.0 87/03/29 15:30-11 russo
Revision 7.3 37/03/25 12:46:41 <xrusso

Revision 1.1 37/03/23 1B8:31:39 johmnston
Initial revision
/

% 2 % 4 2 % B A R e R A E A A E R R RN NS A TOE B NS TOEO NSO VS

tifndef Thread h
tdefine Thread_h

tinclude “Object.h” // parent class
linclude "Space.h"

const 1nt stackSize = (512 - 32):

class Thread : public Object {
protectead:

_oew and _delete added for memory management. Also., class ilnterrupts work.

Fault handler nierarchy works, so does interprocesscor vectored interrupts

-




char * stackPointer;

char * 1p1t1alUSP.

int priority.

void * keraellafo;

typedef void (* PEV) (),

Space * lspaces: /7 list of spaces this Thread needs to run
public:

Thread * next; // for linking the Thread into lists

Thread * last; // for linking the Thread iato list

P
Thread ¢« PFY, 1nt *, iat, int. void * ), ‘()IQI(;

“Taread ()

4 .
z:ugjtStackPoxntez(; { retura( stackPoiater ). } OF POOR QPAGE IS

{ zhar * inte
vo:d setIncerrupt3tackPointer( char * isp )
{ stackPointer = 1sp: } UALIT
ipace * spaces’) ! return({ lspaces ., } l’
vo1d setScices, Space * 3 ) { lspaces = s3; | ’
void v jetXer Info(: ! return{ kernallnfo ), }
i

int getPr:iorityi() { rewurn! pPriority ;.
| void dump:« )
virtuai 1at i1sPreasmptable

b

class KernelThread : public Thread {

protectad:

public:
KernslThread; PFV, 1nt *, 1int. int, void - };
“fernelThread():

4

class CermThread : public Thread {

protected:

public:

GermTuread( GermThr=2ad *, PFV. int ¢, int. 1int, woid * ;.
“GermThread: ),

by

class InterruptThread : public KernelThread {

protected:

publ:ic:
InterruptThread{ PFV. 1nt *, 1int, iax, void * ).
“InterruptThread(),
iat isPreemptaple();

)’.

fend1f Thread h

.
jMay 26 05:25 19387 ../h/CPU.2 Page 1
'
/v
¢ CPU.h: per~cpu private information class
.
. sHeader: CPU.h,¥v 11.1 87/05/31 16:41:50 russo Exp §
. $Locker: §
*/
/

Modification History
$Log: CPO.h.v §
Revisiocn 11.1 87/05/21 16:41:50 russo
only need a single thread to delete not a gueua=.

Revision 11.0 87/05/21 15:49:29 <russo
Console input and private stores.

Ravision 10.130 87/05/17 13:57:09 russo
added DeleteQueue member

Revision 10.27 §7/05/11 17:39:37 russo
added local and global store fields.

Ravision 10.22 37/05/06 16:52:47 russo
made number of vectored exceptions a member function

Revision 10.21 97,/05/04 19:09:27 russo
added 1d() method

Ravision 10 18 B87/04/27 19:14:11 russo
added Number of vectored exceptions const

Revision 10.10 37/04/26 21:22:29 russo
added Exception stuff

Revision L0.0 37,04722 07:33:17 russo
New Spaces, Universes and CPU objects work, Finally’

Revision 9.9 87/04/21 15:11:57 zusso

added iaterrupt stack member.

really JirtuaiSetUp should be 1 friand to save a lot of set fumct:ion
that shouid never be called by anyone else.

Revision 3.1 87/04,21 09:53:21 russo
initial revision

® 8 B N 8 % e e R S LA AN 4N NS S G LR St ONOIEOOES OO
~

tifndef CPU_h
idefine CPU_h

tinclude "mi_tuneable.h"
finclude "Space.h"
tinclude “Thread.h"
tinclude "Universe h”
tinclude "Exception.h”
Yinclude “"Scheduler.h”




i but za=2p 1z small f£or now
icons: at
i
‘class TPU
I
i
!protectad:
Tni7erse * spulUniverse;
Thread * gpuCurrentThread;
Thread ¢ cpuldlaThread; // I'm not sur2 about this
Space * cpudeapSpace:
Exception * cpuThings{zExceptions]
i Store= + cpuPrivataStore:
Store * spuGlobalStore;
3chaduler * cpuScheduler,
Thread * cpuThreadToD2lete;
public
CPU:{ C2PY ¢« whers ;
TCPU .
/.
* access
“/

{ return; this->cpulUniverse ); }
Thread ¢ currenctThread()
{ return; this->cpuCurren
Thread * 1dlaThreadr)
{ return’ this->cpuldlaThread ); }
Space * heapSpacay
| | retura this->cpuHeapSpace ;. !
: EXceptidon * 2XCeprt1on{ 1AL vector
{ return, thilis->cpuThings{vector] ;, }
Store * privateStore()
rerzura. thls->cpuPrivatesStore :; }
lobalstore )
retuzrn: this->cpuGliopalStore ). |
* sch2duler(,
ratura{ this->cpuScheduler ), |
Thread * threadToDelete()
{ retura, this->cpuThreadToCelete ). !

Schedule

v
(24
o
n
»
[T
e

/v
* set-value functions.
A
void setUniverse( Universe * O ) [
this->¢cpulnrverse = 0T,
t
void setCurrentThread( Thread * aThread ; |
this->cpuCurxrentThread = aThraad:
void setIdleThread{ Thread * aThread ) {
this->cpuldleThread = aThread:
)

May 26 05:05 1987 ../h/CPU.h Page 3

vo1d setHeapSpace( Space * space {
this->cpuHeapSpace = spacsa
i

void setException( lOt vector, ption * e ) {
cpuThings(vector] = e;

t

void setPrivatestore( Store * store ) {

this->cpuPrivateStore = store;

vo1d setGlobalStore; Store ® stors ) |
this->cpuGlobalStore = store;

i

vo1d set3cheduler( Scheduler ® scheduler ) !
this->cpuScheduler = scheduler;

}

void setThreadToDelete( Thread ® thread ) {
this->cpuThreadToDelete = thread;

i

/.
« Othezs.
*/
unsigned int 1d(};
1

jextern CPT ¢ Me;

itendif CPT_h
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I

w
<
o
“
=

def:inizion of 3VC aumbers the xernel I2ccynizaes.
Tals file should 3o away when we add cross domiin object calls

$Heade
$Loc

3VCs.h v 11.1 87/35/24 22:28:39 zusso Exp $
$

R EEEE

~

st ORIGINAT PAGE I3
Modif:catilon History:
Revxsig:gil lsws::)g§32§ 22:28:09 russo OF POOR QUALITZ

chranged order of defines>

Revision 11 .0 87/05/21 15:50:02 russo
Caasale input and private stores.

Revision 12.0 97/04722 37:33:42 russo
New Spaces, Universes ind CP7 objects work, Fiaally:®

Rev:ision

3 russo
Multiple th

Y 87/24/94 15:03:33
T 1aterrupts.

eads and timer

Revision 3.9 37/03/29 15:29:53 russo
_new and _deleze added for memory management. Also Class LaTerrupts work.

Revision 7.9 87,/01/25 12:45:16 russo
Fault handler hierarchy works. so does interprocessor vectored intarrupts.

Revision 1.1 87,/03/17 14:07:50 russo
Initial revision

O L T T N S S N L Y

~

biindef 3VCs_h
jtdefine 3VCs b

itdefine PRINTF_SVC

tdefine XILLTASK_SVC

[}
defiane RILLTHREAD_SVC 1
2
3

tdefine STARTTHREAD_SVC
tdefine LAST_SV 3

tendif SVCs_h

]

i,
|

4
/

e

May 26 05:05 1987 ../h/FaultHandler.h Page 1
/'
* FaultHandler.h - Fault handler class definitiam.
-
. jHeader: FaultKaandler. h,v 11.1 87,/05/24 05:07:57 russo Exp $
. Slocker:
.

~

Modification history:
SLlog: FaultHandler bh,v §
Revision 11.1 87/05/24 35:07:57 russo
adjusting tto reflect new 1deas about fault handlers.

Revisicon 11.0 B87/05/21 15:49:38 russo
Console 1nput and private stores.

Revision 10.0 87/04/23 07:33:23 russo
Nev Spaces, Universes and CPU cbjects work, Finally!®

Ravision 9.9 87/04/04 15:05:21 russo
Multiple threads and timer interrupts.

Revision 3.0 87/03/29 15:239:49 russo
_new and _delete added for memory management. Also. class interrupts work.

Revisicn 7.3 37/03/25 12:46:09 russo
Fault handler hierarchy works, so does interprocessor vectored interrupts.

Ravision 6.1 87/03/22 12:21:48 russo
init:al revision

P N L L SN S R A A

~

1fndef FTaultHandler h
define FaultHandler_h

include "Object.h” // parent class
include "Store.h"
lass Space: // include Space.h would cause a circular definition.

»

* Fault Handler Parent Class. This just defines what the rest of the kernel
% thinks a fault handler 1nterface looks like. Iadiv:idual derived cypes

* can specify all kinds of way to handle the actual faults, as lonhg as

* they meet the interface described here. The parent class implementat:on

-

of fixFault currently Halts the processor.
*/

class FaultHandler : public Object |

ublic:
virtual void fixFault; Space % space, void * address ).,

i

.

» Fault handler to manage allocation/deallocation from a store.
* This 1s about as simple as they get.
B

lass StoreManager : public FaultHandler ¢{
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StorsManagar! Store * ),
“3toreManagexr(
void fixFault: Space * space, void * address

I

/e

¢ Fault handler subclass to fill on demand a faulting pajge.

* The only thing actually implemented hare is the code T3 allocate a frae

* page from the store 3ad then map it into the surrent tasks address

* space at the faulting address
1class CemandFillFauitHandler : public FaultHandler t
ipublic '

void allocatesndMap( Space * space, void * addr=ss )

= A supclass of demand 2:il1 fault handier that
|t sonstrustor that defizes how to fiil the £aul
* ailocatad and mapped 1in

tinclude “Filler h"

o
Ve
>
w
W

CemandF:illerClassFaultBandler : publilc DemandFillFaultiandlier {
H Filler * f1ll:r
‘public
[ DemandFillarClassFaultHandler( Filler = filler
l "DemandfillerflassFaultHandlear()
1 7o1d fizFault( Space * space, void * address
iy
/e i

* A subclass of DemandFiilFaultHandler that £ills 2 faul<injy page with
* z2ros snce it 1s alloecated i1d mapped in.
/
class DemandZeroFaultHandler : public DemandFillfaultdandler !
public:
CemandZaroFaultHandler(},
“DemandZ:rofaultiandlert);
void fixfault({ Space * space, void * address }.

b

t2nd1f Faultdandler_h

May 26 25:05 1987 ./h/File h Page L

File. h: the parent f1ile class definition.

$Header: File.h,v 11.0 387/05/21 15:49:44 russo Exp §
SLockerx: S

~
~

P I T T T I N P T

~

Modification History:
SLog: File.h.v §
Revisioa 11.2 37,/05/21 15:49:44 russo

Consocle 1nput and privarte stores.

Revision 10.0 37,/04/23 07:33:26 russo
New Spaces, Universes and CPU objects work, Finally'

Revision 3.0 87/04/04 15:05:25 ZUsSsSo
Multiple threads and t:imer interrupts.

fevision 3.0 87/03/29 15:29:52 russo
_new and _delete added for memory management. Also, class interrupts work.

Revision 7.0 87/03/25 15:15:11 russo
prought revision number up to date

Revision 1.1 87,03/25 15:15:01 russo
Iait:ial revis:ica

!l;fndef File_h

Itdefine File_h

‘tinclude "Jbject.h” // parent class .
;exte:n vo1d Halti():

.

s3 File : public Cbject

virtual 1nt readRecords( long startRecord., void * buffer. int count )
7irtual :nt writeRecords{ long startRecord, void ¢ buffer, :1nt count }:
virtual :nt getRecordSize():

class MemoryFile : public File { 1
char * location; !
1ot length;

public:

MemoryFile( char * location, 1int length ).
"MemoryFile ).

1nt readRecords( long startRecord, void *® buffer, int count );
1nt writeRecords( long startRecord, void ® buffer. iant count ).
b

tend:f File h




$Header: F:iller h,7 11 J 97/05/,21 15:49-47 russo Ixp § DE

~

Modification history:

SLog: Filler . h,v §
Revision i1l1.0 37/05/21 1.5:49:47 russo
Console 1nput and private sitores.

New Spaces, Universes and CPU objects work. Finally'

Ravisicn 9.9 97/04,94 15:05:27 russo
Multiple threads and timer interrupts.

Revision 9.0 87/03/29 15:29:54 russo
_new an d=le

addad for memcry manageme

Revision .1 37/03/28 15:44:35 russo

.
.

.

.

.

.

.

-

.

.

-

.

« Reviston 10.9 37/04/22 07:33:28 russo
.

.

.

»

*

"

«

.

.

« Filler ciass definition move here from FaultHandler h
-

$iocker: § ) PmR QUALITY

1:£
tde
finclude a" // parent class
s
* class for use by the DemandFillerClassFaultHandler class .
« ault fillPage/ can do sometk:i:ny aice 1t with !
. seems 1 l.ttle drastic. ;
-
extern void Halt(): i
class Filler : public Object | !
pupblic: i
virtual void £illPage( void * faultingAddress ) |
Printf( "Filler::fillPager%x) call=d!’'\n", 4
faultingAddress ;- i
Hait(}.,
'
s ‘
s |
* Filler to fill a COFF section from a COFF file. H
L2
finclude 'File.h™ l
class COFFSectionfiller : public Filler | :
File ¢ £1le; ]
void ® sectionStart; }
1nt sectionlength: // 1n bytes,; 1
loang filelLocation; // the location 1nto the COFF file to load from. L
j
1
May 26 05:05 1987 ./b/Filler h Page 2 i
public
COFFSectionF1ller( File + file, void * start, int langth,
long location i
“CorFsectionFiller(;;
7oid fillPige( void ® address )
I

tendif Filler_ h
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,*

| % Lock. n - low-lavel spin lock

] * .

L. Sgeader: Lock.h.v 11.7 37,/05/3¢
e sLocker: §

i wy,

s

: Modification history

| SLog: Lock b, ¥ $

1 Revision 11.7 87/05/26 05:33:39 ru

Made heldByAnothsr an outline

Ravision L1 6 37/05/25 19:31:57 jo
Added haldB8yAnother .

Ravision 11.5 37,/05/25 18:18:3% 3o
Added heldBy().

! « Revision 11 & 87/05/25 236:52:1° 7o
i Made heldByMe 1 acn-inline
|
! 1 247,05/25 36:22:39 3o
i a

a Ll 2 87,05/25 96:17:i3 7o

Lo

declaration of ThisCPU,
Revrision l1.1 87/0S5/25 05:57:58 3o
Added heldByMe ).

Console 1nput and private stores.

Rav:isien 12 3 87,05/13 20:57:1%8 1o
Removad Lock:: frae() because 1t's con

Revision 12.0 87,/0%/22 237:13.3C ru
New Spaces, Universes and CPU oblects

CFRONT 1s screwed up

Revision 8.5 37/04/02 22:92:35 Joh

Ravisica 1.1 87/04/22 15:1%9:53% joh
Initial revis:ion

/

J e T A PR AR O S R B L S A S A e

tifndef Lock_h
tdefine Lock_h

extern unsiyned ThisCPU();

05:53:39 russo Zxp $

sso

hnston
anston
hnston
haston
hnston

haston

Revision 1.0 87,/05/21 15:4%:33 russo

nnston
fusing.

$50
work, Finally'

50

Revision 9.0 37/04/C4 15:95:29 rus
Multiple threads and timer 1aterrupts.
Ravision 9.7 87,04/03 06:35:32 Tus

50

nstoa

Added ialine definit:ions of held({) and free;:

nston

—

iMay 26 25:57 1987 ../hsLock.h Page 2

class Lock ¢
unsigned char state;
unsigned interruptState;
unsigned holdingCPU;

public:
Lok ()
70:d acquire():
vo:d release( ).,
e
* The use of any of these will
./
1int held()
{ xreturm ( this->state &
unsigned heldBy(
{ return ( this->holding
int heldByMe()
{ retura ( this->holding
int heldByAnother();
Y

jendif Lock_b

// The actual lock.
// Interrupts on flag.
// CPUID holding lock

probably causes races

oxl ). }
CPU ), }
CPU == ThisCPU(: ): |

{12 locked).

. .beware,




‘May 26 $5:35 1937 /%/Timer. & Page 1

- Per~-CPU t.m2r.

SHeader: Timer h,v 11.9 87/90S/21 13:50:22 £usso> gxp 3
$Locker: §
/

Mod:ification history:

Slog: Timer.4,v §
Revision 11.9 87,08/21 15:50:22 russo
Consol= :input and private stores.

Revision 13.0 B87/04/22 07:33:55 russo
New 3paces. Universes and CPU objects work. Finally:®

Revision 3.0 87,04,04 15:36:08 russo
Multipie threads and timer 1interrupts.

Revision 1.1 87:04/03 09:19:25 3Johnston
Ia1tial rezision

/

[ N T R U S A

t1:fndef Timer_ h
tdef.ne Timer_h

4
llzncLude ‘dbject.h”
iclass Timer : public Object {
tpublic:

Timer:);

“Timer():

vo1d start({ unsijned mill.seconds. unsigned vector

i vo1d stop( )
| 1at idlei;

tendif Timer_h

ORIGINAL PAGE 1S
OF POOR QUALITY,

May 26 05:05 1987 . ./h/Tniverse.nh Page 1

Tniverse.h: JTniverse class description. A Jniverse is :1ll the Spaces 2
PIrocessor can access at any oane time.

$Header: Universe.h.v 11.9 87/05/21 15:50:25 russo Exp $
SLockax: 3

Modification History:

Slog: Univarse. h,v §
Revision 11.0 87,/05/21 15:50:25 russo
Console 1nput and private stores.

Revision 10.3 87/05/06 19:27:27 russo
added loadContextFor() method.

Revision 10.2 87,/04/22 20:38:05 russo
added spaceContaining method

Revision 10.1 87/04/33 09:39:41 russo
renames spaces

Revision 10.0 87,/04/22 07:33:57 russo
New Spaces. Universes and CPU objects work, F:inally'

Revision 9.1 87,/04/1l1 19:45:25 russo
1ni1tial revision.
7

PRI R R R R I R R R S L N I

f:nclude 'Object.h” // parent class
;#include 'M.nu"

finclude “Store.h™

.tinclude ‘'3Space.h”

1

{t1fndef Universa_n

ildefine Universe h

A

* to fixed places. This will be extended when [ have Iime.
4
cilass Universe : public Object |{
PTE * firstlLevelPageTable:
Space * kernelspace:;
Space * userspace;

public:
Universe( Universe * where,K PTE * pageTable ;
“Universe(}:
void addSpace( Space * aSpace ):
Spacea * spaceContaining( void * address );
void loadContextFor( Thread * newThread );

I

fend1f Universe_h

* For now the Jniverse has a fixed amount of spaces that ¢an be mapped 1a




May 25 21 12 1987 /h/3pace B

Space h: Space class de2sCrift

Space.n v 11.
S

: 1
Modification history: »”
sLeg Space h.v §
Rev:.sion 11.7 87,/05,26 °21:4

LR}

PR
e

£

» B
»

0

]

Revision 11.5 87/05/26 95:0
changed name of allocitePoint

Revision 1.5 87/08/25 17:3
scrry, not .mplementad

Revision 11.3 87/95/24 23:1
more work on new allscation 3

2

tsien 11.2 87/35/s24 15:4
radid allocaticn stuff and ot

Revision 11.1 87/05/24 05:1
added new allocate method def

Revision 11.2 87,05/21 15:5
Console :input and private sto

Revision 10.10 87,05/1%4 19:
added 1s3in:) method for use t
2 space

ed XeranelSpace constructor

Revision 10 2 87/904/22 16:1
switch constructoxr to take ba

Revision 12.1 87/04rs22 09:2
renaming from NewSpace

Revision 10 0 87,/04,22 07:3
New Spaces, Jniverses and CPU

Revision 3.5 87/04/14 20:58
creatad KernelSpace subclass

Revision 9.1 37/04/13 04:30
101t:al revision. c(actually a

© 0 ® T @t A K P et W ERE R AR A DA A G R R e A AL NP A AN e ey

tifndef Space_h
tdefine Space i

Revision 10.8 37/04/22 16:36

Page 1
ion.
37/05/26 21:41:311 russo Exp $

1:33 russoc

4:50 russo
erTable argument
6:25 russo

3:38 russo

tuff

5:27 russo
her private methods.

3:57 russo
inition

3:07 russo
res.

57:05 russo

o check wheather an address s managsd b7
:14 russo

arg3s.

3:38 russo
se and length rather than start and end

6:41 russc
3:35 rus:
objects ~._ <. Finally'
:46 russo

124  russo
rewrite o5f the old stuff)

May 26 21:42 1987 .., h/Space.h

Page 2

binclude "Object.h” // parent class

Yinclude "Lock.h"
tinciude "VM.b"

tinclude "Store.h*
tinclude "FaultHandler.h®

/*
* Space - base class.
*/

enum allocationType { prefetch,
class Space : public Object |
friand class Universe;

protectad:
Lock lock;
Store * store;
7o1d * bassAddress:
int length;

unsigned vTopPage:
struct {
PTE firstlevelPT
PTE ® secondlLeve
table(356};

faultlIa }:

g;
LPTE

fault!andlez ® faultHandler{ MAXHANDLERS |

virtual void getPointerT
7iztual void buildMappin
virtual PTE + allocatePo
71rtual 1at convertfault.
Fublic:

Space! Store * store, Vo
“spacer);

7irtual void ¢ startAddr
virtual void * andAddres
virtual int i1sIn( void *
virtual iant isvValid( vo1l
virtual void ® allocate(

virtual void * allocateg

virtual void map( void *

FaultHandler * handler(

/* these are dead */
wirtual void ® allocateq

ables( unsigned lowPage, unsigned higyhPage '

gs( uns:gned int start. unsigned Lot g¢ount,
Fault3andler * Landler

interTable( 1nt page :
HandlerTolndex( FauitHandler ¢ handler ;.
1d * baseAddress, .nt length

esS();

S0}

vaddr ).

d ® vaddr ),

uansigned 1nt count., FaultHandler * handler.
allocationType type ;;

7o1d ® base, unsigned 1int count,
FaultHandler * handler, allocationType type
page, void * frame ;.

void ® vaddr ),

unsigned 1nt pageCount
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virtual void map({ void ¢ wvpase void

I
H

|

'

class KernelSpacs : public Space {

i
lprivate:

vo1d getPointerTables( unsigned lLowPage,

virtual PTE ¢ allocatePointerTable:
public:

"KernelSpacey):

i

‘#2ndif Space h

“ £bas= 1nsijned int

1aT page ),

i
i
i
i Keznel3pace( Store ¢, vo.d ¢ basehddxess, 1nt l2ngth
i
|
i

unsizned 113hPage

oag=2Csunt

I

ORIGINAL PA'LE 1S
DF POOR QUALITY

f

{May 26 35:05 1987 . /h/Exceptica.h Page 1

Exception.h: event class description.
$Locker:

Modification History:

SLog: Exception.b,.v §
Revision 11.¢ 87,/0%/31 15:49:35 zrusso
Console input and private stores.

@ e s n w ot kB 4w o

Revision 10.13 87,/05/01 11:02:08 russo
repamed from Event.h
*/

fifadef Exception_h
fdefine Exception_h

‘finclude “Object.h"
itinclude “Thread.h"
tinclude "Frame.h"

// parent class

class Exception : public Object !
.protacted:
‘public:

$Header: Exception.h,v 11.0 87,/05/21 15:49:35 russs £xp 3
S

typedef void . * HandlerPunction )( struct Frame * frame

: 7irtual void poat{ struct Frame * frame )

R

class SystemExceptlon : public Excsptilon {
‘protected:
' HandlerFunction handler:
pubkblaic:

SystemException( HandlerFunction theBandler '

! “SystemException()
| v01d post( struct Frame * frame !

‘class IaterruptException : public Exception {
\protected:
¢ Thread ® awaiter:
public:
InterruptException():
“faterruptixception();
void post( struct Frame * frame ),
void await().

s

lendif Exception_h




$Header:
Locker:

1nltlal revision

P T S N A ]

/

trfndef Spacelist_h
tdefine Spacelist_h

tinclude "Cbjsct.h”
tinclude "Space.h"

class spacelistNode
ypublis

I spacelistNode
spacelistNode
Space * data;

spacelistNode
next
last
data

protected:
spacelistNode
spacelistNode
spacelistNode
Lock lock;

o kr/Spacel:ist h Page L

Revisise 0.2 87/24,23 21.1
made Jbj2ct the parent Sla

’

wonon

Modification History

$log: Spacelist . h, v §
Revisisan 11.1 37,05/23 20:18 26 TUSSO
idded =nclesing ifdef

Revision 11.3 37/25/21 15:50:10 russo
Console 1nput and private stores.

Revision L0.1 237,74/233 21:13:33 russo

public Qbject !
* next,
* last,
Space * s ) |

bF
S

class SpacelList : public Object {

* head:
* tail;
* i1terator;

public:
Spacelist();
“Spacelist(};
virtual void add( Space * space };
virtual 1pt remove( Space * space ;,
F(ay 26 05:05 1987 ../h/SpaceL1st h Page 2

virtual int inguire( Space ¢ space

virtual void startlIteration().,
virtual Space ¢ iterateNext(;;

I

tendif Spacel:st_h




May 245 33.35 1287 ‘bh/frame & Page 1

tpticn of the frime on the Latarrupt stick gassed ©o
t:22 handlers

3Header: Frame.x. v 11 9 37,/25/21 19:49%9:30 russo Exp §
SLocker: $

Modification History: DRIGINAI; PAGE Is

SLlog Frame.h,v §
Rev: 11.2 87/0%/21 15:43:30 s
C;x;:;:nzzput ané pzz;ats stcxe:. Fusse OF POOR QUALITY
Ravision 19.7 87/04/30 14:.55:15 russo

added usp to frame.

Revision .0.6 87704/29 237.06.11 russo
made ali €i12lds unsigoned 1at({shot;

Revision

0.1 97/C4/27 18:33:02 russo
tart1al rews

P T I I T B N T

~

rstruct Frame !

|
; unsigoezd int sp:
unsigned 1int 43
| unsigned 1int £l
| unsigned iat rh:
{ unsigned int 5.
; r4:
: x3:
: r2.
i unsignad 1iat 3%
{ unsigned iat 0
unsigned iat vectorNumber :
} ansignad 1nt pc
: unsigned short mod: /* this wmpl:icitly determinas the value of the

sb register. 30 we dont save sb. ¢/
unsigned short psx:

lendif Frame_h

;Hay 26 35:05 1987 ../h/Vectors.h Page 1
!

/
Vectors.h: vector numbers for processor traps/interrupts.

jHeader: Vectors.h,v 11.0 87,/08/21 15:50:35 russo Exp §
SLocker: §

~

Modification History:

SLog: Vectors.h,v §
Re71sion 11.0 87,/05/21 15:50:35 russo
Consale input and private stores.

Revision 10.5 87/03/13 13:47:59 johaston
Added defipition of CPUCLASS_MAX for assertions, =tc.

Revision 10.4 87/05/13 13:45:49 )ohnston

Changed CPUCLASS to be CPUCLASS_HALTED (0) and CPUCLASS_RUNNING (1).
Did this so that a halted CPU won't get class 1interrupts that will
never get serviced.

Revision 10.3 87/04/20 16:25:26 johnstoa
Added CPUCLASS definitionm.

Revis10on 10.1 87/04/28 09:28:06 russo
initial revision
/

IR EE AR NI IS S S SN N A N

.fifndef Vectors_h
jtdefine Vectors_h
I

"

. % Trap Vectors
Yoy

‘tdefine NVI_vector 0 /% Non-Vactored Interrupt *,
ifdefine NMI_Vector 1 /* Non~Maskable Interzupt =/
‘tdefine ABT _Vector 2 /* Abort ;“M Error; Trap */
‘tdefine FPU _Vector k) /* Floating Point Zxception Trap +/
;tdefine [LL_Vector 4 /* Illegal Iastruction Trap */
‘idefiae SVC_Vector 5 /* Superviscr Call Instruction Trap */
i{define VL _Vecter 8 /¥ Divide oy Zaerxo Trap */

,tdefine FLG Vector 7 /¢ Trap on Flag ¢/

Ildefxne BPT _Vector 8 /* Breakpoint Trap */

f{define TRC Vector 9 /* Trace Trap */

tdefine UND_Vector 10 /* Undefined Instructiom Trap */
tdefine RESERVED 11 _Vector 11 /* Beserved */

tdefine RESZRVED_12_Vector i2 /* Reserved */

{define RESERVED_l1 Vector L3 /* Reserved */

fdefine RESERVED_l4_Vector L4 /* Reserved */

tdefine RESERVED_15_Vector 15 /* Reserved ¢/

"
* Interrupt Vectors
v/

tdefine TIMESLICE_ Vector 16 /* T:me Slice Counter Interrupt */
tdefine CONSOQOLE_Vector L7 /* Console Input Interrupt »/
i




—
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tdef. SED_13_Vector i3
fdefic SEJ_13_¥V=2ctor 13
 Fdefine UNUSED_20_Yector 20
i
s
| * VYector bus classes.
y o
itdefirne CPUCLASS_HAL 9 /* Halted CPU class v/
ltdefine CPUCLASS RUNNING 1 /* Normal running <PU class ¢/
tdefine CPUCLASS MAX 1 /* Highest class used ¢/
‘fendif Vectors_h
|
'
i
\
i
i
I
i
|
|
|
i
|
i
|
!
|
|
i
i
|
i
i
E
i
L
(May 26 35:25 1987 . ./h/Schedulexr.h Page 1 1
]
|
e
* Schedule=r.h: a dispatch queue description.
.
* $Header: Scheduler h,v 11.9 87,/05/21 15:50:04 russo Exp
v SLocker: §
e
/"

»

Console

initial

R

~

Modification History:
SLog: Scheduler.h,v §
Reviiion 11.Q 87/Q5/31 15:50:04

input and private stores.

gdevision 10.2 B7/G5/12 17:44:04
added enclosing tifdef

Revision 10.1 87/05/04 17:21:20

revision

'#1fadef Scheduler_h
‘tdefine Scheduler_h

|

idinclude T
|

hread.h"

lcLlass Scheduler {

|
‘protectad:

Lock iock:

intT
1ot
1ot

‘public:

nextIn;
nextout,
maxThreads;

Thread ** Queue;

Scheduler( int maxThreads
“Scheduler() :
void add{ Thread #» ),

| Thread * removeNext(),

tendi1f Scheduler h

russo

russo

russo




IMay 25 3550 1387 . h/PrivazeMemory.h Page

PrivateMemory h Ialine functions aad sonstanis Lo ¢
of various things Loto tae p
BootPhysical ' and BootVizt:

lcuiate ke
1vate virtuial memory area
j 452 thnese T 20o0operits osn wh

»

SHeader: PrivateMemory.h,v 11.2 87/05/25 06:46:01l russo Ex
SLocker: §

o

~

Modification History:

SLog PrivateMemory h.v §
Revision 11.2 37/05/26  06:46:01 ' russo
make stack 2 pages large

Revision li.1 37/35/23 22:1.7.42 russo
added surrouading .fdef.

Revision 11.2 87/35/21 15:49:59 russo
Console 1nput and »rivate stores

Revisicn

L0 47.23 russo
1dded an ex%

ne second page tible pagJe

Reavision 13,1 37/95/14 17:26:41 russo
ini1z:1al ravision

P T T T T SR AT R SR N

~

tifndef PrivatsMemory_h
tdefine PrivateMemory_h

tinclude “"store. h"
sinclude 'CPU. a7
ML E
¢:nclude ‘Yniverse. h!
tinclude 'Thread.i”

/
VM Map of the

‘0
h
)
2]
o
a
s
"
I3
<
»
"
®
a
I3
E]
o
bl
o
»
"
]
'Y

D et b T + (<(-- End of private VM

As many pages as aeeded to store
the rast of the private store
stata i1nformation. The of memory
up to the #ad of the par-CPU
private area 1s available.

14 more things peed added to this
area, add them below the private
store and bump it up higher

-4+ <{-- Bage + 10 pages.

The beginning of the private

[ T L I T O TN

|
I store state information

2fisats

taiags 3¢.

ORIGINAL PAGE IS
OF POOR QUALITY

May 26 06:50 1987 ../h/PrivateMemory.h Page 2

<(-- Base + 3 pages.

First page of the CPUs
page table

——————y

{(~- Base + 2 pages.

Polnter table to point to all
of the stuff htere

<(-~ Base + l page.

e

CPU and Universe objects state
information

* et e, m e — e m A e + <<-- Base * 3 pages.
.

. Intentionaliy unmapped to catch

* stack underflow

.

* B ettt e et + <¢(-- Bases + § pages.
*

- The Germ Threads stack page 2

.

»

* e it bt + <(-- Base + 7 pages.
-

- The Germ Threads stack page 1

«

-

- Fmm e mm e mmmm s —m e e ——— e + <<-- Base + § pages.
.

. Inten%z:ionally unmapped to catch

. stack overflow

.

. R et e e bt ww—=4 ((-- Base + 5 pages.
.

. The Germ Thread objects state

* iaformation

.

* e e — e ———— -===4 ({--~ Base + 4 pages.
.

M Second page of the CPUs

. ©age table

N

“

.

.

N

»

.

.

.

.

-

.

.

«

.

«

~

-

/Q
* The CPU object.
./
const 1nt mePage = 0,
static :inline CPU " melocat:ion( char * base )

{
}

return({ (CPU *) ( base + 0 ) );

Rt et b bt bbbt b i + <(-- Base of private VM area




May 25 35-33 1337 /hsPrivataMamory i Page 1}
s*

i * Tha Un:verse obj=2ct.

: ~/

fconst int un:iversePage = ),

;static inline JYniverse * universelocation( char * Dbase )

return: (Cniverse v) ! base + si1zesf: CPU PG

I ORIGINAL PAGE IS
The pointer tapla Lo access private things with. OF POOR QUALITY

.
-
*
const int privatePolnterTablePage = 1;
tatiz inlipne 2TE * privatePoaintarTiblelocat:ion: char ¢ hase

raturnr (PTE *) ( base + PAGESIIE .

* This processdors page Tabl

o

.«

const 1at pageTablePage = 2

fconst 1nt secondPigeTaplePage = 3;

s5Tat1s 1aiine PTE * pageTablelocation( char * bas2 )
it

| return (PTE *) ( base » pagaTaplePage*PAGESIIE
|

i/

"% The initial thread.

[

'const 1nt FermThreadPage = §;

ﬁs:icxc 1nline JermThread ¢ germThraidlLocat:ion( char * base

: return: (GermThread *)  base + germThreadPage*PAGESIZE )
ol
e

* Tha stack £5r the initial thread

s

|
lconst 1at stackPage = §;
istatle i1nliaze char * stacklocat:ion: char * base ;

| raturn( (char %) ¢ base + stackPage*PACESIIE ) ).
i

| * The private Store stata 1nformat:on

,const 1nt privatesStorePaige = 9.
static inl:ine Store * privateStorelLocatlon( char * base

return: (Store *) ( base + privateStorePage * PAGESIZE ) ).

‘May 26 06:50 1987 ../h/PrivateMemory.h Page 1

tendif PrivateMemory_2

|
i
|
|
|
|
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iMay 28 19:92 1i3%7

KernalMain(:
This routine sets up things that need init:al:ized before
th= 2rocessors are all let loose

e

$Header: KernelMain.c.v 11.4 87/05/25 95:17:33 russo Exp §$
SLocker. §

»
~

Revision H1story:

Revxsi;:g;.l. 4Ke;x7x(e/é!;;2usx. c-:');: i7 33 russo ORIGINAD PA.GE rs
OF POOR QuALITY

only do dselective debug printing

Revision L1.3 87/05/24 06:13:56 rusaso
took out VERY annoying debug

Revision 11 1 87,/05/21 16:51:10 russo
switch ways of deleteing threads

Revision L1.3 87/05/21 15:34:33 russo
Console 1npu% and privats stores

Revision 10.32 87/95/17 14:04:26 russo
Xeep deleteQueue as a per-CPT namber

Revision 10.24 87/05/13 20:29:56 russo
split out the time slice thread code and did some other rearrangements.

Revision 10.20 87/05/13 06:97:23 johnston
Added creation of console thread.

Revision .0 17 87/05/12 17:35:26 <russo
restructured to be run by the Jerms 1nitial thread. Also sets us up
to use the new scheduler() member of the CPU class.

Revision 10.0 387/04/22 07:38:16 russo
New Spaces, Universes and CPU oblects work, Finally’

Revision 2.9 37/04/04 15:12:29 russo
Multiple threads and timer 1i1nterrupts.

Revision 3.2 37/03/29 15:33:45 russo
_new and _delete added for memory management. Also, class interrupts work.

