NASA PATENT ABSTRACTS BIBLIOGRAPHY

A CONTINUING BIBLIOGRAPHY

Section 2 • Indexes

JULY 1987

(NASA-SP-7039(51)-Sect-2) NASA PATENT ABSTRACTS BIBLIOGRAPHY: A CONTINUING BIBLIOGRAPHY. SECTION 2: INDEXES (NASA)

493 p Avail: N715 HC A21 CSCL 05B

Unclas 00/82 0087904

N87-26689
<table>
<thead>
<tr>
<th>Bibliography Number</th>
<th>STAR Accession Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA SP-7039(04) SEC 1</td>
<td>N69-20701 - N73-33931</td>
</tr>
<tr>
<td>NASA SP-7039(12) SEC 1</td>
<td>N74-10001 - N77-34042</td>
</tr>
<tr>
<td>NASA SP-7039(13) SEC 1</td>
<td>N78-10001 - N78-22018</td>
</tr>
<tr>
<td>NASA SP-7039(14) SEC 1</td>
<td>N78-22019 - N78-34034</td>
</tr>
<tr>
<td>NASA SP-7039(15) SEC 1</td>
<td>N79-10001 - N79-21993</td>
</tr>
<tr>
<td>NASA SP-7039(16) SEC 1</td>
<td>N79-21994 - N79-34158</td>
</tr>
<tr>
<td>NASA SP-7039(17) SEC 1</td>
<td>N80-10001 - N80-22254</td>
</tr>
<tr>
<td>NASA SP-7039(18) SEC 1</td>
<td>N80-22255 - N80-34339</td>
</tr>
<tr>
<td>NASA SP-7039(19) SEC 1</td>
<td>N81-10001 - N81-21997</td>
</tr>
<tr>
<td>NASA SP-7039(20) SEC 1</td>
<td>N81-21998 - N81-34139</td>
</tr>
<tr>
<td>NASA SP-7039(21) SEC 1</td>
<td>N82-10001 - N82-22140</td>
</tr>
<tr>
<td>NASA SP-7039(22) SEC 1</td>
<td>N82-22141 - N82-34341</td>
</tr>
<tr>
<td>NASA SP-7039(23) SEC 1</td>
<td>N83-10001 - N83-23266</td>
</tr>
<tr>
<td>NASA SP-7039(24) SEC 1</td>
<td>N83-23267 - N83-37053</td>
</tr>
<tr>
<td>NASA SP-7039(25) SEC 1</td>
<td>N84-10001 - N84-22526</td>
</tr>
<tr>
<td>NASA SP-7039(26) SEC 1</td>
<td>N84-22527 - N84-35284</td>
</tr>
<tr>
<td>NASA SP-7039(27) SEC 1</td>
<td>N85-10001 - N85-22341</td>
</tr>
<tr>
<td>NASA SP-7039(28) SEC 1</td>
<td>N85-22342 - N85-36162</td>
</tr>
<tr>
<td>NASA SP-7039(29) SEC 1</td>
<td>N86-10001 - N86-22536</td>
</tr>
<tr>
<td>NASA SP-7039(30) SEC 1</td>
<td>N86-22537 - N86-33262</td>
</tr>
<tr>
<td>NASA SP-7039(31) SEC 1</td>
<td>N87-10001 - N87-20170</td>
</tr>
</tbody>
</table>

This bibliography was prepared by the NASA Scientific and Technical Information Facility operated for the National Aeronautics and Space Administration by RMS Associates.
Indexes for the annotated references to NASA-owned inventions covered by U.S. patents and applications for patent that were announced in Scientific and Technical Aerospace Reports (STAR) between May 1969 and June 1987. This issue supersedes all previous index Sections.
This document is available from the National Technical Information Service (NTIS), Springfield, Virginia 22161, price code A21.
INTRODUCTION

Several thousand inventions result each year from the aeronautical and space research supported by the National Aeronautics and Space Administration. The inventions having important use in government programs or significant commercial potential are usually patented by NASA. These inventions cover practically all fields of technology and include many that have useful and valuable commercial application.

NASA inventions best serve the interests of the United States when their benefits are available to the public. In many instances, the granting of nonexclusive or exclusive licenses for the practice of these inventions may assist in the accomplishment of this objective. This bibliography is published as a service to companies, firms, and individuals seeking new, licensable products for the commercial market.

The NASA Patent Abstracts Bibliography (NASA PAB) is a semiannual NASA publication containing comprehensive abstracts and indexes of NASA-owned inventions covered by U.S. patents and applications for patent. The citations included in NASA PAB were originally published in NASA's Scientific and Technical Aerospace Reports (STAR) and cover STAR announcements made since May 1969.

For the convenience of the user, each issue of NASA PAB has a separately bound Abstract Section (Section 1) and Index Section (Section 2). Although each Abstract Section covers only the indicated six-month period, the Index Section is cumulative covering all NASA-owned inventions announced in STAR since 1969. Thus a complete set of NASA PAB would consist of the Abstract Sections of Issue 04 (January 1974) and Issue 12 (January 1978) and the Abstract Section for all subsequent issues and the Index Section for the most recent issue.

The 85 citations published in this issue of the Abstract Section cover the period January 1987 through June 1987. The Index Section references over 4600 citations covering the period May 1969 through June 1987.

ABSTRACT SECTION (SECTION 1)

This PAB issue incorporates the 1987 STAR category revisions which include 10 major subdivisions divided into 76 specific categories and one general category/division. (See Table of Contents for the scope note of each category under which are grouped appropriate NASA inventions.) This new scheme was devised in 1975 and revised in 1987 in lieu of the 34 category divisions which were utilized in PAB supplements (01) through (06) covering STAR abstracts from May 1969 through January 1974. Each entry in the Abstract Section consists of a STAR citation accompanied by an abstract and a key illustration taken from the patent or application for patent drawing. Entries are arranged in subject category in order of the ascending NASA Accession Number originally assigned to STAR to the invention. The range of NASA Accession Numbers within each issue is printed on the inside front cover.

Abstract Citation Data Elements: Each of the abstract citations has several data elements useful for identification and indexing purposes, as follows:

- NASA Accession Number
- NASA Case Number
- Inventor's Name
- Title of Invention
- U.S. Patent Application Serial Number
- U.S. Patent Number (for issued patents only)
- U.S. Patent Office Classification Number(s)
 (for issued patents only)

These data elements are identified in the Typical Citation and Abstract and in the indexes.
INDEX SECTION (SECTION 2)

The Index Section is divided into five indexes. These indexes are cross-indexed and are used to locate a single invention or groups of inventions.

Subject Index: Lists all inventions according to appropriate alphabetized technical term and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Inventor Index: Lists all inventions according to alphabetized names of inventors and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Source Index: Lists all inventions according to alphabetized source of invention (i.e., name of contractor or government installation where invention was made) and indicates the related NASA Case Number, the Subject Category Number, and the Accession Number.

Number Index: Lists inventions in order of ascending (1) NASA Case Number, (2) U.S. Patent Application Serial Number, (3) U.S. Patent Classification Number, and (4) U.S. Patent Number and indicates the related Subject Category Number and the Accession Number.

Accession Number Index: Lists all inventions in order of ascending Accession Number and indicates the related Subject Category Number, the NASA Case Number, the U.S. Patent Application Serial Number, the U.S. Patent Classification Number, and the U.S. Patent Number.

HOW TO USE THIS PUBLICATION TO IDENTIFY NASA INVENTIONS

To identify one or more NASA inventions within a specific technical field or subject, several techniques are possible with the flexibility incorporated into the NASA PAB.

(1) Using Subject Category: To identify all NASA inventions in any one of the subject categories in this issue of NASA PAB, select the desired Subject Category in the Abstract Section (Section 1) and find the inventions abstracted thereunder.

(2) Using Subject Index: To identify all NASA inventions listed under a desired technical subject index term, (A) turn to the cumulative Subject Index in the Index Section and find the invention(s) listed under the desired technical subject term. (B) Note the indicated Accession Number and the Subject Category Number. (C) Using the indicated Accession Number, turn to the inside front cover of the Index Section to determine which issue of the Abstract Section includes the Accession Number desired. (D) To find the abstract of the particular invention in the issue of the Abstract Section selected, (i) use the Subject Category Number to locate the Subject Category and (ii) use the Accession Number to locate the desired invention within the Subject Category listing.

(3) Using Patent Classification Index: To identify all inventions covered by issued NASA patents (does not include applications for patent) within a desired Patent Classification, (A) turn to the Patent Classification Number in the Number Index of Section 2 and find the associated invention(s), and (B) follow the instructions outlined in (2)(B), and (D) above.
A weightlessness simulator has a chamber and a suit in the chamber. O-rings and valves hermetically seal the chamber. A vacuum pump connected to the chamber establishes a pressure in the chamber less than atmospheric pressure. A water supply tank and water supply line supply a body of water to the chamber as a result of partial vacuum created in the chamber. In use, an astronaut enters the pressure suit through a port, which remains open to ambient atmosphere, thus supplying air to the astronaut during use. The pressure less than atmospheric pressure in the chamber is chosen so that the pressure differential from the inside to the outside of the suit corresponds to the pressure differential with the suit in outer space.
Subject Categories

(1969 – 1973)

01 Aerodynamics
Includes aerodynamics of bodies, combinations, internal flow in ducts and turbomachinery; wings, rotors, and control surfaces. For applications see: 02 Aircraft and 32 Space Vehicles. For related information see also: 12 Fluid Mechanics; and 33 Thermodynamics and Combustion.

02 Aircraft
Includes fixed-wing airplanes, helicopters, gliders, balloons, ornithopters, etc.; and specific types of complete aircraft (e.g., ground effect machines, STOL, and VTOL); flight tests; operating problems (e.g., sonic boom); safety and safety devices; economics; and stability and control. For basic research see: 01 Aerodynamics. For related information see also: 31 Space Vehicles; and 32 Structural Mechanics.

03 Auxiliary Systems
Includes fuel cells, energy conversion cells, and solar cells; auxiliary gas turbines; hydraulic, pneumatic and electrical systems; actuators; and inverters. For related information see also: 09 Electronic Equipment; 22 Nuclear Engineering; and 28 Propulsion Systems.

04 Biosciences
Includes aerospace medicine, exobiology, radiation effects on biological systems; physiological and psychological factors. For related information see also: 05 Biotechnology.

05 Biotechnology
Includes life support systems, human engineering; protective clothing and equipment; crew training and evaluation, and piloting. For related information see also: 04 Biosciences.

06 Chemistry
Includes chemical analysis and identification (e.g., spectroscopy). For applications see: 17 Materials, Metallic; 18 Materials, Nonmetallic; and 27 Propellants.

07 Communications
Includes communications equipment and techniques; noise; radio and communications blackout; modulation telemetry; tracking radar and optical observation; and wave propagation. For basic research see: 23 Physics, General; and 21 Navigation.

08 Computers
Includes computer operation and programming; and data processing. For applications, see specific categories. For related information see also: 19 Mathematics.

09 Electronic Equipment
Includes electronic test equipment and maintainability; component parts, e.g., electron tubes, tunnel diodes, transistors, integrated circuitry; microminiaturization. For basic research see: 10 Electronics. For related information see also: 07 Communications and 21 Navigation.

10 Electronics
Includes circuit theory; and feedback and control theory. For applications see: 09 Electronic Equipment. For related information see specific Physics categories.

11 Facilities, Research and Support
Includes airports; lunar and planetary bases including associated vehicles; ground support systems; related logistics; simulators; test facilities (e.g., rocket engine test stands, shock tubes, and wind tunnels); test ranges; and tracking stations.

12 Fluid Mechanics
Includes boundary-layer flow; compressible flow; gas dynamics; hydrodynamics; and turbulence. For related information see also: 01 Aerodynamics; and 33 Thermodynamics and Combustion.

13 Geophysics
Includes aeronomy; upper and lower atmosphere studies; oceanography; cartography; and geodesy. For related information see also: 20 Meteorology; 29 Space Radiation; and 30 Space Sciences.

14 Instrumentation and Photography
Includes design, installation, and testing of instrumentation systems; gyroscopes; measuring instruments and gages; recorders, transducers; aerial photography; and telescopes and cameras.

15 Machine Elements and Processes
Includes bearings, seals, pumps, and other mechanical equipment; lubrication, friction, and wear; manufacturing processes and quality control; reliability; drafting; and materials fabrication, handling, and inspection.

16 Masers
Includes applications of masers and lasers. For basic research see: 26 Physics, Solid-State.

17 Materials, Metallic
Includes cermets; corrosion; physical and mechanical properties of materials; metallurgy; and applications as structural materials. For basic research see: 06 Chemistry. For related information see also: 18 Materials, Nonmetallic; and 32 Structural Mechanics.

18 Materials, Nonmetallic
Includes corrosion; physical and mechanical properties of materials (e.g., plastics); and elastomers, hydraulic fluids, etc. For basic research see: 06 Chemistry. For related information see also: 17 Materials, Metallic; 27 Propellants; and 32 Structural Mechanics.
19 Mathematics
Includes calculation methods and theory; and numerical analysis. For applications see specific categories. For related information see also: 08 Computers.

20 Meteorology
Includes climatology; weather forecasting; and visibility studies. For related information see also: 13 Geophysics; and 30 Space Sciences.

21 Navigation
Includes guidance; autopilots; star and planet tracking; inertial platforms; and air traffic control. For related information see also: 07 Communications.

22 Nuclear Engineering
Includes nuclear reactors and nuclear heat sources used for propulsion and auxiliary power. For basic research see: 24 Physics, Atomic, Molecular, and Nuclear. For related information see also: 03 Auxiliary Systems; and 28 Propulsion Systems.

23 Physics, General
Includes acoustics, cryogenics, mechanics, and optics. For astrophysics see: 30 Space Sciences. For geophysics and related information see also: 13 Geophysics, 20 Meteorology, and 29 Space Radiation.

24 Physics, Atomic, Molecular, and Nuclear
Includes atomic, molecular and nuclear physics. For applications see: 22 Nuclear Engineering. For related information see also: 29 Space Radiation.

25 Physics, Plasma
Includes magnetohydrodynamics. For applications see: 28 Propulsion Systems.

26 Physics, Solid-State
Includes semiconductor theory; and superconductivity. For applications see: 16 Masers. For related information see also: 10 Electronics.

27 Propellants
Includes fuels; igniters; and oxidizers. For basic research see: 06 Chemistry; and 33 Thermodynamics and Combustion. For related information see also 28 Propulsion Systems.

28 Propulsion Systems
Includes air breathing, electric, liquid, solid, and magnetohydrodynamic propulsion. For nuclear propulsion see: 22 Nuclear Engineering. For basic research see: 23 Physics, General; and 33 Thermodynamics and Combustion. For applications see: 31 Space Vehicles. For related information see also: 27 Propellants.

29 Space Radiation
Includes cosmic radiation; solar flares; solar radiation; and Van Allen radiation belts. For related information see also: 13 Geophysics, and 24 Physics, Atomic, Molecular, and Nuclear.

30 Space Sciences
Includes astronomy and astrophysics; cosmology; lunar and planetary flight and exploration; and theoretical analysis of orbits and trajectories. For related information see also: 11 Facilities, Research and Support; and 31 Space Vehicles.

31 Space Vehicles
Includes launch vehicles; manned space capsules; clustered and multistage rockets; satellites; sounding rockets and probes; and operating problems. For basic research see: 30 Space Sciences. For related information see also: 28 Propulsion Systems; and 32 Structural Mechanics.

32 Structural Mechanics
Includes structural element design and weight analysis; fatigue; thermal stress; impact phenomena; vibration; flutter; inflatable structures; and structural tests. For related information see also: 17 Materials, Metallic; and 18 Materials, Nonmetallic.

33 Thermodynamics and Combustion
Includes ablation, cooling, heating, heat transfer, thermal balance, and other thermal effects; and combustion theory. For related information see also: 12 Fluid Mechanics; and 27 Propellants.

34 General
Includes information of a broad nature related to industrial applications and technology, and to basic research; defense aspects; information retrieval; management; law and related legal matters; and legislative hearings and documents.
TABLE OF CONTENTS

Subject Categories (1974-)

AERONAUTICS

Includes aeronautics (general); aerodynamics; air transportation and safety; aircraft communications and navigation; aircraft design, testing and performance; aircraft instrumentation; aircraft propulsion and power; aircraft stability and control; and research and support facilities (air).

For related information see also Astronautics.

01 AERONAUTICS (GENERAL)

02 AERODYNAMICS

Includes aerodynamics of bodies, combinations, wings, rotors, and control surfaces; and internal flow in ducts and turbomachinery.

For related information see also 34 Fluid Mechanics and Heat Transfer.

03 AIR TRANSPORTATION AND SAFETY

Includes passenger and cargo air transport operations; and aircraft accidents.

For related information see also 16 Space Transportation and 85 Urban Technology and Transportation.

04 AIRCRAFT COMMUNICATIONS AND NAVIGATION

Includes digital and voice communication with aircraft; air navigation systems (satellite and ground based); and air traffic control.

For related information see also 17 Space Communications, Spacecraft Communications, Command and Tracking and 32 Communications and Radar.

05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE

Includes aircraft simulation technology.

For related information see also 18 Spacecraft Design, Testing and Performance and 39 Structural Mechanics. For land transportation vehicles see 85 Urban Technology and Transportation.

06 AIRCRAFT INSTRUMENTATION

Includes cockpit and cabin display devices; and flight instruments.

For related information see also 19 Spacecraft Instrumentation and 35 Instrumentation and Photography.

07 AIRCRAFT PROPULSION AND POWER

Includes prime propulsion systems and systems components, e.g., gas turbine engines and compressors; and onboard auxiliary power plants for aircraft.

For related information see also 20 Spacecraft Propulsion and Power, 28 Propellants and Fuels, and 44 Energy Production and Conversion.

08 AIRCRAFT STABILITY AND CONTROL

Includes aircraft handling qualities; piloting; flight controls; and autopilots.

For related information see also 05 Aircraft Design, Testing and Performance.

09 RESEARCH AND SUPPORT FACILITIES (AIR)

Includes airports, hangars and runways; aircraft repair and overhaul facilities; wind tunnels; shock tubes; and aircraft engine test stands.

For related information see also 14 Ground Support Systems and Facilities (Space).

ASTRONAUTICS

Includes astronautics (general); astrodynamics; ground support systems and facilities (space); launch vehicles and space vehicles; space transportation; space communications, spacecraft communications, command and tracking; spacecraft design, testing and performance; spacecraft instrumentation; and spacecraft propulsion and power.

For related information see also 04 Aeronautics.

12 ASTRONAUTICS (GENERAL)

For extraterrestrial exploration see 91 Lunar and Planetary Exploration.

13 ASTRODYNAMICS

Includes powered and free-flight trajectories; and orbital and launching dynamics.

14 GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)

Includes launch complexes, research and production facilities; ground support equipment, e.g., mobile transporters; and simulators.

For related information see also 09 Research and Support Facilities (Air).

15 LAUNCH VEHICLES AND SPACE VEHICLES

Includes boosters; operating problems of launch/space vehicle systems; and reusable vehicles.

For related information see also 20 Spacecraft Propulsion and Power.

16 SPACE TRANSPORTATION

Includes passenger and cargo space transportation, e.g., shuttle operations; and space rescue techniques.

For related information see also 03 Air Transportation and Safety and 18 Spacecraft Design, Testing and Performance. For space suits see 54 Man/System Technology and Life Support.

17 SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING

Includes telemetry; space communications networks; astronavigation and guidance; and radio blackout.

For related information see also 04 Aircraft Communications and Navigation and 32 Communications and Radar.
18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE
Includes satellites; space platforms; space stations; spacecraft systems and components such as thermal and environmental controls; and attitude controls.
For life support systems see 54 MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT. For related information see also 05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE, 39 STRUCTURAL MECHANICS, and 16 SPACE TRANSPORTATION.

19 SPACECRAFT INSTRUMENTATION
For related information see also 06 AIRCRAFT INSTRUMENTATION and 35 INSTRUMENTATION AND PHOTOGRAPHY.

20 SPACECRAFT PROPULSION AND POWER
Includes main propulsion systems and components, e.g. rocket engines; and spacecraft auxiliary power sources.
For related information see also 07 AIRCRAFT PROPULSION AND POWER, 28 PROPELLANTS AND FUELS, 44 ENERGY PRODUCTION AND CONVERSION, and 15 LAUNCH VEHICLES AND SPACE VEHICLES.

CHEMISTRY AND MATERIALS
Includes chemistry and materials (general); composite materials; inorganic and physical chemistry; metallic materials; nonmetallic materials; propellants and fuels; and materials processing.

23 CHEMISTRY AND MATERIALS (GENERAL)

24 COMPOSITE MATERIALS
Includes physical, chemical, and mechanical properties of laminates and other composite materials.
For ceramic materials see 27 NONMETALLIC MATERIALS.

25 INORGANIC AND PHYSICAL CHEMISTRY
Includes chemical analysis, e.g., chromatography; combustion theory; electrochemistry; and photochemistry.
For related information see also 77 THERMODYNAMICS AND STATISTICAL PHYSICS.

26 METALLIC MATERIALS
Includes physical, chemical, and mechanical properties of metals, e.g., corrosion; and metallurgy.

27 NONMETALLIC MATERIALS
Includes physical, chemical, and mechanical properties of plastics, elastomers, lubricants, polymers, textiles, adhesives, and ceramic materials.
For composite materials see 24 COMPOSITE MATERIALS.

28 PROPELLANTS AND FUELS
Includes rocket propellants, igniters and oxidizers; their storage and handling procedures; and aircraft fuels.
For related information see also 07 AIRCRAFT PROPULSION AND POWER, 20 SPACECRAFT PROPULSION AND POWER, and 44 ENERGY PRODUCTION AND CONVERSION.

29 MATERIALS PROCESSING
Includes space-based development of products and processes for commercial application.
For biological materials see 55 SPACE BIOLOGY.

ENGINEERING
Includes engineering (general); communications and radar; electronics and electrical engineering; fluid mechanics and heat transfer; instrumentation and photography; lasers and masers; mechanical engineering; quality assurance and reliability; and structural mechanics.
For related information see also PHYSICS.

31 ENGINEERING (GENERAL)
Includes vacuum technology; control engineering; display engineering; cryogenics; and fire prevention.

32 COMMUNICATIONS AND RADAR
Includes radar; land and global communications; communications theory; and optical communications.
For related information see also 04 AIRCRAFT COMMUNICATIONS AND NAVIGATION and 17 SPACE COMMUNICATIONS, SPACECRAFT COMMUNICATIONS, COMMAND AND TRACKING. For search and rescue see 03 AIR TRANSPORTATION AND SAFETY, and 16 SPACE TRANSPORTATION.

33 ELECTRONICS AND ELECTRICAL ENGINEERING
Includes test equipment and maintainability; components, e.g., tunnel diodes and transistors; microminiaturization; and integrated circuitry.
For related information see also 60 COMPUTER OPERATIONS AND HARDWARE and 76 SOLID-STATE PHYSICS.

34 FLUID MECHANICS AND HEAT TRANSFER
Includes boundary layers; hydrodynamics; fluidics; mass transfer and ablation cooling.
For related information see also 02 AERODYNAMICS and 77 THERMODYNAMICS AND STATISTICAL PHYSICS.

35 INSTRUMENTATION AND PHOTOGRAPHY
Includes remote sensors; measuring instruments and gages; detectors; cameras and photographic supplies; and holography.
For aerial photography see 43 EARTH RESOURCES AND REMOTE SENSING. For related information see also 06 AIRCRAFT INSTRUMENTATION and 19 SPACECRAFT INSTRUMENTATION.

36 LASERS AND MASERS
Includes parametric amplifiers.
For related information see also 76 SOLID-STATE PHYSICS.

37 MECHANICAL ENGINEERING
Includes auxiliary systems (nonpower); machine elements and processes; and mechanical equipment.