Revision .3 87/03/25 12:49:34 russo
fault handler hierarchy works, so does interprocessor vectored interrupts.

Revision 1.1 87/02,/23 23:34:11 russo
Initial revision

P R T I I A A A S S AL L A N A

~

tinciude "Assert.h"
tinclude "Dabug.h”
¥include "md_tuneable.h”
tincluda "stores.h"

tinclude “File.h"
tinclude "FaultHaandler .h"
finclude "Space.h"
tinclude "Task.h"
tinclude "3cheduler.h”
tinclude "Exception.h”
tinclude "Lock . h”
finclude "Universe.h”
finclude "CPU.4"

tiaclude "vVectors. h"

.
® Global Exception handlers.
*/

extern void ABTTrap( struct Frame ® );
Systemixception VMException( ABTTrap ),

extern void SVCTrap( struct Frame * };
SystemException SVCException( SVCTrap ).

InterruptException ConsolelntarrxuptException;

.

* Miscellaneous variables.

./
static int setupDone = 0.
static Lock setuplock;
static Scheduler * runQ; // rum queus for this kernel

static int ConsoleThreadBuilt = 0.
static Lock ConsoleThreadlLock:

typedef void (* KPFV)(},

void
KernelMain( unsigned int ID )
{
/'
* Iaitial sanity Assertions and Debugging.
*/
Assert{ Mo '= 0 ).
Debug( "Processor %x has joined the kernel (ID=sx)\n", Me->1d(), ID }:
Assert( ID == Me->id(} ).
Assert( Ms->universe() '= 0 ),
Assert( Me->heapSpace() ' (<)
Assert( Me->currentThread() '= 0 }:
Assert( Me->1dleThread() '= 0 ),
Me->idleThread(} ).

Assert( Me->currentThread()
Assert( Me->scheduler() == 0
Assert: Me->threadToDelete()
Assert( Me->privateStore() '= 0 };
Assert( Me->globalStore() = 0 };

extern int InterruptsDisabled(},
Assert( InterruptsDisabled() );

' May 28 10:02 1987 KernelMain.c Page 2



: .
: /
| * Install the g3lcbal {common amouny a.l CPJs executiag this karnel)
i # 2xceptilon handlers. The ABT handler 1s especilally important since
# 1t will allow page faults to occur and be handled.
./

Depug: "KernelMain: Installing 3jlobal except:ioms\n’' ).
Me->setException( ABT_Vector, sVYMException )

Me->setException{ SVC_Vector, «SVCException

Me->setException( CONSOLE_Vector, &«ConsclelnterruptException ),

J*
* Install the local (private) axception handlers.

-

. * Build a2 stack for the clock thread. then construct aad dispatch it.
* It will build, 1install and await the time s5l1ice exZept:ion

v/

Debug( "XernelMain: Building kernel clock thread\a" ):

axtern void 3SwitchTor Thread +

axtern vo:3 * {ernelThrzadStickAllocater( iat ;-

2x%ern vo.d

imeT 1

it ") KaraelThreadStackAllocator 1 .
b] .

! Thread * clock = new IaterruptThread( (PFV: Ticker. stack, 3. 0. 3 ),
i Debug( "KernelMiin: clock thread %x (stack=sx;\n"', clock. stack ;.
Assart: clock '= 92 .

SwitchTo( clock ),
Debug( "KernelMa:

clock dispatch returned\n" ).

Assert( Me->1d() ID )/

g

* 3uiid a2 stack for the zconsole thresad. th2n construct and dispatch 1%,
*/

ConsoleThreadloack acquire( )

1£( ' ConsoleThreadBuilt ) {

/*

* I[f were the one going to build 1t. indizats s0 and let

* averyone =lse procesde sinc2 there 1s no reason for them
v to wait for us.

./

ConsoleThreadBuilt = 1.

ConsoleThreadlLock.r=leasa( ) ;

Debug( "fernelMain: Building consol=2 thread\n' ):

stack = (int *) KernelThreadStackAllocatori{ Ll ),
Assert( stack '= 03 ),

extern void ConsoleThreadEntry( 1at ;;

Thread ¢ console = new InterruptThread(
(PFV) ConsoleThreadEntry, stack., 2. 92, J 1,

Debug( "KernelMain: conscle thread sx (stack=sx)\n", console,
stack ).,

Assert( console *'= 0 ;.

IHay 28 10:02 1987 KernelMain.c Page 4

SwitchTo( console )
Debug( "KernelMain: console dispatch returned\n" );
Assert( Me->1d() == ID ),

else |
ConsoleThreadlock.release( )

I
¢ Check to see if the setup portion of the kernel has been done by

® someone else. and 1if not do 1t. Otherwise wait for them to finish
* then continue on.

*/
setupLock.acquire();
if( ! setupDone ) {

Debug( "KernelMan: Doing kexrnel setup\n" )}
setupDone = 1,

-

* Initializa the run queue scheduler.

*/

runQ = new Scheduler( 100 ); // hold 100 threads. DEFINE THIS'!!
Debug( "KermelMain: runQ = %x\a", runQ )

Assert( runQ *'= 0 ),

s

* Creats the initial Space.

*

CPUPrintf({ "KernelMain: Creating :.nit space from ¥x\n",
Me->globalstore( ) b

Space * i1nitialSpace = new Space( Me->globalStorer ).
{void *} TASKLOWALCDR. TASKHIGHADCR - TASKLOWADDR ),

Debug( “"KermelMain: 1nit:alSpace = sx\n' LniT1alSpace

Assart( 1nitialSpace '= 9 .

/.
® Create the File to load the space from.
./

extern char InitialCode{!;

axtern 1ot InitialCodesize:

Debug( "KernelMain: Creating the 1initial space's COFF file\a" ),

File ® initialfFile = new MemoryFile( InitialCode,
InitialCodeSize

Debug( "KernelMain: 1nit:alFile = &x\n", 1nitialFile ).

Assert( initialfile '= Q ),

/e

* Initialize the space from the COFF 1mage of the 1initial Task
* in the file created above.

extern KPFV SetupSpacefromCOFFImage( Space *, File » .

Debug( “KernelMain: :init:alizing space from the COFF image\n" )




Sebugi¢ "Kernel antryPornt = &xha"' entryPoiat .
Asser~( =2arryPalat "= 3 ;.
/.

# Create 3 task int the 1nmitial space.

r/

Debug({ “"XernelMain: Creating initial taskyx, ¥x:\a".
tnitialSpace. eatryPoint :

Task * initialTask = new Task( 1laitialSpace
«EPFV) entryPoint )
Dabug( “KarmelMain: initialTask = sx\n", initialTask )
2 ;sert( iniz1alTask '= 0 };
s
.

Tnqueue the tasks 1nitlal thread on the scheduler we
+ made above.

-

« Now =—hat all the 1initial interrupt threads have been dispatched

+« and started, turn on interrupts. set the scheduler member of the

* CPU opject to the kernels scheduler and begin round robin scheduling.

e2xvern vold EnablelInterrupts{).
Dsbug{ "¥ernelMain: enabling iatarrupts\a”

Enabielaterzupts. ),
M2->setScheduler( runQ }:

s
* Kaep looping removing things from the scheduler and dispatching
¢ them.
v/

Debug( "KernelMain: entering :dle loop\n" ).

whil2: 1) {
extern int InterruptsEnabled().
Assert( InterruptsEnabled() ).

Thread # aThread:

Assert; Me-d>scheduler() ‘= Q0 )

Assart( Me->threadToDelete/() == 1 }:

while( ( aThread = Me-»scheduler()->removeNext(} ) == 0 }.

CPUPrintf( “Idle(}: aThread = ix\n", aThread );
switchTo( aThread )

CPUPriatf( “Idle(): RETURNED, Chacking for Threads to delatena”
Assert( Me->:4() == ID ),

AsSsert( Me->currentThread() == Me-)>:dleThread()

)

ORIGINAL PAGE IS
OF POOR QUALITY
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L

® Check to see if there is a Thread to delete.

*/

1£{ ( aThread = Me->threadToDelete() } '= 0 ) {
CPUPrintf( "EernelMain: deleting 'x\n", aThread ).
delete aThread;
Me->setThreadToDelete( 0 ).

* The rest of this file is only here for testing.

+ It belongs an. and will be moved to, somewhers else in the kxernel when
1t 15 completed.

v/

.
+ 3u1ld a stack for a kernel {interrupt) thread. The stack is allocated

*« virtually in the processors current heap space and physically from

« Me->globalStore().The pointer returned is to the start {bottom) of the stack.
« This 1s actually the high end of the memory region allocated.

.

.

FIX THIS TO ALLOCATE “SANDWICE™ VIRTUAL PAGES TO CATCH OVER/UNDERFLOW®
* AND TO USE THE PROPER STORE
./
void *
KernelThresadStackAllocator( int numberOfPages )
.
{
Debug( 'KEernalStackAllocator( xd 1\n", numberQfPages
Assert({ Me->globalstore() '= 0 );
Assert( Me->heapSpacer) ‘= J J:

char ® zstack = ichar *) Me->heapsSpace()->allocate( numberOfPages ,:
void * pstack = Me-)>globalStore()->allocate( numberOfPages ),
Assert( vstack '= 0 )/

Assert( pstack '= 0

Me->heapSpace()-~>map( vstack, pstack, numberOfPages };

return( vstack + (num»etOtPagez<(PAGESEIFT) Y
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* Store.Cc - Physical memory 2llocation
«
* SHeader: 5tore.c,v 11.0 87/05/21 15:57:18 russo Exp §
- SLockear: 3
.y .
/ o

{

Store:.:store{unsigned basepage,

O N N I N S R S ST SPAE NE BP R E NCE

Revision Bxst&ryf
SLog: ~SYore.c,v § .
15:57:18

Revision 11.0 87/05/21 russo
Console :nput and private storss.
Revision 10.5 87/05/15 05:55:58 johnston

Fixed calculation of Store state page count in coustructer.

Revision 10.3 87/05/14 21:56:09 johnston
Hopefuly fixed some stuff. Changed the interface, too.
Gotta hunt around and find all the places I broke it.

Revisicn 10.0
New Spaces,

87/9%/22 37:43:34 russo
Universas and CPU objects work, Finally"’
Ravisica 9.0 37/04/04 15:17:386 russo

Mult:ple tareads and timer interrupts

Revision 8.0 87/793/29 15:37:44 russo
_new and _delete added for memory management. Also.
Ravision 7.0

87,03/25 12:52:55 russo

Revision 1.1
Iaitial
/

87/02/23
v1s10n

18:20:25 russo

finclude "md_constaants.h”
tinclude "Asseart.h”
itinclude "Jebug.a”
#include "Lock.h"
finclude "Store.h”
finclude "VM.2"

unsigned pageCount, unsigned * stateBasePage

c¢lass i1nterrupts work.

Fault handler hierarchy works, so doces 1nteXprocessoxr vectored interrupts.

.
¢ Debugging and entry assertions.
*/
Debug( "Store::Store(¥x,¥x.xx)\n". basePage, pageCount, stateBasePage
Assert( stateBaseaPage );
Debug( "Store::Store: *stateBasePage: %x\n", *stataBasePage ).
Assert( pageCount Q)
Assert({ this == 0
’*
* Figure out our sizes, etc.
“/

)

ORIGINAL PAGE g
OF POOR QuALITY

!Ste:e::'
i

{

]
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unsigned pagesPerSatEntry = 8 ¢ sizeof({ unsigned

unsigned setEntryCount = ( pageCount + (
pagesPerSecEatry:

Assert! ( setEntryCount ® pagesPerSetEntry )

>= pageCount ).
unsigned stateByteCount = (

sizeof( Store ) ~ si1zeof( unsigned )

( setEntryCount * sizeof( unsigned ) ),

stateByteCount = PageCeiling( stateBytaCount ;;

unsigned statePageCount = addrToPage( (char ¢} stateByteCount ).

/.
¢ Allocate ourself.
hid
this = (Stozxe *) ( *stateBasePaga ® PAGESIZE ).
*stataBasePage += statePageCount;
Debug ( “Store::Store: this: \x (:sd pages)\a", this

/.
* Initialize the Store state information.
./

this->basePage = basePagse;

this->highPage = basePage + pageCouat;

this->freePageCount = pageCount.

this->setEntryCount = setiatryCount;

this->pagesperSetEntry = pagesPerSetintry:

for ( unsigned i = 0; i ¢ this->setEntryCount. 1++
this->set( i1 ] = 0

Debug( "Store::Stora: basePage: ix, highPage: %x, freePageCount:
this->basePage, this->highPage, this->freePageCount );

Debug( "Store::Store: setEntryCount: ix, pagesPerSetEntry: %x\n",
this->setEntryCount, this->pagesPersetEntry ):

store ()

axtern void Hale():

this->lock.acquire():

PanicPrintf( "Store Store: DESTRUCTOR CALLED com %x\n", this };
this = 0,
Halt();
}
/*
* Store::nextfree
.
* Return the first free page after or including the specified page.
® Return this->highPage if none were fouad.
.(/
unsigned

Store::nextFree( unsigned page )

Assert( page >= this->basePage );
Assert( page < this->highPage ),
while ( page ¢ this->highPage ) {

if ( ' this->marked( page ) )

pagesPers:tEntry - 1 ) )

/

) +

statePageCount ),

*x\n"




./

uns
Sto

{

t

cha
Sto
!

i

raturn pajge |

i
retura Tais->413hPage

Store:;contiguous , ORIGINAL PAGE IS

o

Return the numbar of contiguous free pages starting it the specif:ed page OF POOR QUALITY.

Look for no more than the number of pages sgecified

igned
re::contiguous{ unsigned page, unsigned pageCount )

Assert( this->in3tore!{ page . .,

for ( unsigned count = J; count ¢ pageCount: <Ount++, page++ {
1f ¢ page == this->highPage
return °© zdunt }
+f @ this-dmarged: page o o
return count ) -

i
Asserz:! this->:.nStore( page . ).
retura ( <ount }:

r »
re::allocate( unsigned pageCount
-

e First fit search for number of cont:iJuous piges raquasced.
Y

Debug; “Store:.allocate:; «d : this = ‘x\a“ oageCount, this )
Assexrt( ragaCount '= 0

this->lock. acquire!

unsigned basaPage = this->basePage:

unsigned freefPaigeCount = 0.

while ( basePage ¢ this->highPage ; {
basePage = this->nextFree( basePige );

freaPageCount = this->contiguous: basePige, pagaCount )
1f ! freesPageCount == pageCount ) {
Assert| this->i1nStore’ basepage ) ;;
unsigned page = basePajse;
for ¢ unsigned 1 = 0; 1 ¢ freePageCount; 1++., page++
thils->mark( page i,
char * addr = {(char *) pigeToAddr: basePige ;;

Assert( this->1nStores addr ) ).
this->lock.release( )
Debug( "“Store:.allocate: *x\n", addr ;;
return ( addr ;.
i
basePage += fresepageCount.
}
this->lock.release()
CPUPrintf( "Store::allocate: FAILED :!{this = ¥xivn'. this ;}:

May
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raturn ( 0 ).

void
Store::deallocate( char * baseAddr. unsigned pageCount |

{

¥

Debug( "Store::deallocate(%x,%d): this = ¥x\n",
baseAddr, pageCount, this ),
Assert( { (unsiguned) baseAddr % PAGESIZE ) == 0 ).
unsigned basePige = addrToPage( baseAddr )
Assert( this->inStore( basePage ) ).
Assert( this->inStore( ( basePage + pageCount ; - 1 ) ),
this->lock. acquire();
while ( pageCount-- ) {
this->unmark( basePage ):
basePage++;

this->lock.release();

voiad
Store::reserve( unsigned basePage, unsigned pageCount )

{

Debug( "Store::reserve(yx.%d): this = sx\a",
basePage, pageCount, this );
Assert( this->1nStore( basePage ) ;:
Assert( pageCount '= 0 );
Assert( this->1inStore( ( basePage + pageCount } - 1 ) ):
this->lock.acquire();
while ( pageCount-- )
this->mark( basePage ).
basePage++;
}
this~>lock.release()
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+« Space.c. 3pace class implementiticn
.
« $Header: Space.c.v 11 11 27,05/26 07:28-41 j;ohnston Exp §
. SLocker: russo §
~/
/

Modification History:

Slog: Space.c, Vv
Revision 11.11 87,05/268 07:08:41 johnmsteon
Debugging off.
Revision 11.19 837/05/26 05:01:28 zrusso
Revision 11.9 87/05/25 17:37:35 russo
sorry. not implemented.

Revision 11.9 87/05/25 17:33.53 russo
updatingy =he rest of the methods

Ravision 11.5 37/05/25 05:40:3) rs50
more Jebugging to track down a panic

Revision li. 4+ 87,/05/24 17:06-22 russo
added mi1ssing KeraelSpace meticd.

Revision 11.2 87/05/24 16:47:13 russo
finishing up new allocation stuff

Bevision 11.0 87/05/21 15:57:09 russo
Coansole 1nput and privace stores.

Bevision 19.21 87/05/15 25:14:30 johnston
Fixed Store->deallocate paramaters.

Revision 19 .29 87/05/14 20:0%5:35 russo

space.

Revis:on 10.8 87/04/22 21:11:33 russo

Revision 10.0 87/04/22 07:43:27 russo

New Spaces, Universes and CPU objects work, Finally!

Revision 3.1 87/04/13 04:50:57 <russo
initlal revisison.

P R R R R T E X I A B R S S L S R S

~

tioclude “Debug.h"
tinclude “Assert.h"
tiaclude "VM.h"

tinclude ‘Store i
tinclude "Space.h”
finclude "FaultHandler.h"

changed argument to allocatePointerTablie to be the page not the llIndex

added 1s5In method to space class to test if an address 1s managed by the

leave FaultHandler (0] empty s0 un-harndled pages return a 0 fault handler.

ORIGINAL PAGE g
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tinclude "CPU.h"

/'
Space constructor.

)

.

L] Arguments:
. store: usaed to allocate pyhsical memory for the pointer
* information from.

. base: the starting address of the space.

» length: the length of the space.

v/
Space::Space{ Store » store, void * base, int length )
{

/.
* Entry debugging and assertioans.
* (Check for proper alignments of the Space boundries.)
*/

Jebug( "Space::Space( store:\x base:%x, length:xx): thais

store, base, length, this ).,

Assert( this '= 0 );

Assert( store '= 0 );

Assert( ( (unsigned) base & Oxffff ) == 0 };

Asseart( ( (unsigped)( (char *) base + length | & Oxffff )

/.
* Set the space boundary instance variables.
*/

this->baseAddress = base;

this->length = length;

this->vTopPage = addrToPage( base ).

/'
» Initialize the pointar table information kept for the
*/
for( nt 1 = 0; i < 256; 1++ ) {
this->table(i]. secondLevelPTE = 0;
this->table(i). firsclLavelPTE = (PTE) O;

b
this->stoxre = store;

/Q
* Initialize the spaces fault handler table.
*/
for( i = 0; i < MAXHANDLERS: i++ ) {
this->faultHandler{1] = O:
}
}

/I
® Space destructor. Boy does this need work'
*/
Space:: “Space()
{

CPUPrintf( "Space:: Space: thisI&x\n", this ).
Assert( * this->lock.held() ).

table state

= sx\n",

space.
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s

* Space.c: 3pace class implementition

*

* $Haader: Space.c,v 11 11 37/05/26 07:18 41 j0hnston Exp §
. $lLocker: russo §

*/

Modification History:

SLog: Space.¢,v §
Revaision 11.11 87,/05/26 ©07:08:41 johnston
Debugging off.

Revision 11.10 87,05/36 05:03:28 russo
changsd argument to allocatePointerTable to be the page aot the llIndex

Revision 11.9 87/05/25 17:37:33 russo
sorry. aot implemented.

Revision 11.8 87/05/25 17:33:53 rUSs0
updating Zhe rest of the mesthods.

Rawision 11.5 37/05/25 0£:49:33 russo
more iebugging to track down a panic

Revision l1.%4 87/85/24 17:96-22 russo
added =m1ss113 Kerael3pace meticd.

Rewision 11.2 87/05/24 16:47:13 russo
finishing up new allocation stuff

Revision 11.0 87/05/21 15:57:09 russo
Consdole i1nput and private stores

Revision 10.21 387/05/15 25:14:30 johnsten
Fixed Store-’>deallocate parameters.

Revision 10.20 B87/05/14 20:05:45 russo
added 1sIn method to space class to test 1f an address 15 manajed by the
space

Revision 10.8 87/04/22 21:11:33 russo
leave FaultHandler(0] empty so un-hardled pages return a O fault handler.

Revision 10.0 87/04/22 07:43:27 russo
New Spaces, Universes and CPU objects work, Finally!

Revision 3.1 37/04/13 04:50:57 russo

initial revision
’

PR T N L N T S P S N A A A N A

tiaclude "Debug.h”
finciude "Assert.h"
#include “VM.h"

finclude "Store.h"
tinclude "Space.h”
finclude "FaultHandler. h"

()1(1(;1}0}\1; 131&(;1? IE;
OF POOR QuaLrry
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finclude "CPU.R™

/*
* Space constructor.
*
* Arguments:
. store: used to allocate pyhsical memory for the pointer table state
b information from.
* base: the starting address of the space.
- lengch: the length of the space.
*/

Space::5pace( Store ® store, void ® base, int length )
{

/.
* Entry debugging and assertions.
* (Check for proper alignments of the Space boundries.)
*/
Debug( "Space::Space( store:\x base:%x, length:sx): this = xx\n",
store, base., length, this ),
Assert{ this '= 0 ).,
Assert( stora ‘'= J );
Assert!{ ( (unsigned) base & Oxffff ) == 0 ).
Assert( ( (unsigned)( (char *) base + length ) & Oxffff ) == 0 ),

s
* Set the space boundary instance variables
*/

this->baseAddrass = base;

this->length = length;

this->vTopPage = addrToPage( base ):

I
* Initialize the pointer table information kept for the space.
v/
for( int i = 0; 1 < 256, 1++ ) {
this->table(il. secondLevelPTE = 0:
this->table(i].firstLeveilPTE = (PTE) 0;
}
this->store = store;

/'
® Initialize the spaces fault handler table
*/
for( i = 0; i < MAXREANDLERS: 1i++ ) {
this~>faultHandler(1) = 0
1

H

/.
® Space destructor. Boy does this need work'
*/

Space:: Space()

{

CPUPrintf( "S5Space:: Space: thisz&x\n", this ):
Assert( ' this->lock.held() ).
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/.

* Destroy all of this spaces fault handlers
* WHAT IF THERE GHARED. I GQUESS THEY NEZD TO BE REFEZRENCE COUNTED

“/
for( int 1 = 0: i < MAXHANDLERS. 1++ ) {
FaultHandler * £ = faultHandler{ij.
1f¢ £ =0 )
delate £
'
/v
* Return any second level page zables allocated.
./
for( 1= 0: : C 256: i++ ) |
1£( this->table’:] secondLevelPTE '= 9 ; {
J/WHAT ABOUT THE VIRTUAL SPACE IT OCZUPIES
CPYPrintt: " Space: THIS REALLY DOESNT WORK\n" ).
vo:d * saddr sageTcAddr/
this~>tiabie{:}.Z1rstlL2velPTE pagalu o ;
(this=->store)->d=allcecata, char + . paddr. 1 v

}

,*
* See 1f an address fills within the range managed by a space
*/

int

Space:-:i15lnt void ¢ addr )}

{

Cebug’ "3pace::isinf{ *x ': this = s$x\a', addr. this -
Asser=/ this '= 9
1£¢ (¢ addr >= this->baseAddress  && ( addr <=
(void *) 1 :char *) this->basesAddress + this->L2njth -~ L ; »

return( 1 i
return( 2 )
i

/.
* See 1f an address managed by a Space 1s currently resident in physical
* memory (valid).
*/

Y14

Space::isValid( void ¢ addr

{

.
* Eatry assertions arnd debugging
*/
Debug( "Space:::isValid( %x ): this = %x\a", addr, this )
Assert( this [
Assert{ this->1sla( addr ) };
s

th2 same time.
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* Ses if the space mappings think the page is valid.
*/

int llIndex = | (VA) addr).firstlevelIndex():;

int l2Index = ((VA) addr).secondLevelIadex();

1f( this->table[llIndex]. seacondLevelPTE(Ll2Index].valid() )
return{ 1 ),

else
return( ¢ ),
i
/*
* Return the first address managed by a Space.
*/
void

Space: :startAddress()
{

return( this->baseAddress ).
}

/e
* Return the last address managed by a Space.
./

void *

Space: :ecdAddress()

{

return( (void *) ( (char *) this->baseAddress + this->length - 1 )
}

e
* Allocate "couat" random pages from the space of type “type"
* Use "handler" to manage them.
*/
void *
Space::allocate( unsigned int count, FaultHandler *® handler,
allocationType type )
{
Debug( "Space::allocate( count:%d handler:%x type:sd ): this=ix\n"
count, handler, type, this );
1£( count == 0 )
return( 0 ),

Assert( handler Qo ¥

Assert( ( type == prefatch ) || ¢ type == faultlIn ) ),
Assert({ ' this->lock.heldByMe(} ).
this->lock.acquire()

s/

» Figure out the range of pages to allocate.

./

Debug( "Space::allocate: vTopPage=¥x\n", vTopPage ,;
unsigaed i1nt start = this->vTopPage.
void * address = pageToAddr( start ;.

Assert( this->1i1sla( address ) );

) s
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t
Assert: this-’>1sin{ pageToAddr: start + couat - 1 ;) ; ): ;
i
this->vTopPage += count;
. i
* Build the pointer table mappings for the newly allocated pages.
*/
this->buildMappings( start, count, handler ;.
this->lock.release(); DMGIN A
/- D AL PAGE 13
* Do the prefetching of the pages if reaquested by the caller
% E POOR QUALITY
1£({ type == prefstch ) { "
Dehug( "Spac allocate: doing prefetch\n" ),
char * addr (char +) address;
for( int 1 = 0; 1 < count; i++ ) {
handlez->fixFault( this, addr
addr +#= PAGESIZE;,
\
+
Debug( “Space::allocate: returning tx\n'. address ):
returad address )
i
/'
* Allocate “count” specific pages starting at "base" from the space of type
* “type'. Use "handler" to manage them.
*/
void *
3pace::allocatea: vold ® pase, unsigned 1nt count. FaultHandler * handlerx,

i

allocat:ionType type )

I :
* Entry debugging and assertions. :
« !

Debug( "Space::alloc( base:3x count:%d handler:3x type:i*d ): this=ix\n".

base, count. handler, type, this ),
1£( couat == 2 )

return¢ O ).
Assert( handler '= 0 ),

Assart( ( type == prefetch ) || ( type == faultlIn ) }:
Assert( this->1isIn( base ) ),
Assert( this->1sIn( (char *) base + (int; pageToAddr( count ; ) ).
Assert( ' this->lock.heldByMe() ).
this->lock.acquire( ),
/>

* Figure out the range of pages to allocate.

v/
Assert( ( .int)base e 0xlff ) == 9 ;;
unsigned int start = addrToPage( base ),
unsigned 1at end = start *+ count - 1;

May 28

H
/%

* Lookup a fault handler in the per-Space index table.
Find an available fault handler index and 1nstall the handler
it 1s not already in the table.

.
* af
*/

int

Space::convertFaultdHandlerToIndex( FaultHandler ® handler )

{

10:03 1987 Space.c Page §

void * address = pageToAddr( staxt )

Assert( this->isIn( pageToAddr( start ) ) }:
Assert( this->isin{ pageToAddr( end ) } ),

/'
*+ FIX THIS: it 1s only e stop-gap solution.
.
1f ( this->vTopPage <= end ) i
thi1s->vTopPage = end + 1,

*

* Build the pointer table mappings for the newly allocated pages.
./
this->buildMappings( start, count, handler ),
this->lock.release();,

/e
* Do the prefetching of the pages if requestad by the caller.
*/
if({ type == prefetch ) {
Debug( “Space::allocatae: doing prefetch\n" };
char ® addr = (char *) address:
for( wnt i = 0; 1 ¢ count: i+¢+ ) {
handler->fixFault( this, addr );
addx += PAGESIIE;

}

Debug{ "“Space::allocate: raturning »x\n", address ).
returna( address );

Assert( handler ‘= 0 };
int freeSlot = -1,

e
¢ Leave slot 0 empty so that pages without a fault handler
* return the proper value from the handleri) method
r/
for( iat index = 1, index < MAXHANDLERS: index++ ) {
1£( faultHandler[ index ] == handler )
return( index )
if({ ( faultHandler( index | == 0 ) && ( freeSlot == -1 } }
treeSlot = index;
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./
void

i
{

Spacs:

1f¢ freeslot == -1
returnp: 9
Assart ; freeSlot >= 1 , && ( freeSlot ¢ MAXHANDLERS ) )/
faultHandler{ freeSlot | = handler;
return, freeSlot );

« Build the pointer table mappings for “count' pages startiny at “starc™

* manajed oy ‘'handlier”

buildMappings( unsigned int start. unsigned int count

.

FaultKandler * handler }

*
* EZntry debugjingys and is32rtions.
.

Jebugi ' Space::bulladMappings. star%:ix count:tx nhaadl=ar:«x ivn'
start, ccunt, haadler ;.
Assart this->1sin: paceToAddr. start 1 )
Assart this->isla( pagaToAddr: start *+ count - 1 1 i .
Assert' handler '= 0 ;.
s *
¢ Find an available fault handler index and 1astall the handler
*/
1nt index = this->convertFaultHandlerToludex: handler ;.
Debug( "Space::buildMappings: Using handler index «xha', 1index ;;
s~
¢« Loop through each page and :nitialize the pointer tabls 2ntry for
* 2ach Allocate new pointer %tables as nesded.
*/
uns:igned i1nt page = start,
for ( umnsigmed 1nt 1 = J; i < count; 1++ ) {

unsigned iat llIndex
unsigned int lZIndex

(page >>» 7 & Cxff.
page & Jx7¢L.

s
¢ Check if a pointer table needs to be allocated
* for this page and Jet one if it does.

*/

if( this->table{llIndex].secondlLevelPTE == Q0 ;} |
Debug( "‘Space::buildMappings: allocating a table\n" )
Assert( ‘(this->table(llIndex].firstleveliPTE.validr)) ).

PTE * pt = this->allocatePointerTable( page ).
i
Assert( this->table{llindex].firstlevelPTE.val:d(} ),
Assert( this->table(llIndex].secondLavelPTE ‘= 0 ),

Assert{ ‘'this->table(llIndex].secondlLevelPTE(l2Index] . valid() ),

/*

./

{

void
Space

® Allocate a
® of the CPU's heap space

PTE *
Space:
1

E;;y 28 170:9) 1387 sSpace.c Page §

s
* Set the fault handler index :n the poianter table entry.
v/

this->table(llIndex] .secondlevelPTE(l2Index] . .handle! 1index, 3 .

//BOW DO I GET THE RIGHT PROTECTIONS HERE

page++;

pointer table for a normal space. The table is allocated out

:allocatePoincerTable( int page )
Debug( "Space::allocatePointerTable( page:3d }\n", page );
Assert’ this->islao{ pageToAddr( page ) ) ):
unsigned 1nt llIndex = (page >> 7) & Oxff;
void * pPTaddr = (this->storej->allocate({ 1 ;;
Cebug( "Space::allocatePolnterTable: pPTaddr=ix\n",K pPTaddr ;.
Assert( pPTaddr '= 0 )
Space * heap = Me->heapSpace():
Debug( "Space::allocatePointerTable: heap = tx\n", heap ):
Assert( heap '= 0 ;

vo1d & vPTaddr = heap->allocate( 1

Depug(
Assert’

“Space::allccatePoxnte:Table:'vPTadd:=ix\n‘ vPTaddr ;.
vPTaddr ‘= 0 ;

neap->map( vPTaddr. praddz, 1

Assert|
this-»>t

':this->table(llIindex] firstlLevelPTE.val:d(
able{llIndex].secondlLevelPTE = PTE *) vPTaddr,

ithis->table{lllindex] firstLevelPTE).map( addrToPage( pPTaddr )}, 3 1},
//H0W DO WE CHOCSE THE RIGHT PROTECTION LEVEL HERE-

VA
* Init
*/

1alize the new polinter table.

InitSecondLevelPageTable( (PTE *) vPTaddr );

return(

(PTE *) vPTaddr ),

::getPointerTables( unsigned int startPage, unsigned 1at endPage )

Debug(
Assert(

“Space::getPointerTables( %x, %x )\a", startPage, endPage ).
NOTREACHED ), // this routine will die soon.

Lk
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i « Mip a virtual page TO 1 pAYSigai page frame
ey
fvord
ispace: :mapr void * page. void * frame ) P
| SP
; o .
\ Dabug( "“Space::map( page:3x frame:%Xx ): thls = sx\a", ' RIG]NAL PAGE'
page, frame, this ;; OF POOR
Assert{ this->isIa( page ) ), L QUALIT]’
{ Asserti: ' this->lock. heldByMe(;} ),
1 this->lock.acquire();
| .
\ ¢ Map the virtual page to the physical page frame
./
{ unsigned 1nt llIndex = ((VA) page).firstLevelTadex.
! unsigned int L2Index = ((VA} page). secondlevallIndex().
| pebug( "Space: . map: llIadex=y¥d l2Index=*d\n", llIndex. 1l2TZndex
i i
! Assert; this->%able{ llIndex].firstlevel PTE v3ilide, ;; i
; Assert; this->tabie{llIndex]. secondlLevel?TE '=
! Asser: ‘this->table(lilndex] secondlLav2lPTE 1l2Index! . val:id : :
this->table(1llIndex]. secondLevelPTE(l2Index] map¢ iddrToPagerpage:, 3} )
//ACW DO 1 PUT THE PROPER PROTECTIONS HERE'!
Assert( this->table[llIndex].secondlevelpPTE{l2Index] valaid() ):
this->lock.release()
i
i .
! « handler - return the fault handler function (1f any) for a given
i new virtual address. X
js |
'FaultHandlar * i
Space::handler( void ® waddr ) |
{ |
Debug( "Space::handler( addr:sx ;: this=ssx\a', vaddr. th:is ;.
Assert( this->isIn( vaddr ) ).
Assert( ' this->lock. heldByMe()
H this->lock.acquire();
unsigned 1lix = ((VA) vaddr).firstlevellIndex(),
unsigaed 12ix = ((VA) vaddr).secondLevelIndex();
Debug( "Space::handler: llix=%d 121x=%d\n", 1l1lix, 121x ).
if: this->tahle{llix].secondLevelPTE == 3 } {
Debug( "Space::handler: invalid Llpte\n" ).
Assert( ' this->table(llix].firstlLevelPTE.valid{; ).,
this->lock.releasea();
return{ 0 };
1
PTE o l2pte = &(this->table(llix].secondLevelPTE(l21x]},
]
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FaultHandler ® theHandler = faultHandlar{ l2pte->handlerindex() ]:
Debug( "Space::handlesr(%x): 1index: 3x, haadler: sx\a"

vaddr, lilpte->handlerindex(}, theHandler ).
lock.releass();
returnf theHandler ),

Constructor for a kezrnel (heap) space. It does things differently since
there 1s no heap space for it to get things from {since 1t 1s one).

Kernel spaces get their state and pointer tables from statically allocated
Germ virtual memory. They get physical memory like other spaces.

D+ u o &

KernelSpace: :KernelSpace( Store ¢ store, vold * base, int length )

{ store, base, length ) // arguments to parent coanstructor

Debug( "KernelSpace::KernelSpace({ store:sx base:3%x length:ix )\a",
store, base, length )
Assert( store '= 0 };

e
* Get physical pages for this Kernel Space.
Y ~
unsigned pages = PageCeiling( sizeof( KernelSpace | ) »> PAGESHIFT:

void * pthis = store->allocate( pages .;
Debug( "“\tKernelSpace::ctor: pthis = %x (%d pages)\an’, pthis pages ):
Assert( pthis 's 0 );

/*
[ * Get virtual pages for this Kernel Space
./
EernelSpace * KernelsSpaceAllocator():
KerneiSpace * vthis = KernelSpaceAllocator().

/.
* Map into Germ.
*/
extern vol1d GermMap( unsigned, unsigned, unsigned ;;
GermMap( (unsigned) vthis >> PAGESHIFT
(unsigned) pthis >> PAGESHIFT,
pages );

/'
*® OK to set this. Side-effect is to call the parent class (Space)
¢ counstructor.
.
this = vthis,
t

KarnelSpace:: KexnelSpacey)

{
extern void Halt():
CPUPrintf( "Kernel destructor called'\a" 1}
Halt():

Yad GermKernelSpaceDeAllocatori this ):
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* Get polntar tabies from pre-allocated Jerm virtual memory. ac
*+ heap. Physicil memory 15 allocated from the 5pace’s state Sto
« ragular spaces.

7

PTE *

{ernelSpace:. allocatePointerTable; i1at page )

'

"ot
T
[

2

Dabug( ‘'KernelSpice::allocat=PointerTable({ pages:.sd \n"' page ,;
Assert( th:is->isin( pageToAddr( page ; ) ):

unsigned int llIndex = (page >> 7) ¢ Oxff.

vo1d * pPTaddr = (this->store,->allocata¢ 1 ).

Debug( ‘KerneliSpace::JetPT: pPTaddr = %x\n"', pPTaddr ):

Assart( pPTaddr '= 0 .

ext2rn 7o1d * KernelPountusrTaibleAllocater KernelSpace *. unsign=d 1ot
vo1d v 7PTiddr = K2rneiPoint=a2rTablaallocz2te: tiis. page

J2buzy: ‘XarmelSpace: yetPT: vPTaddr = sx\a' 7PTaddr
: 7PTaddr '= 3

ra 7o1d GermMap: unsiyn2d, unsignad. unsigned
runsigned; vPTaddr »> PAGESHIFT

{unsijned) pPTaddr >> PAGESHIFT. 1

Assert( '({this->table[llIndex]. firstlLevelPTE.valid()}) )
this->table{llIadex].secondlLevelPTE = (PTE *) vPTaddr:
{this~->table{llIaxdex} . firstlLevelPTE,.map: 13drToPagze( pPTaddr , I .,
//HOW DO WE CHOOSE THE RIGHT PROTEZCTION LEVEL HERE-

'z

¢ Ialtlalize the new pointer table.

v/
InicSecondlevelPageTable: ‘PTE *) vPpTaddr )

return( (PTE +) vPTaddr ;:
'

void
XernelSpace: -getPointerTables( unsiyned 1nt startPage, unsigned int endPige )
'

Debug{ "KernelSpace::JetPointerTables:xx,sxi\a",
starcPage. =ndPage )

for - unsigned int page = startPage; page (= endPage; page++ ; |

unsigned lllIndex
unsigned l2Index

fpage >> 7) & OxLf:
page & 0x7f;

woan

I
¢ Check if a polinter table needs to be allocated
¢ for this page.
.

1f( this->table{llIndex].sescondLevelPTE == J } {
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Debug( "XernelSpace::JetPTs: gett:ag a pte\n" ;.
Assert( 'rthis->table{lllindex] . firstlevelPTE.valid(yy )

void o pPTaddr = (this->store)->allocate( 1l }.
Debug( "KernelSpace::3etPT: pPTaddr = %¥x\n". »PTaddr
Assert( pPTaddr '= 0 ),

extern void ® KernelPointerTableAllocate( KernelSpace *®. unsigned
vord ® vPTaddr = KernelPointerTableAllocate( this, page ).
Debug( "KeynelSpace::getPT: vPTaddr = ¥x\a"'. vPTaddr ).,
Assert{ vPTaddr '= 0 ;;,
extern void CermMap( unsigned, unsigned, unsigned ).
GermMap( (unsigned) vPTaddr >> PAGESHIFT,
(unsigned) pPTaddr >> PACESHIFT,
1)y

this-d>table{llIindex).secondlevelPTE = (PTE *) vPTaddr;
{this->table[llIndex]. firstlLevelPTE) . map¢(

addrToPage( pPTaddr 3, 3 }:
//HOW DO WE CHOOSE THE RIGHT PROTECTION LEVEL HERE-

s/
® Initialize the new second lesvel page table
./
InitSecondlLevelPageTable( (PTE ®) vPTaddr ;-
i
Assert( this->table(llIndex)]. firstLevelPTE.valid() '
Assert( this->tablellllIndex].secondlLevelPTE '= 9 :

Assert( ‘thxs-)table(lllndex].secondLevslPTE[lZInaéx] validr) s

vo1ld
Space: map( void * vbase void * pbase. unsigned int count

Assert( ' this->lock.heldByMe:!) ):
this~->lock . acquireq ;.
s
* Map the virtual pages to the physical pages.
«
/
unsigned vtop = ;unsigned) vbase + ( count *¢ PAGESIZE )

unsigned page addrToPage( pbase
Debug( "“Space::map(%xX, sx,6%d}: vtop=sx. pagezxx\n", vbase, pbase.
count, vtop, page ).
for ( unsigned vaddr = (unsigned} vbase:
vaddr < vtop; vaddr += PAGESIZE. page++ ) ’

/*
* Deternine the first ind second level page table entries
./

asigned llindex

unsigned l2Index

{{VA; vaddr).firstLevellndex:):
('VA) vaddr).secondlLevellndex():

Assert( this->table{llIndex].firstLevelPTE.valid()
Assert( this->table{llIndex].secondLevelPTE '= ?

)
Assert( ‘this->table(llIndex]. secondLevelfTE[l2:ndex!. val:d

-l P
:

IIIII. 'Ilii' Ilil-



1May 23

t

Evoxd .
iSpace
:

1.9 1387 Space ¢ Page 13

s
+« Map the physical page.
4

this->table{lliIndex). secondlLevelPTE{L2Index!

//HOW DO I PIJT THE PROPER PROTECTIONS HERE''
Assezt( this->taple{llIndex].secondlevelPTE{l2Index]

}

this->lock.release();

ailocata( unsigaed 1nt count )

count .

Assert, ' this->lock.heldByMe(, );
this~->lock.acquire’);
Debug( "XarnelSpace::allocate( %d ): this=ym\n"
s
+ FiJure out the range >f pagss to allocace
.,
:ailocate: vTopPagasax‘n'. vTopPage
tart = this-»vTopPage:
= pageTcAddr:! start )
Assert :this->1sIn( pageToAddr( start *+ count -~ 1
sTopPage += couat,
Debug( "Space::allocate: gettingPointerTablexn" );
this->getPointerTables( starxt, vTopPage - 1l ),
this->lock.r=2leaser);
Depug! ‘'3pace::allocate: raturning sx\a", address
retarn, address .

mag(

this

page,

valid( )

);

()111(;IP4}\I‘ fﬂA(}lZ IE;
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*/
{

Tniverse.c: Jniverse

Universe::Universe! Universe ¢ where, PTE * pageTable

10:03 1387 Tawvaerse ¢ Page 1

Ziass .mpilementaition. Defines the jpaces access.ble
by a processor at iny given time

$Header: Yniverse.c.v 11.0 37/05,/21 15:57:22 russo £xp §
SLocker: H

Modification History:

SLog: Universe.c,v §

Revision 11.9 87,/05/21 15:57:22 russo
Consocle input and private stores.

Revision 10.11 87,/05/06 19:30:43 russo
added lcadConta2xtFsr method i1mplementation

Revision 10.10 87,/05/01 10:45:1C russo
turned off debugging

Reviston 19.% 37/34/25 13:98-17 russo
cleaned log

Revision 10.3 37/34s/22 20:37.50 russo
added spaceContaining method.

Revision 10.90 37/04/22 07:43:39 russo
New Spaces, Upiverses and CPU objacts work. Finally'

Rewision 3.1 87,/04/11 19:50:07 russo
initial revision.

finclude ‘Assert.h”
tinclude ‘Cedbug.h’
tinxlude 'md_tuneable. h"
$iazlude "Store.h”
tinclude “Space h"
tinclude “CPU.R"
tinclude "Universe h"

* Universe constructor. Sets up the mappings discribed above.

e
* Entxry debugging and assertions.
*/
Debug( “Universe::Oniverse( *x, %x )\n", where, pageTable );
Assexrt( this == 0 );
Assert( where = Q¢ ;
Assert! paJeTable *'= 0 ); w

this = where;
this->firstlLevelPageTable = pageTable.
this->kernelSpace = 0;

ORIGINAL PAGE 13
OF POOR QUALITY,

}

{

}

/.

*/
void

{

}
/e

v/
Space ~

May 28 10:03 1987 Universe.c Page 2

this->userSpace = 9;

Universe:: “Universae()

CPUOPrintf( "Universe:: Universe: this = ¥x\n", this ,;
Halt:’);

* Add a Space to the Universe of addressable spaces on this CPU.
* This overlays any spaces that are already mapped into the same range
¢ 0f addresses that the new space occupys.

Usiverse:: addSpace( Space ® aSpace )

Debug( "Universe::addSpace( %x ): this = sx\n", aSpace, this ),
Assert{ aSpace '= 0 );
Assert( this ‘= 0 ),

s
+ Hack to figure out which space is being added. This will go away
* once the Universe REALLY keeps a l1st of the mapped 1n spaces
./
1f( aSpace->starxtAddress() ¢ (void *) TASKLOWADDR
this->kernelSpace = aSpace;
else

this->userSpace = aSpace;

/Q
» Copy the first level page table entriess i:n the Space cbject into
* the CPUs *real* first level page table. This should be cleaned
* up to only copy and flush things different thaa what i1s already
» there.
v/
unsigned int lewFrame = addrToFrame( aSpace->startAddress() ):
unsigned int highframe = addrToFrame( aSpace->=ndAddress() ),
Debug( "Universe::addSpace: low/high frame: ¥d/wd\a",
lowFrame. highFrame ;.
tor( 1nt 1 = lowFrame; 1 <= highFrame:; i++

this->firstLevelPageTable{1] = aSpace->table(i] firstlLevelPTE;

/*

*/
WritePTBO( ReadPTBO() }:
WraitePTBl( ReadPTBl() )
Debug( “Universe::addSpace: flushed MMU\a" );

® Return the Space that an address falls 1n 5r 0 1f the iddress 1s 1in no
* space curreatly in the universe.

* VERY inefficient way to flush MMU cache, but for now it works fine.




—
(May 23 13:33 1287 raiversa ¢ Page 3

!

{

1L PR P

!

2lse 1f(  address >= thxs—’usexSpace->scizggdd:gss T I

( address (= :nzs—>usexspaca->eniAdd:essa\ oo |

return{ this->userSpace ), i

!

21lse |

returna( 0 ): ‘

} i
void

Universe. :loadContextFor{ Thread * newThread j
!
l

| Jebug( "Universe::loadConteztisr! xx ‘\n". newThreaad
Assart( this '= ) ;.
1 Asserts nawThread ‘= 7
{ "
! * Map 11 the threads V¥ c spaces :
! * the thread requiras =5
I * '
* This should be fixzsd =o only aad whats not already chera, cr
* the Universe should be made smart enought %o do this |
. \
I
* Also we nead to fiX this To remove what this thread doasnt have |
* access to.
. |
* Currently this whole mess 13 hackad for i singiz tnread )
*/
3pace * space = rewThread->spaces’ , :
Oebug( “"Universe::loadContaxtFor: space = ‘'z a”, space

1f{ space '= 0
this->addSpace: space

ORIGINAL PAGE 1S
OF POOR QUALITY
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May 28 10:01 1287 Thread.c Page 1

Thread.c: InpiemenIs a Jeneric t¢
fiigher level xernel processes on

hrzad of execution to syuild

top of.

Some fields {(type, Priority) are opagque and just s&t and read by the
kernel. The Space 1s used to allccate and free memory for the
thread.

$Header: Thread.c.v 11.3 37,0%5/24 05:50:18 russo Exp $
Locker: §

Revision History:

5Log: Thread.c.v
Revision 11.3 37/05/2% 05:50:18 russe
all but important debugging off *

Revision 11.1 87/05/21 23:34:25 russo
working on destructor some

74 russo
-

Revision 11.0 37/905,21 15:4
Consol? 1nput and private sto

Revision 190.22 87/0S/12 10:00:18 russo

added CermThread class constructor and destructors

Revision 10 .15 87/05/10 21:09:32 russo

altered to accomidate each thread keeping 1ts own 1interrupt stack.
this makes context switching much easier and much more sfficient

Revision 10.12 87/05/01 15:47:43 russo

Revision 19.0 87/04/22 07:24:5) russo
New 3Spaces. Universes and CPU objects work, Finally'

Revision 2.0 87/94/%4 14:3%5:20 russo
Multiple threads and timer interrusts.

Bevision 8.0 87,03/29 15:22:34 russo
_aew and _del=te added for memory management. Also, class interrupts work.

Revision 1.1 87,02/23 18:11:18 russo
Iaitial revision

clude "Assert.h"

ftinclude "Debug.h"
$include "md_tuneable.h"
tinclude "md_constants.h”
tinclude "Thread.h"
tinclude 'Frame.h"
tinclude "Space.h"
Pinclude "Tniverse.h"
tinclude "CPU.L"

DRIGINAL pa;
AGE 19
DE PoOR QUALITY

.

*/
tde
tde
tde
tde

tde
ilde
tde
tde
tde
TYP
/e
/
Thr

{
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Wwhich .h file should these go in!

fine CPUPSR_I Cx0800
fine CPIPSR_P 0x0400
fine CPUPSR_S 0x0200
fine CPUPSR_J 0x0100

£ine CPUPSR_N 0x0080
fine CPUPSR_Z 0x0040
fine CPUPSR_F 0x0020
fine CPUPSR_L 0x0004

tdefine CPUPSR_T 0x0002

fine CPUPSR_C 0x0001

edef void (* APTV)().

* Create a new thread, initialize all the internal fields, and pre-push

1ts 1nitial context onto its interrupt stack.

ead: :Thread( APFV startAddress, int ® initialStackPointer, int argument,
int priority, void ¢ kernellIafo )

/'l
* Enrty Assertions and Debugging.
*/
Debug( “Thread::Thread(sx, sx) this = sx\n", startAddress.
initialStackPointer, this

Assexrt( this '= 0 )
Assert( ‘unsigned) startAddraess <= LASTADDRESSABLELOCATION }:
Assert( ‘unsigned) initialStackPointer <= LASTADDRESSABLELOCATION };

/t
® Allocate an initial frame 2n the threads interrupt stack.
*/
chaxr ® isp = &this->intarruptStack{stackSize] - s1zeof( struct Frame ),

this->setInterrupcStackPointer( 1sp ).
Debug( “Thread::Thread: interruptStackPolinter= ix\a"
this~->interruptstackPolnter() );

struct Frame ® context = (struct Frame *) this->interruptStackPointer():
Debug{ "Thread::Thread: initialContext at %x\n". context ),

/*

* Load the PC, PSR, MOD, SB, SP and FP register copies with their
® initial contents.

v/
context->vactorNumber = 0: // Yuck!'
context->pe = {unsigned 1at) startAddress.
context->psr = (unsigned short) ( CPUPSR_I|CPUPSR_S|CPUPSR_U ),
contaxt->mod = 0; // fixing this could solve the lowmem problem

// also, 1t should be loaded with a value
// that points to something sensible
(unsigned int) initialStackPointer;
tunsigned 1nt) initialsStackPointer,

context->sp
context->fp




-

May 29 1J2-I1 1337 Thread ¢ Page !
i

)
* 5ave the 1n:t:3al user stack po:wnter for -he dastrictdr g use

.

thi1s->101T:1alUSP = (char *) initia’StackPocinter

Z

# Pass an argument to the new thread :1a r) Zars out all the other
* jJeneral purpose ragistarcs

-/

context->rd argument

contaxt->rl

context->rs
conta2xt->rs§
context->r7y

[T TR T L TR TR ()

rior:ity:
kernellafo.

* Fres up all the resources owrned by a thread and then Jdestory 1t.

:TThread: ;

v
* Should deallocate stacks and other ra2sources hare
+*+ and what 1f 1ts on i gueue somewher=e>

v/
CPUPrintf( “Thread:: Thread: this = ex\a', this ).
Asserty this '= 9 )
Assert{ this 's Me->currentThread(, )
char * stackPage = {(char *) PageFloor! thils->1init1alispP ,,
CPUPrintf( "Thread:: Thread: stackPage = sx\n", stackPage ).
Space * stackSpace = Ma->universe(}->spaceContainind stackPage )/
CPUPr:ntf( "Thread:: Thread: stackSpace = sx\n',6 stack3pace ),

Assart| stackSpace '= 0 ;
//stack3pace~>deallocate( stackPage .
Ass2rt( NOTREACHED Y.

'
* Dump the :nternal contents of a thread

7o1d
Thread: :dump:

May 28 10:01 1987 <Thread.c Page 4

struct Frame * f = (struct Frame *) this->1nterruptStackPointez(;,

CPUPrintf{ "dump: {this=3x) frame=sXx PC=tx PSR=%x MQD=
this, £, f->pc, f->psr, f->mod, f->sp, f->fp )

CPUPrintf( “dump: rO0=4x rl=%X r2=%X rl=%x rd=%x rS=ix r6=%x ri=isx\n",
£->r0, f->rl, f->r2, f£->r3, f->r4. £->rS, £->x6, £->r?7 );

X SPFix FP=xx\a",

iat
Thread::isPreemptable(;
{
return{ 1 );
i
/.
® Threads which rum with kernel privledges.
*/

KerneiThread: :XernelThread( APFV startAddress, int * 1nlt:ialStackPointer,
int argument, :nt priority, void * kernellafo )
( startAddress, initialStackPointer. argument,
priority. karpelInfo )

Deabug({ "KernelThread::geranelThread{) this = %x\n" this):

Assere( this '= 3 );

struct Frame * f = (struct Frame * ) this->:interruptStackPolnter();

Debug( 'EernelThread::KernelThread: 1sp = sx frame = «x\a"
this->1nterruptStackPointer(), £

t->psr &= ~(CPUPSR_U),
'

KernelThread : {arnelThread()
CPUPrintf{ "XernelThread:: KernelThread(; this = «x\a". this );
Assert( NOTREACHED ),

.
*+ THE germ threads constructor. Later, try to make sure :this 1s odnly called
* once or all hell might break locse.
./
GermThread::GermThread( GermThread * where. APFYV startAddress,
int * :nitialStackPointer, 1nt argument, Lnt priority,
void * kernellnfo ,
( startAddress, initialStackPointer. argument.
priority. kernellnfo )

Assert( where '= 0 ),

this = where.

Debugi "GermThread::GermThread:: this = s¢x\a“, this i:

struct Frame * f = (SEruct Frame * !} this->interruptStackPointer/}:
Dabug( "“GermThread::GermThread: 1sp = %x frame = ix\a",

this->1in ruptStackPointer(), f ;;
f->psr &= ~(CPUPSR_U CPUPSR_I) - // system mode. interrupts off




GereThraad SermTar=2ad

ol

i CPUPrint$; "GermThread:: GarmThread(. th1s = sx\a". this
: Ass=2rc; NCTREACHED !/

1nt argument, lat priority. *oid * kernelinfo , ORIGINAL PAGE IS‘

|
| . { startaddress. LnitialSt E . umeac,
Ii atar;:aloil:;‘ ;Zzae:;:!:clTPOrx aryument OF POOR QUALITY

Debug! "InterruptThread: :IaterruptThread(} this = sxx\a". rcthis

Ass2rz’ this = 0

! struct Frame * £ = (struct Frame * ) this-)>interruptStackPointer:
Jebug: "IatarruptThread: InterruptThread: frame = sx'\n” £ oy

! €->psr &= TiCPUPSR_I}

3

faterruptThread:: InterruptThread()
{

| TpYPrintf! “InterruptThread :“IntarruptThread!; this = %z\n*, this

I
Asser NOTRIACHED )

i1
i

int

iInterruptThread:: isPreemptable()
e

‘i retuznt O )
Iy

|

I
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|
i
« 4.,
- e timer, walt for 1t to tick, then set i1t up again... forever
«
” TimeSliceThread.¢c,v 11.0 87/05/21 15:55:C2 russo Exp §
» $
.
e
¢ Revision History:
* $Log: TimeSliceThread . c,v §
¢ Revision 11.0 87/05/21 15:55:02 russo
+« Console 1pput and private stores
.
¢ Revision 12.1 87/05/13 20:29:07 russo
¢ 1nit1al revision. Split off from KernelMain{;.
./

itinclude "Debug.h"
tinclude "Assert.h”
(tinclude "Ixception.n”
itinclude "CPU.1m"
‘tinclude 'Vactors.h
‘binclude “Timer.h®

{

/*

* The time slice interrupt Thread code.
*/

void
Ticker( int arg )

Debug({ "Taicker( %x )\n", arg ).

InterruptException ¢ clockTick = new IaterruptException;:
Me->satException( TIMESLICE_Vector, clockTick ):

Timer * timar = new Timer( ),
Debug( "T:icker: timer = ¥x\n", timexr )

Assartc; t:mer '= 0 );
"z
¢ Get our timer initialized and start it running
7/
whiiet 1 3 {

timer->stare( 10000. 16 ), // Interrupt 16 1n 10 seconds.
// Aren't these nice constants that

// will come back to haunt us some day.
clockTick->awaxrt ()«

"
*» Restart the timer and acknowledge the interrupt.
*/

extern void InterruptAcknowledge():

timer->stop(};

Debug({ "Ticker: Acking latexrrupt\n" ),
InterruptAcknowledge()

ORIGINAL PAGE 15
OF POOR QUALITY
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Debug( "Ticker: timer restarted and interrz.pt acknowledged\n" );
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SHe ider Task.z. v 11.1 87/25/24 17:21:53 russo EZxp 35
Stocker

IR

Modification History:

sLog: Task.c,v §
Revisicn 11.1 87/05/24 17:91:55 russo
fixed o use new Space allocate methods.

Revision 11.0 87/05/21 15:54:58 russo
Console input and private stores

Revision 10.8 87/05/12 17:27:12 russo
added inti1alThread method.
Aad DONT have the constructor add the :nitial thread to the scheduler.

Ravision 10.2 37,04/22 1%:41:21 <zusso
hack to add tasks space to 113t 7f spaces naccessary for 2 new thaad %o

Ravision 10 .0 37/04,22 07:38:29 ZUSSO
New Spaces, Universes and CPU objects work, Finally:

Revis:on 9.1 87/94/0%5 17.22:328 russo
fixed 595 only one fault handler 18 allocated for all the threads stacks
rather than one per stack.

Ravision 9.0 87/04/C4 15:12:41 russo
Multiple threads and timer interrupts

Revision 8.3 97/03/2% 15:33 54 russo

Revision 7.0 87/03/25 12:49:41 russo

Revision 4.1 87,03/08 16:44:24 russo
Initial Revision
/

R ® XS 0 2B A X B H A O S ADRAET LA LR OO ONFEOFEDN NN

finclude "Debug.h"
finclude “md_tuneable . h”
tinclude “Assart.h"
tisclude "Space.h™
finclude "FaultHandler.h"
finclude “Thread.h"
finclude "“Task.h"
finclude "Scheduler.h"®

typedef void (* APFV)():

Task::Task( Space ¢ space, APFV 1initialEntryPoint )

ORIGINAL PAGE 1g
OF POOR QuALITY

run .

_new and _delete idded Ior memory management. Also. class 1aterrupts work.

Fault nandlar hierarchy works, so does interprocessor vectored interrupts

const i1nt ThreadStackSize = PAGESIZE; /7 how should this REALLY be decidad.

May 28 10:02 1987 Task.c Page 2

/*
« Initial Assertions and Debugging
*/

Assert( this 193
Assert{ space '= 0 );
Assert; (unsigned int' init:ialEntryPoint >= TASKLOWADDR )
Assert; (unsigoed 1int; 1nitialEntryPoint < TASKXHIGHADDR ),

VAl
® Set the space member variables.
.

this->space = space;
/'
* Build the fault handler the threads will initially use to fault
® their stacks in with. (Make sure this is done before any
® thresads are created 1a this task.)
*/
this->stackFaultfandler = new DemandZeroFaultHandler():
Debug( "Task::Task: this->stackFaultHandler = %x\na",
this->stackFaultEandler ):
Assert( this->stackFaultHandler '= 0 )

/e
¢ Start the initial thread at the initial entry point.
v/

Debug( "Task::Task: calling startThread\n” );

this->threads = J;

(void) Task::startThread( initialEntryPoint, J ):

Debug( "Task::Task: this->threads = ¥x\n", this->threads ; ~

Assert( this->threads '= 0 ,;

Assert( this->threads->next

t

/'
® Task destructor.
® Delete all the threads i1n the task then the task space
v/
Task:: Task()
{
Printf( “Task:: Task: this = sx\n“, this ),
while ( this->threads '= 0 ) {
Thread ¢ t = this->threads;
this->threads = t->next;
delete t;

1
delete this->space;

-

+ Return a pointer to the Tasks i1nitial thread.
*/
Thread °*
Task::initialThread()

Debug( "Task::Task{%x. %x): this=vx\a", space, initialEntryPoint, this ),
o]




v
¢

/.
* Start up a thread runalng At the eatry point spec:fiad i1n the irjumentc
.
/

Tharead *

Task :startThread( APFY entryPoint, 13t arjument

{

ol ug: ‘Task startThread; %x &x "\ a", entryPoin% aryument
Assers( <his '= ) ),

Assert unsiyned iat) entryPoint >= TASKLOWADDR

Assert: ,unsiyned 1at) entryPoint ¢ TASKHIGHADOR

* Allccate2 3 f1ll on demand with zeros stack for th

@
I
o
"
»
™
[oN

I
* Allocate the space for the stack and set th2 handlar Zor it.
*/
int ¢ stack = .int *) space->allocate( stackPajes.
this->stackFaultHandler. faultln ):
Debug( “Task::startThread: staick(xd bytes; at:kz\a". stackSize,6 stack
Assert. stack '= 0 ).
x
* Creata the thread 1itself.
v/
Cebug( "Task::startThread: cresating the threadya® :
Thread * & = new Thread( entryPoint. stack + istacxSize/d:. arjument,
bl this ;.
Debug( ‘'Tasik::startThread: thread = %Xt on'. t ).,
Assert( t '= 2 );
e

* Add the tasks space to the list of spaces needed to run.
*

t->setSpaces( this->space .

e
* Keep the 1nitial thread at the head of the list
./
this->lock. acgquire() ;
1f ( this->chreads == 3 ) {
this->threads = t;
i
else ¢

Thread * head = thls->threads;
t->next = head-d>pext;

May 28 10:02 1987 Task c Page 4

head->next = ¢,
}
this->lock.rele=ase()

Debug( “Task::startThre=ad: returning %x\n", ¢t );
retura( t );

ORIGINAL PAGE IS
OF POOR QUALITY
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Switer.z: context switthiag rout:ines

SAeader: 3witch ©.v 1.3 87/05/27 05:52:38 russo Exp §

’ OF
Modif:ication History:
SLog: Switch.¢,v §
Revision 11.3 87/05/37 06:52:38 russeo
dont turn on debug3ying unless you mean it

Revision 11.0 87,05/21 15:43:30 russo
Console 1aput and private stores.

Revision 10.39 37,/0%5/10 21:09:27 russo
altered to accom:idate esach tiread keeping its own :ipnterrupt stack.
this makes context switchirg much 2asier and much morae afficient.

Rewis:ion 10.23 87/0€/36 13:43:99 <russo
use new Urivarse-,loadCortextFor method. I'm thigking of including all of
tals as methods >f the CPU oblect.

Revision 10.20 87/05/04 12:44:28 russo
fixed problem with d:sabling interrupts during a switch.

Revision 10.3 87/04,/22 16:20:48 russo
added from list of thread spaces. This removed all knowledge of Tasks
from the coatext switching.

Revision 10.0 87,/04,/22 97:24:42 russo
New Spaces. Universes and CPY objects work, Finally'

P R R I A S A S S S B P

Revision 3.9 37/04/04 14:53:55 russe
* Multipie threads and timer ianterrupts

+ Revision 3.1 87/C4/04 05:172:39 russo
* initial rewvision
./

tinclude “Assert.h"”
tinclude "Debug.h”
tinclude “CPU.H"
tinclude "Thread.h"
finclude "Space.h"
finclude "Universe.h”

/t
* Where, when. and 1f to disable interrupts hexe 13 really ieaving me with
* a sick feeling. --Vince
*/

void
SwitchTo( Thread * pewThread )
{
Debug! "SwitchTo( newThread xx )\n", newThread );

SLocker: S ORIGINAL PAVGE Is
POOR QUALITY

May 28 10:02 1987 Switch.c Page 2

1f({ newThread == ) ) newThread = Me->idleThread();
Assert( newThread '= 0 );

/.
* Get the current Thread.
~/

Thread * currentThread = Me->currentThread():

tifdef DEBUG
1f( newThread == Me->:idleThrsad() )
CPUPrintf; "SwitchTo: from:ix to:IDLE\a", curreantThread );
else 1f( currentThread == Me->1dleThread() )
CPUPraintf( "SwitchTo: from:IDLE to:¥x\n", newThread ).
else

CPUPrantf( "SwitchTo: from:%x to:d¥x\a", currentThread, newThread
tend:f DEBUG

Assert! currentThread '= 0 ;
Assert( currentThread '= newThread ;.

* _saveContext() saves the current context so that when the thread is
* rastarted it will appear as if _saveContext() returned 0.
* The first time 1t 1s called it returns the naw interruptStackPointer
* to dispatch the thread with. Another side effect 1s that when it
® first returns, interrupts are disabled.
*/

extern char * _saveContext();

char ¢ isp;

Debug( “Calling _saveContext(i\n" )

1f( ( 1s8p = _saveContext() ) == 0 ) {
Debug( “SwitchTo: thread *x. restarted\a”, curreatThread ):
Assert( curresntThread == Me-)>currentThread() .

recurn:
!
Debug( "_saveContext returzed\n" ),
/'
® stuff pushed oa the stack from here on will be lost upon restart
*/

extern vold Dispatch( Thread « );

currentThread->setInterruptStackpoianter( isp ):
Dispatch( newThread );
Assert( NOTREACHED )

/* ARE INTERRUPTS OK 72 #/

/'

* Dispatch . aew thread never to return. The context of the thread to dispatch
® 1s assumed to be on 1t3 interrupt stack.

*/

void

Dispatch( Thread ® newThread )
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/"
* Entry Assertisns and Debugging.
*/
Assert( newlThread 'z 9
Debug( "Dispatch( %x }: 1aterrupt stack will be = xx\p"
newThread, newThread->interruptStackPointer(; .
Al
* Remember who were dispatching, load 1ts VM context, and dispatch 1t.
*/

extern voi1d _dispatch( char ¢ ).

fi1fdef DEBUG

tend1if

newThread->dunmp(};

Me->setCurrentThread({ newThread ;

Me->universe(,->loadConta2xtTor( newThread ):

Debug! “Dispatch: _dispatshisx,\n'. newThread->intarruptstackPsinter:)
_dispatch, newThr2ad-»interruptitackPoilater

Assert( NOTREACHID

)

ORIGINAL PAGE TS
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|May 23 10:91 1337 cswitzh.s Page 1
,*
* cswitch.3. assambly language context switching routines.
«
~ SHeader: cswitch.s,v 11.0 87,05/21 15:43 13 zusso Exp § ()IQI -
. SLocker $ GIN L X
3 AL PAGE 18

P R I S I B R B B

Hodrficaticon History: OF POOR QUALII !
SLog: cswitch.s, 7 § ’ M

Revision 11.3 37,/05/21 15:43:13 russo

Console input and private stores

Revision 10.13 87/0S5/11 08:26:28 russo
was saving the wrong stack pointer for restarted threids in _saveContext.

I forgot %0 inczament 1t 50 as to ‘pop’ off The return address
Revision 10.11 37/05/10 21:09:36 russeo

altered to accomidate each thre=ad keeping 1ts own intsrrupt stack.
~his makes contaxt switzhing much easier and much more efficient.

Revision 19.0 237/04/22 07:24 russo
New Spaces, Talverses aad CPU objects work, Tinally:

Revision ?

2 837/74,04 14:55:06 russo
Multiple T

hreads and timer interrupts

geavision 3.0 37/03/29 15:13:07 russo
_new and _delete added for memory management. Also, class interrupts work.

gevision 7.0 87,/03/25 12:43:06 russo
fault haandlars hierarchy works, so does the interprocessors vectored
interrupt stuff

Revision 1.1 37/02/23 17:56:58 russo
faitial revi

sion
/
s/
* 1nt _saveContext():;
«
* Save the context of the curreant thread and arranges for it to be restarted.
* It 15 saved by pushing the current context onto 1ts idterrupt stack.
* It 1s saved in such a way that when another Thread switches back to it.
* 1t will appear as Ls the call to this procedure simply rsturned "0".
* When 1t 18 really "called" it returns the interruptStackPointer for the
+ thread to be dispatched with. Another side effect is that it returans with
« interrupts disabled.
.
* We assume nothing but the return address is pushed by a C procedure
e call since our zompiler passes the first two args in r0 and rl
e ¥e also assume that rd and rl are volitile registaxrs across
« procedure calls.
./
.zlobl __saveContext
.. SaveContext:
May 28 10:01 1387 c¢switch.s Page 2
v
*» Switch stacks to this Threads interrupt stack.
v/
sprd sp ro /* copy stack pointer before switching */
sprw psc.rl /* save psr before changing it */
bicpsrw $(0x200+0x800; /* system stack with no interrupts */
novw rl.tos o /* push PSR #/
Sprw mod, tos
movd 0(r0) ., tos /* PC to restart at (on top of user stack) */
movgd $0,tos /* vector number should have some value */
movqad $0.,tos /% RO when restarted */
movgd $0,tos /* Rl when restarted */
movd r2 tos
movd rl . tos
movd rd,tos
movd 5 tos
aovd 5.tos
movad r?.tos
sprad fp, tos
addqgd $0x4.r0 /* “pop" return address for restartsd thread */
movd 0,tos /* user stack pointer */
sprd sp.x0 /* return value = system stack pointer */
bispsrw $(0x200) /* switch back to user stack */
ret $0 /* the “"real” return */
/.
* void _dispatch( char * interruptStackPointer }:
-
* Transfer control to another Thread by loading the machine registers
® from its saved values on its interrupt stack and then 'returning” to it.
® The interrupt stack pointer 1s activated to do all the work.
® This can only be called by a thread in kerael mode already.
*
* Register Tsage:
. z0: pointer to the top of the interrupt stack of the Thread to switch to
*/
. text
.globl __dispatch
__dispateh:

bicpsrw $(0x200+0x800) /* switch to system stack and make sure ¢/
/% interrupts are disabled (because */
/* I'm paranoid) */

lpzxd sp.r0

s
* thig could be a little cleaner if its too slow. The big problem
* is that the FIRST time this is called, the interrupt stack 1s
® already active.
.
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movd nos. 3 $ £=s3T3ra user stack pointar

orspsrw 32x200 )

lord sp, r? '

bropsrw $0x200

lprd fp.tos b restore frame pointer ‘
i

restora {r0,rl.r2.r3,r4,r5,r6,z7] t restore genaral registers !

adjspb $-4 /* pop vector number */

ret:z 50 /* “"return" %to the new thread -/

ORIGINAL PAGE IS
OF POOR QUALITY
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May 28 17:22 1987 gException.c Page 1

EXcep:tion. < 2XI2PT1sa class impilemantations. ,

SHeader: Exseption ¢.7 11.% 87,905/21 15-42 45 russo Exp $
sLocker: §

~

~N

P R R R N I N S S

Modif:cation Hilstory: OR.IGINAL PAGE IS

sLog: fxception.c,v §

Revis:on 11.0 87/05/21 15:42:45 russo OF POOR QUALITY

Console 1aput and private stores

Revision 10.21 87/05/12 09:31:41 russo
use Ma->schduler() rather than runQ

Revisicn 19.27 87/95/1C 21:28-49 russo
altersd %o accomidate each thread keseping its own 1interrupt stack.
this mak2s context switchlag much 2as:er and much more afficians.

/%331 11:306:13 russo

~

|
:Ixnclude ‘Assert. h"
finclucdea "Debuag. i
‘finclude ‘Thr=ad.h”
jlinclude "CPUY.hL"
'finclude “Exception.h”
‘finclude "Frame.n"
tinclude "Scheduler.n*

o

void

Exception: post( struct Frame * frame ) . \

r i

! ;
CPUPrintf, “Exceptlon::post. %X )\n", frame ), |
Assert! NOTREACHED ): {

t

SystemException::SystemException( HandlerFuncticn theHandler )
{
Assert theHandler *'= Q0 );
this->handler = theHandler:
)|

SystemException:: SystemException()
{

Debug( "SystemException:: SystemException()\n" ), l
4 Assert NOTREACHEED ). |
}

void
SystemException::post{ struct Frame ¢ frame )
I
’ Debug( "SystemExceptlion::post’/ ¥x )\a", frame ),

Assert( this->handler '= 0 ;.

;* this->handler )( frame )

J

May 28 10:32 1987 Exception.c Page 2 1

i
Debug( "SystemException:: post: resturning\n" ).

!

:InterruptException:: Interruptixceptiony()
{

'

this->awaiter = 0

‘InterruptException:: InterruptException()
1
|

:// Probably should have locks in a lot of the stuff here '':®

'void
InterruptException::post( struct Frame ® frame )

Debug( "InterruptException::post( £ ) this = %x\a", frame, this );
Assert( this '= Q0 ;
Assert( frame ‘'= 3 );

Agsert, Me->currentThread() '= 0 ),

/*
* If no-one 1 awaitlng the event, return to who was interruptad.
t/ M

1£f( this->awaiter == 0 )
TPUPrintf( "OUn-awaited InterruptException\n" }:
return;

¥

VAl
* Arrange for the current thread to be restarted where it was
* interrupted.
*/

Me->currentThread()->setlinterruptstackPointer( _ char *) rame ).