38 QUALITY ASSURANCE AND RELIABILITY
Includes product sampling procedures and techniques; and quality control.

39 STRUCTURAL MECHANICS
Includes structural element design and weight analysis; fatigue; and thermal stress.
For applications see 05 AIRCRAFT DESIGN, TESTING AND PERFORMANCE and 18 SPACECRAFT DESIGN, TESTING AND PERFORMANCE.
GEOSCIENCES
Includes geosciences (general); earth resources and remote sensing; energy production and conversion; environmental pollution; geophysics; meteorology and climatology; and oceanography.
For related information see also Space Sciences.

42 GEOSCIENCES (GENERAL)

43 EARTH RESOURCES AND REMOTE SENSING
Includes remote sensing of earth resources by aircraft and spacecraft; photogrammetry; and aerial photography.
For instrumentation see 35 Instrumentation and Photography.

44 ENERGY PRODUCTION AND CONVERSION
Includes specific energy conversion systems, e.g., fuel cells; global sources of energy; geophysical conversion; and windpower.
For related information see also 07 Aircraft Propulsion and Power, 20 Spacecraft Propulsion and Power, and 28 Propellants and Fuels.

45 ENVIRONMENT POLLUTION
Includes atmospheric, noise, thermal, and water pollution.

46 GEOPHYSICS
Includes aeronomy; upper and lower atmosphere studies; ionospheric and magnetospheric physics; and geomagnetism.
For space radiation see 93 Space Radiation.

47 METEOROLOGY AND CLIMATOLOGY
Includes weather forecasting and modification.

48 OCEANOGRAPHY
Includes biological, dynamic, and physical oceanography; and marine resources.
For related information see also 43 Earth Resources and Remote Sensing.

LIFE SCIENCES
Includes life sciences (general); aerospace medicine; behavioral sciences; man/system technology and life support; and space biology.

51 LIFE SCIENCES (GENERAL)

52 AEROSPACE MEDICINE
Includes physiological factors; biological effects of radiation; and effects of weightlessness on man and animals.

53 BEHAVIORAL SCIENCES
Includes psychological factors; individual and group behavior; crew training and evaluation; and psychiatric research.

54 MAN/SYSTEM TECHNOLOGY AND LIFE SUPPORT
Includes human engineering; biotechnology; and space suits and protective clothing.
For related information see also 16 Space Transportation.

55 SPACE BIOLOGY
Includes exobiology; planetary biology; and extraterrestrial life.

MATHEMATICAL AND COMPUTER SCIENCES
Includes mathematical and computer sciences (general); computer operations and hardware; computer programming and software; computer systems; cybernetics; numerical analysis; statistics and probability; systems analysis; and theoretical mathematics.

59 MATHEMATICAL AND COMPUTER SCIENCES (GENERAL)

60 COMPUTER OPERATIONS AND HARDWARE
Includes hardware for computer graphics, firmware, and data processing.
For components see 33 Electronics and Electrical Engineering.

61 COMPUTER PROGRAMMING AND SOFTWARE
Includes computer programs, routines, algorithms, and specific applications, e.g., CAD/CAM.

62 COMPUTER SYSTEMS
Includes computer networks and special application computer systems.

63 CYBERNETICS
Includes feedback and control theory, artificial intelligence, robotics and expert systems.
For related information see also 54 Man/System Technology and Life Support.

64 NUMERICAL ANALYSIS
Includes iteration, difference equations, and numerical approximation.

65 STATISTICS AND PROBABILITY
Includes data sampling and smoothing; Monte Carlo method; and stochastic processes.

66 SYSTEMS ANALYSIS
Includes mathematical modeling; network analysis; and operations research.

67 THEORETICAL MATHEMATICS
Includes topology and number theory.

PHYSICS
Includes physics (general); acoustics; atomic and molecular physics; nuclear and high-energy physics; optics; plasma physics; solid-state physics; and thermodynamics and statistical physics.
For related information see also Engineering.

70 PHYSICS (GENERAL)
For precision time and time interval (PTTI) see 35 Instrumentation and Photography; for geophysics, astrophysics or solar physics see 46 Geophysics, 90 Astrophysics, or 92 Solar Physics.
71 ACOUSTICS
Includes sound generation, transmission, and attenuation.
For noise pollution see 45 Environment Pollution.

72 ATOMIC AND MOLECULAR PHYSICS
Includes atomic structure, electron properties, and molecular spectra.

73 NUCLEAR AND HIGH-ENERGY PHYSICS
Includes elementary and nuclear particles; and reactor theory.
For space radiation see 93 Space Radiation.

74 OPTICS
Includes light phenomena and optical devices.
For lasers see 36 Lasers and Masers.

75 PLASMA PHYSICS
Includes magnetohydrodynamics and plasma fusion.
For ionospheric plasmas see 46 Geophysics. For space plasmas see 90 Astrophysics.

76 SOLID-STATE PHYSICS
Includes superconductivity.
For related information see also 33 Electronics and Electrical Engineering and 36 Lasers and Masers.

77 THERMODYNAMICS AND STATISTICAL PHYSICS
Includes quantum mechanics; theoretical physics; and Bose and Fermi statistics.
For related information see also 25 Inorganic and Physical Chemistry and 34 Fluid Mechanics and Heat Transfer.

SOCIAL SCIENCES
Includes social sciences (general); administration and management; documentation and information science; economics and cost analysis; law, political science, and space policy; and urban technology and transportation.

80 SOCIAL SCIENCES (GENERAL)
Includes educational matters.

81 ADMINISTRATION AND MANAGEMENT
Includes management planning and research.

82 DOCUMENTATION AND INFORMATION SCIENCE
Includes information management; information storage and retrieval technology; technical writing; graphic arts; and micrography.
For computer documentation see 61 Computer Programming and Software.

83 ECONOMICS AND COST ANALYSIS
Includes cost effectiveness studies.

84 LAW, POLITICAL SCIENCE AND SPACE POLICY
Includes NASA appropriation hearings; aviation law; space law and policy; international law; international cooperation; and patent policy.

85 URBAN TECHNOLOGY AND TRANSPORTATION
Includes applications of space technology to urban problems; technology transfer; technology assessment; and surface and mass transportation.
For related information see 03 Air Transportation and Safety, 16 Space Transportation, and 44 Energy Production and Conversion.

SPACE SCIENCES
Includes space sciences (general); astronomy; astrophysics; lunar and planetary exploration; solar physics; and space radiation.
For related information see also Geosciences.

88 SPACE SCIENCES (GENERAL)

89 ASTRONOMY
Includes radio, gamma-ray, and infrared astronomy; and astrometry.

90 ASTROPHYSICS
Includes cosmology; celestial mechanics; space plasmas; and interstellar and interplanetary gases and dust.
For related information see also 75 Plasma Physics.

91 LUNAR AND PLANETARY EXPLORATION
Includes planetology; and manned and unmanned flights.
For spacecraft design or space stations see 18 Spacecraft Design, Testing and Performance.

92 SOLAR PHYSICS
Includes solar activity, solar flares, solar radiation and sunspots.
For related information see 93 Space Radiation.

93 SPACE RADIATION
Includes cosmic radiation; and inner and outer earth's radiation belts.
For biological effects of radiation see 52 Aerospace Medicine. For theory see 73 Nuclear and High-Energy Physics.

GENERAL
Includes aeronautical, astronautical, and space science related histories, biographies, and pertinent reports too broad for categorization; histories or broad overviews of NASA programs.

99 GENERAL

Section 2 • Indexes

SUBJECT INDEX ... A-1
INVENTOR INDEX .. B-1
SOURCE INDEX ... C-1
CONTRACT NUMBER INDEX ... D-1
NUMBER INDEX ... E-1
ACCESSION NUMBER INDEX ... F-1
SUBJECT INDEX

NASA PATENT ABSTRACTS BIBLIOGRAPHY

JULY 1987

Section 2

Typical Subject Index Listing

<table>
<thead>
<tr>
<th>SUBJECT HEADING</th>
<th>ABSTRACTS</th>
<th>NOC OR TITLE</th>
<th>NASA CASE NUMBER</th>
<th>SUBJECT CATEGORY NUMBER</th>
<th>NASA ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ablative system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-LEW-10359]</td>
<td>c 33</td>
<td>N72-25911</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablative system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-LEW-10359-2]</td>
<td>c 33</td>
<td>N73-25952</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablation article and method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-LAR-10439-1]</td>
<td>c 33</td>
<td>N73-27796</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sprayable low density ablators and application process</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-MFS-23598-1]</td>
<td>c 24</td>
<td>N79-24290</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intumescent-ablator coatings using endothermic fillers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-ARC-11043-1]</td>
<td>c 24</td>
<td>N79-27180</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controllable insulative for complex surfaces and method for applying the same</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-MFS-23598-1]</td>
<td>c 24</td>
<td>N80-26388</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controlled overspray spray nozzle</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-MFS-23598-1]</td>
<td>c 34</td>
<td>N82-13376</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal protection system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-MSC-18761-1]</td>
<td>c 24</td>
<td>N82-26389</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablation sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-XLA-01981]</td>
<td>c 33</td>
<td>N70-36846</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablation sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-XLA-02189-1]</td>
<td>c 37</td>
<td>N71-19540</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablation sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-MSC-11126-1]</td>
<td>c 21</td>
<td>N71-19541</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablation sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-XLA-01981]</td>
<td>c 33</td>
<td>N71-21586</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablation sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-XLA-0537]</td>
<td>c 11</td>
<td>N71-21475</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablative system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-XLA-01791]</td>
<td>c 33</td>
<td>N71-21586</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablative system</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-LEW-10359]</td>
<td>c 33</td>
<td>N72-25911</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablative materials</td>
<td>Method for making a heat insulating and ablative structure</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-XMS-01098]</td>
<td>c 15</td>
<td>N80-24326</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablation sensor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-XLA-01981]</td>
<td>c 14</td>
<td>N89-39957</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablation sensor</td>
<td>Method for making compounds Patent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-XLA-01061]</td>
<td>c 15</td>
<td>N71-10672</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablative system Patent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-LEW-05348]</td>
<td>c 33</td>
<td>N71-14032</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ablative system Patent</td>
<td>Method and apparatus for making a heat insulating and ablative structure Patent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-XMS-01816]</td>
<td>c 33</td>
<td>N71-15623</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal protection ablation spray system Patent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-XLA-02431]</td>
<td>c 14</td>
<td>N71-17601</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stand-off type ablative heat shield</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>[NASA-CASE-MSC-12143-1]</td>
<td>c 33</td>
<td>N72-17947</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The subject heading is a key to the subject content of the document. A brief description of e.g., title, title plus a title extension, or Notation of Content (NOC), is included for each subject heading, to indicate the subject heading context; these descriptions are arranged under each subject heading in ascending accession number order. The NASA Case Number serves as the prime access number to the patent documents. The Subject Category Number indicates the category in Section 1 (Abstracts) in which the patent citation and abstract are located. The NASA accession number denotes the number by which the citation is identified within the subject category.

A-1

ABSORPTION

Differential photoacoustic absorption detector | [NASA-CASE-NPO-13759-1] | c 74 | N76-17867 |

ABSORPTION SPECTRA

Stark effect spectrophotometry for continuous absorption spectra monitoring — a technique for gas analysis | [NASA-CASE-NPO-15102-1] | c 25 | N71-21519 |

ABSORPTION CROSS SECTIONS

Penetrating radiation system for detecting the amount of liquid in a tank | [NASA-CASE-NPO-12551-1] | c 36 | N86-29714 |

ABSORPTION SPECTROSCOPY

ABSORPTIVITY

Detector absorptivity measuring method and apparatus | [NASA-CASE-LAR-10807-1] | c 35 | N76-29551 |

AC GENERATORS

Signal generator | [NASA-CASE-XMF-05612] | c 09 | N79-21468 |

Superconducting alternator | [NASA-CASE-XLE-04233] | c 03 | N69-93988 |

Electrical power generating system | [NASA-CASE-MFS-23592-1] | c 33 | N83-28319 |

Coupling an induction motor type generator to ac power lines — making windmill generators compatible with public power lines | [NASA-CASE-MFS-23592-2] | c 33 | N84-33680 |

ACCELERATION

ACCELERATION (PHYSICS)

Active vibration isolator for flexible bodies Patent | [NASA-CASE-LAR-10106-1] | c 15 | N71-27169 |

Apparatus for applying simulator g-forces to an arm of an aircraft simulator Patent | [NASA-CASE-LAR-10550-1] | c 09 | N74-30597 |

G-load measuring and indicator apparatus | [NASA-CASE-ARC-10061-1] | c 35 | N75-29381 |

Helmet weight simulator | [NASA-CASE-LAR-12320-1] | c 54 | N81-27604 |

ACCELERATION PROTECTION

Universal pilot restraint suit and body support therefor Patent | [NASA-CASE-XAC-00405] | c 05 | N70-41819 |

Conditioning suit Patent | [NASA-CASE-XLA-02998] | c 05 | N71-20268 |

ACCELERATION STRESSES (PHYSIOLOGY)

ACCELERATION TOLERANCE

ACCELERATORS

Nonlinear accelerator shock tube | [NASA-CASE-NPO-13528-1] | c 09 | N77-10071 |

Spring operated accelerator and constant force spring mechanism therefor | [NASA-CASE-XAR-10898-1] | c 35 | N77-18417 |

AERODYNAMIC STABILITY

ADHESION

ADHESION TESTS

ADHESION

ADHESIVE FILTERS

ADHESIVE BONDING

ADHESIVE

ADHESION TESTS

ADHESION

ADHESIVE FILTERS

ADHESIVE BONDING

ADHESIVE

ADHESION TESTS

ADHESION

ADHESION TESTS
SUBJECT INDEX

ANTENNANS
Collapsible antenna boom and transmission line Patent [NASA-CASE-NPO-13030] c 07 N71-22719
Coupled cavity traveling wave tube with velocity aperture [NASA-CASE-LEW-12296-1] c 33 N82-26568
ANTIBIOTICS
Determination of antimicrobial susceptibilities on infected urinary tract materials [NASA-CASE-GSC-1240-1] c 52 N79-14750
ANTIFRICATION BEAINGS
High speed hybrid bearing comprising a fluid bearing and a rolling bearing combined in series [NASA-CASE-LEW-1115-1] c 15 N73-32539
Production of hollow components for rolling element bearings [NASA-CASE-LEW-1106-1] c 15 N73-33338
Method of making other material [NASA-CASE-LEW-1190-3] c 22 N80-33482
ANTIGRavity
Anti-gravity device [NASA-CASE-MFS-2277-1] c 70 N75-26789
ANTHISTIMINICS
Indomethacin-antihistamine combination for gastric ulceration control [NASA-CASE-ARC-1111-2] c 52 N81-14613
Indomethacin-antihistamine combination for gastric ulceration control [NASA-CASE-ARC-1111-1] c 52 N81-26784
ANTIREFUSAL FEEDS
Silicon nitride coated, plastic covered solar cell [NASA-CASE-LEW-1149-1] c 44 N77-14849
Broadband optical scan detector [US-PATENT-4,284,289] c 17 N83-19597
ANVILS
Apparatus for making diamonds [NASA-CASE-MFS-2096-1] c 15 N72-20446
APERTURES
Focusing system for an ion source having apertured electrodes Patent [NASA-CASE-XNP-3332] c 07 N91-10616
Method of forming aperture plate for electron microscope [NASA-CASE-ARC-1044-8] c 74 N75-12752
Method of making an apertured casting -- using duplicating mold [NASA-CASE-LEW-1169-1] c 37 N76-25350
Electron microscope aperture system [NASA-CASE-ARC-1044-3] c 35 N71-14408
APOLLO PROJECT
Space suit [NASA-CASE-MSC-1240-1] c 05 N73-32012
APOLLO ROCKET
Low contamination energy absorber [NASA-CASE-MSC-1279] c 17 N75-12475
APPLICATIONS OF MATHEMATICS
APEX
Balanced chromatic analysis scanning lens system [NASA-CASE-ARC-1099-1] c 04 N82-16509
APOTHECARY
Method of treating water wastage with microorganisms and various heavy metals [NASA-CASE-NSL-10] c 45 N84-12654
AQUEOUS SOLUTIONS
ARMS (ANATOMY)
Apparatus for separating biological cells -- suspended in aqueous polymer systems [NASA-CASE-MSC-2043-1] c 51 N80-16715
Method of forming dynamic membrane on stainless steel support [NASA-CASE-MSC-1817-1] c 26 N80-15237
Method of cross-linking polyvinyl alcohol and other water soluble resins [NASA-CASE-LEW-1301-1] c 27 N80-32515
Electrohydrolysis oxidisation system for measurement of organic concentration in water [NASA-CASE-MSC-1641-7] c 25 N82-12166
Liquid immersion apparatus for minute articles [NASA-CASE-MSC-2536-3] c 37 N82-12441
ARC DISCHARGE
Device for preventing high voltage arcing in electron beam welding Patent [NASA-CASE-XMF-0852] c 15 N71-19486
Self-excitation plasma generator having communicating annular and linear arc discharge passages Patent [NASA-CASE-XLM-30103] c 21 N75-21693
Method and apparatus for nondestructive testing -- using high frequency arc discharges [NASA-CASE-MFS-2122-1] c 38 N74-13939
Sustained arc ignition system [NASA-CASE-LEW-1244-1] c 33 N77-2885
ARC HEATING
Electric arc heater Patent [NASA-CASE-XLM-00203] c 33 N70-34540
Annular arc accelerator shock tube [NASA-CASE-XLM-1526-1] c 09 N71-10071
ARC JETS
Magnetoplasmadynamic arc thruster [NASA-CASE-LEW-1188-1] c 25 N73-25760
ARCLAMPS
Starting circuit for vapor lamps and the like Patent [NASA-CASE-XNP-01058] c 05 N71-12540
Compact, high intensity arc lamp with internal magnetic field producing means [NASA-CASE-XNP-0115-1] c 33 N77-21315
Depressurization of arc lamps [NASA-CASE-NPO-1079-1] c 33 N72-21316
Air control in compact arc lamps [NASA-CASE-NPO-1087-1] c 33 N72-22886
Fusing means and method for Xenon arc lamps [NASA-CASE-NPO-11978] c 31 N78-17238
Multiple anode arc lamp system [NASA-CASE-NPO-1085-1] c 33 N80-14330
Arc lamp power supply Patent [NASA-CASE-XLM-1357-1] c 38 N86-36262
Self-clamping arc light reflector for welding torch [NASA-CASE-MFS-2927-1] c 74 N75-15786
ARC SPRAYING
Arc spray fabrication of metal matrix composite monolithic construction [NASA-CASE-LEW-13828-1] c 24 N85-30027
ARC WELDING
Device for preventing high voltage arcing in electron beam welding Patent [NASA-CASE-XMF-00522] c 15 N71-19486
Grain refinement in TiG arc welding [NASA-CASE-MSC-19095-1] c 37 N75-19683
Self-clamping arc light reflector for welding torch [NASA-CASE-MFS-2920-1] c 74 N75-15786
ARCHITECTURE
Foldable construction block [NASA-CASE-XLM-1357-1] c 32 N73-13921
ARCHITECTURE (COMPUTERS)
Massively parallel processor computer [NASA-CASE-GSC-0223-1] c 60 N83-25378
Distributed multiprocessor memory architecture [NASA-CASE-NPO-15342-1] c 60 N83-32342
High dynamic power dissipation control system receiver [NASA-CASE-NPO-16171-1CU] c 04 N86-22720
ARGON
Liquid crystal light valves [NASA-CASE-MSC-2004-1] c 36 N78-33826
ARM (ANATOMY)
Apparatus for applying simulator g-forces to an arm of an aircraft simulator pilot [NASA-CASE-LAR-10550-1] c 09 N74-30597

A-9
SUBJECT INDEX

ATTITUDE INDEX

Ejection unit Patent [NASA-CASE-XNP-00676] c 15 N70-38996
Three-axis controller Patent [NASA-CASE-XAC-01044] c 05 N70-41581
Controller detector including automotive gain control of photomultiplier tube Patent [NASA-CASE-XNP-03914] c 21 N71-10771
Attitude sensing device Patent [NASA-CASE-LAR-10774] c 10 N71-13545
Spacecraft experiment pointing and attitude control system Patent [NASA-CASE-LAR-05464] c 21 N71-14132
Attitude control system Patent [NASA-CASE-XGS-04393] c 21 N71-15462
Reactor control system Patent [NASA-CASE-XNP-01598] c 21 N71-15583
Attitude sensor for spacecraft Patent [NASA-CASE-XGS-01654] c 21 N72-22800
Attitude control system for sounding rockets Patent [NASA-CASE-XLA-00128] c 31 N72-24750
Attitude sensor [NASA-CASE-LAR-10586-1] c 19 N74-15089
Temperature compensated digital inertial sensor -- circuit for maintaining inertial element of gyroscope or accelerometer at constant position [NASA-CASE-NPO-13044-1] c 35 N74-15094
Speed detection system [NASA-CASE-NPO-13722-1] c 74 N77-22951
Thrust augmented spin recovery device [NASA-CASE-NPO-11581] c 08 N81-19130
Aircraft control position indicator [NASA-CASE-LAR-12984-1] c 06 N84-20252
Three-axis attitude control system [NASA-CASE-GSC-12970-1] c 74 N86-20396
Emission detection system and method [NASA-CASE-MFS-25981-1] c 35 N79-14670
ATTITUDE INDICATORS
Space vehicle attitude control Patent [NASA-CASE-XLA-07038] c 21 N70-35395
Attitude control system [NASA-CASE-MFS-22167-1] c 15 N70-10113
ATTITUDE INDICATORS Photosensitive device to detect bearing deviation Patent [NASA-CASE-XNP-00438] c 21 N70-35089
Controllers Patent [NASA-CASE-XLS-07687] c 15 N71-22355
Head-up display attitude [NASA-CASE-ERC-10392] c 21 N73-14962
Attitude sensor [NASA-LAR-10586-1] c 19 N74-15099
Transitory shock absorber for attitude sensors [NASA-CASE-FRC-22905-1] c 19 N76-22894
Air speed and altitude probe [NASA-CASE-FRC-11109-1] c 06 N80-18036
Automatic attitude measurement system [NASA-CASE-FRC-11043-1] c 06 N83-33882
ATTITUDE STABILITY
Controller for automatically stabilizing the attitude of a nonguided vehicle [NASA-CASE-ARC-10134] c 20 N70-17673
Method of dampening motion with minimum spin axis disturbance [NASA-CASE-GSC-12551-1] c 18 N83-28064
AUDIO EQUIPMENT
Audio system with means for reducing noise effects [NASA-CASE-SEP-11051] c 10 N73-12244
AUDIO FREQUENCIES
Audio frequency marker system [NASA-CASE-NPO-11147] c 14 N72-27408
AUDIO SIGNALS
Method and apparatus for operating on compounded PCM voice data [NASA-CASE-KSC-11285-1] c 32 N86-27513
AUDITORY DEFECTS
Hearing and malfunction detection system [NASA-CASE-MSC-14916-1] c 33 N78-10375
AUDITORY PERCEPTION
Auditory display for the blind [NASA-CASE-HQN-10832-1] c 71 N74-21014
AUDITORY SIGNALS
Audio system with means for reducing noise effects [NASA-CASE-NPO-11601] c 10 N73-12244
AUDITORY STIMULI
Auditory display for the blind [NASA-CASE-HQN-10832-1] c 71 N74-21014
AUGER EFFECT
Apparatus for accurately preloadung auger attachment means for frangible protective material [NASA-CASE-MSC-18791-1] c 37 N83-36482
AUSTENITIC STAINLESS STEELS
Nickel aluminide coated low alloy stainless steel [NASA-CASE-LEW-11267-1] c 17 N73-32414
Device for measuring the ferrite content in an austenitic stainless-steel weld [NASA-CASE-MFS-22907-1] c 26 N76-18257
AUXPOLES
System for sterilizing objects -- cleaning space vehicle systems [NASA-CASE-KSC-11055-1] c 54 N81-24724
AUTOCORRELATION
Linear three-tap feedback shift register Patent [NASA-CASE-XNP-10531] c 09 N75-12503
AUTOMATIC CONTROLLERS
Bus voltage compensation circuit for controlling direct current motor [NASA-CASE-XMS-04215-1] c 09 N69-39987
Optical alignment system Patent [NASA-CASE-XNP-02029] c 14 N70-41955
Pulsed energy power system Patent [NASA-CASE-ARC-10774] c 10 N75-15045
Apparatus for welding torch angle and seam tracking control Patent [NASA-CASE-XNP-02029] c 09 N69-39987
Solar optical telescope dome control system Patent [NASA-CASE-MSC-10966] c 14 N77-19568
Indexing microwave switch Patent [NASA-CASE-XNP-06027] c 09 N76-25484
Automatic valve. we test temperature programmable Patent [NASA-CASE-XLA-02059] c 33 N74-24217
Automatic battery charger Patent [NASA-CASE-XNP-04747] c 03 N71-24605
Transistor servo system including a unique differential amplifier circuit Patent [NASA-CASE-XLA-00195] c 10 N71-24981
Automated fluid chemical analyzer Patent [NASA-CASE-XNP-04545] c 06 N76-26754
Automatic control of liquid cooling system by cutaneous and external auditory means [NASA-CASE-MSC-19171-1] c 05 N72-15098
Automatic flow control system for an electric motor driven device [NASA-CASE-NPO-11220] c 11 N72-20244
Automatic level control of potential plotter [NASA-CASE-NPO-11134] c 09 N72-21246
Ion thruster magnetic field control [NASA-CASE-LEW-10935-1] c 28 N72-22771
A11
Coulometer and electrode battery charging circuit Patent
(NASA-CASE-GSC-10487-1) c 03 N7-24719
Method and apparatus for conditioning of nickel-cadmium batteries
(NASA-CASE-GSC-37570-1) c 44 N7-25501