7
® We ars not real happy with this, probably the idle thread
® SROULD be enqued, but with the lowest possible priority.
./

if( Me->currentThread() '= Me->idleThread() } ¢

Assert( Me->scheduler() ‘= 0 ),
Me->scheduler()->add( Me->currentThread() ;.

*
* Dispatch the thread awaiting the event.
*/

externa void Dispatch( Thread * ).

Thread ¢ t = this->awalter.
this->awaiter = 0;
Dispatch( t )

Assert( NOTREACHED ),




extern

2lse

ro1d
Ifatarriptlxcepticon:  awalt) )
{
Depugt ‘laterrup ELE B R Thread
Me->curzr . this
Assert( this '= ;
Assert( this->awaiter == ) )
Assert( Me-dcurraatThread() ‘= ) 3

this->awaiter = Me->currentThread(;:

void SwitchTo( Thread =+
15; Me->scheduler;) == ¢ )
SwitchT 3y,

SwitchTo: Me->scheduler( ;->removaNex<(,

AWALTIRT My n

S
ORIGINAL PACE ¥
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i

P
* FaultHaadlers.c
.
’ SHeader: FaultHandlers c,¥ 11.5 87,/05/24 23:13:21 russo Exp $
. SLocker H
v/

/

Modification bxstary:dl ()I{

SLog: FauitHandlers.c.v § - )
Rev‘.qlozgll,i “;;/95/24 23:13:21 ruasso IGINAL PAGE IS
use Two argument sSpace:: map OF POOR QU

ALITY

Revision 11.4 87/05/24 16:45:38 russo
cl=2aning ip

Revision l1.1 87/05/24 05:08:20 russo
in the middle of re-doing fault handlers.

Rewision 11.9 87,05/21 15:54:3% russ2
Console 1aput and private stores

Revision 10.2 37704722 20:43.12 «russo
j=t space containiag the faulting address from the Tniverse.

R2vision 10.0 87,/94/22 07:38:13 russo
New Spaces, Jniverses and CPU objects work, Finally'

Revision 9.0 87,/04/04 15:12:23 Trusso
Multiple threads and timer interrupts.

Revision 3.0 87/03/29 15:33:40 russo
_new and _delete added for memory management. Alsc, class interrupts work.

Rewision 7.9 37,/03/25 12:49:30 russe
Fault handler hierarchy works, so doss :intarprocessor vectored interrupts.

Revision 1.1 87,/02/19 17:36:12 Jjohnsteon
Initial revisioa
s

# e e A R % e % K E R B A %o woR A AR E TR AT AN AW

b:nclude 'Debug . h™
tinclude "Assert.h”
tinclude “VM.h"

finclude “Store.h
tinclude "Space.bh”
finclude "CPU.h"
finclude "mi_tuneable.h"”
finclude "md_tuneable. h"

/t
« Common code for all subclasses of FaultHandler.
L4
void
FaultHandler:: fixfaulc: Space ® space, void * address ) {

/.
* Eventually this should do the equivalent of the UNIX SIGSEGV

{;:y 28 10:22 1987 FaultHandlers.c Page 2

+ and terminate the Task.
*/
Printf( "FaultHandler::fixFault{ space:%x address:\x): this=sx\n",
space, address, this ).
Assexrt( NOTREACHED ).,

.
* StoraManager class
*/
StoreManager - :StoreManager( Store ® store )
{
Debug( "StoreManager::StoreManager( store:%x ): this = ¥x\n",

store. this ),
Assert( this [
Assert( store '= 0 j;

this->storeBeingManaged = store;
}

StoreManager:: ~StoreManager()

{
Debug( "StoreManager:: StoreManager(): this = sx\a", this );
Assert( NOTREACHED ),

i

Tro1d
StoreManager: : fixFault( Space * space, void ® address )

{

Debug( “"StoreManager::fixFault( space:vx address:ix ): this = sx\n",
space, address, this ),
Assert( space ‘= 0 ),

Assert( space->isIn( address ) ):
Assert( this '= 9 ),
Assert( this->storeBelngManaged '= 0 ).

void ® frame = this->storesBeingManaged->allocate( 1l ),

vo1d ® page = (void *} PageFlcor( iddress );

Debug( "StoreManager::fixFault: page=ix, frame=szx\n", page, frame );
space->map( page, frame ).,

Common code for all subclasses of DemandFillFaultHandler (allocateAndMap).

from the store, map it into the VM Space, and the f£31l it with something.
What they f£ill it with depends on the particular sub-class of
® DemandFillFaultHandler being referenced.
*/
7oid
DemandFfillFaultHandler::allocateAadMap( Space ® space, void * address )
{

"
»
"
» Demand fill fault handlers are those that, upon a fault, allocate a page
.
»

axtearn Store *® MainStorse;

Debug( “DemandFillFH::allocateAndMap( space:3x address:isx):\a",
address, space }:
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* Detarmine the virtusl paje anumber that faultad.

-

/
void * virtualBase = :void *) PageFloor’ (unsigned) address ):
s

* Allocate a physical page from the store ind map it 1n. . -

- - !
- ORIGINAL PAGE IS :
Debug “DemandFillFaultHandler::allocatsAndMap: =1ag a2 page\a' ). ;
void * physicaldase = MainStora->allocate( 1 - I'm !
Assart: physicalBase '= ) ) OF POOR QUAL
space->map{ virtualBase, physicalBase. L . 4
Debug( “JemandFillfaultHandler: allocatsAndMap: virt:ix pays.ix\a",
virtuallase phys.caliBase ),

.
* Construltor for th
* tha fill2r class
* member ual to
* will be
* fauitiog
.
e
e

ultZandler: H
ultdandler: Fill2r * filler . | i
s i
: 3
* Allocate space for state informat:on. '
+ WE 3HCYLD CHEICE FOR DUPLICATES TO SAVE SPACE AND ALSC DO REFERENCE
* COUNTING SINCE WE REALLY DONT XNOW WHEN TO DELETE CONE

./

Asserc “his ‘=) v,

Jebuz: "DemandF:llerCliassFaultHandlar. :Jemandf:iller "

tais, filler

this->fi1ller = filier
y
! ¥
’* .
+ Destructor for the above demand f£1ll fault handler sub-class. i
.y |
DemandfillerClassFaultBandler:: " DemandFillerClassfaultHandler:) {

Printf{ “"DemandFillFaultHandler destructcer called’'*''\a" ).

delete filler:
i
, :
* Demand £111 (using a Filler) fault handler subclass fixFault/) routine

* Allocate a1 page from the store. map 1t in to the Tasks VM, and the

* call the filler members fillPage(,; member fu:tion to initial:ize the page.
*/

void

DemandF1lllerClassFaultBandler::fixFault, Space * space, void * address }

{

Debug( “DemandF:llerClassfFH::fi1xFault:space:¥x addressix): thisssx\n",
space 1address. this ).

May 28 10:02 1987 FaultBandlers.c 2aige 4

allocateArndMap( space, address ',
s
* Call the fillers f£1llPages member function to £fill 1n the page.
.
/
Debug( "DemandFillerClassFaultHandler::£:1xFault: calling filler\n” ,, !
filler->fillPage( address ).
Debug( "DemandFillerClassfau.tHandler::fixFault: returning\n® );

i

/.
¢ The zonstructore for the subclass of demand £1ll fault handler that fills
* the faulting page with zeros.
>/
DemandZeroFaultHandler: DemandZercFaultHandler ()
{
s
* Allocate space for state information.
* WE SHQULD CHECK FOR DUPLICATES TO SAVE SPACE AND ALSO DO REFERENCE
* COUNTING SINCE WE REALLY DONT XNOW WHEN TO DELETE ONE

*/
Assert( this '= 90 :
Debug( "DemandZeroFaultHandler::DemandZeroFaultHandler: this = kx\n",

this )

b .
* The destructor for the above. '
*/
DemandzeroFaultHandler:: DemandZeroFaultHandler:)
{

Princf( "DemandZeroFaultHandler destructor called'*''\n" ):
}

’/ . :
* The fixFault routine for DemandZeroFaultHandler. Th:is calls the parent i
* classes allocateAndMap() member function to jet a page and make it '
* addressable. Then 1t swmply fi1ils the new page with zeros. 0
*/

void !

DemandZeroFaultfHandler::fixFault; Space ® space. void * address )
{

Debug( "DemandZeroFH::fixFault( space:ix addressix ,: this=ix\n", ,
space, address, this ), !
allocateAndMap( space, address ;. |

/e
* Calculate the base addr=ss of the page and fill 1t with zeros i
v/

extern void ClearMemory( void * unsigned

i

voild * virtualBase = (void *) PageFloor( (uns:igned) address ). }

Debug( "DemandZesrofaultHandler::fixFault: ClearMemory( %X, ix )\n", }
virtualBase, PAGESIZE ) }

ClearMemory( virtualBase, PACESIZE ).

Debug( "DemandZerofaultHandler.:fixFault: returning\n" );
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May <3 i0:32 1387 COFFEoutines.c Page 1

COF¥Zoutines.z: rout:nes o deal with
from a UNIX COFF Common Object

SH=ader: COFFRoutines.c.v 11.4 8§
SLocker: §

/ .
Revision History:
Sleg: COFFRoutines.c,v §
Revision 11.4 87/05/27 05:34:18 ru
debug off

Bevis:ion 11.3 87/05/25 05:41:21 ru
debugging on

Revision 11.2 87/05/24 17:24:38 ru
sgelling error

R=71s510n li.1 87,05/2% 16:44.34% rua
switched to new Space alloscate routin

Revisioa 11.9 87,05/21 15:34:27 ru
Consol2 input and private stores

R=vision 10.0 37,/04/22 07:38:38 «ru
New Spaces, Universes and CPU obj=cts

Revision 9.0 87/04/04 15:12:17 rus
Multiple threads and timer 1interrupts

Revision 8.0 87/03/29 15-33:35 rus
_new and _deletes added for memory max

Revision 7.0 87/03/25 12:49:05 rus
Fault handler hierarchy works, so doe

Revision 6.1 87703722 17:53:46 rus
Initial Revision.
/

@ % 0 % 0 2 2 R B ® R R A AR R R E RS AR SR NOE N LD R R DR NN

finclude "Debug.h’

$include "Filler.h™

tinclude "FaultHandler.h"
tinciude “File.n"

finclude “Space.h”

finclude "md_tuneable.h”
finclude “/usr/include/a.out h"

void becopy( c¢har *, char *, 1at ;;

typedef wvoid (* APFV)().

»
¢ Setup a Space to be demand fi.lled fro
*/

L

secting Jp 1 space to be loaded
Ffi1le Format) 1image

7/05/37 05:34:18 russo Exp $

550

ORIGINAL PAGE IS
= OE POOR QUALITY,

sso
ss0
es.
550
sso
work, Finally'

50

so
agement . Also, class interrupts work

50
s iantarprocessor vectored interrupts

50

m a COFF image 1n a File.

May 28 10:02 1987 COFFRoutines.c Page 2

APFV
SetupSpaceFromCOFFImage( Space * spacCe,
{
s
® THIS IS A LOT OF STUFF TO PUT
*/

union {
struct filehdr £f:lehdr;
struct aouthdr aiouthdr:
boug
struct scnhdr scnhdr;
int filePointer = Q;

Debug( "SetupSpaceFromCOFFImage(

Assert( space 's 0 );

Assert( tila '= 0 ).

/'
®* Read the file header and chec
./

Debug{ "“SetupSpacefromCOrrfimage:
file->readRecords(filePointer, (
si1zeof( struct filehdr )
filePointer += sizeof( struct fi
1£( u.filebhdr.f magic '= NSI2GMAI
Printf( “"SetupSpacefroal
u.filehdr.f mag:
return( (APEV) 0 );
}

Z
* Read the a.out header from th
* and .bss section headers and
* informatlion in each.

./

Debug( "SetupSpaceFromCOFrImage:

file->readRecords( filepointer,

sizeof( struct aouthdr )
filePointer += sizeof( struct ao

Cebug( “Set.ipSpacefromCOfFFimage:
file->readRecords( filePointer.
sizeof( struct scahdr )
filePointer += sizeof( struct sc
long textScnPtr = scnhdr.s_scnpt

Debug( "SetupSpacefromCOFFImage:
file->readRecords( filePointer,
sizeof( struct scnhdr )
filePointer += sizeof( 3struct sc
long dataScnPtr = scahdr.s_scnpt

Debug( “"SetupSpacefromCOFFImage:

file->readRecords( filePointer,
sizeof( struct scnhdr )

filePointer += sizeof( struct sc

File * file

ON THE STACK. IS IT TOO MUCH?>>

%x, sx)\n", space, file ).

k if it's ok (magic = NS3IGMAGIC) .

Reading file header\a" )
char *) &u.filehdr
)z
lehdr );
GIC ) {
OFFImage: Bad File Magic Number $x\n"',
c )

e file, then read the .text, .data,
remember the useful bits of

feading a.out header\n"
{char * ) &u.aouthdr,

uthdr ),

Reading .text section header\n"” ).
{char *) &sscnhdr,
)i
nhdr )
r;

Reading .data section header\n" ):
(char *) &«scanhdr,
)i
nhdr )
r;

Reading .bss section header\n" ):
(char *) &scnhdr,

)
nkdr )




i
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i
. .
* Calculate the address2s and siz2s of ons .
* The data and 9ss sections are assumed and are .
« are treated a3 one sect:ion.
~/
APFV entryPoiat = (APFV) 1.aouthdr entry
void * textStart = (voild *) u.aouthdr.text_start.
void * dataStart = (void *) 1.aoutadr data_start,

Debug( "SetupSpaceFromCOFFImaga: CextStart=%x: dataStar<zxx entry=sx\a"
textStart datasStart., entryPoint .

Assert({ ;(unsigned)textStart % PAGESIIE) == 3
Assert! {unsigneditext3tart >= TASKLOWADOR
Assert{ ,unsigneditext3tart ( TASKAIGHADDR
Assert( ((unsignedjdataStart % PAGESIIE)Y == 2 ;.
Assert( {uns:ig datastart >= TASKLOWADDR
Assart( (unsijyred'dataStart < TASKHIGHADDR

1a% textSize = u. aouthdr H
1at t2xtPajes = cextiize :
1f { ¢ tex=Size s PAGESIZ {

textPages++
} I
Assert( ‘unsiyned)(textStart + textSize) ( TASKHIGHADDR .
ichar ¢*jentryPoint >= textStart :,
tchar *j)entryPoint (= (textStart + textSize: },

|

I

1nt dataSize = u.aouthdr.dsize + u.aouthdr.bsize; |

int dataPages = dataSize / PAGESIZE; |

1 ( ¢ dataSize s PAGCESIZE ) '= 0 : { !
dataPages++ .

s

Assert({ runsijyned)(dataStart + dataSize) < TASXHIIHADDR

D=bug: “SetupSpacefromCQOFFImage: text3ize=tx, textPajes=:d\n’, '
tex=Size. textPages '
Dabugj( “SetupipaceFromCOFFIimage: dataSize=tx, dataPages= d\a"

dataSize. dataPages ;,

* Build a fault handler for the .text sect:ion
v/
Debug({ "SetupSpaceFromCOFFImage: Bu:ilding .tex%t sect:ion filler\n" ).
COFFSecti1onFiller ® textFiller = new COFFSectionFiller( file, textStart,
textSize, textScaPtr ).,
Debug{ “textFiller = ¥x\n", textFiller )
Assert( textF:iller '= ) ),
Debug( "SetupSpaceFromCOFFImage: Building .text f£azult haadler\a" );
DemandFillerClassFaultHandler ® textFaul:Randlar =
new DemaadFillerClassFaultHandler( textF:iller ;;
Debug( "textFaul:tRandler %¥x\n', textFaultHandler
Assert( textFaultHandler PN

1
i
«
i
|

* Bllocate the pages fcor the .text sect:ion and iastall the

May 28 10:02 1987 COFFRoutines.c Page ¢&

1
|
|
fault handler creatsd above. Fault handlers should probably [
be deleted by the Space destructor when :t 1s fully implemented, !
but they also may need to be deletad when they are no longer

needad. For example, 1f all the data has been fauited 1a. the !
fault handler to load 1t 1s no longer neesdad since ill of the

data pages will have there fault handlers raplaced by some form .
of swapping fiult handler 1f their memory 1s reclaimed. Granted, H
1f a clean paje 1s chosen for replacement, the original fault

handler will still be needed to recla:m 1t when needed. |

A v r e e n &t e

/

Debug: “SetupSpacefromCOFFImags- Allocating the text pages\n' ); |

char * text = (caar *) space->allocate({ textStart.  textPages,

textFaultfandler, faultIn ;;

Debug( "SetupSpaceFromCOfFFfImage: text = 3x\a“, text ;

Assert{ text '= 3 ); i
1
{
|
|

/t

* Build the fault handler for the .data and .bss section.

./
Debug( 'SetupSpacefromCCFFImage: Building .data and .bss filler\a" )
COFFSectionfiller ¢« datafiller = new COFFSacticafiller( files, datasStart,

dataSize, datascnPtr i
Debug: “"dataFiller = sx\n"', dataFiller ).
Assert( datalfiller *'= 3 );
Debug( "SetupSpaceFromCCFFImage: Building .data..bss fault handler\n' };
DemandFillerClassPaultHandler * dataFaultHandler =
new DemandFillerClassFaultHandler( dataFiller )
Debug( “dataFaultBandler = %x\n"', dataFaultHandler ):
Assert( dataFaultHandler '= 0 ).

I

* Allocate the pages for the .data and bss sect:ions and 1install the
* fault handler creatad above.

\V3 i
Debug( "SetupSpaceFromCOFFImagse: Allocating the data pages\n” ). ;
char * data = rc¢har *®) space->allocate( dataStart. dataPages,

dataFaultRaadler faultln .,
Debug( "SetupSpaceFromCCEFImage: data = sx\n", data ;:
Assert{ data '= ) ):

s
* Return the entry point address for this Space. This value 1s
* passed to the Task constructor whem 1t is called.

./
Debug( "SetupSpaceFromCOFFImage: returning *x\n", entryPoint ).,
return( entryPoint ), .

}

s+
* Constructor to fill in the internal fields of a COFF section filler.
»

COFFSectionFille

:COFFSectionFiller: File * f:le, wvoid * starec,
1nt size, long location )
{
s
* Entry Assertions and Debugging.
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i ./ ‘
: Sebug( "COFF i3nfiller COFF3ectionFillart sx, &d, %z ) this = sx-.a’
stare 1za. locatiom, this ;; !
Assert: th:s [
Assert{ file '= 0 ;.
B ORIGINAL PAGE 15
* initialize the 1internal fields. OF P R
{{unsigaed)start % PAGESIZE) Vs ’ ' QUALITY,
this->file = file;
this->sect:onStart = start;
this->sectionlength = size:
this->filelLocation = location;
}
a
* Destructor for COFFSe=ction fillers. DONT deleta the fi1le here (I think™>)
*/
JCCFFSact:ionfiller: : "COFFS2ctionFillars. i
! 1
% Priatf’ "CTOFFSectisnFiller Destructor called''\a- 1
s
‘ |
{
veid 1
COFfSactionFil.ler :f1llPage( void * faultingAddress )
{ (
/e |
* round faulting address down to 1ts page number.
“/
Debug( "COFFSectionFiller::fillPage(sx) n"'. faultingAddress ):
void * virtualBase = (void ¢, Pagefloor’ ‘unsigned) faultingaddress ).
Jebug( 'COFFSectionFiller::fillPage: wirtualBase = ¥x\n". virtualBase ); |
|
,e I
* zopy 1o the pages 3data from the COFF section.
.y i
int whichOffset = "int) virtualBase - iac) sectionStart; i
long source = filelocation + whichOffset; |
VA
SHOULD FILE LOCK THE READS AND WRITES HERE>?
¢ ALSO., WHILE IM THINEING ABOUT IT. WHQ DELETES THE FILE®>
« I THINK CCFFSpace should be a subclass of task space and its destructor
* should delte the coff file.
*/
Debug( "COFFSectionFiller::fillPage: offset kX in section (addr=%x)\n",
whichOffset, virtualBase ;;
if( source > ( filelLocation + sectionlength ) : {
axtern void ClearMemory( void *, int ),
Debug{ "“COFFSactionfiller::fillPage: f£1lling with zeros\n" );
ClearMemory( virtualBase, PAGESIZE );
s
else {
Debug( "'COFFSectionFiller::fillPage: copy:ag in pagesn’ ),
file~->readRecsrds( source, (char *) virtuilBase, PAGESIZE ):
May 28 19:02 1987 COFfRoutines.c Page 6
b
Debug( "COFFSectionFiller::fillPage: returning\n"
1
.
* Copy 'count’ bytes from “from" to "to". Replace this with a aicely optimized
* assembly language version esventually.
*/
void
bcopy( char e Zrom, char ® to, int count )
{
while( count '= 0 ; {
*To++ = cfromesd;
count-~;
i
}
3
!
I
I
'
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GoOniine.c: Fir C ianguage :out
initializatisa. Spic
t> be idded to the scC
to5 it and pray we NEV

Sdeader: GoOnl:ine.g,v 11.1 8
jLocker: §

~

Revision HisCory:

SLog: GoOnline.c,v §
Revision 11.1 87/05/21 16:57:57
CPU member changed anames

Revision 1i O B87/05/21 15:42:49
Consoie input and private stores.

Revision 1%.41 37/05/12 17:37:1
set uUp to be called by the germs

Revision 10.36 37/05/02 15:42:5
split into a germ half(this) and

Revision 10.23 87,04/30 16:09:2
build a private Interruptizceptlio
handle tha clock interrupt. Dispa
avent mechanism should restart th
iaterrupc igain.

Revision 10.15 87/34,28 10:35:5
build a default exception handler
Then re-i1nstall the proper ones £

Revis:ion 12.0 B87/04/22 07:24:41
New 3paces, Universes and CPU obj

Revision 9.0 87/04/04 14:54:48
Multiple threads and timer interr

Ravision 8.0 87,/03/29 15:22:17

Revigion 1.1 87/02/23 18:11:18

Revision 17.43 37/95/13 06:35:43% rus
took out setException for RONJOLE_Vecto

ite callad Dy each procesor after doing
in a locp ind wait for an 1inital thread
neduler 2nce one 1s thers switch control
ER return.

7/05/21 16:57:57 russo Exp §

russo
Tusso
fc
2 russo

initial thread.

4 russo
a Kernel half/KernelEntry)

L zusso

n for the clock and and intial thread to
tch that thread. It will await., the

@ 1dle thread. When the interrupt

cccurs the clock thread should run again, r2set the clock, and await the

O russo

ORIGINAL PAGE IS
OF POOR QUALITY

and install it for all vectored exceptions

or those we care apout

russo
ects work, Finally!

russo
upts.

russo

_new and _delete added for memory management. Also, class interrupts work.

Iusso

Iait:ial revision

[ e AP S A B P B IR I 2L 2 IR A S A A
~

tinclude "Assert.h"
tinclude ’'Debug.h”
tinclude ’'md_tuneable.h”
tinclude "Thread.h*
#include "Exception.h”
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tinclude “"Lock.h"
binclude "Space.ia"
binclude "Store.h™
tinclude "Tniverse. h"”
$i1nclude “CPU. M"
$include "Vectors.h"

/t
¢ Default exception handler until the karnel installs what it wants
* There SHCULD be no axceptions until the kernel 1s running and decides its
* ready.
*/
extern void Uncaught( struct Frams * ),
SystemException DefaultException( Uncaught ).

/.
® A Lock to arbitrate kernel creation, and a pointer to the initial kernel
* Space. The pointer 1s set by the processor that creates it and shared by all
¢ processors.
*/
static Lock kernellock;
static Kernel3pace * InitialKernelSpace = O

V)
* The ¢ language entry peint for the Germ thread.
.
/

vo1d

GoOnline( unsigned int ID )

{

s
® Say hello Cracie.
*/

| Assert{ Me '= 0 };

I Priatf( ‘'Processor %x 1s online ;ID=%x)\a", Me->1d(), ID ;.
/.
* Sanity checks of the boot code.
./

Assert{ Me->:d() == ID ),
Asser”, Me-j>universe() 's= 0
Assert( Me->1dleThread() '=
Assert( Me-)>currentThread()
Agssert( Me->curreatThread()
Assert( Ma->scheduler() == 0
)
'

=6\r
== Me->1dleThread() )
)

Assert{ Me->threadToDelete(
Assert( Me->privateStore()
Assert( Me->globalStore() !

extern iat InterruptsDisabled(;:
Assert( InterruptsDisabled() ),

/*
% Install the initial (default) exception handlers. Again, no
* exceptions should happen until the kernel 1s executing.
~s

Debug( "GoOnline: 1nstalling default (panic)} exceptions\n" ),
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®
a
u
w
4
®

* Ta2st to see 1f{ th
* IZ 1t has been du
just

3 e 1f not. build 1t.
1lz. someone =2lse has ba2en here first.
k t

* In this case fe call, rel2ase the lock. and continuse.

* /
kexrnellock. acgquire( ;.
1£({ InitialKernelSpace == J

Debug({ "GoOnline: building InitialKernelSpacera" .

2

* Build the 1nit:al EKernel

./

2xtera char ¢

irtualPrivateMemory:

¢har * “ernelsStart = Virtual?PrivateMemory + 2x100029

TarTialg new Xarnel3pace({ Me->globallitore ),
..

ORIGINAL PAGE IS

T v MAMKIRNETLMEY /

SKLCWADDR - ".3:1 carT ) .OFA MR QUALITY
"Jodnlilna: In 2l = a InitialKernel.space
Initiaik=2rne 9

Eal

2rnellock.release,

/e
* Add “he kernel space InitialKernelSpace. o this
* processers Universe. Also set the heapSpaca :instance
* variable in the CPU object.
v/

Cebug( "GoOnline: Adding initial

Iaiti1aifern2lsgace .
ca2 '= 13

Y¥X ©Oo ualverse\n',

erc{ I 1al¥ernal3ca ;
>universe( ->addSgace! IaitialKernz2l3pace ,.
setHeapSpace. IaitialKernelSpace ..

PR R R R R R L R L LR R TR
* By the Time averybody jets heres thers :s a kernel (heap) space
# available to allocate things out 5f and added to the processors
Universe. All initial set up should also be complated.

.

.

® All thats left do 15 to turn the curraat Tread over to the kernel
* by calling XernelMain’/, who will 1install all the exception

* handlers and do other kernel 1amitilization things, then start

® dispatching threads.

.

D S T Ty Ty

extern void KernelMain({ unsigned int .
Cebug! "GoOnline: Calling KermeiMain\n" ;.
KernelMa:in, ID ;:

Assert( NOTREACHED :;
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|
v/
ExceptionHandlers ¢. Various exseptizn handling routines.

$Haad=sr: ExceptionHaadlears.c,v 11.11 87/05,27 95:35:13 russo Exp §
SLocker: §

/
/
Modification History:
$Lag: gxceptionBandlers c.v §
Revision 11.11 37/05,27 05:35:13 russo
debug off

Revision 11.10 87,/0%/26 21:35:25 russo
switched the switch to 1f...then....elseif since the compiler
seems to be totally hosed.

Revision 11.9 87/05/26 237:99:10 johnston
Debuggaing on.

Revision 11.8 37/05/24 26:24.32 johnston
Made ABTTrap use PanicPriatf instead of IPUPrintf

Revision 11.7 87/03,24 22:32:25 russo
attempt to solvwe tha case statement wierdness.

Revision 11.4 87/05/24 26:13:3! russo
tryiag to figure out whats happening with KILLTHREAD

Revision 11.2 87/05/24 05:09:52 russo
fixed calls to fixFault.

Revision 11.1 87/05/21 16:50:45 russo
switched ways of deleteing threads

Revision 11.9 B87/05/21 15:54:34 russo
Comrsole i1nput and private stores.

Revision 10.40 87/25/17 14:04:43 russo
added terminating threads to the per-cpu delete queue.

Revision 10.37 B87/05/16 12:45:38 russo
renamed from boot/TrapCatchers.c
/

2 @ % 2 @ 2+ x @ 2 4 &R R B A T O R R R Rt AL E T ® O RN Rk ke

finclude "“md_tuneabl
finciude "Debug.h
Jinclude "Assert.h"
fiaclude “VM.h"
finclude "FaultHandler h*"
finclude "SVCs.h"
tinclude "3pace.h”
tinclude "CPU.A"

tinclude "Thre=ad.h"
tinclude "Task.h"
finclude “Frame.h"
finclude 'Scheduler.h"”

ORIGINAL PAGE 15
OF POOR QUALITY
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extern void Halt/),

void
DumpFrame( struct Frame ® frame )

CPUPrintf( "DumpFrame(%x): PC=%x PSH=%x MOD=%x Vector=id\n", frame,
frame->pc, frame~>psr, frame->mod, frame->vectorNumber ),

CPUPrintf({ " r{0-7]= $X:%¥xX:¥X:¥X:%X:%X:%X sSp=3¥x fp=ix\na"
frame->r0, frame->rl, frame->r2, frame->rl, frame->r4,
frame->r5, frame->ré, frame->r7, frame->sp, frame->fp ),

}

void
ABTTrap( struct Frame * frame )
{

«
® Grab the MMU registers we'll need.
*/
unsigned msr = ReadMSR():
unsigned eia = Re@adEIA().
//Vitdet DEBUG
PanicPrintf( "Abort Trap: e1aSix MSI=AX PCXX psrIsx\a“,
212, msr, frame->pc, frame->psr );
//DumpFrame( frame )
//{{(MSR *) &msr)->printf(),
/7 tendif
*

® Get the faulting address from the EIA
v/
unsigned address = ((EIA) eia).address():

VA
® Ger the Space containing the faulting address
* Wierd things will happen if mapping of 'Me' and the Universe
® 1s not set up yet. We really shouldn't put ABTTrap in the trap
® table until were ready.
*/
Space * faultingSpace =
Me->universe( )->spaceContaining( (void *} address };
Debug( "ABTTrap: faulting space = %x\a", faultingSpace ):
Assert( faultingSpace '= 0 ).
-
* Handle the fault. (first, check for coanditions we don't understand.
*/
Assert( '((MSR) msr).BPTError() ).
Assert( '((MSR) msr).BPR() ),
Assert( '((MSR) msr).BPTReadError() )/

Assexrt( '((MSR) msr).BPTStatError() ).
Debug( "ABTTrap: Mode of fault: ¥s.\n"

{{EIA)} era).txPTB() > “"user"” : "supervisor" };
/*

® The first thing we do is see 1f we faulted on an address 1n a Space

® rhat has grown. If this 1s what happened, then all we have to do
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r add scm2 n2wW 2atrys
rse or iavalidates

' v/
i 1f: faultingSpace->i1sValid: (void vjaddrass , ) |
Debug( "ABTTrap: faulted on a vaild addrass\a" ;.
Me-)>universa: j->addSpace; fauiting3pace ).
// 3dd space also has the nice feature of flushing
// the MMU for us and addin3y any new PTEs
Debug: "ABTTrap: retrying\a\a' )
return;
! !
i
.
* Tf 1% wasn' t already valid, get the faul® handier (:f thera 1s gne)
* to fix the page.
Y
i FaultHandler + theHandler = faultingSpace->handlar: .vo:d *; address )
| 1f( theHandler == 23 | {
s*
) » Za =he futures =his should just <11l the <ar=ad <asz?)
i .
i PanicPrin “fault with no harndl=2r’'»a
! dalt(;:
e

* Call the Space fault handler and rsturn. Tals results 1in
* retrying/restarting the 1instruction which caused the fault.
.

Depug( “Calling handler (*3x;(space:sx addre2sssx)\n",
theBandler, faultingSpace, address .
theHandler->€fixfault: faultingSpace, :vold *: address -
Depbug( “ABTTrap: Handlzr returned - retry:aginvn’' o,
i

void Toucht 1at x ) {}

typedef void (* APFV)():

void

SVCTrapi( struct Frame * frame )

s
* This 1s all a bit of a hack until the “1into the kernel” object calls work.
v/

{

Debug( ‘'SVC Trap\a" j:
hi1fdef DEBUG

Dumpframe( frame };
tendif

Cebug( "SVC(%d) USP=%x\n", frame->rd, frame->sp )
char * ap = (char *) (frame->sp + 4);

int sve = frame->r0:

PRINTF_SVC ) {
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// should fault 1f needed (what a *} '§$ hack:';
Touch( ** (char *+*)ap ),
CPUPrintf( *(char **j)ap ).

}
else 1f( svc == KILLTASK_SVC ) |
CPUPrintf( "KillTask SVC Call=sd\n" ;.
Halt(}:
}
else 1f( svc == KILLTEREAD_SVC ) { // terminate YOour own execution
CPUPrintf( ‘RillThread SVC Caliled\n" }:
Assert( Me->currentThread() '= 0 ),
Assert( Me->currentThread() ‘= Me->1dlaThread() ;.
Asgsert{ Me->threadToDelate() == 0 ),
s

* Set the current processors Thread to delete
* to the current Thread.
® The i{dle Thread cleans up and deletes the exiting
® Thread, so switch to 1t.
./
extern void SwitchTo( Thread * .

Me->setThreadToDelete( Me->currentThread() ).

CPUPrintf¢ 'KillThread set threadToDelete:n' ).
SwitehTo; 0 // relinquish =“he CPU
Assert( NOTREACHED ).

i

2lse 1f( svc == STARTTHREAD_SVC ) ¢
Debug: “STARTTHREAD_SVC at 3x\n". =*/1at *‘ap .,
Debug( “currentThread = ax\n" Me->currentThread:)
Assert( Me->currentThread(: ‘= 0 .
Task * thisTask =

‘Task *) Me->currentThrzadt ;->ge-Xerneilnfor) .
Debug( “thisTask = %x\n' thisTask :,
Assert! thisTask '= 2 ):
APFV argl = *(APFV *) ap.
int arg2 = *rint *) ( ap + & ;
Debug( “call startThread(%x. sx)\n" argl. axrg2 '

Thread * newThread = thisTask->startThread' argl. ar32 ;
Debug( "newThread = ¥x\n", newThread ;:
Assert( newThread '= Q0 )
Assert( Me->scheduler() 's 2 ,;
Me->scheduler(}->add( newThrea i
b
else {
CPUPrintf( "Invalid SVC (%d) Called\n". frame->rQ ).
Halt():
1
frame->pc++;
Debug( “SVC: set new pc to Mx\n', frame->pc ).
i

void
Uncaught( struct Frame * frame )

CPUPrintf( “Uncaught vectored exception ’'I%x;\n", frame->vectorNumber ).




/
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Z.mpframe. £frame )

Halet().
/

e ox o x

Catch all exceptions and re-direct them to the proper handlers

This should be an Exception handler 1n 1t own right',
/

»
.
»
*
.

void

ExceptionCatcher! struct Frame * frame
[

{

Debug( "ExceptionCatcher( ¥x ): vector ¥x\n', frame
frame->vectorNumber

Assert. frame->vectoriiumber >= I iy

Assert: frame->vectorNumber < {e->numberOfvectcoradExceptions(. ).

€xceapt:ion ¢ exception = Me->exception( frame->veztsrNumber ).
Debug( "ExceptionCatcher: 2a2xcaption = kx\n' =2xcesption
4idef ASSERT
1£( =xception == 9 } {
DumpFrame: frame
Assert( excsption '= 0 ;.

tendif

exception->post( frame );

// post worries about context saveing and restoring if
// neccessary 3r just calling a subroutins Stherwise
// It also worries about whlch stack to use, ete..

Debug( "'Ex ptionCatcher: post raturaed\n”

Be sure to call InterruptAckiowledge for strays if we sver do anything but

ORIGINAL PAGE IS
DE POOR QUALITY,
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CHAPTER 1.

INTRODUCTION

Workstations provide good interactive computing environments that have consistent
user response times and support many devices suitable for interactive work including bit
mapped displays, mice, and keyboards. Supercomputers supply large amounts of sequential
and vector computing power. However, they do not provide a cost effective interactive
environment. This thesis introduces the Cross-Architecture Procedure Call, a software archi-
tecture that allows applications to exploit both systems. Cross-Architecture Procedure Calls
(or CAPCs) combine virtual memory, high speed networking, and compatible data represen-
tations to accelerate an application’s computations _without modifying its code. CAPCs allow
workstation applications to use, on a demand basis, faster Or more expensive processors as
compute servers so that each of an applications functions can be executed by the most

appropriate processor.

Workstations offer a number of advantages to a centralized timesharing system. A net-
work of workstations is more resistant to complete failure than a single system. (However,
the larger number of components increases the probability of partial failure.) Failure of a
single workstation usually does not prevent other workstations from functioning. Experimen-
tal software, frequent (or unexpected) reboots, and different operating systems are easier to
manage with a connected network of workstations. The incremental costs to enhance a net-

work of workstations are small.

Several costs offset these advantages. A system administrator must deal with many

workstations instead of a single, central machine. System resources, which used to be




centralized and easily managed, are now distributed across many systems. One resource lost
in the transition from a centralized system to a network of workstations is the sequential pro-
cessing power of the large timesharing CPU. Ma.ny tasks do not require the high CPU
bandwidth available in the centralized system. However, some tasks do require this
bandwidth; moving these tasks to workstations causes unacceptable increases in their execu-

tion time.