BAYARD-ALPERT IONIZATION GAGES
Ionization vacuum gauge with all but the end of the ion collector shielded Patent
(NASA-CASE-XLA-0742-4) c 14 N7-18482

BAYS (STRUCTURAL UNIT)
Deployable truss structure A01
(NASA-CASE-LAR-1311-3) c 31 N6-24867

BEADS
Rotary bead dropper and selector for testing micrometeorite detectors Patent
(NASA-CASE-KGS-03024) c 09 N7-29988
Method for thermal monitoring subsurface tissue
(NASA-CASE-LAR-1302-8) c 55 N6-20816

BEAM LEADS
Integrated circuit package with lead structure and method of preparing the same
(NASA-CASE-21734-1) c 33 N7-12951

BEAM SPLITTERS
Optical range finder having nonoverlapping complete image
(NASA-CASE-MSC-12105-1) c 14 N7-221409
Laser extensorimeter
(NASA-CASE-NPO-15559-1) c 36 N7-14380
Over-under-double pass interferometer
(NASA-CASE-NPO-13999-1) c 35 N7-18585
Method and apparatus for splitting a beam of energy — optical communication
(NASA-CASE-GSC-12083-1) c 73 N7-32848

BEAM SWITCHING
Electronic beam switching commutator Patent
(NASA-CASE-XGS-01451) c 09 N7-10677
Antenna array at focal plane of reflector with cooperating network for beam switching Patent
(NASA-CASE-GSC-10220-1) c 07 N7-27223
Dish antenna having switchable beamwidth — with truncated concave ellipsoid reflector
(NASA-CASE-GSC-11700-1) c 33 N7-19516
Single frequency, two feed dish antenna having switchable beamwidth
(NASA-CASE-GSC-11998-1) c 36 N7-15329
Switchable beamwidth multipe shape method and system
(NASA-CASE-GSC-11824-1) c 33 N7-27472

BEAM WAVEGUIDES
Laser machining apparatus Patent
(NASA-CASE-HQK-10541-2) c 15 N7-21735
Optical frequency waveguide and transmisison system Patent
(NASA-CASE-HQK-10541-4) c 15 N7-21783
Method and apparatus for aligning a laser beam projector Patent
(NASA-CASE-NPO-11087) c 23 N7-29125
Microwave power transmission beam safety system Patent
(NASA-CASE-NPO-14224-1) c 33 N7-21837
Multiprip collimator
(NASA-CASE-GSC-12068-1) c 73 N7-10900

BEAMS (RADIATION)
Method and means for recording and reconstructing holograms without use of a reference beam Patent
(NASA-CASE-EW-11003) c 16 N7-25154
Optical frequency waveguide and transmission system Patent
(NASA-CASE-HQK-10543-1) c 15 N7-23595
Method and apparatus for Doppler frequency modulation of radiation
(NASA-CASE-NPO-14524-1) c 32 N8-24510
Scannable beam forming interferometer antenna array system Patent
(NASA-CASE-GSC-12365-1) c 32 N8-28578
Method for shaping converging narrow beams — sorar mapping and target identification
(NASA-CASE-NPO-14632-1) c 32 N8-18443
Constant magnification optical tracking system
(NASA-CASE-GSC-14813-1) c 74 N7-20472
Sidewinding laser interferometer for a flight simulator
(NASA-CASE-ARC-13112-1) c 36 N8-33403
Off-axis chromatically pumped laser
(NASA-CASE-GSC-12592-1) c 36 N8-28065
Beam forming network
(NASA-CASE-NPO-15743-1) c 32 N8-92918

BEASERS
Means for phase locking the outputs of a surface emitting laser diode array
(NASA-CASE-NSG-15642-1-CLU) c 36 N8-20780

BEAMS (SUPPORT)
Foldable beam
(NASA-CASE-ARC-12077-1) c 36 N8-25525
Beam connector apparatus and assembly
(NASA-CASE-MFS-25134-1) c 33 N8-31695
Sequentially deployable maneuverable tetrahedral beam
(NASA-CASE-LAR-13098-1) c 36 N8-19479
Joint for deployable structures
(NASA-CASE-NPO-19338-1) c 36 N8-19005
Synchronously deployable double fold beam and planar truss structure
(NASA-CASE-LAR-13400-1) c 18 N8-14413
Mobile remote manipulator system for a tetrahedral truss
(NASA-CASE-MSC-20985-1) c 18 N8-15260

BEARING
Emitted vibration measurement device and method
(NASA-CASE-CRC-10981-1) c 35 N8-14670

BEARING (DIRECTION)
Light radiation direction indicator with a baffle of two partial plane
(NASA-CASE-XNP-09830) c 14 N6-24331
Redirection detection indicator including means for compensating for atmospheric attenuation Patent
(NASA-CASE-XLA-00183) c 14 N7-40229
Interferometer direction sensor Patent
(NASA-CASE-XNF-02031) c 14 N7-17655
Omnidirectional acceleration device Patent
(NASA-CASE-HQN-10780) c 14 N8-30265

BEBES
System for providing an integrated display of instantaneous information relative to aircraft altitude, heading, altitude, and horizontal situation
(NASA-CASE-FRC-11005-1) c 06 N8-16075

BELLOWS
Alloys for bearings Patent
(NASA-CASE-XLE-02003) c 15 N7-28100
Balanced bellows and global lock mechanism and spiral flax lead module Patent
(NASA-CASE-GSC-10556-1) c 31 N7-26537
Device for measuring bearing preload
(NASA-CASE-MFS-20434) c 11 N7-25288
Magnetic bearing — for supplying magnetic flux
(NASA-CASE-GSC-11079-1) c 37 N7-18574
Magnetic bearing system
(NASA-CASE-GSC-11781-1) c 37 N7-17446
Hydrostatic bearing support
(NASA-CASE-CW-11198) c 24 N7-17486
Bearing seat usable in a gas turbine engine
(NASA-CASE-CW-11257-1) c 37 N7-32505
Method of making bearing material
(NASA-CASE-LEW-11920-3) c 24 N6-33842
Suspension system for wheel rolling on a flat track — bearings for directional antennas
(NASA-CASE-NPO-13495-1) c 37 N8-21587
Antenna grout replacement system
(NASA-CASE-NPO-15202-1) c 27 N8-34043
Magnetic bearing and motor
(NASA-CASE-GSC-12796-1) c 37 N8-34323
Magnetic bearing
(NASA-CASE-GSC-12793-1) c 37 N8-34322
Unidirectional flaxic pivot
(NASA-CASE-GSC-12621-1) c 36 N8-14292
Emitted vibration measurement device and method
(NASA-CASE-MFS-25981-1) c 35 N8-20259
Portable 90 degree proof loading device
(NASA-CASE-MSC-10203-1) c 36 N8-19581

BENDS (PROCESS ENGINEERING)
Catalyst bed removing tool Patent
(NASA-CASE-XLF-00811) c 15 N7-36901
Solar heated shale pyrolysis process
(NASA-CASE-NPO-13692-1) c 25 N8-65428

BEER LAW
A multichannel photoionization chamber for absorption analysis Patent
(NASA-CASE-FRC-10044-1) c 14 N7-27090

BEES
Decontamination of petroleum products Patent
(NASA-CASE-XNP-03638) c 06 N7-23499

BELLOWS
Advanced bellows spirometer
(NASA-CASE-XAR-01547) c 05 N8-21473
Printed circuit board with bellows rivet connection Patent
(NASA-CASE-XNP-05082) c 15 N7-40160
Spherical shield Patent
(NASA-CASE-XNP-01585) c 15 N7-28037
CONTROL BOARDS

Power factor control system for ac induction motors
[NASA-CASE-MFS-25966-1] c 33 N82-11380
Phase selector for three-phase power factor controller
[NASA-CASE-MFS-25954-1] c 33 N84-27975
Three-phase power factor controller with induced EMF sensing

Motor power factor controller with a reduced voltage starter
[NASA-CASE-MFS-25955-1] c 33 N82-11380
Phase-selective three-phase power factor controller
[NASA-CASE-MFS-25954-1] c 33 N84-27975
Three-phase power factor controller with induced EMF sensing

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter

Motor power factor controller with a reduced voltage starter
DIAMONDS

Mixed diamonds for lower melting addition polyimide preparation and utilization (NASA-CASE-LAR-12054-1) c 27 N79-39316
Material for preparing addition type polyimide prepolymers (NASA-CASE-LAR-12054-2) c 27 N81-19407
The 1 - (di(alkyloxyphosphonyl)ethyl)-2,4- and 2,5-diamino benzodienes and their derivatives (NASA-CASE-ARC-11425-1) c 23 N83-28076
Fire resistant polymers based on 1-(di(alkyloxyphosphonyl)ethyl)-2,4- and 2,5-diamino benzodienes (NASA-CASE-LAR-12054-3) c 27 N84-20702
Diamonds from aromatic diacyclicenes and diamines (NASA-CASE-LAR-13344-1) c 27 N86-19462
Anhydride terminated bisarylated polyimides (NASA-CASE-LAR-13345-1) c 27 N86-20566
Process for preparing highly optically transparent/colorless aromatic polyimide film (NASA-CASE-MSC-20797-1) c 37 N86-17067
Different wavelengths (NASA-CASE-MSC-20797-2) c 37 N86-20806
Diamines (NASA-CASE-MSC-20797-3) c 37 N86-23816
Patent

DIFFUSERS

Application of semiconductor diffusants to solar cells by screen printing (NASA-CASE-LEW-12775-1) c 44 N79-11468
Diaphragm/diaphragm system for a very high vacuum environment (NASA-CASE-MFS-25791-1) c 9 N84-27749
Differential optoacoustic absorption detector (NASA-CASE-MFS-25791-2) c 9 N84-27749

DIFFUSION DIAPHRAGMS (MECHANICS)