The most common way to reduce or eliminate this increase in execution time is to ship
the entire application to a supercomputer. This batch-oriented technique does not exploit

the interactive features of the workstation.

Another way to decrease execution time is to restructure sequential applications into
concurrent applications and then run them concurrently on many processors. Processor
conﬁgurations range from tightly coupled systems sharing common memory to loosely cou-
pled systems that communicate over networks such as Ethernet [64]. The tightly coupled
systems provide a centralized multiprocessor environment. They do not offer the same set of
interactive tools available on a workstation. Some systems automatically restructure sequen-
tial applications to execute concurrently on their many processors [11,42]. Other systems do
not restructure the application; the user must manually convert sequential applications to

concurrent applications.

Loosely—coupled systems can provide large amounts of processing power. At this time,
however, network communications times are dramatically slower than local memory refer-
ences. This communications overhead affects the choice of algorithms. Algorithms that gen-
erate less traffic between systems replace simple and fast algorithms that work well in

tightly—coupled systems (with low communications costs). These replacement algorithms




may increase the processing demands of the application while reducing the network traffic.

Remote Procedure Calls provide. a mechanism to execute subroutines on remote
loosely-coupled processors [16,66]. Applications can be partitioned so that CPU-intensive
routines execute on the supercomputer and other routines execute on the workstation. RPCs
have several restrictions that affect how an application is partitioned. RPC client and server
processes do not share the same address space. Thus, pointer-based structures do not
transfer well to a RPC environment and routines on different processors can not share the
same global variables. All communications between routines must be through the argument
list. RPC systems require stub routines and special compile-time operations to generate
instructions to transfer control between the client and server systems. These factors affect

how an application can be partitioned in an RPC environment.

Programs often spend large fractions of their execution time in small sections of their
code. This is often paraphrased as the 90-10 rule: programs spend 90% of their time in 10%
of the code. Sometimes, performance can be improved by selecting more appropriate or
efficient algorithms. In other cases, the algorithm in use is already optimal. In these cases,
the only wéy to make that section of code execute faster is to place it on a faster processor.
Often, this 10% of the code is contained within several subroutines. Therefore, these subrou-

tines should be moved to a faster processor.

This thesis proposes a software architecture for executing programs in an environment
with workstations and supercomputers. Applications can exploit each processor’s particular
features. Interactive portions of an application can execute on the workstation. CPU-
intensive portions of an application can execute on the supercomputer. This architecture pro-

vides a standard process model — an application existing in a single address space. Our




architecture usually does not require any restructuring of applications programs.

Our new architecture partitions applications between workstations and supercomputers

while meeting the following criteria. These criteria reflect our goals not to require restructur-

ing of applications and to exploit the features of both workstations and supercomputers.

. The user need not restructure or recode his applications.

e  The programmer can specify an application’s partitioning. Changes to this par-
titioning do not require changes to the application source code.

° Interactive tasks execute on the workstation. That is, the workstation is not
used as a simple terminal to submit jobs to the supercomputer.

° CPU-intensive tasks execute on the supercomputer.

e  Optimization techniques, such as vector operation and parallel operations,
specific to certain architectures are still useful for code segments executed on
those architectures.

) The compilers for each system need not be modified; a modified loader combines
the output from the respective compilers into an executable file.

. The operating system resolves issues of control transfer and data transfer
between systems.

1.1. CLASP Overview

This thesis proposes the CLASP software architecture. CLASP, an acronym for Cross-
architecture Address SPace, implements a new foundation for the traditional process model.
This new foundation allows heterogeneous CPUs to share the virtual address space of a pro-
cess. Tasks within the application execute on the CPU most appropriate to their needs —
interactive response, large amounts of CPU bandwidth, vector processing. CLASP identifies
a level of homogeneity necessary to implement this sharing. It also mitigates dissimilarities
between the processor architectures such as register sets and stack frame formats. CLASP

makes these differences transparent to the programmer.




CLASP allows heterogeneous CPUs with different performance characteristics and
potentially different instruction sets to operate in a single address space. This allows portions
of an application to be executed by the most appropriate processor. Where other research
efforts have augmented standard addressing schemes to provide remote addresses, CLASP
makes a single address space accessible to multiple heterogeneous CPUs [78]. A novel aspect
of the CLASP architecture is the inclusion of instructions for different processor architectures
within the same address space. These instructions are placed in different regions of the

address space.

Our architecture introduces a new control transfer mechanism, the Cross Architecture
Procedure Call (or CAPC). Like the Remote Procedure Call (or RPC), the Cross Architec-
ture Procedure Call transfers control between processors. RPCs introduce new calling
sequences into the application code to transfer control between processors. CAPCs do not
modify the subroutine calling sequence in the application code. In CAPCs, both local and
remote subroutine calls use the standard subroutine call and return instructions. The
CLASP kernel detects calls that refer to remote subroutines, packages arguments, and
transfers the control thread to the remote processor. When a subroutine is moved from the
local processor to the remote processor, .the CAPC system does not require any changes to

the source or compiled instances of procedures that invoke the migrated subroutine.

Applications are prepared for this architecture by the new CLASP loader, which links
separately compiled routines into a single executable image. This loader recognizes the
different object formats for various processor architectures and resolves the cross—
architecture references. It provides the operating system kernel with the information neces-

sary to detect control transfers (e.g., procedure calls and returns) that cross architecture



boundaries. Routines that execute on specific architectures are compiled for those architec-
tures. Some frequently called routines (e.g., sqrt()) can be replicated. Duplicate copies of
these routines, each compiled for a different architecture, are loaded into the executable file.
Calls to any of these routines can be directed to the local instance of that routine, saving the
network overhead of a remote call. The loader chooses which instance to use when resolving

references to these routines.

Trees, lists, and other pointer-based data structures are difficult and sometimes imprac-
tical to implement in distributed computing models without a shared address space. The
SUN Remote Procedure Call dereferences pointers to pass individual elements of a pointer—
based structure {16,17|. Pointer dereferencing is adequate for situations where single struc-
tures are passed by pointer instead of value. Others have advocated the use of subroutines to
encapsulate access to pointer-based structures [46,66]. This approach implies changing (or
deliberately designing) applications to encapsulate accesses to these structures. The CLASP
software architecture solves this problem by ensuring that the context for a pointer (i.e., its
address space) can be transferred to the remote processor. Applications may use pointers as
handles to objects and for true pointer-based structures without concern about where a pro-

cedure is implemented.

CLASP uses demand paging to move arguments and data to the server. As an example,
binary searches through large sorted arrays can be efficient because the accessed portions of
the array are transferred to the remote processor on demand instead of prepaging the entire
array to the server. Pages, once transferred to the server, remain on the server until they are
required by the client processor. Pages used only by the client remain on the client; pages

used only by the server will be transferred to and remain on the server. Pages of data used




by both processors migrate between hosts on demand.

Although CLASP appears to be an approach to distributed computing, it is actually an
extension of the traditional single-processor model onto a new underlying implementation
that provides improved performance. CLASP mimics this single processor model but allows
the most appropriate CPU to execute appropriate parts of the problem. It does not require
restructuring of applications. Only portions that execute on a remote processor need to be
recompiled. The choice of which processor performs a specific routine affects only the pro-
cessing rate for that procedure. The choice does not alter the semantics for that procedure

nor its interactions with other procedures in the address space.

1.2. Thesis Organization

Chapter 2 describes some of the work that motivated this thesis. Chapter 3 provides a
formal definition of the components of the CLASP system. Chapter 4 describes our proto-
type CLASP system and the protocols it uses to communicate between processors. Chapter 5
presents performance figures for our CLASP prototype. It also points out factors to consider
when partitioning an application to use CAPCs. The final chapter summarizes our results

and considers some additional research based on the CAPC concept.



CHAPTER 2.

RELATED WORK

This chapter presents a summary of other research directed towards sharing resources
and providing language level support for this sharing. Two primary areas are explored:
language features that provide access to other processors and system designs that support
shared resources. We do not discuss language constructs that support concurrent processes.
Although concurrency provides a foundation to reduce ﬁhe execution time of an application, it
usuzally requires that pfogrammers manually restructure source code to use different algo-
rithms. In this thesis, we direct our efforts towards making a single control thread execute

faster.

The first portion of this chapter concentrates on language mechanisms. The approaches
discussed in these sections represent different mechanisms for transferring a control thread

between processors.

The next portion of this chapter discusses network filesystems. Network filesystems
remove restrictions on where applications can execute by making the data required for those
applications available from almost any processor. This flexibility encourages a migration

towards workstations that provide effective work environments.

After the network filesystem discussion, this chapter presents several distributed sys-
tems. Two types of distributed systems are discussed. The first class extends the operating
system to include many component systems. The second class of distributed operating sys-

tem moves traditional operating system services, like filesystems, out of the kernel and into




application programs.

We discuss multiprocessor systems in the penult;imate section of the chapter. Many of ‘
these syst_enis are suitable as the compute servers that we want to use for the compute-
intensive portions of our applications. Some of these systems use special compilers to convert
sequential applications to concurrent applications. This allows applications to use all of the

processors in these systems and reduce the computation time.

The chapter closes with a summary of these research efforts. We show how these sys-

tems do not meet all of the criteria presented in chapter 1.

2.1. Language-based Partitioning Mechanisms

In this section, we describe several language-based partitioning mechanisms. These
mechanisms allow applications to perform compilta.tions on remote processors. Each of these
techniques imposes some restrictions on the applications program. Some require applications
to be recoded in a new language. Others restrict the operations and data types that can be

used in remote operations.

The Remote Procedure Call uses the subroutine call abstraction as a logical point to
transfer control between processors. The Interface Compilers described improve the imple-

mentation of Remote Procedure Call systems.

Distributed Path Pascal provides access to remote objects within the Path Pascal
languages. Although the source code must be changed to use remote objects, the changes are
minor and do not affect the existing interface to an object. Object—oriented systems provide

support for remote operations. Eden, Smalltalk, and other object-oriented systems provide
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support for objects that reside on other systems. However, these object—oriented systems and
Distributed Path Pascal require that an application be coded in the appropriate language to

use these features.

2.1.1. The Remote Procedure Call

Remote Procedure Calls — also called RPC — build on the control transfer intrinsic to

a procedure call and extend' this control transfer across machine boundaries.! Nelson argues
that RPC is a satisfactory and efficient programming language primitive for constructing dis-
tributed systems [66]. The RPC model consists of a client process that invokes subroutines
implemented by a server process. The client and server are separate processes and execute in

their own address space. Servers advertise a set of subroutines that clients can invoke.

Because the client and server do not share a common address space, RPC clients and

servers can only communicate through the parameter lists and return values of the subrou-

tines advertised by the server.? Client and server procedures can not pass information
through global variables because the two processors do not share an address space. In his
thesis, Nelson suggests that procedural interfaces be used for access to global variables
(46,66]. In a general RPC system, a server can call a routine on the client to retrieve a global
variable. By encapsulating access to global variables, programs can be partitioned (and

repartitioned) across clients and servers at later times with less chance of error in routines

1 An RPC call does not have to go to another machine. The RPC server can be located on the same CPU, but
within a different process.

? We discount the possibility that the client and server exchange information through a shared filesystem. This
approach suffers from the same limitations: the client and server must take explicit action to transfer informa-
tion between each other. Although filesystem communications might provide for more information to be passed
in a single transaction, it is not transparent.
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that depend on access to global variables.

Some RPC implementations require special calling sequences to invoke routines on the
server [17,19]. Figures 2.1 and 2.2 depict the client and server code segments used to invoke

a remote procedure using the Sun RPC implementation.

RPC implementations often work across heterogeneous hardware. The client and pro-
cessor may have different instruction sets, processing speeds, and data rebresentations. To
accommodate the different data representations, arguments and results of remote procedures
are coerced to a standard representation before being sent to the peer process. When
received, these values are again coerced, this time from the standard order to the order used
by the receiving processor [8,13]. This makes the RPC mechanism available across a diverse
combinations of processors. To impleinent an RPC system, a process must be able to coerce

data between its internal representa.tion and the network standard representation.

The generality of a standard network representation introduces several costs to a
program’s execution. Systems must always convert data to the standard representation

before sending it across the network; the recipient must always convert from the standard

representation to its internal representation.? If the client and server share a data representa-
tion that differs from the network standard order, RPC subroutines convert the data twice
when it could have been passed without change. A number of processors use the Network
Standard Order for their internal representation [4-7,47,48]. These machines can send data
across the network without any format conversions. However, RPC calls marshall their

parameters or results into a single buffer as part of the conversion procedure. Often, this

! The recipient must perform this conversion. Intermediate sites, providing gateway functions, pass the data
without conversion.
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/* .
* result = foo(8, 7, ’c’, "a string");
*/
struct foo_arglist
{
long argl;
long arg;
char arg3;
char  *arg4;
};
caller Q)
{
long result;
int falled;
struct foo_arglist fooargs;
fooargs.argl = 5;
fooargs.arg2 = 7;
fooargs.arg3 = 'c’;
fooargs.arg4 = "a string";
failed = callrpc (HOST, PROGRAM, VERSION, PROCEDURENUMBER,
xdr_fooargs, &fooargs, xdr_long, Zresult) ;
1f (falled)
exit (1);
/*
* "result" contains return value from foo.
*/
b

xdr_fooargs (xdrs, £fp)
Teglster XDR *xdrs;
struct fooargs *fp;
{
return (xdr_long (xdrs, &fp->argl) && xdr_long (xdrs, &fp->arg2) &%
xdr_char (xdrs, &fp->arg3) & xdr_string (xdrs, &fp->arg4));

Figure 2.1
Sample SUN RPC Client Code
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foohandler (rgstp, transp)
struct svc_req *rqstp;
SVCXPRT * transp;

{
long value;
struct foo_arglist fooargs;
1f (!svc_getargs (transp, xdr_fooargs, &fooargs))
{
fprintf (stderr, "unable to decode arguments\n");
exit (1);
} :
value = foo (fooargs.argl, fooargs.arg2, fooargs.arg3, fooargs.arg4);
if (!svc_sendreply (transp, xdr_long, &value))
{ .
fprintf (stderr, "cant reply to caller\n");
exit (1);
X
svc_freeargs (transp, xdr_fooargs, &fooargs);
return;
)
long foo (argl, arg2, arg3, arg4)
long argl;
long arg2;
char arg3;
char  *arg4;
{
/* foo procedure implemented here */
)
main O
{
reglisterrpc (PROGRAM, VERSION, PROCEDURENUMBER,
foohandler, xdr_fooargs, xdr long);
sve_tun Q;
printf ("returned from svc_run -~ bad news\n");
exit (1);
}
Figure 2.2

Sample SUN RPC Server Code
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copy operation is performed even though no format conversion is done.

Different data types require different conversions between internal and network
representations. To provide the correct mappings, the RPC systems must provide type infor-
mation for procedure arguments. Constructs that abuse type information can fail in an RPC
environment. As an example, the C cast operation allows programs to interpret the same bit

string several different ways.

The RPC client and server have separate address spaces. This separation provides an
easy way to replace the code of a remote procedure dynamically. New RPC client requests
can be sent to the new implementation of the server. RPC servers can be removed as their

clients finish execution.

Because RPC clients and server exist in separate address spaces, clients are not bound to
specific servers until runtime. Different instances of the client may interact with different
server programs. This can be used to reconfigure programs at runtime with a minimum of
effort. In an RPC-based GKS implementation, the client process chooses a server appropri-
ate for the desired output device [76|. The X window package uses the deferred client/server

binding in the same manner [43-45].

Some RPC systems do not provide mechanisms for routines on the server to invoke
arbitrary functions on the server [2,3,16]. The relationship between the client and server is a

strict master/slave relationship.
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2.1.2. Interface Compilers

The set of procedures, their arguments, and their results make up a protocol between

the RPC client and server.* To ensure that both the client and server obey the same protocol,

a number of interface compilers have been developed.

Interface compilers accept definitions of a procedure’s arguments and results. They out-
put two code segments — one for the client and one for the server. The client code segment
is a set of routines that resembles a local instance of the subroutine. This client routine pack- -
ages its arguments, transmits an RPC request to the server, retrieves the results and unpacks
them. The server code segment unpacks an RPC request and invokes the true subroutine,

which is implemented on the server.

Interface compilers reduce the complexity of managing RPC interfaces. Courier, rpcgen,
and related cqmpilers take a specification of the input and output parameters for a procedure
and generate the necessary subroutines to package the arguments, transmit them to a server
processor, unpack the arguments, execute the routine on the server, and return the results to

the client processor.

Interface compilers do not change the semantics of the remote procedure call. They
simplify the specification, implementation, and management of the set of routines that an
RPC client can invoke on on an RPC server. In the next two sections, we discuss two inter-
face compilers: Xerox Courier and Sun RPCL. Both compilers allow specification of the
available procedures and the arguments and results for those procedures. Both compilers

generate the data conversion and packaging routines to translate between internal

* Protocols often are associated with message passing. See [59] for a discussion of how the Remote Procedure Call
and message passing are duals. Message passing can model RPC and RPC can model message passing.



16

representation and the network standard order. The Courier system also generates local stub

routines that can be called using local procedure call mechanisms. These stub routines per-

form the actual RPC call.

2.1.2.1. Xerox Courier

Xerox’s Courier language provides a way to specify procedure interfaces. The Courier

compiler translates the simple specification into the appropriate client and server stub rou-

tines. Courier—generated stub routines resolve data representation differences between hosts
by converting parameters and results to a standard order. Simple data types are converted
to a standa.rd ordering for transmission across a network. Complex data types, such as
records, are decomposed until they are a collection of simple data types. The pieces of a com-
plex data type are reassembled on the remote host, using that host’s alignment and data
fepresentation. If the Courier specification is correct, the resulting stub routines will be

correct.

Figure 2.3 contains a Courier specification for the subroutine foo. This concise
definition can be compared to the more complex notation in figures 2.1 and 2.2 for Sun RPC.
With Courier, a client invokes the local stub routine for foo. This stub routine packages the

arguments and sends them to the remote processor.
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Foo: PROGRAM = BEGIN
-— Foo entry point

foo : PROCEDURE [argl : INTEGER, arg2 : INTEGER,
arg3 : CARDINAL, arg4 : ARRAY 32 OF CARDINAL ]
RETURNS [ result : INTEGER ]

=o;

Figure 2.3
Sample Courier code

Xerox has developed other RPC stub compilers. The Lupine compiler generates RPC

stubs for the Cedar language. Versions of the Courier and Lupine compilers generate stubs

for languages like Mesa, Interlisp, C, Smalltalk, and others [26].

2.1.2.2. Sun RPCL

Sun has developed an interface compiler for their Remote Procedure Call Language,
RPCL [16,19]. RPCL uses a C-like syntax to specify the datatypes, procedures, and versions
of an RPC server. The RPCL compiler, rpcgen, produces header files for inclusion in applica-
tions code, generates the XDR routines for converting data to the external data representa-
tion, and produces a server program to register the program. RPCL permits one argument
for each remote procedure. RPCL does not build stub routines that allow users to invoke
remote routines with multiple arguments like:

foo (1, 2, ’¢c’, "a string");

Instead, the argument must be collected into a single structure to be passed to the server.
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Figure 2.4 shows the RPCL specification for the foo subroutine depicted in figures 2.1
through 2.3. RPCL automates the generation of the packaging and conversion routines and
structures (the structure foo_arglist and the routine zdr_fooargs() in figure 2.1). It does

not remove the extra work in the caller() routine in figure 2.1.

The single argument restriction becomes important when the local or remote routines’
calling conventions are not under the control of the programmer configuring them for an
RPC environment. In such cases, the programmer can not change the procedure interface so
that it accepts a single complex argument. Instead, he must manually generate an extra
layer of interface routines to convert between an expanded argument list and a single struc-

ture. The Courier RPC language provides these stubs; RPCL does not.

struct foo_ arglist

{
long argl;
long arg2;
char arg3;
string arg4l(];
3
program RBEPROGRAM
{
version RBEVERSION
{
long foohandler (foo_arglist) = 1;
}=1;
} = 100000;

Figure 2.4
Sample SUN RPCL Code

----------/-
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2.1.3. Network Data Segment

The network data segment, or NDS, is an extension of the remote procedure call that
allows the client and server to share access to global variables [56]. Like RPC, an NDS task
comprises two processes — one on the client system and one on the server system. NDS adds
a data segment that both client and server can access. This allows the client and server to
share access to global variables. These processes share a specific range of their address space.
Each processor can see ché.nges made to data in this address range by the other processor.
The two processors do not share physical memory; instead, they use networking hardware —
like Ethernet — to transfer pages between themselves. The NDS software architecture is tar-
geted for languages like FORTRAN, where the client and server routines both access vari-

ables in COMMON.

The virtual memory subsystem and netwbrking capabilities of the host systems provide
the means to share parts of the address space between the processors. The shared data
resides at the same addresses in each process’ virtual memory address space. Figure 2.5
shows the address space layout for the NDS architecture. The NDS software keeps one copy
of each page in this range. These p;ges are demand paged between the processors as needed.
When the client accesses a page, the page migrates to the client’s physical memory. When
the server makes é. reference to that page, it generates a page fault. The pagefault software
retrieves the non-resident page from the client processor instead of the local backing store.
Shared pages of the address space stay resident on the processor that last accessed them. In
long running programs, shared pages eventually will reside on the processor where they are

accessed. Pages accessed by both processors will move between the processors as needed.
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The NDS software architecture supports languages like FORTRAN, where all variables
have static addresses. NDS does not work as well with stack based languages, such as C,
where many variables are stored on the stack. The NDS client and server processors each
have their own stack; neither processor can access data stored in the other processor’s stack.
Thus, the NDS architecture does not provide complete support for languages that store vari-

ables on the stack.

client . : § client
text ;hole; : data é stack
i E growth
server L k server
text ; hole i § data E stack
i SHARED and ALIGNED :: growth
Figure 2.5
NDS Address Space Layout

To execute an NDS program, the user must have two programs — an executable for the
client and an executable for the server. The codehfor each processor is stored in a separate
executable file. Special NDS compilers require information about routines are implemented
locally and remotely. For remote routines, the NDS compiler generates RPC stubs to invoke
the routine on the remote processor. Because the client and server programs are the result of

several different compiler runs, the compilers for both processors must guarantee the same
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ordering, alignment, and length of operands. Client and server compilers must assign loca-

tions with COMMON blocks in the same fashion.

2.1.4. Distributed Path Pascal

Distributed Path Pascal combines the parallelism features of a concurrent language with
access to remote resources [55]. Kolstad’s thesis describes an enhancement to Path Pascal
that provides remote objects. These remote objects may reside on other machines. Refer-
ences to entry procedures of a remote object are processed in an RPC fashion. Distributed
Path Pascal packages the arguments and sends a message to a server on the remote host.
The server then unpacks the arguments and invokes the object’s entry procedure. When the

procedure terminates, control returns to the calling process.

Distributed Path Pascal provides a language-level mechanism for access to remote
resources. It does, unfortunately, require changes to the source code to use the remote opera-

tions. These changes are restricted to a change in the declaration of the object.

Another shortcoming in the Distributed Path Pascal approach is that all operations on a
single object occur on the same processor. If an object encapsulates a large database, all
operations on the database occur on the same processor. Distributed Path Pascal does not
allow a fast lookup operation to be implemented on the workstation and an expensive re-

ordering of the database to be implemented on a compute server.

2.1.5. Object—Oriented Systems

Some object—oriented systems provide mechanisms to access objects on remote hosts.

Many of these systems uses messages as a communications mechanism between objects.
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Messages to remote objects require extra processing at some level to move the message across

a communications link. Remote objects do not change the nature of the language.

These systems require different programming techniques. For example, large FOR-

TRAN codes do not port directly to these systems.

For example, the Eden system provides location-independent names for individual
objects in the system [23]. Each Eden object, or eject, has its own address space. Objects
can move between processors with the same architecture. An eject defining a matrix might
define functions to invert the matrix, lookup specific elements, and replace specific elements.

All of these operations are implemented on the same architecture.

2.2. Networked Filesystems

Network Filesystems direct their efforts towards sharing data among systems. While
these efforts are less ambitious than a complete distributed system, they provide a useful level
of sharing — particularly in UNIX-like systems that rely on the filesystem for most commun-
ications between processes. Network Filesystems provide a framework that can be extended

to build a distributed system [34].

Network filesystems are useful because they allow users to work on arbitrary machines
— instead of being forced to work on the machine that holds their data. If a user can access
his supercomputer files from both the supercomputer and a workstation, he will often choose
the workstation for its superior work environment. With network filesystems (that allow
users to access supercomputer files from workstations) and the results of this thesis (which
allows users to access supercomputer cycles from workstations), users can exploit both sys-

tems easily.
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There are many designs for, and implementations of, network filesystems. These
include: Xerox Alpine, SUN ND, SUN NFS, and IBM RVD [18,20,26,85]. Distributed sys-
tems like LOCUS and the Newcastle Connection provide network filesystems as part of their

larger goals.

2.2.1. Xerox Networked Filesystemns

Researchers at Xerox PARC have developed several distributed filesystems. These

include Juniper, the Interim File Server, and the Alpine filesystem.

The Juniper filesystem, also known as the Xerox Distributed Filesystem, is an effort to
support access to shared databases in the Xerox environment — an environment where all
shared files are stored on file servers [65]. Because the XDFS filesystem is targeted for shared

database systems, it had to provide support for common database operations. XDFS pro-

- vides random access files and atomic transactions. Juniper was implemented on the Alto, a

16 bit workstation. After experimenting with this implementation, it was discovered that the
performance was slow (but tolerable) and that the server frequently crashed. Server recovery
took over an hour. In addition, new software systems being developed at Xerox provided a
new basis for a more efficient and more robust file server [26,80]. This new filesystem is the

Alpine filesystem.

Another file server in use at Xerox is the IFS or Interim File Server. IFS differs from a
true filesystem in that it moves the entire contents of a file to the local processor, allows it to
be modified, and replaces the copy on the file server at the end of a session. Because IF'S does
not support random access files, it was not considered a candidate for extensions to support

database applications.
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The Xerox Cedar environment uses the Alpine filesystem. Alpine’s primary purpose is
to store files that represent databases [26]. It also provides sgppért for ordinary files contain-
ing documents and programs. Alpine uses lessons learned from the design and implementa-
tion of the Juniper filesystem. Alpine clients use Cedar’s RPC support mechanisms to com-
municate with an Alpine server. The direct§ry mechanism, providiﬂg mappings from user
supplied filenames to the internal Alpine names, is not part of the Alpine filesystem. Instead,

this naming system is itself an Alpine client.

2.2.2. Apollo Domain

The Apollo Domain operating system, Aegis, is a networked operating system that pro-
vides transparent access to remote files and devices [9,10]. Files and devices are shared across
the nodes of a Domain system. Each file or device has a unique internal identifier that
describes its location in a network of Apollo systems. Directory services map external names
into one of these unique identifiers. Aegis’ demand-paging support determines the pl;oper

location and arbitrates access to these resources.

2.2.3. Sun Remote Filesystems

Sun provides two (sometimes confused) disk-related network protocols. The first of
these, the ND protocol, provides block-level access to remote disks. It does not implement
remote filesystems. The more recent NFS network filesystem uses a finer granularity to pro-

vide read/write sharing of the same filesystem by several clients.
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2.2.3.1. The Sun ND Protocol

The ND (Network Disk) protocol provides diskless workstations with access to disks on
remote systems. The ND protocol provides a blqck level access to the raw device; the filesys-
tem is not part of this protocol. It provides the client with a device driver that maps disk
I/O requests into network messages. ND servers interpret these messages as requests to read
and write specific sections of their local disks and transmit the results to the ND client. To
the ND client, an ND disk is similar to a local disk. This ND device has a different set of pro-
cedures to transfer data; instead of manipulating registers on a controller to start data

transfers, the device driver builds a network packet and sends it across an ethernet.

The ND server allocates sections of the local disk to individual ND clients. The lower
per-byte costs and better performance of large disk drives can be shared by several worksta-
tions. While the ND protocols éllow several workstations to share the physical disk drive,
the data on the disk drive is not shared. Each client has exclusive read/write access to a por-

tion of the physical disk drive. Clients can share portions of the drive in read-only mode.

Diskless workstations can use the ND device driver model to boot from remote disks.
Some other network filesystems require local disks to boot individual processors. These disks

usually provide little storage space and relatively slow transfer rates.

2.2.3.2. The Sun NFS Network Filesystem

The SUN Network File System extends the UNIX Filesystem onto a network [15,85].
NFS servers export filesystems; NFS clients mount these filesystems. A server allows many

clients to access the same filesystem. Clients can perform read and write operations on the
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filesystem; the NFS protocols keep the filesystem in a consistent state.

The NFS design uses stateless servers. State information, like file offsets and inode
information, is sent to the client after each operation. The client presents this information
for later transactions. This approach has several advantages. Because the client holds the
state information, servers can crash and reboot without disrupting service (although clients
are delayed until the server recovers). Thus, the NFS protocols are robust across certain
failure modes. Because servers maintain no state information, they can handle arbitrary
numbers of clients — the server does not keep any per-client tables. Servers can handle
many clients with low traffic levels as well as a small number of clients generating high traffic

levels.

To guarantee that write operations have completed, NFS servers use synchronous 1/O
to the local disk. When writing to an NFS server, the client blocks until the transfer is com-
plete. This has a significant negative affect on performance. Some NFS implementations
allow asynchronous writes in their servers [86]. This change can more than double writing
throughput for applications that transfer large amounts of data. It also means that some
types of server failures leave files partially updated and provides no indication of this to the

client.

The NFS protocols do not provide file locking nor do they guarantee that each write is
atomic. File locking requires that the server maintain state information. Additional proto-

cols, in parallel with NFS, do provide file locking primitives on NFS partitions [82].

Large write operations on a standard UNIX filesystem are a single, atomic operation.
Large writes may require several network transactions between the NFS client and NFS

server. Because the server does not maintain state, the single large write operation is broken
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into several consecutive operations. It is possible for several clients to interleave their
requests in such a way that the final contents of the file are a combination of data from the

clients.

2.2.4. IBM Remote Virtual Disks

The IBM Remote Virtual Disk protocol provides block-level access to remote disks.
This protocol provides functions similar to those provided by the Sun ND protocol. It has

some additional functions that manage protections on disk partitions [18].

2.3. The Distributed System Model

Distributed Systems combine networks of machines into what gives the appearance of a
single system. They usually implement some form of network filesystem; files and devices
generally are available from any processor in the system. The same mechanisms provide
access to these resources from all processors, giving the system a measure of location indepen-
dence. Location independence implies implicit access to remote resources; users need not use
different constructs to access resources connected to a non-local processor. These systems are

characterized by the following features:
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e  Files, devices, and (to a lesser extent) processors are accessible regardless of
their location.

e  Applications are bound to a processor at execution startup. In some cases, an
application can be moved among similar processors.

e A distributed system can survive the failure of one or more component systems.
When these components fail, portions of the system become inaccessible. Ac-
cess to the remaining portions of the system continues uninterrupted.

e Distributed systems can be augmented with additional component systems.

This increases the total aggregate computing bandwidth of the system and al-

lows the system to support more simultaneous users.

The first system discussed, LOCUS, combines its many component processors to provide
the image of a single centralized system [72,84]. The components of a LOCUS system share

the same view of the resources in the system. A single name refers to the same LOCUS

resource regardless of which processor interprets the name.

The second system discussed, the Newcastle Connection, does not bind the individual
systems as tightly as LOCUS [27]. Instead, it provides mechanisms that allow the application
program to access resources on remote nodes without any syntax changes. Newcastle Con-
nection systems have separate views of the combined filesystem; when presented to different

machines, the same name can refer to different objects in the filesystem.

Both of these systems provide access to remote resources. Such systems allow applica-
tions to run on powerful processors while using resources connected to workstations. How-
ever, the entire application executes on the supercomputer. These systems provide a coarse

granularity of processor sharing that does not meet our criteria.




29

2.3.1. LOCUS

LOCUS integrates several (possibly heterogeneous) computers into a single system [72].
It extends the familiar environment of the UNIX timesharing system into a multi-computer
environment. It provides an environment that simplifies the development of distributed

applications.

LOCUS extends the UNIX environment onto a network of computers. Processes share a
common filesystem, regardless of their assignment to CPUs. Processes communicate with the
same mechanisms used in a UNIX system. Distributed applications can be modeled as a set
of UNIX processes. The LOCUS operating system resolves issues of process location, network

communications, and filesystem operations. .

LOCUS provides the same granularity of sharing as the UNIX system — that of the
UNIX process. Processes are started on a single CPU; the system can move them to other
CPUs of the same architecture. LOCUS does not provide for the same process to execute on

multiple processor architectures.

2.3.2. The Newcastle Connection

The Newcastle Connection is a user-level implementation of UNIX United {27,37).
Russo’s thesis describes a kernel implementation of UNIX United [77]. UNIX United provides
a framework for connecting the filesystems of individual UNIX systems into a larger hierar-

chy. The roots of each UNIX system are directories in this extended tree.

These extensions allow applications programs to reference remote files and devices

without modification. To write to a remote tape drive, the user might use the pathname
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/-./unizb/dev/rmt0. The leading /../ indicates to the pathname resolution code that the file
is in the root’s parent directory, then down into the unizd directory. The unizb directory is
actually the root directory of another UNIX system named unixb. The UNIX directory struc-
ture can be used to group the systems of various departments into appropriate groups. A
user in the Electrical Engineering Department at the University of Illinois might access the
password file on a machine in the CS department with the pathname /../../cs/a/etc/passwd.
To access the password file on a machine within the CS department at Purdue, he might use
//+/-./purdue/cs/mordred/etc/passwd. This scheme provides an infinitely extensible nam-
ing tree above the local roots of each system. However, Newcastle Connection names are not
location independent. The user must have knowledge about the meta—structure of the tree

combining systems and knowledge about current node’s location in this meta-structure.

In addition to allowing access files and devices on remote systems, UNIX United pro-
vides for program execution on remote processors. This can allow for faster execution of pro-
grams by specifying that they run on faster or less loaded CPUs. The mechanism for specify-
ing the CPU to execute a program is tied to the system where that binary resides. If a binary
exists on system A, it executes on system A The UNIX pipe construct can be used to build
series of connected programs and execute them in parallel on separate processors. The UNIX

text processing stream makes a good example of this feature:

tbl | eqn | pic | ditroff | d300

By specifying program images on separate hosts, the separate processes can be scheduled
on 5 different processors. This provides the potential for a five-fold throughput increase; the

actual improvement is somewhat less due to the communications costs between processors
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and the synchronization that occurs at the original hosts [37,77].

Like LOCUS, the Newcastle Connection extends the scope of a UNIX process. Processes
can now access remote resources. However, CPU sharing still occurs at process granularity.

Individual processes can not execute on multiple CPU architectures.

2.4. The Client/Server Model

The client/server system is another form of distributed operating system. These sys-
tems use a different approach to provide services traditionally implemented by the operating
system kernel. Client/server systems demonstrate a trend toward reducing the siie of the
operating system; the major function of these operating system kernels is to provide message
passing betweeh processes. Server programs provide the services provided by the kernel of
more traditional operating systems. To the (new) kernel, thése'server programs are addi-
tional user applications which might be located on non-local nodes. Processes wishing to use

services such as filesystems are clients of these servers [22,30,41,74,75].

A result of this approach is that much of the operating system’s overhead can be moved
to another processor. In some cases, the operating system overhead can consume 50 percent
or mofe of the CPU cycles. When most of the operating system overhead is removed, appli-
cation programs can achieve higher sequential processing speeds on that CPU. Communica-
tiong between the application and the traditional operating system services are now more
expensive: the new arrangement introduces communications costs between the application

and the operating system.

Client/server systems are often implemented in environments with many processors.

To exploit the parallelism available across these processors, an application program must be
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partitioned manually into concurrent processes. Client/server systems concentrate on pro-
viding efficient communications mechanisms between processes and processors because the
system performance is so dependent on this underlying communications mechanism. Slow

communications mechanisms can reduce the system throughput dramatically.

The subsections below describe several systems based on the client/server model. Each
provides the programmer with the ability to partition application’s into separate pieces to
execute in parallel on separate processors. All of these systerhs can execute several instruc-
tion streams from the same logical address space. In many cases, the degree of concurrency is
limited to the number of processors sharing physical memory. This allows reduced solution
time for some appropriate algorithms in systems configured with multiple processors sharing

a single memory.

2.4.1. Amoeba

The Amoeba operating system is a client/server system being developed at the Vrije

University in Amsterdam [81]. The Amoeba system comprises four component types:

o Workstations, one for each user,

¢ Pools of processors, dynamically assigned to user tasks,
o Specialized servers (e.g., file servers, bank servers), and
e Gateways which link Amoeba systems at separate sites.

The Amoeba kernel provides message passing facilities and few other functions. This is
motivated by the desire to keep the kernel small, enhance its reliability, and provide the trad-

itional kernel features in user processes to facilitate flexibility for experimentation.