Differential optoacoustic absorption detector (NASA-CASE-LEW-12775-1) c 44 N79-11468
Diaphragm/diaphragm system for a very high vacuum environment (NASA-CASE-MFS-25791-1) c 9 N84-27749

DIFFUSION WELDING

Thermal compression bonding of interconnectors (NASA-CASE-GSC-12860-1) c 15 N72-22489
Programmable physiological infusion (NASA-CASE-GSC-12860-2) c 15 N72-22489

DIFFUSION PUMPS

Trap for preventing diffusion pump backstreaming (NASA-CASE-LEW-11056-1) c 15 N72-22489

DIFFRACTION PATTERNS

Measurement of trap for preventing diffusion pump backstreaming (NASA-CASE-LEW-11056-1) c 15 N72-22489

ELASTIC DEFORMATION

Instrument for measuring torsional creep and recovery Patent

[NASA-CASE-XLE-00481] c 14 N71-10781

Means for suppressing or attenuating bending motion of elastic bodies Patent

[NASA-CASE-XAC-05632] c 32 N79-29769

ELASTIC MEDIA

Miniature vibration isolator Patent

[NASA-CASE-XEA-01019] c 15 N70-40156

ELASTIC PROPERTIES

Elastic universal joint Patent

[NASA-CASE-XAC-05618] c 15 N70-36947

Deformable vehicle wheel Patent

[NASA-CASE-MSF-20400] c 31 N71-18664

Threadless fastener Patent

[NASA-XFR-05320] c 15 N71-22534

Highly flattened polyurethanes Patent

[NASA-CASE-NPO-10787] c 06 N75-30376

Meter for use in detecting tension in straps having predetermined elastic characteristics Patent

[NASA-CASE-XEA-23199-1] c 35 N75-19565

ELASTIC SHEETS

Method for forming plastic materials Patent

[NASA-CASE-XMS-00516] c 15 N71-17903

ELASTOMERS

Metal valve pintle with encapsulated elastomeric body Patent

[NASA-CASE-MSC-12931] c 30 N75-12864

ELECTRICAL PHYSICS

Circuit board for preparing and handling integrated circuits Patent

[NASA-CASE-ARC-11615-1] c32 N70-10093

Method and apparatus for preparing and handling integrated circuits Patent

[NASA-CASE-ARC-11616-1] c32 N70-20094

ELECTRICAL SENSORS

Electroresistive sensor Patent

[NASA-CASE-XNP-01103-1] c 15 N73-12864

Electric arc driven wind tunnel Patent

[NASA-CASE-XLA-01478] c 11 N70-36913

Electric arc device for heating gas Patent

[NASA-CASE-XAC-00319] c 25 N70-41628

Electric arc apparatus for heating gas Patent

[NASA-CASE-XAC-01577] c 20 N70-40156

Advanced electric arc apparatus Patent

[NASA-CASE-XAC-00319] c 25 N70-41628

ELECTRIC BATTERIES

Spacecraft lead batteries Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRIC CHARGE

Charge Patent

[NASA-CASE-XAC-11600-1] c 54 N86-28619

Aluminium electrode Patent

[NASA-CASE-XLA-00390] c 33 N70-34540

Crosslinked polyethylene electrode Patent

[NASA-CASE-XAC-00392] c 15 N70-34540

ELECTRIC ARC

Small electric arc heater Patent

[NASA-CASE-XLA-00390] c 33 N70-34540

Tungsten electrode Patent

[NASA-CASE-XAC-00392] c 15 N70-34540

ELECTRIC ARC WATER TREATMENT SYSTEM

System for preparing water electrolytically Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRIC ARC WATER TREATMENT SYSTEM

System for preparing water electrolytically Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRIC BATTERIES

Solar battery system for space exploration Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRIC CHARGE

Charging and discharging system Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ESSENTIALS

Essential components Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRONIC DEVICES

Integrated circuit device Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRONICS

Electronic device Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTROCHEMISTRY

Batteries Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTROCHEMICAL REACTIONS

Electrochemical reaction Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTROCHEMICAL REACTIONS

Electrochemical reaction Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRODE DEPOSITION

Electrodeposition Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRODEPOSITS

Electrodeposits Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRODEPOSITS

Electrodeposits Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRODEPOSITION

Electrodeposition Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRODEPOSITION

Electrodeposition Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTRODEPOSITION

Electrodeposition Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTROFOSSILS

Electrofossils Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTROLYTIC DEPOSITION

Electrolytic deposition Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTROLYTIC MACHINERY

Electrolytic machinery Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELECTROLYSIS

Electrolysis Patent

[NASA-CASE-ARC-10681-1] c 35 N86-28619

ELASTIC BODIES

Bifunctional monomers having terminal oxime and cyano groups Patent

[NASA-CASE-ARC-11248-1] c 37 N75-19565

Process for the preparation of the 1,2,4-oxadiazole Patent

[NASA-CASE-ARC-11247-1] c 37 N75-19565

Process for the preparation of the 1,2,4-oxadiazole Patent

[NASA-CASE-ARC-11247-1] c 37 N75-19565

Process for the preparation of the 1,2,4-oxadiazole Patent

[NASA-CASE-ARC-11247-1] c 37 N75-19565

Process for the preparation of the 1,2,4-oxadiazole Patent

[NASA-CASE-ARC-11247-1] c 37 N75-19565

Process for the preparation of the 1,2,4-oxadiazole Patent

[NASA-CASE-ARC-11247-1] c 37 N75-19565

Process for the preparation of the 1,2,4-oxadiazole Patent

[NASA-CASE-ARC-11247-1] c 37 N75-19565

Process for the preparation of the 1,2,4-oxadiazole Patent

[NASA-CASE-ARC-11247-1] c 37 N75-19565

Process for the preparation of the 1,2,4-oxadiazole Patent

[NASA-CASE-ARC-11247-1] c 37 N75-19565

Process for the preparation of the 1,2,4-oxadiazole Patent

[NASA-CASE-ARC-11247-1] c 37 N75-19565

Process for the preparation of the 1,2,4-oxadiazole Patent

[NASA-CASE-ARC-11247-1] c 37 N75-19565
SUBJECT INDEX

ELECTRIC CONNECTORS
- Method of making a molded electric connector for printed circuit boards [NASA-CASE-10928]
- Electrostatic measurement system for contact-end connectors [NASA-CASE-MFS-22129]
- Process for preparing liquid metal electrical contact devices [NASA-CASE-LEW-13414]

ELECTRIC CONDUCTORS
- Electrostatic measurement system for contact-end connectors [NASA-CASE-MFS-22129]
- Process for preparing liquid metal electrical contact devices [NASA-CASE-LEW-13414]

ELECTRIC CURRENT
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]
- Printed circuit board with bellows rivet connector Patent [NASA-CASE-XNP-00058]

ELECTRIC FIELDS
- Temperature compensated light source using a light emitting diode [NASA-CASE-ARC-10487]
- Generating system for solar cell [NASA-CASE-XNP-00058]
- Solar cell grid patterns [NASA-CASE-ARC-10487]
- Micro current measuring device using plural logarithmic type diodes [NASA-CASE-KSC-10355]

ELECTRIC INSULATING LAYER PROCESS
- Electrode and insulator with shielded dielectric [NASA-CASE-ARC-10487]
- Electrostatic measurement system for contact-end connectors [NASA-CASE-MFS-22129]
- Process for preparing liquid metal electrical contact devices [NASA-CASE-LEW-13414]

ELECTRIC INSULATORS
- Light emitting diode to nickel oxide electrodes [NASA-CASE-KSC-10355]
- Voltage measurement system [NASA-CASE-ARC-10487]
- Micro current measuring device using plural logarithmic type diodes [NASA-CASE-KSC-10355]

ELECTRIC MATERIALS
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]

ELECTRIC MACHINES
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]

ELECTRIC MACHINERY
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]

ELECTRIC METER
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]

ELECTRIC PHOTOCHEMICAL
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]

ELECTRIC POWER
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]

ELECTRIC SHOCK
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]

ELECTRIC TRANSFORMER
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]

ELECTRIC VEHICLES
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]

ELECTRON DENSITY DETECTOR
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]

ELECTRONIUM
- Generating system for wind-powered generating system [NASA-CASE-KSC-11031]
- Pulse amplitude and width detector Patent [NASA-CASE-XNP-00058]
- Digital pulse width selection circuit Patent [NASA-CASE-XNP-00058]
- Method of making a molded connector Patent [NASA-CASE-XNP-00058]
ELECTRIC FILTERS

Static filters which sum a plurality of waves Patent

[NASA-CASE-XGP-00620] c 09 N71-24806

Remodulator filter Patent

[NASA-CASE-NPO-10198] c 09 N71-24806

Power amplifier employing the same

[NASA-CASE-XAC-05462-2] c 10 N71-17171

Multiple stage filter apparatus having low parameter sensitivity with low amplifier gain

[NASA-CASE-ARC-10192] c 09 N71-22145

Neutralization device for title device

[NASA-CASE-XLA-02609] c 09 N71-22556

Filter for third order phase locked loops

[NASA-CASE-XLA-1141-1] c 10 N72-27171

ELECTRICAL NETWORKS

High gradient directional solidification furnace

ELECTRICAL FUSES

Electric load protection device Patent

[NASA-CASE-ARC-11356-1] c 10 N71-12526

Diode and protection fuse unit Patent

[NASA-CASE-XKS-03391] c 09 N71-27297

Resistive charger Patent

[NASA-CASE-XMS-01244-1] c 33 N79-33933

ELECTRIC GENERATORS

Rectifier circuit for inverter

[NASA-CASE-KSF-03429] c 03 N69-21330

Generator for a space power system Patent

[NASA-CASE-KSF-04250] c 09 N71-20469

Solid state pulse generator with constant output width, for variable input width, in nanosecond range Patent

[NASA-CASE-KSF-03429] c 09 N71-20469

Continuous turning slip ring assembly Patent

[NASA-CASE-KSF-04250] c 09 N71-20469

Positive or dc positive dc converter Patent

[NASA-CASE-XMF-14301] c 09 N71-23188

High temperature ferromagnetic cobalt/base alloy Patent

[NASA-CASE-XLM-0829] c 17 N71-23248

Wind driven alternator Patent

[NASA-CASE-XMS-03356] c 10 N71-23315

Power system with heat pipe liquid coolant lines Patent

[NASA-CASE-MFS-14114-2] c 09 N71-24807

RC rate generator for slow speed measurement Patent

[NASA-CASE-XMF-02966] c 10 N71-24863

Wave pulse inverter Patent

[NASA-CASE-XMF-12519] c 10 N71-25139

Multiple varactor frequency doubler Patent

[NASA-CASE-XMF-04551-1] c 10 N71-26414

Phase selector and protection circuit for converter networks Patent

[NASA-CASE-GSC-10114-1] c 10 N71-27966

Power system with heat pipe liquid coolant lines Patent

[NASA-CASE-MFS-14114] c 33 N71-27862

Locking rotordynamic electrical device Patent

[NASA-CASE-XER-11046] c 09 N71-22203

Controllable load insensitive power converters

[NASA-CASE-ARC-10268] c 09 N71-25252

Annealing to dc zero, using having transistor synchronous rectifiers

[NASA-CASE-GSC-1126-1] c 10 N71-25252

Electromagnetic wave energy converter

[NASA-CASE-GSC-11394-1] c 09 N71-32109

Heat operated cryogenic electrical generator

[NASA-CASE-NPO-13303-1] c 09 N71-24837

Electric power generation system directory from laser power

[NASA-CASE-NPO-13303-1] c 36 N75-30524

Test apparatus for locating shorts during assembly of electrical buses

[NASA-CASE-MFS-11116-1] c 33 N82-24430

ELECTRIC POTENTIAL

Method and apparatus for battery charge control Patent

[NASA-CASE-KSF-05432] c 03 N71-19348

Positive dc to positive dc converter Patent

[NASA-CASE-XGP-01340] c 09 N71-31388

Variable width pulse integrator Patent

[NASA-CASE-XLA-03536] c 10 N71-23135

Automatic equilibrated potentiometer Patent

[NASA-CASE-XSC-01100] c 09 N71-27338

Pulsed excitation voltage circuit for transducers

[NASA-CASE-FRC-10068] c 09 N71-22200

Continuously variable voltage controlled phase shifter Patent

[NASA-CASE-XER-11046] c 09 N71-22200

Photobleach measurement with means for stabilizing sample surface potential

[NASA-CASE-NPO-11737-1] c 35 N78-10420

Microcomputerized electric meter diagnostic and calibration system

[NASA-CASE-KSF-11035-1] c 30 N75-24911

Driver for solar cell I-V characteristic plots

[NASA-CASE-IPO-10496-1] c 44 N80-18551

Magnetic power switch for integral circuits for power inverter voltages illustrated in various standards

[NASA-CASE-MFS-2234-1] c 33 N81-17348

Synchronized voltage contrast display analog system

[NASA-CASE-IPO-1476-1] c 33 N83-18996

Power inverter for motor to inverter control systems Patent

[NASA-CASE-XER-11046] c 51 N83-28849

Phase detector for three-phase power factor controller Patent

[NASA-CASE-LSM-11500-1] c 33 N84-27975

Simplified dc to dc converter Patent

[NASA-CASE-LEW-13495-1] c 33 N84-33663

Modulated voltage metastable ionization detector

[NASA-CASE-ARC-11500-1] c 35 N85-54347

Angular measurement system

[NASA-CASE-MFS-2582-1] c 31 N86-29055

Reverse voltage and voltage probe Patent

[NASA-CASE-NPO-16045-1] c 76 N87-13313

ELECTRIC PLANTS

Switching circuit employing regeneratively connected complementary transistors Patent

[NASA-CASE-KSF-21064-1] c 10 N70-40322

High power high voltage water cooled Patent

[NASA-CASE-KSF-02564] c 11 N71-12532

Power factor control system for AC induction motors

[NASA-CASE-MFS-23280-1] c 33 N78-10376

Shunt regulation electric power system Patent

[NASA-CASE-GSC-10135-1] c 33 N78-17296

Automotive absorption air conditioner utilizing solar and wind power systems Patent

[NASA-CASE-ARC-1116-1] c 33 N78-23566

Electrical power generating system --- for windpowered generation

[NASA-CASE-MFS-24360-3] c 33 N79-23680

ELECTRIC PLANTS

Ocean thermal plant Patent

[NASA-CASE-KSF-11104-1] c 44 N78-35242

Wind and solar powered turbine Patent

[NASA-CASE-NPO-15496-1] c 44 N84-23018

ELECTRIC POWER SUPPLIES

Current dependent filter inductance Patent

[NASA-CASE-ARC-10193] c 09 N72-17154

Thermal to electrical power conversion system with solid state switches with Seekbee effect compensation

[NASA-CASE-KSF-11108-1] c 03 N72-23048

Parasitic suppressing circuit Patent

[NASA-CASE-IPO-10403-1] c 10 N73-26228

Power inverter Patent

[NASA-CASE-MSC-12939-1] c 03 N73-31986

Inherently redundant electric heater Patent

[NASA-CASE-MFS-2146-1] c 33 N74-14995

Time temperature compensation current source

[NASA-CASE-MSC-11235] c 33 N78-17294

High voltage power supply Patent

[NASA-CASE-MSC-12939-1] c 33 N79-25147

Arc lamp power supply Patent

[NASA-CASE-LAR-13202-1] c 33 N86-32626

ELECTRIC POWER TRANSMISSION

Magnetic power switch Patent

[NASA-CASE-NPO-12043-1] c 33 N71-24802

Failure sensing and protection circuit for converter networks Patent

[NASA-CASE-GSC-11014-1] c 10 N71-27366

Power inverter Patent

[NASA-CASE-MSSC-12939-1] c 33 N73-19888

Microwave power transmission system wherein level of transmitted power is controlled by reflections from receiver

[NASA-CASE-MFS-21470-1] c 44 N74-19870
<noinput>
JOINTS (JUNCTIONS)

Electrode and insulator with shielded dielectric junction

[NASA-CASE-XLE-05775] c 09 N69-21542

Flexible joint Patent

[NASA-CASE-XNP-00416] c 15 N70-36947

Portability alignment tool Patent

[NASA-CASE-21452] c 05 N70-41371

Pressure gasket joint Patent

[NASA-CASE-XMS-09636] c 15 N71-12344

Technique of elbow bending small jacketed transfer lines Patent

[NASA-CASE-XNP-10475] c 15 N71-24687

Method and apparatus for precision sizing and joining of large diameter tubular Patent

[NASA-CASE-XMF-05114] c 15 N71-26148

Frictionless universal joint Patent

[NASA-CASE-NPO-10564] c 15 N71-26467

Spherical seal Patent

[NASA-CASE-XNP-01655] c 15 N71-28957

Universal seal Patent

[NASA-CASE-XNP-02278] c 15 N71-28951

Diffusion welding in air — solid state welding butt joint for fusion bonding, surface cleaning and heating

[NASA-CASE-LEW-11387] c 37 N74-18112

Bonded joint and method — for reducing peak shear stress in adhesive bonds

[NASA-CASE-10900] c 37 N74-23064

Flexible joint for pressurizable garment

[NASA-CASE-MSC-11072] c 54 N72-32458

Method of making an explosively wedged scarf joint

[NASA-CASE-LAR-11211] c 37 N75-12326

Latching device

[NASA-CASE-MFS-21606] c 37 N75-16665

Method of determining bond quality of power transistors attached to substrates — X ray inspection of junction microstructure

[NASA-CASE-MFS-21391] c 37 N75-26972

Externally supported internally stabilized flexible joint

[NASA-CASE-MFS-19194] c 37 N75-14460

Wrist joint assembly

[NASA-CASE-MFS-23911] c 54 N76-17766

Spacesuit mobility joints

[NASA-CASE-ARC-11058] c 54 N76-31735

Liquid-tight seal for transmission of water to control panels inside a spacecraft

[NASA-CASE-MSC-18134] c 37 N81-15563

Recoverable spring fastener

[NASA-CASE-MSC-16742] c 37 N82-26673

Pressure seal joint analyzer

[NASA-CASE-LAR-11314] c 37 N82-26676

Hydraulic pressure joint

[NASA-CASE-LAR-12482] c 37 N82-32732

Automatic weld touch guidance control system

[NASA-CASE-MSC-25807] c 37 N83-20154

Electrostatic rotary joint apparatus for large space structures

[NASA-CASE-MFS-23891] c 07 N83-20944

Self-locking mechanical center joint

[NASA-CASE-LAR-12864] c 37 N83-30336

Joint for deployable structures

[NASA-CASE-MSC-10369] c 37 N86-19050

Fluid leak indicator

[NASA-CASE-MSC-20783] c 35 N86-20755

Optical jointed joint

[NASA-CASE-LAR-12350] c 37 N86-27360

Elbow and knee joint for hard space suits

[NASA-CASE-ARC-11610] c 54 N86-26581

Shoulder and hip joint for hard space suits

[NASA-CASE-LAR-11543] c 54 N86-28620

Shoulder and hip joints for hard space suits and the like

[NASA-CASE-ARC-11544] c 54 N86-29507

Pressure space structural coupling joints

[NASA-CASE-LAR-13498] c 18 N86-31630

Flanged joint for hard space suits

[NASA-CASE-MSC-20605] c 18 N87-14373

JOSEPHSON JUNCTIONS

Doped Josephson tunneling junction for use in a sensitive IR detector

[NASA-CASE-NPO-13348] c 33 N75-31332

Cryogenically integrated circuit for Josephson voltage standards

[NASA-CASE-MSC-23845] c 33 N81-17348
A-78
SUBJECT INDEX

LASER

LASER PLASMAS

LASER RANGE FINDERS

LASER PLASMAS

LASER RANGE FINDERS

LASER SPECTROMETERS

LASER SPECTROSCOPY

LASER WINDOWS

LASERS

LEAKAGE

Device for separating occupant from an ejection seat Patent [NASA-CASE-XMS-04625] c 05 N71-20717

LATCH VEHICLE CONFIGURATIONS

Rotating launch device for a remotely piloted aircraft Patent [NASA-CASE-APC-10979-1] c 09 N71-19076

LAUNCH VEHICLES

Three stage rocket vehicle with parallel staging Patent [NASA-CASE-MFS-25678-1] c 16 N8-27277

LAUNCHERS

LEADING EDGES

Missile launch release system Patent [NASA-CASE-XMF-03198] c 30 N70-40353

Validation device for spacecraft checkout equipment Patent [NASA-CASE-XKS-10543] c 07 N71-26292

LAY-UP

LAYERS

LEACHING

Infiltration extractor Patent [NASA-CASE-MFS-20761-1] c 37 N7-15465

LEAD (METAL)

Lead-oxygen dc power supply system having a closed loop oxygen and fuel system Patent [NASA-CASE-MFS-23059-1] c 44 N7-27664

Catalyst surfaces for the chromous/chromic redox couple Patent [NASA-CASE-XLC-13484-1] c 04 N8-10792

Joining lead wires to thin platinum alloy semiconductor Patent [NASA-CASE-XMS-23651-1] c 03 N8-35338

LEAD SULFIDES

LEAD TELLURIDES

Bonding thermoelectric elements to nonmagnetic refractory metal electrodes Patent [NASA-CASE-LAW-13954-1] c 15 N8-37986

LEADING EDGE FLAPS

Leading edge vortex flaps for drag reduction — through subsonic flight Patent [NASA-CASE-LAR-12750-1] c 02 N81-19016

LEADING EDGES

Missile vehicle leading edge Patent [NASA-CASE-XLA-00165] c 31 N70-32792

Leading edge curvature based on convective heating Patent [NASA-CASE-LAW-12805-1] c 24 N77-19170

Pumped vortex Patent [NASA-CASE-LAR-12825-1] c 02 N85-19985

Geometries of roughness shapes in laminar flow Patent [NASA-CASE-LAR-13255-1] c 08 N8-17693

LEAKAGE

Rocket chamber leak test fixture Patent [NASA-CASE-XFR-09479] c 14 N6-27503

Hard space suit Patent [NASA-CASE-XHS-07043] c 14 N71-21361

Leak detector wherein a probe is monitored with ultraviolet radiation Patent [NASA-CASE-ERG-10034] c 15 N71-24866

A-79
MAGNETIC SUSPENSION

MAGNETIC AMPLIFIERS
Low current linearization of magnetic amplifier for dc transduction

MAGNETIC BEARINGS
Variable magnetic bearing

MAGNETIC CORES
Magnetic core transformers

MAGNETIC CHARGE DENSITY
Electrostatic ion engine having a permanent magnetic circuit Patent

MAGNETIC COILS
Time-division multiplexer Patent

MAGNETIC CONTROL
Feasibility of magnetic Parker diagram Patent

MAGNETIC CORES
Frequency magnetic multivibrator Patent

MAGNETIC CORES
Variable frequency magnetic multivibrator Patent

MAGNETIC CIRCULATORS
Pulse-tuned magnetic core memory element circuit with blocking oscillator feedback Patent

MAGNETIC CIRCUITS
Saturation current control apparatus for saturable core transformers Patent

MAGNETIC COUPLERS
Magnetic power switch Patent

MAGNETIC DIPOLES
Balanced linear transformer Patent

MAGNETIC DISKS
Rotating magnetic table Patent Application

MAGNETIC FIELD CONFIGURATIONS
Magnetic transistor with magnetic pole pieces providing the magnetic fields for both the magnetic sector and an ion-type vacuum pump

MAGNETIC FIELDS
Electric-arc heater Patent

MAGNETIC FIELDS
Electric storage tank venting device for zero gravity environment Patent

MAGNETIC FLUX
Electrostatic ion engine having a permanent magnetic circuit Patent

MAGNETIC FORCING
Magnetotropic metal working device Patent

MAGNETIC INDUCTION
Continuously operating induction plasma accelerator Patent

MAGNETIC LENSES
Quadropole mass filter with means to generate a noise cancelling field