Amoeba assigns tasks to processors at process creation time. It is possible for several

processes to share the same text and data segments though the individual processes each have
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private stack segments. Processes which share text and data share the same processor.
Because applications can’ dynamically acquire and release processors, the aggregate
bandwidth available to an application can be quite large. Applications must still be explicitly

partitioned properly to take advantage of this bandwidth.

2.4.2. Stanford V System

The V kernel project at Stanford University provides services in an environment of disk-
less workstations connected by a high-speed local network [30]. The V kernel provides a fast,
message-based communications framework for RPC among clients and servers. Teams of
one or more processes sharing a single address space provide processing power for a single

job.

V System message passing is synchronous. After sending a message, the sending process
blocks until the recipient replies. Since the V kernel guarantees delivery of messages, pro-
grammers need not implement protocols to ensure reliable communications between
processes. Within a team, starting a new process is relatively inexpensive. These inexpensive
processes provide a means to implement asynchronous communications; many programmers
create inexpensive processes only to send a message, wait for the acknowledgement, and then

terminate.

Each V process resides on a single logical host; all processes in a V team live on the
same logical host. A logical host resides on exactly one physical host though a physical host

may support many logical hosts.
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Logical hosts can be moved between physical hosts, allowing a set of processes to be
moved from a busy proéessor to an idle processor; the busy processor suspends the processes
on the logical host, creates a logical host on the target processor, and sends the state of the
logical host to the remote host. The actual implementation allows the logical host to execute
while its state is being shipped to the new host. After the bulk of the state is transferred, the
V kernel checks to see what state has changed, and sends updated information for those parts

of the logical host [83].

Adding more processors to a V system can improve aggregate throughput. Decreasing
the solution time for a single application requires explicit restructuring of the application or
using faster processors. Cheriton has developed a master-slave approach to structuring
applications to execute on networks of personal workstations that do not share memory and

have limited communications bandwidth {29].

2.4.3. CMU MACH

The CMU MACH system provides a new foundation for future UNIX development
[22,74]. MACH draws heavily on previous experience with Accent and uses a similar underly-
ing model {75]. MACH is designed to provide the facilities needed to exploit general-purpose,

shared-memory multiprocessors.

The MACH address space (task) can have many active instruction streams (threads).
There can be many such tasks in a running MACH system. MACH’s multiple-thread model
provides a foundation for the easy use of parallel algorithms; shared-memory provides inex-
pensive data transfer between the threads of a task. On multiprocessors, MACH schedules

the threads concurrently and the application runs faster. On uni-processors, MACH
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schedules the threads sequentially. Although execution on a uni-processor takes longer, the

program produces the same results.

MACH provides programmers with constructs to partition a program into parallel
threads of computation that share a common data space. MACH also implements parallelism
without a shared data space; such a case is a simple RPC implementation using the MACH

message passing facilities between tasks.

MACH pfovides a good base for a CLASP implementation. The new virtual memory
management system allows non-kernel tasks to be specified as the paging mechanisms for
individual tasks {22]. This allows processes to page to user filesystems; MACH does not
require disk partitions to be dedicated to swapping [22]. The user level routines for CLASP
should be easily ported to the MACH environment. The page-management routines for
CLASP can be implemented using a non-kernel task that is gssigned paging responsibilities

for a process.

2.5. The Multiprocessor System Model

Multiprocessor systems are another way to share resources. In these systems, a number
of processors are connected to a common memory. "These processors can share peripherals.
An multiprocessor system with N CPUs can usually provide almost N times the performance
of a single processor system. Because the CPUs share the same set of peripherals, an N pro-

cessor system can cost much less than N times the cost of a single processor system.

Multiprocessor systems provide increased aggregate throughput. Because they share
memory, these systems can balance the load on each CPU without incurring high costs to

move jobs across a network between systems. With the appropriate compiler and operating
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system support, these systems can reduce the execution time for applications.

The first set of systems described below uses many processors tov improve aggregate
throughput. In these systems, the operating system allocates jobs to idle processors from a
single ready queue. Jobs may execute on different processors from one timeslice to the next.
‘Because moving jobs between processors does not incur any communications costs, a single
multiprocessor system with N processors provides better aggregate throughput than a net-
work of N uniprocessor systems (which have overhead when moving tasks between systems).
Idle processors can execute any ready job because all jobs are in a shared memory. By them-
selves, these systems do not reduce the solution time for a single application. However, appli-
cations can be restructured to exploit the concurrency available in these systems and reduce

their execution time.

The second set of multiprocessor systems uses compiler technology to detect implicit
concurrency in sequential code and constructs suita.ble for vector operations. Compilers for
these systems break sequential code into blocks that can be scheduled to execute concurrently
by the operating system. Data dependencies between blocks of code determine when blocks
can be scheduled. These dependencies are similar to Petri nets; when the input values are
ready, the block fires[71]. These systems often use hardware technology similar to the first
set of multiprocessors. This hardware reduces memory contention and saturation of shared
resources through complex and expensive memory hierarchies. Some of these systems reduce

contention for the global memory by providing each processor with a private memory.

The multiprocessor systems described in this section comprise single logically and physi-
cally integrated systems; failure of critical elements in these systems stops all operations.

They are like centralized timesharing systems in this respect, although they might offer
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higher performance or easier expansion routes than a centralized, single-processor timeshar-
ing system. These systems also do not support the enhanced interfaces (e.g., mice, bit—
mapped displays) available on workstations. It currently is not cost effective to support these
interfaces on these machines for many users. Multiprocessor systems are more expensive

than single user workstations. While some multiprocessor machines can be expanded inex-

pensively to include more processors, there is still a significant initial cost.’®

In addition to the systems we are about to describe, other multiprocessor systems
include the Cray—X/MP, the CDC Cyber series, and the DECsystem 20. The DEC VAXclus-
ter is a closely—coupled system that allows multiple processors, with separate memory, to
share access to common peripheral devices. The VMS operating system uses this hardware to

provide load balancing and improved system reliability (57].

The next sections describe several multiprocéséor systems in more detail. The first sec-
tion describes the C.mmp project, an early experiment in multiprocessor systems. The
second section describes the Sequent and Encore systems, where the processors share a single
global memory. The third section describes the University of lllinois CEDAR project, which
combines multiprocessor systems with compilers that automatically restructure sequential

applications into concurrent applications.

A 2 CPU, 2 Mbyte Sequent Balance-8000 system costs $59,000. A 4 CPU, 4 Mbyte Sequent Balance-21000 sys-
tem costs $139,900. The Balance-21000 has backplane slots for more processors than the Balance-8000. Addi-
tional processors are $16,000 per card (2 processors). An Alliant FX/8 with 1 CE costs $150,000. A fuily expand-
ed FX/8 (with 8 CEs) costs $450,000. A SUN-3/52 workstation (with a local disk and cartridge tape drive) costs
$13,900. A diskless SUN-3/50 costs $4,995.

The Sequent prices are as of August 1986. The Alliant prices are from June 1985. The SUN prices are from fall
19886.
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2.5.1. C.mmp

The C.mmp amd Cm* systems provided an early testbed for experiments involving mul-

tiple processors connected to a common memory hierarchy.

The C.mmp system connects 16 PDP-11 processors to a large common memory through
a crossbar switch [88-91]. Address relocation boards in each processor map virtual addresses
on the private bus to physical addresses in the shared memory. Thus, each processor in the
C.mmp system could access the entire common system memory. Private, per-CPU memory

is used for off-line maintainence and certain private operations.

The Cm* machine contains clusters of processors. Like the C.mmp system, each proces-
sor has a private memory. However, Cm* has no single global shared memory. InsteaLd, each
cluster of 5 machines is connected with a special Kmap processor that allows the CPUs to
ar;cess the memory connected to othér CPUS.. Kmap processors communicate between them-
selves to implement cross—cluster memory accesses. Each Cm* processor can access any of
the physical memory using a uniform method, but the access costs vary depending on the
relative locations of the processor and memory. Access times for memory in other clusters
can be as much as 10 times slower than access of the memory directly connected to the pro-

cessor [68,69].

2.5.2. Encore and Sequent

The Encore and Sequent systems represent a family of systems that use timeslice shar-
ing to allow a fine partitioning of the available computing cycles provided by many processors
to many processes. In timeslice sharing systems, a job may execute on a different processor

each timeslice. These systems use many processors attached to a common memory to
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improve aggregate throughput. A processor can be reassigned to a different task each
timeslice. This technique allows a pair of 4 MIPS processors to provide service for two real-
time processes requiring 3 MIPS and a third process requiring 2 MIPS. A pair of 4 MIPS
single—processor syste;ns can not meet the needs of the same 3 processes. Timeslice-sharing
systems do not reduce the solution time for a single application. The two processor system (4
MIPS each processor) does not meet the needs of an 8 MIPS program nor does it meet the

needs of a 5 MIPS program.

Explicit restructuring of applications for concurrency allows timeslice sharing systems
to reduce the solution time for a given problem. The shared-memory between processors
improves the performance over that achieved when the same application is spread across a
network of processors. The communications costs between separate processes on these sys-

tems is much lower than the cost between processes on systems separated by a network.

The common memory provided in timeslice sharing systems can be used for an efficient
data sharing scheme. Some of these systems permit processes to share portions of the address
space [12,14]. Other systems, such as MACH, let processes share the entire address space. In
each of these cases, the application must still be restructured to reduce the solution time for

that application.

One of the advantages provided by these machines is their ability to be expanded inex-
pensively. If more computational power is needed, additional processors can be purchased as
single boards. The additional boards plug into the system and give an immediate perfor-

mance improvement.
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2.5.3. CEDAR

The CEDAR project at the University of Illinois is building large scale multiprocessor

supercomputers [42]. To attain this goal, the project is concentrating on connecting many
processors to a common memory hierarchy, using compilers that automatically restructure
sequential code into segments that can be executed in parallel, and developing a control

hierarchy to coordinate these many parallel tasks.

The CEDAR compilers isolate small blocks of code that can be scheduled independently
of each other [58]. The compiler decomposes loops without recurrence relations (and those
with specific types of recurrence relations) into several smaller loops that can be scheduled to

run on several processors concurrently.

The underlying hardware model for the CEDAR architecture is many processors sharing
a common hierarchical memory and each proce'ssor having a private memory. Code and data
required to execute a block are copied to the private memory. The output values are
returned to the common memory. Initial implementations of the CEDAR system are planned

for 8 and 16 processors. Larger systems, with 1024 or more processors, are being designed.

The CEDAR system reduces the solution time of a single application by partitioning the
application into blocks that are executed concurrently. The compiling and scheduling tech-
niques used in the CEDAR system are applicable to a range of memory hierarchies. Systems
with a common bus and a single global memory can show reduced execution time by using
compilers that automatically restructure the application. The CEDAR compilers show that
automatic restructuring techniques can be used to improve execution time for sequential

applications in a multiprocessor environment.
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2.6. Summary of Related Work

We have examined a number of existing tools that provide support for resource sharing.

However, they do not meet the criteria defined in chapter 1.

The Remote Procedure Call allows applications to be partitioned between client and
server systems. RPC often requires changes to source code. All communications between the
RPC client and server must be through the defined procedural interfaces. Applications that
pé.ss information using global variables or that use pointer-based structures can not be parti-
tioned transparently. RPC implements a restricted subset of the procedure call abstraction.
The NDS architecture removes some of the RPC restrictions by providing a shared data seg-
ment and allowing client and server routines to access shared global variables. NDS does not
support sharing of variables stored outside of the data segment (e.g., variables stored in the

stack). Both RPC and NDS store the client and server portions of a program in separate

files.

Object—oriented systems sﬁpport remote operations. However, these systems require
that the application be coded using the appropriate languages. A large FORTRAN code
would have to be recoded in the appropriate new language to take advantage of these
features. This violates our rule that we will not require restructuring or recoding of applica-

tions.

The network filesystems presented in this chapter allow applications to run on any
machine. They are no longer restricted to executing on the system that stores the
application’s data. Because network filesystems only provide access to data on remote pro-
cessors, they do not solve the problem of partitioning an application so that it executes fas-

ter. Applications can be moved, in their entirety, to faster processors. But, this does not
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satisfy our criteria that the workstation must be used for more than submitting jobs to a fast

processor.

Like network filesystems, distributed systems provide access to local and remote
resources. Applications can be moved to larger, faster processors in these systems and exe-
cute faster. These systems move entire programs to other processors. Like network filesys-
tems, they fail the criteria that the local workstation be used for more than submitting jobs

to a faster processor.

The final set of systems described, the multiprocessors, can provide improved perfor-
mance. They provide hardware support for compilers that analyze sequential programs to
generate concurrent programs. Because of their relatively high costs, these systems are more

appropriate for compute servers than as workstations or clients.
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CHAPTER 3.

CLASP AND THE CROSS ARCHITECTURE PROCEDURE CALL

The CLASP architecture is designed to provide compute servers for workstation users.
The coxhpute servers are connected to the workstations using local area networks like Ether-

net. To meet our definition of effective, these compute servers must:

° exploit the speed difference between client and server processors,
e  require no changes to application code,
e  continue to use the workstation for appropriate portions of the computation,

e  have no impact on the use of workstation—specific interfaces and devices such as
bit-mapped displays, mice, and windows.

The CLASP architecture implements the traditional UNIX process model on a new
underlying foundatien. This new foundation allows appropriate sections of an application to
execute on the most appropriate processor. Like the Remote Procedure Call and NDS archi-
tectures, the CLASP architecture partitions applications at the procedure call level. CLASP
differs from these architectures by providing a more transparent mechanism to access remote
procedures. CLASP also removes some restrictions imposed by these other architectures.

Procedure calls that cross architectural boundaries are named Cross Architecture Procedure

Calls (or CAPCs) in the CLASP software architecture.

CLASP allows a set of routines within an application to be accelerated by recompiling
them for a faster processor. They will be executed on that processor. CLASP manages the
movement of data and the control thread between processors. CLASP seldom requires source

code changes to exploit the speed advantages of the compute server.
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A new CLASP loader collects object files for multiple processor architectures into a sin-
gle executable file. The loader groups instructions for a particular processor architecture into
a contiguous virtual address range. The resulting executable file contains information that
describes the processor architectures required to execute different portions of the address

space.

A set of modifications to the operating system kernel handle the runtime details of the
CAPC software architecture. These modifications handle the detection of accesses to code for
non-local architectures, the transfer of control to a processor of the correct architecture, and
the transfer of pages in the address spaces between processors. These operations are tran-

sparent to the application program; the kernel implements all of these operations.

An application’s performance is controlled by the way it is partitioned between the
client and server. Some partitionings yield better performance than others. It is not efficient
to use.CAPCs to calculate a square root; the network overhead overwhelms any speed advan-
tages provided by the remote processor. An application is partitioned by compiling specific

source files for specific architectures.

This chapter describes the characteristics that the workstation and compute server must
share. It describes the virtual address space of a CLASP process. One section describes how
CAPC control transfers are detected and processed. Another section describes process state
manipulations, including changes in the virtual address space and paging between systems.

The chapter closes with a comparison of CAPCs and RPCs.
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3.1. Required Homogeneity

The CLASP architecture requires that processors share data representations and have a
common address space. However, each processor may have different instruction sets, register

sets, and stack frame formats.

3.1.1. Homogeneous Data Representation

CLASP requires that all participating processors agree on how data is represented. For-
tunately, many processors share a common data representation. For example, the Motorola
68000 an;i IBM RT-PC microprocessors have the same data representation as the Convex
C-1 and Alliant FX computers [1,4,7,11,47,48]. Because they share the same internal data
representation, these processors can exchange information without intermediate format
conversions. The processors can move data as a series of bytes fvithout interpreting the con-

tents and without providing type information.

When compiled and executed on different processors with the same data represenation, a
subroutine generates the same output. We are not concerned with the actual machine
instructions that implement the subroutine, but rather with the relative processing rates of
the two processors. One processor may execute the subroutine signficantly faster than the
other. For example, a CPU with vector instructions might execute a matrix multiplication
subroutine significantly faster than a CPU without vector instructions. Each processor exe-
cutes a different sequence of instructions at different rates, but the generated output is the

same in both cases.
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3.1.2. Homogeneous Address Space

Many languages provide pointer data types in addition to character, integer, and float-
ing point data types. A CLASP system must provide a homogeneous data representation for
pointer data types. To provide support for pointer types in a CLASP system, the processors
must share a common virtual address space. The common virtual address space allows the
client and server processors to share pointer data types. Therefore, CLASP implementations
for languages that provid;a pointer data types require that client and server processors have
an intersecting virtual address space. An exact address space match is not necessary; a

CLASP system can function with a sufficiently large intersection.

Some application languages, like FORTRAN, do not provide pointer data types. For

these languages, a common virtual address space is not necessary. Instead, a direct mapping

between the two address spaces is sufficient. Modifications to the loader to handle the skew
in the address space allows these languages to be split between client and server processors.
The loader adjusts operand offsets to accommodate the different locations in the virtual

address space.

3.1.3. Homogeneous Compilers

Identical data representations and intersecting address spaces provide a base for the
CLASP software architecture. To use this system, the compilers for both architectures must
share several properties. In particular, variable types (e.g., int, long, float, etc.) must
translate to the same length, alignment of variables within structure or record definitions
must be the same, the compilers must use similar argument passing techniques, return values

must also be compatible. Many UNIX implementations include C compilers based on the

e ald (3 = =
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portable C compiler and share many of these properties [52].

High-level programming languages provide several basic data types (e.g., int, float,
short, long, etc.) and mechanisms for constructing more complex data structures (e.g., the
PASCAL record or the C struct). Both compilers must map simple data types to the same
sizes. A compiler that translates int into 2 bytes of storage is incompatible with a compiler
that maps int into 4 bytes of storage. For more complex data types (e.g., record or struct),
the compilers must obey the same alignment restrictions. Some compilers align to even byte
boundaries to meet processor restrictions. Other compilers align to 4 byte boundaries to
match memory subsystems. A CLASP system requires that the compilers‘use the same align-

ment rules.

The CLASP routines must be able to pass a subroutine’s argument vector to the remote
processor. In many cases, argument vectors are stored as a contiguous array of bytes. The
first parameter is stored at the low address of the byte array and the last parameter is stored
at the high end of the array. Other compilers place the first few arguments in registers and
store the remaining arguments as an array of bytes [67]. For these casés, CLASP kernel rou-
tines collects the register arguments and the additional arguments into a single vector to pass

to the remote processor.

The CLASP routines must also be able to collect the return values. Many compilers
place return values in one or two registers. On the Motorola 68000, return values of 32 bits

or fewer are passed in the register DO. 64 bit return values are passed in DO and D1.

Routines that return complex data types are handled in several ways.! Some compilers

! This difference prevents us from using the IBM RT with its current compilers as a client of processors such as
the SUN, Convex, or Alliant.
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return a pointer to an instance of the complex data type [52]. This instance is in a static
per—routine buffer. The calling routine copies the instance to its desired location. Other
compilers use a different approach [49,67]. The calling routine prepends an extra argument
to the parameter list. At call time, this parameter contains a pointer to an instance of the

complex data type. The called routine stores its results in the supplied buffer.

CLASP can use compilers that implement either technique, but both compilers must

implement the same mechanism. Compilers that change the argument list according to the -

return value of the routine can not be easily matched with compilers that do not.

3.2. The CLASP Address Space

CLASP provides each application with a single address space. The client and server
portions of an application share this address space. Individual pages of the address space
reside in the physical memory of one processor or another. When a processor requires a page
that resides in the remote processor’s physical memory, the data is demand-paged across the
network and placed in the local physical memory. The page tables on both processors are

modified to reflect the page’s new location.

The address space contains the instructions for both processor architectures. For each
architecture, the CLASP loader consolidates the instructions into a single range of addresses
in the address space. A CLASP executable file contains a table describing the instruction
space for each architecture. The loader generates this information when it builds the execut-
able image. The CLASP kernel uses this instruction space information and the virtual

memory protection hardware to detect CAPC calls and returns.
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The CLASP address space is similar to the UNIX address space. However, the single
text segment of a UNIX process is replaced with a number of text subsegments. Each text
subsegment corresponds to a processor architecture. The instruction space table in the exe-
cutable file describes the boundaries and architectures of these text subsegments. Figure 3.1
shows the layout of the multiple text segments, the data segment, and the stack segment for

the normal UNIX process and a CLASP process.

E text E

E archl [[ arch2 }------- ] archn data stack E

E growEh growth E
Figure 3.1

CLASP Address Space Layout

The UNIX stack segment contains the activation records for called procedures. Each of
these activation records is in the format of the local processor. The CLASP stack segment
contains activation records for both processor architectures. CLASP inserts its own informa-
tion between adjacent activations records for different processor architectures. This informa-
tion allows CLASP to handle control transfers between architectures. This is described in
more detail in section 3.2.2, The Clasp Stack Segment, and section 3.3.2, Stack Frame Man:-

pulation.
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3.2.1. The CLASP Text Segment

The text segment contains the executable code for the client and server architectures.
The loader combines the instructions for a particular architecture into a tezt subsegment.
The CLASP loader aligns the text subsegments on virtual memory page boundaries. This
lets the CLASP kernel use the virtual memory protection mechanism to prevent a processor

from fetching instructions from another architecture’s text subsegment. Some virtual

memory systems provide an execute protection bit. Other virtual memory systems combine

read and execute permission into a single protection bit. In the former, a processor may be
allowed to read the instruction space for remote architectures. Systems with a single protec-
tion for read and execution permissions make it impractical to provide read permission for

the pages that are non-executable.

Each processor maintains its own page tables for residency and protection information
about the address space. The protection information is used to detect and process subroutine

calls that cross CPU boundaries. The client sets its page table entries for the server architec-

ture instruction space to disallow execution.? Attempts to execute instructions from those
pages on the client CPU generate traps to the operating system kernel. The server allows
execution of the instructions appropriate to its architecture, but protects the pages with
client architecture instructions to prevent execution of client instructions on the server pro-

cessor.

? Some virtual memory systems provide read, write and execute protection bits for each page. For these systems,
CLASP clears the execute permission bit. Other VM systems combine read and execute permissions into a single
bit. To disallow execution in these systems, CLASP must also disallow read permission on those pages.
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3.2.2. The CLASP Stack Segment

Like the UNIX stack segment, the CLASP segment contains subroutine activation
records. The CLASP kernel transparently extends the stack segment to hold new subroutine
activation records or stack frames. The CLASP system stores activation records for both
processor architectures on the same stack. When a CAPC causes the control thread to move
between processors, the CLASP kernel arranges for the remote processor to have the correct
stack frame for its activation record. The kernel builds a CAPC packet to describe the

transformation between the processor architectures and stores this information on the stack.

This CAPC frame contains the argument vector location and length, the called
procedure’s entry point, the return address for the calling procedure, and the stack bounds.
CAPC cglls and returns use this frame to exchange information. Thg remote processor may
replicate some portions of the procedure call information if needed. For example, the VAX
hardware architecture provides an ai'gument pointer register that can be loaded with the
location of the original arguments. The Motorola 68000 family does not provide an argument
register, instead it expects the arguments to be just above the stack pointer at procedure
entry. A 68000-based CLASP system copies the argument vector to set up the correct stack
layout for a procedure call. Some hardware architectures require the CLASP kernel to repli-
cate the procedure call information. The original copy is stored in the client’s format while

the second copy follows the server’s stack protocol.

The local processor’s general registers are not kept in the CAPC frame. There are
several reasons not to store the registers. The remote processor uses its own registers, it will
not overwrite any registers on the local processor. The register layout may differ between

processors; the remote processor might have more registers or they may have different names
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and semantics. The 68000 uses register A7 as a stack pointer; the IBM RT uses register R1

as its stack pointer.

Figure 3.2 depicts the stack segment as it looks while executing a routine on the remote
processor. Procedures 1 and 2 execute on the client; procedures 3 and 4 execute on the

server.

A processor can examine variables stored in the stack segment by the peer processor.
The variables have the same internal representation; the remote processor requires only the

address of the variable to access, and modify, the variable.

client stack frame 1 N

client procedure call information 1->2 .

client stack frame 2 | 'y HOST 1

client procedure call information 2->3 ,

| CAPC Information 15

1 procedure call information 2->3
| (replicated in server format)

server stack frame 3 \> HOST 2

server procedure call information 3->4 S

server stack frame 4 ’

Figure 3.2
CLASP Stack Layout During a CAPC
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In a single architecture model, programs are able to destroy their activation records.
Because the CLASP kernel stores the CAPC frame in the user’s stack segment, these faulty

programs also can destroy the CAPC frame.

3.3. CAPC Linkage

This section of the thesis describes how the CLASP kernel processes CAPC calls and
returns. To process a CAPC call, the kernel must detect the reference to a non-local pro-
cedure, identify the argument vector’s location and length, determine the return address, and
determine the stack boundaries. After gathering this information, the kernel builds a CAPC
frame on the user stack and transfer control to the server. The CLASP kernel on the server
uses the CAPC information to build a calling frame in the server architecture’s format and to

start executjon of the remote procedure.

This section also describes the mechanisms used to implement nested CAPC calls. The

CLASP system allows server routines to invoke routines on the client.

3.3.1. Detecting Calls to Procedures for Other Architectures

The CLASP ke;nel uses the virtual memory protection system to detect CAPC calls and
returns. The CLASP loader generates a map describing the architecture for each of the text
subsegments. The kernel uses this to protect the instructions for non-local architectures.
When an application makes a procedure call to an address in one of these protected regions,
the virtual memory system generates a fault and traps to the kernel. The kernel examines
the faulting instruction to determine whether it is a call or return. The target address for the

call or return is the address that generated the fault.
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For a CAPC call, the kernel also determines the location and length of the argument
vector. This is an architecture-dependent operation. The kernel places this information in a

CAPC frame and stores it on the stack. CAPC frames contain:

e  alocation to start execution,

e the location of the arguments to the subroutine,

) the count of arguments to the subroutine, -

e  the stack pointer, indicating where the server can build a procedure call frame,

e information from the server used to restore the stack frame upon completion of
the CAPC, and

e  the arguments, if their total size is less than 64 bytes.

The kernel sends the address of the CAPC frame and a copy of the CAPC frame to the
remote processor. The kernel on the remote processor uses the CAPC frame to build an
“activation record for the called procedure. After building the activation record, the kernel

starts the called procedure at its entry point.

When the remote procedure finishes, it returns to the address stored in its activation
record. This address is in the text segment for the client processor. The virtual memory sys-
tem generates a protection fault when the processor attempts to fetch the instruction at the
return address. The kernel determines that a return instruction caused the fault. The server
loads the return values into fields in the CAPC frame. After loading the return values, the
server passes the CAPC frame to the client processor. The client processor retrieves the
return values from the CAPC frame, loads them into the appropriate registers for the client
architecture, removes the CAPC frame from the stack, and resumes execution of the applica-

tion code.

Ay
/
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The stack frame after several nested CAPCs might look like the frame depicted in figure
3.3. This stack frame is for a process with procedures P1 through P5. Each procedure calls
the next higher numbered procedure. The client processor executes procedures P1, P2, and

P5. Procedures P3 and P4 execute on the server architecture.

Many programming languages provide a mechanism to pass functions as formal parame-

ters to other routines. The UNIX gsor{3) routine uses this mechanism to allow users to

P1 locals B N

P1->P2 args N
P2 locals > HOST 1

P2->P3 args ,
i CAPC Information i :f\

| (replicated) P2->P3 args ! .

P3 locals S

P3->P4 args \:> HOST 2

P4 locals e

P4->P5 args P
! CAPC Information I3

| (replicated) P4&->P5 args | "S5 HOST 1
P5 locals L7

Figure 3.3
Stack Layout During Nested Cross—Architecture Calls
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specify a function that returns the ordering of two elements. CLASP allows applications to
pass both client and server procedures as formal parameters. The procedure’s architecture
does not change how the procedure is passed. When the routine is invoked from the called
routine, there are no special instructions that differentiate between local and remote pro-
cedures. Appendix C contains an example program that demonstrates this feature of the

CLASP architecture.

3.4. Compute Servers

When starting a CLASP process, the operating system starts any server processes that
might be required by the client. The CLASP kernel starts these processes during the UNIX
ezec(2) system call. If the kernel can not instantiate a server, the ezec(2) call is aborted.
These failures are mapped onto an existing failure condition for the ezec() call. Failed server
instantiations are reported to the caller as ENOMEM errors, a message that indicates the

system was unable to allocate swap space for the new executable file.

For some processes, a program may never invoke the routines implemented on the
server. In these cases, the server startup cost has been wasted. However, delayed server
instantiation introduces new failure modes into an application program. If the kernel delays
the instantiation of the server until the application attémpts to execute code for that archi-
tecture, applications must be prepared for a potential error on any procedure call. By estab-
lishing servers at process creation time, we do not initroduce any extra failure modes. The
execution time saved by delaying server instantiation does not justify the programming costs

to accommodate the new failure modes.
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3.4.1. Selecting A Server

The CLASP kernel selects the processor that acts as a server for CAPC applications.
Different instances of an application can use different server processors. Many clients can

select the same server processor.

Our CLASP implementation stores a list of <architecture,address™> pairs to describe
available servers.* After determining the required server architecture for a CLASP process,

the kernel searches this table for an entry with the correct architecture.’ At this time, the
kernel attempts to connect to the CLASP server daemon listening at the specified address. If
the local kernel does not receive an answer, the ezec(2) call is aborted. If the local kernel
establishes a connection with the server process, it sends a message describing the address
space: the text subsegments, their architectures, and their address ranges. The local kernel

then allows the application program to begin execution.

3.4.2. Distributed Virtual Address Space

RPC systems package and ship entire parameter lists to the server on each call. For
large argument lists (e.g., an array of simultaneous linear equations), this operation incurs a
significant cost. Later operations (e.g., solving a linear system for a particular right hand
side) require the factored array to be re—transmitted. Thus, an RPC system to solve the

linear system Ax = b might:

¢ Note that the local processor can be the server. This aids testing, but does not improve performance.

¥ The architecture information — which architectures are required and their address ranges in the text segment —
are stored with the header information in the executable file.
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e  Transmit the A matrix to the server, where it is factored,
e  Return the factored A matrix to the client, and

e  Transmit the factored A matrix and a b matrix to the server, to obtain a solu-

tion.

Thé CLASP architecture uses demand paging to re&uce paging traffic between the client
and server systems. The CLASP kernel sends pages to the remote processor only when the
remote processor attempts to access that page. Pages accessed exclusively by one processor
stay on that processor. Thus, global variables accessed by a server routine will be demand

paged to the server when it is accessed, instead of being pre-packaged and transmitted as

part of the procedure call.®

After a call to the compute server, a set of pages resides on the server. These pages
remain on the server; the server does not send the pages back to the client until the client

requests them. This approach follows Denning’s guidelines for working sets:[31]

The fundamental strategy advocated here — a compromise against a lot of expensive

memory — is to minimize page traffic.

Our implementation provides for a single copy of each page in the virtual address space.
For read/write pages, this approach works well. For read-only pages, this approach is

inefficient when both processors access those pages.

More recent work at Yale has implemented mechanisms for maintaining memory
coherency in a loosely-coupled multiprocessor system [61]. Li’s thesis provides mechanisms

for replicating pages accessed in read—only mode. When pages are written, the system invali-

® By dereferencing pointers and including the underlying objct, RPC systems sometimes generate less network
traffic than CAPC systems. For further information on this, see section 3.8 CAPCs vs RPCs.
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dates the extra copies of that page. He outlines several protocols to ensure that only one pro-
cessor has write permission on any page and describes how the rights for a page can be passed
between processors. Li’s research used loosely coupled homogeneous processors to run con-
cﬁrrent algorithms using a network of workstations. However, the results can be used to

reduce network paging traffic in the CLASP system.

3.5. Process State Manipulation

This section of the thesis describes how CLASP affects a process’s state. A process’s
state includes its address space, the extent of its address space, its file descriptors, and other
information stored in the kernel. Address space information includes the boundaries of the

text, data, and stack segments. It also includes the contents of those segments.

3.5.1. Address Space Bounds

The CLASP client and server processes share the same virtual address space. To ensure
a consistent view of this address space, the CLASP kernel must arbitrate access to pages and
the bounds of the address space. Section 3.4.2 explains the CLASP page management
scheme. This section describes how \the CLASP kernel manages changes in the address space

bounds.

The stack segment grows dynamically to hold extra procedure call/return information.
The break(2) UNIX system call extends, or reduces, the size of the data segment. The client
and server processors must inform each other about changes in the boundaries of the address
space. Each CLASP process must be able to access the same portions of the virtual address

space, regardless of which processor executes the instructions.
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Changes in the address space bounds are passed to server processors when the control

thread is transferred to that machine. The server does not need this information until the

control thread moves to the server.” The client processor includes the current address space
bounds with the CAPC call packet. When the control thread moves to the server, the server
adjusts its page maps and address space boundaries to match the boundaries presented in the

client’s call message.

When the virtual address space expands, the server adds new page table entries for the
new pages. The server marks these pages resident on the client processor. If the server

attempts to access these new pages, they will be demand paged from the client processor.

Decreasing the address space requires additional work to ensure that the client and
server views of the address space remain consistent. If the client shrinks and re—expands the
data segment, it replaces thosé pages with zero fill-on—-demand pages. This operation dis-
cards any data on the affected pages. If the server has copies of those pages, it must also dis-
card those pages. When shrinking ;‘.he address space, the client must notify the server of the

invalidated pages of the address space.

The CLASP kernel saves a low water marker for the bounds of the address space.
Address space reductions set this low water marker. The client kernel passes the current
bounds and the low water bounds when it passes control to the server. The server kernel
examines the low water marker to see if the client discarded any pages that the server knows

about. If so, the server invalidates those pages. After resolving address space reductions, the

" This is a design decision based on our underlying process model. Our base system (SUN Unix) provides a single
control thread in each address space. In a system with multiple control threads, a different scheme to modify the
address space is required. A possible scheme might designate one or more of the processors as owner of pages not
yet in the address space. Extensions of the address space would be processed through this processor in a2 manner
similar to the current network page fault mechanism.
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server uses the current address space information in the CAPC to expand its page table to

the current size. The new pages are marked resident on the client.

3.5.2. System Calls

The UNIX system call uses state information stored in the kernel. Some system calls
reference simple information, such as the current time. Others reference more complex state
information, such as I/O descriptors. The CLASP architecture does not attempt to replicate
this state information between the client and server kernels. The client and server share only

information about the bounds of the user’s address space.

Applications must make system calls on the pfocessor holding the appropriate state
information. Because the client processor holds all state information, system calls occur on
the client processor. User programs access UNIX system calls through a collection of C sub-
routines that package their arguments and trap to the UNIX kernel. An easy way to force
system calls to a particular architecture is to compile these subroutines for that architecture.
The current CLASP implementation uses this scheme to force system calls back to the client
processor. Client calls to these subroutines execute on the client processor. Server calls to
these subroutines generate CAPC calls from the server to the client processor, where the sys-

tem call is executed.

CLASP does not disallow system calls on the server processor. In many cases, it can be
more efficient to perform system calls on the server. For example, assume an application
that uses a file stored on the servers disks. In the current implementation, I/O operations on
this file are processed on the client. If a routine on the server reads from the file, the data

crosses the network twice: once using the network filesystem operations from the server to
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the client and once from the client to the server as a CLASP network page fault. A modified
version of the I/O related library routines can eliminate this overhead. These library rou-
tines can direct the I/O operation to the appropriate kernel. Other systems have successfully

used this technique to redirect system calls to the appropriate processor [27,37,77).

3.8. CAPC vs RPC

The CLASP architecture improves on the RPC architecture in several respects. The
best way to summarise these improvéments is to note that CAPCs provide the same seman-
tics as normal procedure calls, while RPCs provide a subset of the normal procedure inter-

face.

RPC client and server processes execute in separate address spaces. All data required
for a remote procedure call must be passed as arguments to that routine and can not contain
pointers. On the other hand, CLASP client and server processes execute in the same Yirtual
address space. This allows routines to exchange data through global variables and to share
pointer-based structures such as lists and trees. Thus, CLASP procedures can be used

exactly like normal procedures. Converting a program to RPC usually involves rewriting it.

There are éituatiom where this shared address space can impact performance. When a
CLASP server routine dereferences a pointer passed from the client, it may generate a net-
work page fault to retrieve the appropriate page of the virtual address space. RPC systems
dereference each pointer before packaging and transmitting the argument list. Therefore, the
single RPC message contains the object described by the pointer and does not generate the
extra network transaction possible in the CLASP system. Imagine the pathological case

where all of a routine’s arguments are pointers, scattered through the address space. An
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RPC system collects all the data and sends a single large message. A CLASP system might

generate a network page fault for each argument.

On the other hand, many common algorithms will be much faster in a CLASP-based
system than using RPC. CLASP’s demand-paging approach moves only the arguments and
data that are actually used between systems. As an example, binary searches through large
sorted arrays can be efficient because the accessed portions of the array are transferred to the
remote processor on demand instead of prepaging the entire array to the server. Pages, once
transferred to the server, remain on the server until they are required by the client processor.
Pages used only by the client remain on the client; pages used only by the server will be
transferred to and remain on the server. Pages of data used by both processors migrate
between hosts on demand. Demand-paging allows CLASP to support arbitrarily long argu-
ment vectors. RPC systems, because they package all of the arguments into a single mes-

sage, limit arguments to the maximum length of a network message.

Another improvement that CLASP makes over RPC systems is the way remote pro-
cedures are invoked. RPC systems use special calling sequences to access remote procedures.
Some RPC implementations replicate this calling sequence at every place that invokes the
remote routine (16]. Other implementations encapsulate these calling sequences into a local
stub routine [3]. CLASP uses neither special calling sequences nor stub routines. Instead, the
client uses the subroutine call instruction of the local architecture with the target address of
the desired routine, regardless of whether it is local or remote. Similarly, the server uses the
subroutine call instruction of its architecture with the target address of the desired routine.
The CLASP kernel uses the virtual memory system to detect the transfer to routines that

execute on the server. The special instructions used to transfer control in RPC systems are
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replaced by functions in the CLASP kernel.

Because RPC systems use special calling sequences to invoke routines on remote proces-
sors, they do not provide transparent means to pass local and remote procedures as formal
parameters to subroutines. CLASP allows applications to pass both local and remote func-
tions as arguments to subroutines. The called subroutine does not require any special pro-
cessing to handle both local and remote functions; it uses the same instruction sequence to

invoke both function types.

RPC systems have several advantages over CLASP. Because the RPC client and server

execute in separate address spaces, one half can be changed without affecting the other.

Thus, new RPC servers can be installed without changes to existing RPC clients.® Program
changes in a CLASP-based system require that the program be relinked to incorporate the

new code.

RPC servers can be more secure than a CLASP program. Because the RPC server exe-
cutes in its own address space, all interaction is through the RPC call interface; clients can
not modify or destroy data stored in the RPC server. CLASP programs, because they exe-

cute in a single address space, do not have this separation.

RPC systems operate between systems with different internal data representations.
Because all information passed between systems is contained in the paramters and results of
subroutine calls, appropriate typing and conversion operations can be applied when the data

is transferred between systems. CAPCs, because they transfer data between systems as pages

* Some RPC implementations might require that no client of that RPC server be active when the new version is
installed. Others allow active clients to continue with the old server while new clients are conpected to the new
server.




of uninterpreted data, only operate between systems that share internal data representations.

Cross—Architecture Procedure Calls do a better job of emulating the normal procedure
call than the Remote Procedure Call. Because CAPCs provide transparent access to routines
on remote processors, they do not require changes to application code. RPCs usually require
changes to application code. By eliminating the need to change application code, the CAPC

eliminates extra programming costs.
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CHAPTER 4.

IMPLEMENTATION OVERVIEW

This section of the thesis describes a prototype CLASP system. This implementation is
based on Release 3.0 of the SUN UNIX Operating System {21]. The implementation uses
SUN-3 workstations with Motorola 68020 processors. In the next sections, we describe the
three components of our prototype: the CLASP loader, the CLASP daemon, and the operat-
ing system kernel modifications. The CLASP loader assembles object files for several proces-
sor architectures into a single executable file. The CLASP daemon cooperates with the
modified kernel to instantiate server processes and record CLASP statistics. The kernel
modiﬁcations‘.detect and perform CAPC calls and returns; they also manage page residency

for each CLASP process’s virtual address space.

4.1. The CLASP Loader

Our new loader is a m.odiﬁed version of the standard UNIX loader. The standard UNIX
loader processes object files for a single architecture to generate an executable file. The new
loader processes object files for several processor architectures to generate a multi-
architecture executable file. This multi-architecture executable file differs from a single-
architecture executable because it has several text segments. Standard UNIX executable files
have a single text segment. Each of the CLASP text segments contains instructions for a

different processor architecture.
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The multi-architecture executable file is similar to a standard UNIX executable file.
The text segment of the multi-architecture file is divided into several text subsegments; each
of these subsegments contains instructions for a different processor architecture. The file
header of a multi-architecture executable file contains extra information describing how the
text segment is partitioned — which sections of the address space correspond to a particular

processor architecture.

4.1.1. Text Partitioning

As the loader processes each object file, it determines the processor architecture from
header information stored in that file. The loader places instructions for the each architec-
ture in a contiguous segment of virtual memory. Segments begin on page boundaries; no sin-
gle page contains information for more than one 'ségment’. This allows the CLASP kernel to

detect non—local instruction references using the hardware supported page-level protections.

The loader provides the kernel with a table that describes the multiple text subseg-
ments. This table specifies the architecture for each subsegment, and its location and extant
in the address space. Figure 4.1 illustrates the C structure clasphdr that defines this infor-
mation. This structure is stored at the beginning of the executable file, just after the UNIX

a.outl header information.

4.1.2. Replicated Code

Short routines — like sqrf() — are executed most effectively on the local processor. The

network overhead to make a remote call and return makes it much more expensive to execute
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#define MAXCLASPSEGS 4 /* max # architectures */
struct claspseg
{
unsigned short cs_arch; /* architecture */
unsigned long c¢s_relocation; /* address shifts */
unsigned long c¢s_first; /* addr in 1ist page */
unsigned long cs_last; /* addr in last page */
3
struct clasphdr
{
long c_nsegs; /* number of segments */
struct claspseg c_segment [MAXCLASPSEGS] ;
3

Figure 4.1
Clasp Header Structure

such routines on the remote processor. The network overhead overwhelms any speedup
gained by executing on the remote processor. If the routine is called infrequently, this over-
head is not a significant fraction of the total running time. However if the routine is called
for each element of a large array, the network overhead is unacceptable. In some cases, both

client and server make many calls to the same subroutine.

These cases appear to require substantial overhead — it seems that one of the proces-
sors must use remote operations to invoke the shared subroutine. A modified CLASP loader
can eliminate this overhead by allowing multiple instances of the same function.! Each
instance of the function executes on a different architecture. If both implementations are

compiled from the same source, their execution will generate the same outputs. This follows

! At some point, the programmer still must decide which routines should be replicated. The loader does not
make this decision.
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from the properties discussed in Section 3.2.

The loader symbol table allows multiple instances of symbols that reference addresses in
the text segment. When the relocation information uses a text symbol, the loader attempts
to use an instance of the label defined for the current architecture. If no instance of the rou-

tine exists for the local architecture, the loader uses the instance for the remote architecture.

The loader’s attempts to use local instances of replicated routines can fail when pro-
cedures are passed as formal arguments to routines. The UNIX gsor#(3) routine expects an
array of elements, the size of the array, and a pointer to a comparison routine. Qsort invokes
the comparison routine to determine if the array elements are in order. The call to gsort will
be resolved with a local instance of the comparison routine (assuming it is replicated on both
processors). If gsort executes on the remote processor, each call to the comparison routine
will cause a CAPC call back to the client processor. At this time, we have no general solu-

tion to this problem.

4.2. Operating System Kernel Modifications

This section describes how the CLASP kernel recognizes multi-architecture executable
files, performs CAPC calls and returns, and transfers pages of the virtual address space

between client and server systems.

Although the described implementation is based on the SUN Unix 3.0 kernel, many
details should be portable to other variations of the UNIX system, including the AT&T Sys-

tem V standard [21,54].

M U A8 B0 AN N o S a8 W e .
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4.2.1. Recognizing CLASP Executable Files

The UNIX kernel determines the type of an executable file from the a.out header. This
header describes the architecture appropriate for the executable image. It also contains a
magsic number that describes how the image should be loaded into the virtual address space.
Some magic numbers (e.g., OMAGIC) specify a process that runs with an impure text seg-
ment; these processes can overwrite their instruction space. The ZMAGIC magic number
specifies a process that is demand—paged from the executable file and shares its (rea.d—-on.ly)
text segment with other processes executing the same image. Our prototype defines a new
magic number — CMAGIC — that specifies a demand-paged multi-architecture executable
file. The CLASP loader uses the CMAGIC value in the a.out headers for executable images

that it generates.

The kernel loads executable images as part of the ezec(2) system call. Our new kernel

includes the CMAGIC value in the list of allowed magic numbers.

As part of the erec(2) call, the kernel builds a new address space from the executable
image, replaces the existing address space, and starts the user process at a specified entry
point. For CMAGIC files, the kernel instantiates a server process before beginning execution

of the user process.

4.2.2. Per—Process Structures

The UNIX kernel maintains a u and proc structure for each process in the system.?

* These structures define the user and process information for each active process in a UNIX system. Additional
information on these structures can be found in the literature [62].
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These structures contain file descriptors, scheduling informat{ion, address space boundaries,
and other.state data for that process. CLASP processes require additional kernel informa-
tion: the connection to the server processor, text subsegment boundaries, and other informa-
tion. The u structure for each process now contains an extra field pointing to a claspData
structure for that process. This structure is allocated from the kernel’s buffer pool dynami-

cally when a CMAGIC process starts. When the process terminates, the space is returned to

the buffer pool. The space requirements for non—~CLASP processes are not increased.? Figure

4.2 shows the C definition of the claspData structure.

Our prototype also stores a copy of the clasphdr structure from the executable file in

the u structure. It should be stored in the claspData structure.

4.2.3. Virtual Memory

Our prototype required two modifications to the virtual memory system. The first
modification allows the CLASP kernel routines to protect instructions for non-local architec-
tures so they can not be executed on the local processor. The second set of modifications pro-
vides the paging functions to share the virtual address space between the client and server

processes.

? The u structure is an integral number of pages. The claspData pointer uses space that is already allocated to
that structure but is otherwise unused.
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struct claspData

{

struct
struct
struct
int
int
long
long
size_t

long
size_¢t
size t
size t
long

#define
#defline
#define

/*

wire_t cd_wire;
claspNetwork cd_cn;
claspNetwork cd cn2;
cd_havedata;

cd_amsegment [MAXCLASPSEGS] ;

cd_textbase;
cd_database;
cd_dataadjust;

cd_didshrink;
cd_tshrink;
cd_dshrink;
cd_sshrink;
cd_flags;
~ CD_READY Ox1
CD_HAVEWIRE 0x2
CD_CONNECTED Ox4

* instrumentation....

*/
long -
long
long
long
long
long
long

cd_pageouts;
cd_pageins;
cd_pagesize;
cd_localcalls;
cd_localrets;
cd_netcalls;
cd_netrets;

Figure 4.2

/*
VL
/*
/*
/*
/*

/*

/*
/*
/*
/*
/*
/*
/*
VL

/*
/*
/*
/*

/%

for network I/0 */
the message */
2-message ops */
cd_cn is full */
segs 1 do */

where they start */

used on server */

if brk() shrunk */
should never shrink */
smallest dsize */
smallest ssize */
state flags */

in use */

got one */

and connected */

pages sent */
pages yanked */
across wire */
i handle */

to peer */

Dynamically Allocated structure for each CLASP process

4.2.3.1. Page Protections

The UNIX kernel already provides internal functions that protect individual pages of

the address space. Existing kernel routines use this function to protect the text segment
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against write access. A new function uses the single-page protection routine to protect a
series of pages. The new function expects an address range and a protection and invokes the
single-page function on each page in the specified range. When starting a CLASP process,
the kernel uses this routine to protect the sections of the text segment that contain instruc-

tions for the non-local architecture.

4.2.3.2. Network Page Faults

The second set of modifications to the UNIX kernel implement address space sharing
between the client and server processors. During program execution, the pages of the virtual
address space move between the client and server processor. When a page is resident on the
server processor, the client processor can not access that page. Attempts to access the page
generate a memory fault and the kernel must retrieve the page from the server processor. In
this respect, the kernel must handle server-resident pages in the sal-ne fashion as pages stored
on the swap device. The mechanism used to retrieve server-resident pages differs from that

used to retrieve pages stored on the swap device.

When a page is non-resident, the corresponding page table entry (PTE) contains infor-
mation describing its location on the swap device. Some paées, which have never been
resident, are not stored on the swap device. Instead, the first access to these pages causes the
kernel to allocate a page filled with zeroes. These pages are called fill-on-demand pages.
There are several kinds of fill-on—demand pages: fill with zero, fill from an arbitrary file, and
fill from the executable image. The system pagein routine allocates and validates a physical
page before invoking a fill-on—demand handler. The handler proceeds by loading the page

with the appropriate contents.
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Server—resident pages are marked as a new type of fill-on-demand page. These pages
are marked CLASP fill-on-demand. The pagefault handler’s table of fill-on—-demand
handlers contains a new entry for the CLASP fill-on-demand page type. When processing a
CLASP fill-on-demand fault, the pagein routine calls the new clasp_pagein() routine with the

virtual address of the page and the length of that page.

The clasp_pagein() routine issues a request to the server for the appropriate section of
the address space. Clasp_pagein() uses the communications descriptor stored in the clasp-

Data structure to communicate with the server process. The server process replies with a

message describing the page and the contents of the page.* The client.stores the retrieved
page at the appropriate virtual address, marks the PTE as valid, and returns control to the
system p;gein handler. After sending a page to the client, the server invalidates its cdpy of
the page: it frees the physical page frame and marks the appropriate PTE as CLASP fill-

on-demand.

When a page is retrieved from the server, the client marks the page modified, or dirty.
This happens even though the client has not modified the page. Otherwise, the local pageout
daemon might discard the copy of the page on the assumption that has not been modified
since it was last written to the swap device. This is more straightforward than determining
whether the remote processor modified the page. It does not require extra information in the
PTE to store an extra modified stnce retrieved from remote bit. The cost for this decision is
that a page may occasionally be written to the backing store twice. However, the extra disk

transfer occurrs asycnchronously, it only affects the pages that aren’t modified again by the

¢ While the control thread is on the client, the server process sits in the clasp_recv() routine. For network paging
operations, clasp_rev() invokes the proper CLASP paging routines. When a control transfer message arrives, the
clasp_rcv() routine returns to its caller — the clasp_fault() routine.




78

local processor, and should only occur for pages that fall out of the working set.

4.2.4. Cross—Architecture Calls

Applications make CAPC calls using the subroutine call mechanism of the local archi-
tecture. For CAPCs, the target address is a section of the virtual address space protected
against execution. When the processor attempts to fetch the first instruction of the called
subroutine, the virtual memory hardware generates a protection violation signal. At this

time, the kernel trap() routine is called to handle the fault.

The trap routine calls the new clasp_fault() routine to handle protection violations.
Clasp_fault() determines whether the fault was caused by a CAPC call, a CAPC return, or is
a stray memory reference. For stray memory references, clasp_faull() returns an indication to
the trap() routine to generate a segmentation violation signal for the user process.
Clasp_fault() decodes the instruction that generated the fault to determine whether it is a
CAPC call or return. For CAPC calls and returns, the clasp_faulf) routine packages the call

information and transfers control to the remote processor.

For CAPC calls, clasp_fault() determines the argument vector, the target address and
the return address. The target address — the address of the called subroutine — is the
address that caused the MMU to generate the fault. Machine-specific code examines the
stack and also examines the intructions following the call instruction to determine the length
and location of the argument vector. Clasp_fault() stores this information in a claspPacket
structure and sends it to the remote processor using the network descriptor stored in the

claspData structure.
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Clasp_faull() uses the clasp_zmi) routine to send the control transfer message to the
remote processor. After sending the message, clasp_faulf) calls the clasp_rey() routine to
receive the message that returns control to the local processor. The thread can come back as
a nested CAPC call. It can also return to the client as a CAPC return. Clasp_rcy() relinqu-

ishes control of the CPU while awaiting messages. The process sleeps waiting for data to

arrive on the network file descriptor.?

While awaiting the control transfer message, the server process is in the clasp_faulf)

routine.® When the message arrives, clasp_fault() unpacks the message, builds a call frame on
the (server) processor, and sets the appropriate values for the program counter, stack pointer,
and other registers. For some cases, an argument register caﬂ be loaded with an appropriate
value pointing to the arguments. In other cases, clasp_faulf) must make a copy of the argu-
ment vector. After building the call frame, clasp_faulf{) returns through the kernel trap
handler with an indication that the user process should be resumed with the new register

values. At this time, the user program continues execution on the server processor.

4.2.5. Cross—Architecture Returns

On CAPC returns, clasp_fault() takes the return values from the appropriate registers
and stores them in the fields of the claspPacket passed from the client at call time.

Clasp_faulf() then sends this packet back to the client processor. After sending the packet,

* The kernel sleep() routine causes the current process to await a specific event. The current process relinquishes
control of the CPU and waits for the event. When the event occurs, another process will make a call to the ker-
nel wakeup() routine, which will move the sleeping process into the ready queue.

* It is really in the clasp_rey() routine while waiting for the message. However, as soon as the message arrives,
clasp_rev() returns to clasp_fault(). Clasp_rev() also handles the server side of network paging requests. Client re-
quests for pages in memory are directed to the clasp_pageout() routine from within clasp_rcv().
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clasp_fault() waits for memory and control transfer requests.

Upon receiving the claspPacket, the client unpacks the return values and loads the
appropriate registers for the client architecture. Clasp_fault() sets up the appropriate register

values for returns in the same fashion it sets up registers for calls.

4.3. The CLASP Daemon

The CLASP daemon, claspd, listens on a TCP/IP socket for connections from client

processes.” When it receives a connection, claspd forks a child process to act as server for that
client. After spawning the server process, claspd awaits further service requests. The client
and its server process communicate independently from the CLASP daemon. The child pro-
cess uses a new CLASP-specific system call to become a server. This system call accepts the

file descriptor of the network connection to the client as a parameter.

The claspd() system call allocates a claspData structure for the current process. The
descriptor for the network connection is stored in this structure. Claspd then collects infor-
mation across the network from the client process. This information includes the text seg-
ment partitioning and a copy of the text segment. The CLASP kernel code returns to user

mode after arranging for an immediate protection trap and setting a flag for clasp_faulf().

The system trap handler calls clasp_faulf() when the user code generates the protection
violation. Clasp_fault() examines the flag set by the claspd() system call to see that this is a
server initialization fault. Instead of sending a message to the client process, clasp_faulf()

waits for a control transfer message from the client.

T TCP/IP is a stream-—oriented protocol that provides in-order, guaranteed delivery communications between two
endpoints [73].
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4.4. CLASP Algorithms and Protocols

The next several sections describe the protocols for choosing a compute server, establish-
ing contact with a compute server, transferring control between servers (the client is also a
server), and transferring memory between servers. The different structures for control and
memory transfer are part of a single network structure. The examples in this chapter include

only the relevant sections of the network structure.

4.4.1. Server Availability and Selection

A new kernel table is used to select a server processor. New system calls allow claspd to
clear, replace entries, and append entries to this table. At startup time, claspd reads the file
/usr/local/etc/claspd.config for profiling, logging, and server address information. Appendix

D describes the syntax of the claspd.config file and includes an example configuration file.

After determining an address for the server, the CLASP kernel routines try to establish

a connection to that address. If the connection fails, the client process is aborted.

4.4.2. Initiating a Dialogue with a Compute Server

CLASP clients establish connections to the required server processors when the client
process is instantiated. In our implementation, the operating system establishes these con-
nections as part of the ezec(2) system call. Once a server process has been started, the client
process initializes the server by sending a description of the address space. This description
includes the address space bounds and the text subsegment locations, sizes, and architectures.

After this information is transmitted, the client process sends a copy of the text segment
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across the network to the server.®

Our prototype does not try to connect to alternate servers if the first server does not

respond. Our implementation does not provide a protocol for a server to deny service on a

selective basis.

4.4.3. Calling Procedures on a Compute Server

Clasp_fault() determines the target address for remote calls, the location and length of

the argument vector, the return address, and the stack bounds. This information is stored in

a claspPacket structure. Figure 4.4 shows the C declaration for this structure.

Clasp_fault() stores a copy of the claspPacket structure on the user stack. It builds a

message to the server that contains the address of the claspPacket on the stack and a copy

struct initiate_data

{
struct clasphdr cnx_claspHdr;
long cnx_caller_segments [MAXCLASPSEGS + 1];
long cnx_callee_segments [MAXCLASPSEGS + 1];
long cnx_textbase;
long cnx_database;

3

Figure 4.3
Data Transferred to Start A Server
[part of the claspNetwork structure]

/*
/%
/*
/*

from a.out */
client 1s *x/
server 1is */
segment bases */

! Pushing a copy of the entire text segment across the network can be expensive. Some processes have as much as
a megabyte of instruction space. A future implementation might pass file handles (like the NFS rnode) so the
server can demand page portions of the address space from the file on the client processor [15].
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struct claspPacket

{

long cp_action;

/%

* values used in a call
*/

caddr_t cp_subroutine;
caddr_t cp_sp;
caddr_t cp_arglist;
long cp_arglen;
/* '
* values used 1n a return
*/
caddr_t cp_return;
caddr_t cp_usp;
unsigned long c¢cp_r0;
unsigned long cp_Ti;
/*

/%

/*
/%
/*
/*

/*
/*
/*
/*

call, return, etc */

address to call */

where server can start */
base of arg vector */
length of arg vector */

return address */

user SP after return */
return O */

return 1 */

* server end of a call uses this for temp storage

*/
struct claspPacket *cp_lastp;

Figure 4.4
CAPC Information Packet

/*

for nested cross-calls */

of the claspPacket. The controlxfer structure, depicted in figure 4.5, is part of the

larger claspNetwork structure. Other fields in the claspNetwork structure contain the

current address space boundaries; these fields are loaded before the message is sent to the

remote processor.

4.4.4. Returning from Procedures on a Compute Server

For returns, clasp_faulf{) uses the existing claspPacket from the CAPC call. The

cp_action field is changed from call to return, and the return value fields are loaded ;vith
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/*
* The claspNetwork combined structure contalins fields describing
* the extent of the address space.
*/
struct controlxfer {

long cnx ctlxfertype; /* call or return */

struct claspPacket *cnx_cpp; /* pointer to CAPC frame */

struct claspPacket cnx_fastcapc; /* copy of CAPC frame */
};

Figure 4.5

CAPC Control Transfer Information

values from the appropriate processor registers.

Clasp_fault() then follows the same steps to send this claspPacket back to the client as
it would to send a call message to the client: address space bounds are loaded into the
claspNetwork structure and the message is written on the network descriptor in the

claspData structure.

4.4.5. Memory Transfers Between Clients and Servers

The CLASP prototype memory system uses a simple model to maintain coherency in
the virtual address space: each page of the address space resides on exactly one host. If one
CPU needs a page that resides on another host, the page is demand-paged from the remote
processor to the local processor. The local processor — the one that wants the page — is the
client. The non-local processor that currently holds the page is the server. A processor acts

as both client and server at various times through the lifetime of an application process.
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When the CPU attempts to access a page that is not resident in main memory, the
MMU generates a page fault. Non-resident pages can be retrieved from several different loca-
tions. Some pages are retrieved from the local backing store (e.g., the swap space of the local
processor). Other pages reside on remote processors and must be retrieved across the net-
work. In both cases, the page table entry describes where the page is stored and how to

retrieve the page.

The client CLASP kernel marks pages resident on the server as fill-on-demand-clasp.
This allowed us to implement the shared virtual address space without changing the width or
bit assignments of fields in the page tables. The kernel pagein routines treat fill-on-
demand-—clasp similarly to fill-on-demand-zero. Instead of zeroing a page and validating it
for the user, page faults on fill-on—-demand—clasp pages cause a call to a CLASP-specific
pagein routine which retrieves the page from the remote processor and places it in the page
frame allocated by the normal pagein routine. The changes to the normal pagein routine are

limited to an additional case in the switch statement that handles fill-on—-demand pages.

The client sends MEMGET requests to the server to retrieve pages that reside on the
server. These MEMGET packets contain the above memxfer structures to describe the pages
requested. Servers reply with a MEMPUT packet that describes the pages being returned
and follow that packet with the data of the page. If the client and server have different page
sizes, the MEMPUT packet might describe a different (e.g., larger) block of memory. A client

with 512 byte pages making a request to a server with 1024 byte pages would receive two 512

byte pages.?

' These differences should be resolved when a CLASP process begins execution. The client and server should
agree on a network page size that meets their individual requirements for local pages. All network paging opera-
tions should be done in units of this agreed page size.




84
struct memxfer
{
caddr_t cnx base; /* base 1n vaddr */
caddr_t cnx_length; /* byte count */
3
Figure 4.6

Information Sent for Memory Transfers

Once pages are retrieved from the server, the client marks them dirty, or modified, to
inform the pageout daemon that these pages have been changed since the last time they were
written to the local swapping device. This assumes that the server modified the page. While
it might not always be true, the alternative was to add several additional dirty bits to the

page table entry — one for each backing store that might hold the page.

This simple memory model made our prototype easy to implement. However, the
model limits performance by keeping only one copy of any page in the address space. If a
processor has a local copy of a given page, the overhead of a page fault across the network
can be avoided. One problem with replicating pages on each processor is maintaining the
coherency of the virtual address space. The replication of read-only data is a simple and
obvious way to improve performance.l® We describe some other work that supports ﬁmltiple

instances of pages in the address space in section 6.2, under Further Performance Optimiza-

tions.

1% Our prototype keeps copies of the text (code) segment on both machines. The CLASP text-segment is filled
with read-only data (e.g., the instructions).
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CHAPTER 5.

PERFORMANCE OF THE IMPLEMENTATION

CAPC allows an application program to be partitioned so that some routines execute on
a faster server processor to decrease the running time of the program. Partitioning an appli-
cations program always introduces some overhead: CAPC subroutine calls and returns are
slower than local subroutine calls and returns. Data residency also affects the partitioning’s
overhead. Some pages are accessed by the routines on the client; others are accessed only by
server routines. Some pages are accessed by both client and server routines. Pages accessed

by both processors must be moved to the appropriate processor when needed.

To overcome this overhead, the server must be faster than the client processor. The
breakeven point can be derived from the paging behavior, CAPC calling patterns, and speed
differential of the two processors. This breakeven point is different for each program and can

vary within a single program depending on how it is partitioned.

In this chapter, we discuss types of algorithms that will perform well under the CLASP
system. We also discuss an existing model that characterizes paging behavior [32,33]. We
present the results of benchmarks to determine the costs of our system. These costs include
remote call overhead and network paging overhead. In appendix B, we show the results of
several benchmark programs under the CLASP system. Section 5.3 compares our empirical
results with those predicted by section 5.1. The chapter closes with a discussion of several

mechanisms for partitioning applications between client and server systems.
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5.1. Theoretical Performance Expectations

To determine whether part of a program should be moved to a server processor, an
appropriate question to ask is: is the execution speedup greater than the communications
costs? If data transmission costs are greater than the possible speedup, the problem should

not be moved to the server processor.

Several factors affect the performance of a partitioned application. Programs vs;here the
execution costs grow faster than the communications costs to move data between client and
server quickly overcome the communications overhead. Algorithms that access portions of a
data structure, such as tree searches, are another class of algorithms that can yield improved

performance when partitioned between processors.

5.1.1. Algorithms Appropriate for the CLASP architecture

Algorithms for solving linear systems are a good example of problems where improved
execution time on the server recovers the communications time between the client and server.
Linear systems of order n comprise an nxn matrix. The cost to move this problem to a
remote processor across a network is Ofn*n). The time to factor this matrix is Ofn*n*n).
The breakeven point occurs when the speedup on the remote processor matches the communi-
cations cost to move the data to the remote processor. If A(n) is the savings in execution and
T(n) is the communications cost, our breakeven point occurs when we satisfy the following

equation.

T(n)=A(n)




.
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For an applications using gaussian elimination to factor matrices of order n, the

appropriate equation is:?

Kin*n= K;n*n*n
The exact value of n that satisfies this equation depends on the constants. These con-
stants are determined by the network speed, client processor speed, and server processor

speed.

To determine if there exists an n where the problem should be moved to the processor,

we examine the inequality:

lim T{nz

a—00 A( n )
If this limit is less than one, there will be some problem size n that executes faster in a

partitioned environment.

We do not want to give the impression that only higher order algorithms are applicable
to our architecture. A number of data structures have search times smaller than Ofn).
Trees searches execute in time Oflog n). These searches do not require the entire data struc-
ture to be resident on the local processor. The Oflog n) probes of a tree search will move at
most Oflog n) pages from the remote processor. Additional searches, which often probe the
same initial nodes of the tree, will generate fewer page faults. Insertions, balancing, and

other tree operations can often execute with only portions of the data structure resident.

Other data structures that require less than Ofn) time to manipulate are hash tables,

queues, lists, and heaps. For these data structures, the communications costs are a function

! For this example, we have dropped the lower order terms from the algorithm costs.
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of the probes into the structure.

5.1.2. Localized Data

Some data structures are accessed only by several routines. If all of these routines are

implemented on the same processor, there are never any communications costs to access that

data.?

In such cases, the costs to move this portion of an application to the program are
related only to the frequency and duration of the calls to those subroutines. If the subrou-
tines execute for more than our CAPC call/return overhead, we expect improved perfor-
mance by moving them to a faster processor. The exact client/server speed ratio needed to
compensate for the CAPC call/return overhead depends on the time for the subroutine call

on the client.

5.1.3. Paging Patterns

In 1968, Peter Denning introduced the working set model to help manage page traffic in
virtual memory systems. The working set model uses recent page access history to predict
the short term memory needs of a program. The objective is to keep a working set of pages
resident in memory and increase the airerage tnstruction burst between page faults. The
working set model is based on the observation that programs show localized access patterns.

Working sets exhibit slow drift behavior; the working set changes gradually over time [31].

* This ignores the boundary condition when we start the process and the entire address space is resident on the
client or the client’s swapping device.
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By 1974, Denning and others determined that the slow drift concept was wrong [32].
While programs did have phases which showed slow drift behavior, these programs also
displayed disruptive transitions between phases. Most phases used almost completely
different sets of pages, or locality sets[24,25,33,51,53,63]. Kahn found the following about

phases and transitions between phases:(53]

e  Phases covered 98 percent of the virtual time.

e 40 percent to 50 percent of the working set page faults occurred in transition
periods. Thus, about half of the paging occurred in 2 percent of the virtual
time. ‘

e  The same phases were observed by the working set policy over wide ranges of
its control parameters.

e Fault rates in transitions were 100 to 1000 times higher than fault rates in
phases.

Other observations indicate that approximately 90 percent of the virtual time is spent in long-
(at least 100,000 memory references) phases. These long phases account for only 10% of the

recognized phases, the other phases are fleeting and embedded within transition periods.

To model phases and the transitions between phases, Denning built a macro-model
using semi-Markov chains. The states in this model correspond to phases and their locality
sets. The holding time of each state corresponds to the phase length for that locality set.
Within each state, Denning used existing micro-models to generate access patterns across the
pages in the locality set. Denning found that this macro—model followed the behavior of real

programs better than the existing models.




90

5.1.4. Performance Expectations

We expect that the CLASP architecture will work well for a number of applications.
These applications will have one or more of the following properties:
e algorithms where the execution costs grow faster than the communications

costs. An example is the solution of Ax = b, which requires O(n*n) communi-
cations and O(n*¥n*n) execution time.

e  algorithms which exhibit high degrees of locality.

e  access methods, such as hashing and tree searching, which move small parts of
a larger data structure.

e  subroutines that encapsulate access to data structures. These data structures

will not move between processors, so the communications costs are only the

procedure call overhead.

Where communications and execution costs are of different magnitudes, the advantages
are apparent. Where both costs are of the same magnitude, the coefficients become more
important. In both cases, the exact breakeven point depends on the particular application

and its calling patterns. In some cases, demand-paging saves two network faults — such as

when the results of one remote operation are passed directly to another remote operation.

5.2. Empirical Results

We ran a series of benchmark programs with our CLASP kernel to obtain a measure of
its performance. Some benchmarks provided us with the overhead of the capc mechanism
and paging costs between client and server. Several benchmark programs, acquired from
other sources, were used to generate information on the frequency of paging traffic between
client and server systems. In this section, we discuss the benchmarks used to determine the
CAPC call/return overhead and the network paging costs. Appendix B contains performance

data for other benchmarks and looks at timing, speedup potential, and paging behavior of
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those benchmarks. The next section (5.3) compares the observed paging patterns with the

behavior we predicted in section 5.1.

Remote operations — both calls and data accesses — are almost always significantly
more expensive than local calls. The network overhead accounts for most of this difference.
We can divide the network ovex;head into two pieces: latency and bandwidth. For smaller
messages (such as control transfer packets), network latency dominates the overhead. Other
research provides insights towards developing low-latency, high-bandwidth networks

between processors [50,78].

5.2.1. Remote Call and Paging Costs

Figure 5.1 contains the times for CAPC calls and returns in our prototype. The CAPC
ov.erhead number represents the time for the client to invoke a subroutine on the server with
no arguments and for that subroutine to return. The number is an average across 10,000
invocations of the subroutine. Timings of individual calls — to obtain minimum, maximum,
and standard deviation figures — was not possible with our hardware. The clock on our sys-

tems ticks at 50 Hz, the smallest interval we can measure is 20 milliseconds.

Figure 5.1 also contains the time for network paging. We used two different programs
to generate this data. The first page fault program is based on the CAPC call overhead pro-
gram. In this version, the calling routine accesses a global variable once during each iteration
of the loop. The server routine accesses this same variable once during each call. This causes
2 page faults for each CAPC call/return pair. We determined paging costs by subtracting
the known CAPC call overhead. From this program, we can determine the time for a pair of

page faults.
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The second program alternates calls to subroutines on the client and server that step
through a large array. We ran this test with arrays ranging from 100 through 400 pages —
8192 Kbytes through 3276 Kbytes. Arrays larger than approximately 2200 Kbytes filled the
available physical memory and introduced- other factors into the times; the desired page
would not be resident in main memory and had to be retrieved from the swapping device.
The numbers in figure 5.1 reflect the times for 2000 Kbyte arrays. Because this program gen-
erates long strings of page faults in one direction, we can time those strings to determine the
times to send or receive pages. This allows us to break down the round-trip costs obtained in

the first paging benchmark.

These benchmarks bwere‘run using the loopback interface to the same processor. These
timings show that the process spends large amounts of time in the system kernel. We believe
that most of this time is TCP/IP protocol overhead. With 53 milliseconds per page fault,
our prototype kernel can process 18.8 pages or 154,000 bytes per second. Additional bench-
marks showed that a TCP socket could only move 297,000 bytes per second on our system.
Our prototype provides more than half of the throughput with the current network protocols.

Synchronous page requests and page transfers account for the lost page bandwidth.

Figure 5.2 shows the times for empty procedure calls using CAPC, Sun RPC (both UDP
and TCP transport mechanisms), and Xerox Courier. In all but one case, the times are aver-
ages across 10,000 calls. The times for Courier with the standard kernel for 1,000 calls. The
Courier times for the standard kernel are more than an order of magnitude slower than the
other mechanisms. This is caused by the SUN TCP implementation. Instead of flooding the
network with small TCP packets, the SUN TCP code delays small packets so it can combine

them into a larger packet. If no further data arrives, a timer signals the TCP code to send
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CAPC Test Case Client Server Wall

system time | system time time
CAPC Call Overhead 4.46 4.45 8.98
CAPC + 2 page transfers 56.74 56.70 115.44
2 page transfers 52.06 106.42
1 Page Transfer 26.03 53.21
CAPC + 250 page xfers
avg/page 26.34 26.86 53.42
client—>server avg/page 30.36 53.52
server—> client avg/page 22.28 , 52.92

Figure 5.1

CAPC Overheads
[all times in milliseconds]

the small packet. From these times, we can see that the timer fires every 200- milliseconds.
For ihese tesis, the Courier code sends messages that
the kernel to lower this threshold and re-executed the Courier benchmarks.® This small
packet threshold does not affect the timings for the other benchmarks because they send

larger packets between client and server.

For small argument vectors, the CAPC call packet coptains a copy of the argument vec-
tor. Larger argument vectors are passed by pointer; the server will demand page the argu-
ment vector across the network. Our prototype sends up to 64 bytes of arguments in the
CAPC call packet. For these small argument vectors, a CAPC costs approximately 9 mil-
liseconds. For larger argument lists, the call time is 9 milliseconds plus the time to move the
appropriate stack pages to the server. Because these stack pages are required on the client

after the called subroutine returns, they must be paged back from the server routine. In

? Other TCP implementations we have seen do not have this small packet threshold. For example, the 4.2 BSD
kernel does not hold these smail messages. Also, it is worth noting that most Courier calls will be larger than the
10 byte small-message threshold. Return messages, if they are simple integer values, fall below the threshold.
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{ Mechanism User Time | System Time | Wall Time |
CAPC 0.0 . 4.46 8.98 |
Sun RPC (udp) 0.432 3.076 7.942
Sun RPC (tep) 0.846 3.118 - 8.014
Courier (stock kernel) 0.0 0.020 399.960
Courier (modified ker- 0.48 5.26 11.78
nel)

Figure 5.2
Empty Call Costs
[all times in milliseconds]
most cases, argument vectors larger than 64 bytes will take approximately 115 milliseconds.
If the argument list crosses page boundaries (the sun-3 hardware uses 8 kbyte pages), the
costs go up by another 2 page faults — another 100 milliseconds. Figure 5.3 shows the aver-

age costs for CAPC calls with argument vectors ranging from 0 to 1024 bytes. These times

are to set up, execute, and return from the remote subroutine.

Since most procedure calls have small argument lists it is sensible to spend our efforts
making the most frequent case execute quickly. Code analysis done for RISC machines has
shown that, in 2 UNIX environment, many procedure calls have fewer than 6 arguments.
These procedures often account for more than one-half of the dynamically executed pro-
cedure calls [35,70]. Our prototype, which provides 64 bytes of fast arguments, handles 16 4—
byte arguments before falling back to the slower call mechanism. Therefore, our optimized
CAPC calls for small argument vectors should handle most procedure calls. Larger argument

lists are processed more slowly, but they make up a small percentage of the subroutine calls.
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(milliseconds) 60 —
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128 256 378 512 640 768 896 1024

Argument Vector Size
(bytes)

Figure 5.3
CAPC Overheads for Different Argument Lengths

5.3. Comparing the Facts to the Theory

The LINPACK benchmark described in Appendix B showed very good performance in
our system. This benchmark moves data of size O(n*n} from client to server and performs
O(n*n*n) operations on that data. The breakeven point for this benchmark came for sys-
tems of size 59. For a problem of this size, the server had to execute at 17 times the speed of
the client processor to compensate for the network overhead. For matrices of order 81, the

server had to be only twice as fast as the client to compensate for the network overhead.

This benchmark used matrices dimensioned at for 200x200 systems. This over-
allocation generated extra page traffic by removing some of the locality within the array.

Another version of the benchmark, using matrices dimensioned to the exact size of the sys-
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tem, shows a better breakeven point. The speed differential can compensate for the overhead
on a 42x42 system. A server executing twice as fast as the client breaks even on a 54x54 sys-

tem.

A second benchmark, the compress utility did not show an improvement when parti-
tioned between client and server [87]. This program operates as a filter on its input data.
For the test we ran, the network overhead was larger than the total execution time for a sin-

gle architecture version of the program.

5.4. Considerations For Partitioning Applications

Two factors affect the placement of a routine: the cost to execute a CAPC call and the
cost to demand page the required memory to the remote processor. Small subroutines often
do not execute enough instructions for the client/server speed differential to overcome the
CAPC overhead. Other subroutines may execute enough instructions to make up the CAPC

overhead, but their data access patterns may cause an excessive number of page faults.

In terms of Dennings model, we want to partition our program so that cross-
architecture calls have a close correlation with transitions between phases. Short procedure

calls may generate extra paging traffic and disrupt the phase/transition page fault patterns.

In this section of the thesis, we discuss how these factors can affect performance. The
next section presents an existing algorithm for partitioning applications between client and

server processaors.
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5.4.1. Frequency and Duration of Calls

In our implementation, a simple CAPC call and return costs approximately 9 mil-
liseconds. Local subroutine calls, using only several microseconds, can be considered free
when compared to .9 milliseconds.. If the routine executes locally in less than 9 milliseconds, a
remote call will always be slower, regardless of the speed of the remote CPU. If the local
time is greater than 9 milliseconds, the breakeven point depends on the relative speeds of the

processors (and the data residency).

Ignoring data residency, a subroutine that executes in 18 millisecond on the workstation
can be moved to a server that executes twice as fast as the workstation. The server will exe-
cute the subroutine in 9 milliseconds, plus the 9 millisecond CAPC overhead, and achieve the

same total time as the workstation invocation.

In practice, data residency affects the breakeven point by introducing paging overhead
to move the data to the remote processor. Appendix B shows several program examples, how
they perform in uniprocessor mode and under CAPC, and what speed differentials are

required to break even for different problem sizes.

The frequency of calls to a subroutine affects its placement. If a subroutine is called
only a few times during the execution of a program, the overhead of a CAPC call has little
impact on the total running time of the program. An extra several hundred milliseconds has
little affect when a program executes for minutes or hours. However when calling routines
hundreds or thousands of times during the execution of a program, any additional overhead
becomes significant. Section 5.5 describes techniques to partition routines between client and

server systems to minimize this overhead.
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An alternate approach is to replicate these frequently called subroutines on both archi-
tectures. For long-executing routines (e.g., factoring large matrices), this is not practical.
Replication of long-executing routines is counter-productive; we want these routines to exe-
cute on the faster processor. For short subroutines — like sqrt() or stremp() — replication is
important. Without replication, the overhead to invoke remote instances of these routines
can overwhelm any performance improvement gained by moving long-executing subroutines

to the faster processor.

5.4.2. Data Residency

In our prototype, each page exists on exactly one of the processors. If a pair of pro-
cedures on different processors alternately access a page, that page bounces between the pro-
cessors. We can reduce or eliminate this effect by placing both procedures on the same pro-

Cessor.

Page replication schemes eliminate the problem when neither processor modifies the
shared data. Each processor maintains a copy of the page and allows read access by subrou-
tines executing on that processor. If a subroutine attempts to write on a replicated page, the
other copy must be updated or invalidated. Again, the time for these operations raises the
overhead associated with splitting these routines. But the overhead is often significantly

lower than a non-replicated environment.




5.5. Determining Partitionings

Subroutine call frequency and data residency are factors in determining how to partition
an application. These factors, by themselves, provide information about costs of a partition-

ing. However, they do not determine partitionings.

The next two sections discuss several approaches to partitioning applications. The first
section discusses several tools that can be used to provide information about call patterns and
the duration of procedure calls. The data gathered from these tools can be used to make
decisions. It can also be used as input to more formal partitioning schemes. One of these

schemes is discussed in section 5.5.2.

5.5.1. Heuristic Partitioning Tools

Profiling tools are useful for identifying where a program spends most of its time. The
UNIX utilities prof and gprof provide different types of profiling. Prof provides a summary of
the total time spent in a routine and the number of times it was invoked. Gprof provides this
information and adds the calling patterns between routines. For .each routine, gprof reports

the calling and called subroutines.

An easy way to determine a partitioning is to execute the program with the profiling
tools. From this data, long running routines or sets of routines (e.g. a locality set of subrou-

tines) can be identified and moved to the server.
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5.5.2. Theoretical Partitioning Methods

Other researchers have generated algorithms and heuristics for partitioning applications
in a distributed environment. These approaches use mathematical tools to determine the

partitioning [38,39,79].

In their 1978 paper, Stone and Bokhari use graph theory to determine subroutine place-
ment in distributed systems [79]. Each subroutine in the application is a vertex in their
graph. The edges between vertices represent the calling patterns between routines. Each
edge is given a weight corresponding to the communications costs if the two vertices (subrou-
tines) are on different processors. Two additional vertices, representing the processors, are
added to the graph. From eé.c'h processor vertex, edges are drawn to all subroutine vertices.
These edges are assigned weights that. correspond to the execution time for that subroutine
on the other processor. Because the edges represent the costs if two routines are on sepafate
processors, the weight is the execution time for that routine on the remote processor. After
generating this graph, they generate a minimal cutset of the that graph. The processor ver-
tices will be in different subgraphs. The two subgraphs contain the subroutines to be loaded
on each processor. Stone shows that the minimal cutset generates an optimal placement for

the subroutines {79].

Edge weights consider how often one procedure calls another and the data transfered for
each call. In our shared memory model, we must also consider routines that interact through
shared global variables. This consideration adds edges to the graph for subroutines that do

not call each other, but do access the same variables.

We want to bind certain routines to specific processors. For example, most system calls

must execute on the client processor — where the appropriate kernel state information
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resides. We can bind a procedure to a specific processor by adding an infinite weight edge
between the vertices for the desired processor and the appropriate subroutine. In the the
processor/node context, this indicates that the execution time of the subroutine on the
remote processor is infinite, or that it can not execute on the remote processor. In the cutset
context, this edge will never be in a minimal cutset. A cutset with this edge would have

infinite weight.

These mathematical models can yield optimal or near optimal partitionings for applica-
tions. Some of their input data can be gathered from static é.nalysis of programs. The tools
discussed in section 5.5.1 can provide additional information for calculating edge weights.
Further research into combinations of these tools could provide automatic partitioning

schemes that combine all of these tools.
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CHAPTER 8.

SUMMARY

This thesis has introduced CLASP, a new software architecture for sharing processor
resources. CLASP maps the traditional UNIX process model onto a new foundation. CLASP
provides a transparent mechanism for transferring control between processors and allows sec-
tions of an application program to execute on the most appropriate architecture. This con-
trol transfer is implemented by the Cross-Architecture Procedure Call or CAPC. CAPCs
allow existing applications to be partitioned between processors without making source code

changes.

Section 6.1 discusses some additional research suggested by our investigations. Some
approaches to reduce the overhead of the CAPC are discussed in section 6.2. The chapter

closes with a summary of our results.

8.1. Further Research

There are a number of additional research topics related to CLASP and the CAPC.
Some of this research is concerned with improving CAPC performance: using faster network
protocols and reducing network paging traffic. These research areas are discussed in section

6.2, Future Performance Optimizations.

Other research to add new features to CLASP and to apply existing tools to CLASP sys-
tems includes: multiple compute servers, multi-thread computations, multi-architecture

debugging, asynchronous traps, I/O operations on servers, process migration, operating sys-




103

tem independence, and automatic program partitioning. Each of these is described in more

detail in the following sections.

8.1.1. Multiple Servers

Our prototype supports two architecture CLASP programs. The extension to three or
more architectures requires additional work in communications between the different proces-

sSors.

As the number of architectures (and processors) climbs, the replicated address space
work of Kai Li becomes a more important factor to reduce the cost of network paging [60,61].
In these situations, a process must determine which CPU has the copy of the page — in addi-

tion to moving it to the local host.

8.1.2. Multi-Thread Computations

A number of existing systems provide multiple control threads within the same address
space [22,28,30,74]. We would like to see a combination of these systems and our CAPC sys-
tem. Such a combination would allow programs to use the most appropriate mechanism for
performance improvement — parallelism or fast sequential processing — within a single

application.

Our current prototype uses the single-thread nature of the Sun UNIX process to stream-
line some operations. The same agent on the server processes page requests and control
transfer requests. A multi-thread implementation would need to partition the address space

and control flow operations. Our prototype deferes the propogation of changes in the address
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space until it passes the control thread to the remote processor. A multiple-thread imple-

mentation requires a different address space propogation mechanism.

6.1.3. Debugging

The CLASP system introduces several problems for debugging systems. Symbolic
debuggers must now understand the instruction and calling sequences for different processor
architectures. The system debugging facilities (e.g., the UNIX ptrace(2) system call) must be

able to manipulate the control thread of a program when it is on a remote processor.

6.1.4. Asynchronous Traps

The UNIX signal mechanism provides a means to transfer control to a specific routine
on the occurrence of specific events. Our prototype does not address the problem of how

these signals should be processed when the control thread is on the remote processor.

6.1.5. I/O Operations on the Server

Our prototype performs all system calls, including I/O operations, on ﬁhe client system.
We make this restriction because the existing file descriptors are stored in the kernel on the
client system. As long as the correct file descriptors are presented to each system, it should
be possible to perform I/O operations on both systems. One approach that supports this
operation is to modify the system call templates to select the proper system for the system
call. This technique has been used in systems like the Newcastle Connection to redirect sys-

tem calls to the kernel that holds the appropriate state information [27].
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6.1.8. Graceful Process Migration

Because the server kernel only requires information about the address space of a process,
it should be able to move all of this state to another processor. There are no file descriptors
to move between server processors. Further work with the CLASP system should produce
mechanisms that allow servers to re-direct clients to other processors of the same architec-
ture. This can be used to limit the load on a particular server. It might also be used when

rebooting a server; existing clients could be moved to other processors.

6.1.7. Operating System Independence

Because the CLASP server maintains only address space information, we should be able
to implement servers with an open systems architecture. Clients running the UNIX operating
system might communicate with servers on other- operating systems such as DEC’s. VMS,
CDC’s NOS, the Stanford V kernel, CMU’s MACH, and other operating systems. The rou-
tines that execute on the server do not access system functions, they only use the processor to

execute instruction sequences.

6.1.8. Automatic Partitioning

The algorithms described in section 5.5 partition programs to reduce the communica-
tions costs and improve the performance of a program. Compilers already generate data
dependency information and can generate control flow information. Software generation sys-
tems (compilers and tools like the UNIX make utility) could use this information to partition

applications without user interaction [40].
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8.2. Future Performance Optimizations

CLASP systems rely on an underlying network communications system to transfer con-
trol between processors and to demand page the virtual address space between processors.
Two approaches to reduce the overhead of the network communications are to employ faster,
lower—overhead network protocols and to reduce the number of network operations. These

two topics are discussed in the following sections.

8.2.1. Network Protocols

Our current CLASP prototype uses the TCP/IP network protocol to communicate
between client and server processes. TCP/IP provides a full-duplex, error-free communica-
tions channel between two endpoints. The protocol achieves these features at a cost in
throughput and latency. However, thve other available protocol (UDP/IP) does ﬁot provide

reliable delivery of messages.

CLASP does not require a stream connection. The CLASP network operations can be
mapped directly onto a protocol that provides guaranteed delivery of messages. Such proto-
cols might provide low latency messages, which would improve CLASP network paging

times.

6.2.2. Network Paging Performance

Another approach to reducing the network overhead of a CLASP system is to reduce the
traffic across the network. In this section, we describe two approaches to reducing the page

traffic between CLASP clients and servers.
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The UNIX system dynamically extends a program’s stack segment to accomodate the
calling patterns of that program. The kernel never reduces the size of the stack segment,
even if the pages are no longer used by the application program. In our prototype, this gen-
erates unnecessary page traffic. If the server extends tﬁe stack onto a page that has been
used previously by the client, the server retrieves the page through the network. This page,
which is about to be overwritten with new data, could have been a fill-on-demand page and
serviced locally. To-eliminate this page traffic, the CLASP system could remove the pages
beyond the stack pointer at each CAPC call and return. These pages, located beyond the

current stack pointer, should be unused and can be discarded.

Our CLASP prototype maintains a single copy of each page in the virtual address space.
This simplifies the nage management scheme but increases paging activity. Kai Li and Paul
Hudak describe a virtual memory system for loosely-coupled systems [61]. Their system
allows multiple instances of each page in the address space. Extra copies of a page are
marked read-only. Attempts to modify ;;hese pages generate traps to the operating system
that invalidate the extra copies of the page and proceed with the updates. This approach
allows read—only pages (and pages that are read often and written seldom) to be replicated on

the appropriate processors.

8.3. Conclusions

In this thesis, we introduce the Cross-Architecture Procedure Call or CAPC. The
CLASP software architecture uses CAPCs to provide access to compute servers. The CAPC
is a transparent mechanism to transfer a control thread between two processors. Unlike its

predecessor, the Remote Procedure Call, CAPCs allow local and remote procedures to com-
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municate through shared global variables including pointer data types. This allows existing
programs, that use these constructs, to be partitioned between client and server processors

using CAPCs without any source code changes.

In the first chapter, we propose criteria for our new architecture. These criteria are:

e  The user need not restructure or recode his applications.

o  The programmer can specify an application’s partitioning. Changes to this par-
titioning do not require changes to the application source code.

e  Interactive tasks execute on the workstation. That is, the workstation is not
used as a simple terminal to submit jobs to the supercomputer.

e  CPU-intensive tasks execute on the supercomputer.

e  Optimization techniques, such as vector operation and parallel operations,
specific to certain architectures are still useful for code segments executed on
those architectures.

e  The compilers for each system need not be modified; a modified loader comblnes
the output from the respective compilers into an executable file.

e  The operating system resolves issues of control transfer and data transfer
between systems.

CLASP meets these criteria. CLASP satisfies the first four criteria because it provides a
transparent interface between routines on different processors. Routines on different proces-
sors can pass pointer data types and share global variables. This transparency allows users
to place routines on the architecture best suited for those routines. CLASP allows each
architecture’s compilers to apply appropriate optimization techniques to routines that will
execute on those processors. Our prototype does not modify existing compilers; it uses a new
loader to combine object files for each architecture into a multi-architecture executable file.
The CAPC runtime implementation is handled within the operating system. The operating

system transparently handles paging traffic between local and remote processors.
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Unlike the Remote Procedure Call, the Cross—Architecture Procedure Call does not res-
trict the interface between procedures. CAPCs model the procedure call interface more com-
pletely than RPCs. This feature allows existing applications to be re~compiled for a multi-

archiecture environment and yield improved performance without any source code changes.

The Cross-Architecture Procedure Call is an elegant mechanism for accelerating specific
portions of applications programs. It extends a simple process model onto a new foundation
that provides improved pérfoi'mance‘ without introducing restrictions on calls between pro-

cedures, access to global variables, and passing pointers.
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APPENDIX A.

ARGUMENTS AND RETURN VALUES

This section describes mechanisms for passing arguments, determining the size of the
argument list, and how return values are handled. This is a survey of several architectures
and includes: how to determine the argument list location and size when acting as client,
how to copy and use the argument list location and size when acting as a server, how to pack-
age the return results when acting as a server, and how to interpret the return results when

acting as a client.

Each of the systems described in this appendix use the same data representation. They

all use the IEEE floating point standard internally. They all store integer values with the

same byte ordering.

A.1l. Motorola 68000

The Motorola 68000 architecture does not load a register with the address of the argu-
ment list as part of the procedure call instruction. Instead, the convention is to place the
arguments on the stack. The subroutine call instruction pushes the return address on the
stack. At procedure entry, the argument list is located 4 bytes above the current stack

pointer. Figure A.1 shows the 68000 stack frame at procedure entry.
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argument n

argument n-1

argument 2

argument 1

return address

Stack Pointer

Figure A.1
Motorola 68000 Stack Frame
(at procedure entry)

Compilers for the 68000 architecture generate code that executes a link instruction as
the first instruction of a subroutine. The LINK instruction pushes the contents of a specified
register onto the stack and loads that register with the value of the stack pointer. The regis-
ter modfied by the LINK instruction is then used as a base register, or frame pointer, to
access both arguments and local variables for that procedure. The agument vector starts 8
bytes above the value in this register (traditionally register A6). The first 4 bytes above A6
are the previous contents of A6; the next 4 bytes are the return address. The stack after the

procedure preamble is shown in figure A.2.

The CLASP client routines for the 68000 architecture determine the length of the argu-
ment vector by examining the instruction after the procedure call. Because the hardware
does not provide a mechanism for including the length of the argument vector as part of the
procedure call instruction, this instruction pops any arguments from the stack. The CLASP
kernel decodes this instruction to determine the length of the argument vector. If the next

instruction does not pop arguments from the stack, the CLASP kernel assumes the procedure

, . . , V\
v " L O]
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argument n

argument n-1

argument 2

argument 1

return address

. [previous A6 value
: A6

local variables

Stack Pointer

Figure A.2
Motorola 68000 Stack Frame
(after procedure prolog)

has no arguments.

The CLASP server routines for the 68000 architecture copy the argument vector and
push the return address to provide the called procedure with a stack that appears to have

been generated by the 68000 subroutine call instruction.

Procedures and functions return their results in the DO and D1 registers. Most func-
tions return their values in the 32-bit DO register. Floating point results are returned as 64

bit values. For floating point results, both DO and D1 registers are used.

A.2. Alliant FX Series

The Alliant FX series is multiprocessor system that contains several computation ele-

ments and I/0 processors. The I/O processors are members of the Motorola 68000 family.
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-

The computation elements provide a superset of the 68000 instruction set. Both processors
use the same stack formats and calling sequences. The Motorola 68000 section of this appen-
dix contains more information about this stack format, how to determine the location and

size of the argument vector, and how return values are stored.

A.3. Convex C-1

The Convex C-1 uses a register, the argument pointer, to pass arguments to called sub-
routines. The calling routine builds an argument vector and sets the argument pointer to
point at the base of this vector. Called routines access arguments as offsets from this pointer.
Figure A.3 shows the C-1 stack frame at procgdure entry, just after the procedure prologue

has allocated storage for local variables.

CLASP client routines determine the location of the argument vector from the contents
pf this register. C-1 compilers store the argument length, as a count of 4 byte words, at the
address just beiow the argument pointer. CLASP client routines determine the argument
vector length from the value at this location. CLASP server routines load the argument

register with the passed value.

The C-1 stores return values in the S0 register. This 64 bit register contains all return

values.
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Callers RTN Address
Caller LSI, part 2
Caller Automatic Storage
Arg N

Caller FP

Argl
Arg Count (words)
Callee LSI, part 1

Saved S registers

Saved A registers
Saved PSW
Return Address
Callee LSI, part 2
Callee Automatic Storage

Callee FP

SP

Figure A.3
Convex C-1 Stack Frame
(after procedure prolog)

A.4. IBM RT

The IBM RT-PC presents arguments to subroutines as an array of bytes on the stack.
For efficiency reasons, the first 4 arguments are passed in general registers r2 through r5
respectively. For subroutines with only a few arguments, this convention improves perfor-
mance; fewer memory operations are required to pass arguments to the subroutine. For rou-
tines that take the address of any of these first four arguments, the called procedure’s prolo-

gue saves them in a reserved area in the called procedure’s stack frame. A multi-word struc-
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ture might be split; the first several words of the structure may be pased in one or more
registers, the rest may be placed on the stack. After the called procedure moves these regis-
ters to memory, they form a contiguous argument vector with the other arguments. On the
IBM RT, the general register r1 is used as a stack pointer. The IBM RT stack at procedure

entry is shown in figure A.4.

Upon entry, the called procedure adjusts the stack pointer to reserve space for local

variables and temporary space. The IBM RT does not use the stack in a true stack—oriented

high addresses Fossommmooo-e- :
| Other !
lower addresses E Stack Frames E RO:
[ [ R1: | Stack Pointer
argument n _ R2: Argument 1
R3: Argument 2
argument 6 R4: Argument 3
argument 5 R5: Argument 4
t ' R6:
' Called Procedure !
Register Save Area R7:
v | R8:
R9:
R10:
R11:
R12:
R13:
R14:
R15: ' Return Address J
Figure A.4

IBM RT-PC Stack Frame
(at procedure entry)
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fashion. Instead of pushing and popping values as needed, the stack is extended to the max-
imum depth required by the procedure and left there. Local variables are referenced relative
to the R13 register; parameters to other subroutines are referenced relative to the R1 regis-

ter. Figure A.5 shows the stack frame after the procedure prologue has executed.

The IBM RT returns values in registers R2 and R3. Simple values, those of 32 or fewer
bits, are completely contained in R2. Floating point values, which are passed as 64 bit quan-

tities, are passed in both R2 and R3.

high addresses r------------ -
[} ]
: Other E
growth i Stack Frames | RO:
| | R1: | Stack Pointer
lower addresses argument n R2: | Argument 1
R3: Argument 2
argument 6 ~R4: Argument 3
Caller SP argument 5 R5: Argument 4
:Reserved Space fon| R6:
t Arguments 1-4 R7:
Link Save R8:
5 words R9:
Saved Registers R10:
R6-R15 R11:
Local Variables - R12:
L R13 | Frame Pointer ]
Outbound R
14:
Parameters
R15: | Return Address |
Figure A.5

IBM RT-PC Stack Frame
(after procedure prolog)
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Unfortunately for our goals, the compilers on the IBM RT use different conventions for
returning structures and passing procedures as formal arguments than we have seen. These

differences make a CLASP system between our SUNs and the RT impossible.
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APPENDIX B.

PERFORMANCE MEASUREMENTS

This appendix describes the performance of several test programs using our CLASP pro-
totype kernel. We compare the execution times using our CLASP kernel against the execu-

tion time for the program with a standard UNIX kernel.

B.1. Double Precision LINPACK Benchmark

We obtained a copy of the LINPACK linear systems library from Argonﬁe National

Laboratories [36]. This package contains FORTRAN subroutines to solve the equation:
Ax=D

A benchmark program included with the library performs a number of iterations generating,
factoring, and solving a matrix. The A and b matrices are dimensioned to 200 elements.
Another variable deterinines the size of the system to be solved. We partitioned the FOR-
TRAN program into separate modules. The LINPACK routines to factor and solve the sys-
tem execute on the server processor. The matrix generation routine and benchmark harness

execute on the client processor.

We ran the benchmark for systems whose order ranged from 5 through 200. For each
size, we collected the following statistics: client user and system time, server user and system
time, total time, page traffic, number of calls, and the time for a non—~CLASP version. Each
execution made 53 CAPC calls and returns. The number of calls is a function of the bench-

mark itself, not the size of the system.
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Figure B.1
LINPACK Benchmark Execution Times
Arrays Declared for 200 Elements

The graph in figure B.1 shows the execution times for the LINPACK benchmark. Fig-

ure B.3 shows the number of pages moved between client and server for each benchmark run.

Figure B.2 shows the speed ratio between client and server to recover the CLASP over-

head. Matrices of smaller order than 59 incur more overhead than can be made up on any

server. At 59, the overhead can be offset with a processor that is approximately 15 times fas-

ter than the client. When the matrix is of order 81, the server need be only twice as fast as

the client to recover the overhead.
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Figure B.2 ‘
Speedup required to pay for CAPC overhead
Large dimensioned Arrays

In figure B.3, the paging traffic appears to grow linearly with the size of the system.
The overdimensioned matrices interact with the page size to produce this behavior. Each
page holds more than one row of the matrix. A page fault moves at least an entire 200 ele-
ment row, even though only the first 5 columns of that row will be used. Each page holds
more than one row of the matrix. For matrices of order 40 through 80, we can discern the

steps in the page traffic.

This benchmark uses over—-dimensioned arrays. Therefore, array accesses are spread
over a larger section of the address space. In the CLASP environment, the sparse use of the
address space results in extra paging overhead. Figure B.4 shows the breakeven points for a
version of this benchmark that uses arrays dimensioned to the exact size of the problem being

solved. Because the smaller array is stored in a more compact section of the address space,
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Figure B.3
LINPACK Benchmark Network Paging
Arrays Declared for 200 Elements

the paging traffic is lower than in the original benchmarks. This reduces the breakeven
point. With this modification, the CLASP system can break even as soon as the system is

order 42 — instead of order 59.

We believe that this benchmark does not show the true advantages of our demand-
paging system. The benchmark builds and factors the A matrix a number of times. The
server does the factoring; the client rebuilds the matrix. This causes additional paging over-
head. We feel that a more realistic situation is where the A matrix is factored once and then

used to solve the system for many different values of b.

Figure B.5 shows the pages transferred during virtual time intervals for the execution of
the benchmark for a 75x75 matrix. Each timeslot represents 50 milliseconds of processor

time. The paging traffic is concentrated in short bursts. Half of the paging traffic occurs in
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approximately 7% of the virtual time for this program.

Figure B.6 shows the number of times each page moved between processors. This graph
does not include the movement of the stack page; the only stack movement was for a single

page to the server. Each point on the graph represents a page of 8192 bytes.

14 —
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10 -

Server/Client 8§
Speed Ratio

4
Y
0 B E— I T I —
0 25 425684 75 100 125 150 175 200
Order of Matrix
Figure B.4

Server /Client speed ratio to break even
Exact Dimensioned Arrays
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B.2. Compression Program

We partitioned the compress program from the 4.3 BSD distribution into client and
server routines [87]. This program uses a modified Lempel-Ziv algorithm to generate codes

for common substrings and replace them in the compressed file.

A profiling run showed that the program spends much of its time in two routines:
compress() and outpuf{). We built a version of the program with these two routines on the

server architecture.

We used the partitioned program to compress a copy of our UNIX kernel. The program
compressed this 472,689 byte file into 296,314 bytes. We used the UNIX gprof(1) utility to
determine what portions of the program used the most CPU time. The compress() function
was invoked once and used 11.7 seconds of CPU time. The outpui() function was invoked
159,280 times and used another 7.13 seconds of CPU time. Although each invocation of the
output() subroutine was too short to make a CAPC advantageous, all but two of these invoca-
tions came from the compress() routine — which is on the same processor as the output rou-
tine. Outpul() made a small number of calls to routines on the client processor (39 calls in

this instance).

We built a version of the compress program with the compress() and outpu#() functions
on the server processor. For the data files we ran, the partitioned program’s overhead was

larger than the execution time of the original program.

Figure B.7 shows which pages were moved and how often. Only two stack pages moved
— each moved 1 time. The stack frames are not included in this graph. Page 16 moves

because most of the static variables are on that page. The client and server routines are
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accessing different variables that happen to be on the same page. A more sophisticated

loader might place these variables on different pages to reduce this contention.

Figure B.8 shows the actual paging behavior of the program. This depicts the pages
transferred during each time slot. Each timeslot is 50 milliseconds of user time; the time
spent transferring pages between hosts is not included. Like the partitioned LINPACK
benchmark, this program generated most of its network page faults in a short time period.

Half of the page faults were generated in approximately 5% of the virtual time.

2004 °
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Figure B.7
Page Transfer Frequency
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APPENDIX C.

CODE SAMPLES

This appendix contains sample code segments for routines that demonstrate some

features of the CLASP architecture.

The first sample shows how local and remote procedures can be passed as formal
paramters to other procedures. There are no special actions to differentiate between local

and remote procedures.

The second example shows a program that builds and traverses a tree structure. The
program passes pointers between the client and server; as the program traverses the tree, the
demand paging system moves parts of the tree as the program accesses them. The routines
have the same structure and arguments as they would if compiled for a more traditional

single-processor system.

C.1. Procedures as Formal Parameters

This example demonstrates how the CLASP system allows the applications to pass pro-
cedures as formal parameters. No special compilation techniques are required to account for
client and server differences. Both local and remote procedures are stored in the argument
list using the same representation. The called procedure does not require special operations
to differentiate between local and remote formal procedures. Figures C.1 and C.2 show the

client and server portions of a program that passes procedures as formal parameters.
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extern int foosquare (), foocube (), foo Q);

main Q)
{

int i, J;

for (1 = 0; 1 < 10; 1++)

{

J = foo (foosquare, 1);
j = foo (foocube, 1);

)

exit (0);
}
int foosquare (1) int 1i;
{

return (1 * 1);
}

Figure C.1
Formal Procedures — Client Side

int foo (proc, arg)
int (xproc) Q; /* procedure parm */
int arg; :
{

return ((*proc) (arg));
} .
foocube (arg) int arg;
{

return (arg * arg * arg);
}

Figure C.2
Formal Procedures — Server Side
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C.2. Pointer Structures

This sample program builds and traverses binary trees. Some of the tree manipulation
routines execute on the client; others execute on the server processor. The code in this exam-

ple was written for a single processor system.

There were no changes to the source code to make it run in a CAPC environment. We
only changed the linking phase of the compilation process to use our new loader. Figure C.3
contains the main section of the program, which executes on the client. The code in figure
C.4 performs several operations on the tree. This code also executes on the client. The code
in figure C.5 traverses the tree in postorder and preorder. These two routines execute on the

server processor.
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main (argc, argv)

int argce;
char **argv;
{
int i1, value, parms;
char buf [128], cmd;
static struct node root;
while (printf ("CMD: "), fflush (stdout), (gets (buf) != NULL))
{
if (strlen (buf) == Q0) break;
parms = sscanf (buf, "%c %d", &cmd, &value);
switch (cmd)
{
case 'I’:
inorder {(&root); break;
case °'L’:
preorder (&root); break;
case °'R’:
postorder (&root); break;
case 'A’:
1 = insert (value, &root);
printf ("value %d, now has %d hits\n", value, 1);
break;
case °'F°’:
1 = find (value, &root);
printf ("value %d has %d hits\n", value, 1);
break;
case 'Q’:
goto quit;
}
>
quit:
exit (0);
}

Figure C.3
Pointers in a CAPC environment — Main code
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find (value, root) int value; struct node *root;

{

)

1f (root = (struct node *) NULL) return (-1);

if (root -> value == value) return root -> hilts;

1f (root -> value > value) return find (value, Toot -> left);
1f (root -> value < value) return find (value, root -> right);
return (-1);

insert (value, root) 1nt value; struct node *root;

{

b

1f (root = (struct node *) NULL) exit (1);
1f (value == root -> value) return (++(root =-> hits));
1f (value < root -> value) { /* down left side */
1f (root -> left = (struct node *) NULL) {
root -> left = (struct node *)malloc (sizeof (struct node));
root -> left -> value = value;
return (root -> left -> hits = 1);

}
return insert (value, root -> left); /* recurse */
}
if (value > root -> value) { /* down right side */
if (root -> right == (struct node *) NULL) {
root -> right = (struct node *)malloc (sizeof (struct node));
Toot -> right -> value = value;
return (root -> right -> hits = 1);
}
return insert (value, root -> right); /* recurse */
}

return (-1);

inorder (root) struct node *root;

{

if (root == (struct node *) NULL) return;

inorder (root -> left);

printf ("%d: %d hits\n", root -> value, root -> hits);
inorder (root -> right);

Figure C.4
Pointers in a CAPC environment — Client Code
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#include <stdio.h>
#include "node.h"

postorder (root)
struct node *root;

{ :
1f (root == (struct node *) NULL)
Teturn;
postorder (root -> left);
postorder (root -> right);
printf ("%d: %d hits\n", root -> value, root -> hits);
}

preorder (root)
struct node *root;

{
1f (root == (struct node *) NULL)
return; _
printf ("%d: %d hits\n", root -> value, root -> hits);
preorder (root -> left);
preorder (root -> right);
}

Figure C.5
Pointers in a CAPC environment — Server Code
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APPENDIX D.

CLASP CONFIGURATION AND LOG FILES

Our prototype uses a static configuration table to assign server processors. The file
/usr/local/etc/claspd.config contains the configuration data. The file contains lines that
describe how much logging information to generate and addresses for servers of appropriate

architectures. Figure D.1 shows a sample configuration file.

Our configurations usually store logging information in the files /usr/adm/claspd.log
and /usr/adm/claspd.prof. The claspd.log file contains high level information describing the
current host addresses for specific architectures and the starting and finishing times for server

processes. Figure D.2 shows a segment from this file.

Claspd.prof provides more detailed information. This file records page traffic and call
behavior. At normal logging levels, the kernel stores summary data in this file. For each
client and server on the local host, the file contains the number of CAPC calls and returns
and the number of pages moved across the network. More detailed logging generates a line
for each CAPC call, CAPC return or page transfer. All lines are marked with the current

time and process identifier. A segment of this file is shown in figure D.3
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# configuration file for CLASP kernel.
# The daemon reads this flle at startup and whenver 1t receives
# a SIGHUP signal.

E
:

profiling level hostname
missing hostname defaults to localhost
missing level defaults to 2

logging {on|off} pathname
missing pathname leaves it unchanged.
must specify on/off field.

#H H W RN

profiling 2 brutus.cs.uluc.edu
logging on /usr/adm/claspd. log

server architecture hostname
architecture 1s integer
hostname is string
gotta speclify both.

# H O H KK

# 10 = M_RBE1
server 10 crl.cs.uluc.edu

# 20 == M_68020R
server 20 brutus.cs.uluc.edu

Figure D.1
Sample Claspd Configuration File
/usr/local/etc/claspd.config
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Fri
Fri
Fri
Fri
Fri

Sun
Sun

Mar
Mar
Mar
Mar
Mar

Mar
Mar

27
27
27
27
27

29
29

11:04:
11:04:
11:04:
20:55:
20:55:

11:29:
11:30:

15 1987:
17 1987:
19 1987:
05 1987:
19 1987:
user/sys
39 1987:
11 1987:

daemon
daemon
daemon
server
server

88:
88:
88:
1274:
1274:

Re—-initialize
O0x10 @ brutus
0x20 @ brutus
cllient at 192

0.100000/6.960000 secs
server 3148: cllent at 192

user/sys 0.000000/0.960000 secs

Figure D.2
Sample claspd.log

server tables

.cs.uluc.edu
.cs.uluc.edu
.17.238.2/1083
exit/sig 0/11.

.17.238.2/1137
server 3148: exit/sig 0/11.
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037398/400001
037398/400003
037398/460002
037398/520001
037398/580000
037398/640000
037398/640001
037398/700000
037398/740001
037398/760002
037398/820000
037398/860001
037398/860002
037398/920001
037398/940000
037398/980001
037399/000000
037399/040001
037399/060001

037409/420000
037411/020000
037411/020001

pid
pid
pild
pid
pid
pld
pid
pid
pld
pld
pid
pid
pid
pid
pid
pid
pid
pid
pid

pid
pid
pid

3147:
3147:
3147:
3147:
3147:
3147:
3147:
3147:
3147:
3147:
3147:
3147:
3147:
3147:
3147:
3147:;
3147:
3147:
3147:

3147:
3147:
3147:

call to server at
pageout at OxeffcO00
pageout at 0x20000
pageout at 0x28000
pageout at 0x2a000
call from server to
pagein at Ox20000
pagein at 0x28000
return to server at
pageout at 0x28000
pageout at 0x2c000
call from server to
pagein at 0x28000
return to server at
pageout at 0x28000
call from server to
pagein at 0x28000
return to server at
pageout at 0x20000

0x73£8

0x326¢c
0x7448

0x326¢c
0x7448
0x326¢

0x7448

return from server to 0x21f8

ri: CAPC calls/returns: local O/0 network 2/9
rl: CAPC pageins 11, pageouts 15

Figure D.3
Sample claspd.log
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