MAGNETIC MATERIALS
Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles Patent

MAGNETIC MEASUREMENT
Cryogenic apparatus for measuring the intensity of magnetic fields

MAGNETIC PERMEABILITY
Linear motion valve

MAGNETIC POLES
Magnetohydrodynamic induction machine

MAGNETIC RECORDING
Incremental tape recorder and data rate converter Patent

MAGNETIC SUSPENSION
Magnetropic metal working device Patent

MAGNETIC SUSCEPTIBILITY
Magnetic core transformers

MAGNETIC SUSCEPTIBILITIES
Magnetic recording head and method of making same Patent

MAGNETIC THERMAL SENSORS
Magnetic nuclear magnetic resonance

MAGNETIC SUSPENSION
Magnetic suspension and pointing system Patent

MAGNETIC SUSPENSIONS
Magnetic suspension and pointing system Patent

MAGNETIC SUSPENSIONS
Magnetropic metal working device Patent
<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fire extinguishing apparatus having a slidable mass for selective nozzle --- for penetrating aircraft and shuttle orbiter skin</td>
</tr>
<tr>
<td>[NASA-CASE-KSC-11064-1] c 31 N81-14137</td>
</tr>
<tr>
<td>Disease model for a first vehicle to a second vehicle</td>
</tr>
<tr>
<td>[NASA-CASE-GSC-12490-1] c 37 N81-14320</td>
</tr>
<tr>
<td>Locking mechanism for orthopedic braces</td>
</tr>
<tr>
<td>[NASA-CASE-LEC-12086-2] c 52 N81-20661</td>
</tr>
<tr>
<td>[NASA-CASE-MSC-18742-1] c 37 N82-26673</td>
</tr>
<tr>
<td>Mechanical end joint system for structural columns in space shuttle orbiter</td>
</tr>
<tr>
<td>[NASA-CASE-LAR-12492-1] c 37 N83-22372</td>
</tr>
<tr>
<td>Compression test apparatus</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-17233-1] c 35 N83-23124</td>
</tr>
<tr>
<td>Apparatus for accurately preloading auger attachment means for rangeable protective material</td>
</tr>
<tr>
<td>[NASA-CASE-MSC-18791-1] c 37 N83-36426</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-14106-1] c 33 N84-25149</td>
</tr>
<tr>
<td>MEMBRANE STRUCTURES</td>
</tr>
<tr>
<td>Combal seal device</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-12258-1] c 52 N77-28716</td>
</tr>
<tr>
<td>Snap-in compressible biomedical electrode</td>
</tr>
<tr>
<td>[NASA-CASE-MSC-14623-1] c 52 N77-28717</td>
</tr>
<tr>
<td>METHODS AND APPARATUS</td>
</tr>
<tr>
<td>Temperature control apparatus for orthopedic braces</td>
</tr>
<tr>
<td>[NASA-CASE-LAR-12881-1] c 27 N79-33316</td>
</tr>
<tr>
<td>Flow compensating pressure regulator</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-12778-1] c 34 N78-22853</td>
</tr>
<tr>
<td>Bi-ocular pressure normalization technique and equipment</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-12723-1] c 52 N80-18969</td>
</tr>
<tr>
<td>Redox couples in solution and their applications</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-12783-1] c 31 N79-22475</td>
</tr>
<tr>
<td>ELECTRICAL ENGINEERING</td>
</tr>
<tr>
<td>Measurement of the system response to a step function</td>
</tr>
<tr>
<td>[NASA-CASE-NPO-14297-1] c 37 N82-27886</td>
</tr>
<tr>
<td>PHYSICS</td>
</tr>
<tr>
<td>Air pressure transducer for measuring high pressure and high speed applications</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-12783-1] c 37 N79-22475</td>
</tr>
<tr>
<td>MECHANICAL ENGINEERING</td>
</tr>
<tr>
<td>Shaft seal assembly for high speed and high pressure applications</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-12783-1] c 37 N79-22475</td>
</tr>
<tr>
<td>[NASA-CASE-GSC-12249-1] c 37 N83-21471</td>
</tr>
<tr>
<td>ANTENNAS</td>
</tr>
<tr>
<td>Multiple-antenna array for a first vehicle to a second vehicle</td>
</tr>
<tr>
<td>[NASA-CASE-MSC-12423-1] c 36 N80-18969</td>
</tr>
<tr>
<td>[NASA-CASE-MSC-18422-1] c 36 N80-20661</td>
</tr>
<tr>
<td>ACOUSTIC MEASUREMENTS</td>
</tr>
<tr>
<td>AEROSPACE</td>
</tr>
<tr>
<td>ELECTROCHEMICAL MEASUREMENTS</td>
</tr>
<tr>
<td>Monitoring and detecting fatigue in materials</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-12783-1] c 37 N79-22475</td>
</tr>
<tr>
<td>BIOLOGICAL MEASUREMENTS</td>
</tr>
<tr>
<td>HUMAN BIOMEDICAL MONITORING</td>
</tr>
<tr>
<td>INTRAOPERATIVE MONITORING</td>
</tr>
<tr>
<td>[NASA-CASE-LAR-12881-1] c 27 N79-33316</td>
</tr>
<tr>
<td>OPTICAL MEASUREMENTS</td>
</tr>
<tr>
<td>FILTERS</td>
</tr>
<tr>
<td>[NASA-CASE-LEW-12783-1] c 37 N79-22475</td>
</tr>
</tbody>
</table>
null
PRESSURE
Device

REDUCTION

for

measuring

measuring

beam

of

reflectors

parallel

SUBJECT

light

scattering

is successively

the
a pair

c 14

N71-28994

Gauge
calibration
NASA-CASE-XGS°07752]

c 14

N72-17327

c 14

N73-30390

model

pressure

and

beam

isolation

Indicated
mean-effective
NASA-CASE-LEW12661-1

pressure
]

microphone

c09

N74-17955

instrument
c35

N79-14345

Detection

orifice

of the
flow

PRESSURE

method

and

valve

]

on

c35

N80-t

layer between

a wing

measure

pressure

8358

laminar

surface

levels

device

within

Electronic

an

for

a probe

Linear

transducer

and

apparatus

a pliable

vessel

N80-20224

for

Pressure

measuring

N70-41681

c 14
pressure

sensor

c 14

transducer

calibrator

Liquid

N71-22752

c 14

pressure

measuring

Instrument
Patent

N83-29991
system

and

for

measuring

the dynamic

behavior

[NASA-CASE-XLA-05541]

c 12

of liquids

Gas

Method

for quick

c 35

for measuring

_ressure
--- atmospheric
NASA-CASE-GSC-12558-1]
Device

Pressure

N84-22934

temperature

and

c 36

changeover

between

N85-21639

wind tunnel

Sensing

]

Sealed
battery
gas
[NASA-CASE-XNP-03378

N87-14675

c 15

manifold
]

Depressurization
of arc
[NASA-CASE-NPO-10790-1]

construction
c03

Pressure

c 33

c 26

method

and device

catheter

for

ion

beam

hydrocephalus

liquid

[NASA-CASE-NPO-t5772-t
PRESSURE
REGULATORS

propellant

]

system

valve

reduction

of

N70-39922

c 15

N71-10778

regulator

Patent
c 14

control
regulator
c 05
N73-25125
and shutoff

value

and

flow

NASA-CASE-HQN-00673-t

diversion

]

pressure

Pressure

Intra-ocular

control

INASA-CASE-ARC-11251-1]
Prosthetic

urinary

[NASA-CASE-MFS-23717-1]

inflating

Cellular

pressure

N74-32878

dicrotic

notch

wing

in

drag

investigations

flight

c35
of

pressure

Electronic

and

Neo-t

4684

technique

and

flexible

N80-18690
bladders

testing

of

c 38

N76-28563

c 35
inflating

N78-10428

system

flexible
bladders
c37
N81-17433

and

aft

thrust

to external

structure

tank
c 16

in individual

N84-27784

pressure

]

thermosetting

c 44

fluoropolymers

welding

vessel

N86-25874

and

c 27

heat

following
single
step vacuum
[NASA-CASE-LEW-11388-2]

process

for

N86-32570

treatment

of

nickel

welding

process
c 37

N74-21055

alloys

C 54

N78-17677

mechanism

Prestressed
refractory
[NASA-CASE-XNP-02888]
of

structure

manufacture

N76-t4429

transducer
c 33

[NASA-CASE-MFS-23674-1
Apparatus
for accurately

N76-21390

means

for

of

Patent
c 18
bonded

for

frangible

N71-21068

fiber

flywheel

protective

vector

N81-29163
attachment

c 37

N83-36482

c 37

N86-19613

material

sensitive

latch

[NASA-CASE-MSC-20910-1]

N76-29896

c 24
auger

PRETREATMENT

using

a

Pretreatment

N77-14407

monomeric

pressure

sensor

means

N78-17359

module

with

method

in

for

for

c 35

pressure

N79-14347

investigation

c 02
adjusting

mechanism

a
for

N80-28300
for internal
N83-36483

pressure
sensor
c 35
N84-14491

measuring

system

accurately

frangible

preloading

protective

and

c 15

N69-21471

auger

attachment

c 37

N83-36482

material

reactivation

of

[NASA-CASE-LAR-13540-1SBJ
PRINTED

an

oxide-containing

and

c 25

N86-32541

CIRCUITS
feed-through

boards
and printed
[NASA-CASE-XMF-01483]
Printed

c 37
scanned

materials

catalyst

for

measurements

anti-wettable

[NASA-CASE-MSC-18791-1J
Pretreatment

wake

for

[NASA-CASE-XMS-03537]

charge

Apparatus

pressure

]
preloading

[NASA-CASE-MSC-18791-1]

cardiovascular

c 35

compression
engines

cable

connection

circuit

printed

c 14

connector

circuit

c 09

board

N69-27431

Patent

[NASA-CASE-XMF-00369]
Printed

for

cable

with

bellows

rivet

N70-36494
connection

Patent
[NASA-CASE-XNP-05082J

c 15

N70-41960

package

[NASA-CASE-ARC-11361-1
pipe

cooled

]

N84-22934

c34

N85-21568

suit tie-down

mechanism

c 37

Net-17433

c 52

N81-25660

[NASA-CASE-XMS-09635J

joint

spot

terminal

assembly

Patent

Method
of coating
with solder
Patent

c 15
circuit

paths

on printed

[NASA-CASE-XMF-01599]

Patent
c 05

joint

Electrical

[NASA-CASE-NPO-10034]

[NASA-CASE-XMS-00784]

Omnidirectional

c 35

probe

[NASA-CASE-LAR-12588-1]
PRESSURE
SUITS

Pressure
garment
[NASA-CASE-XMS-09636]

sphincter

rail

c 35

c 52

scanning

N74-15093

them

Method

transducer

Self-correcting
electronically
[NASA-CASE-LAR-12686-1]

N79-33468

--]

boosters

N75-33368

[NASA-CASE-MSC-18807-1]

technique

N71-18616

c 35

batteries

Electrical

N79-25351

method

with

c35

transducer

differential

N77-28487

N71-t7661

c 15

nondestructive

[NASA-CASE-MSC-13054]
PRESTRESSING

microorganisms

]

in conducting

c34

for

valve

rocket

Restraining

N75-13531
N75-15931

c 35

c 37

c 12

PRESSURIZING
c 54

capability

use

N7t-10577

Patent

[NASA-CASE-GSC-13008-1]
PRESSURE
WELDING

N74-13132

N7O-389f0

c 15

fluids

recombination

making

c 28

fiberglass-epoxy

scanned

for

Pressure

N73-28487

sensor

Automatic
combustion

c 52
valve

and

]

production

strain

[NASA-CASE-FRC-11024-1]

c 52

normalization

equipment
[NASA-CASE-LEW-12723-1]
Pressure

gas

transducer

calibration

Heat
]

pressure

systole

]

force

complex

System

equipment
[NASA-CASE-LEW-12955-1

initial

11326-1

N75-15050

c 37

normalization

14

pressure

of

biaxial

transducer
Intra-ocular

nickel-hydrogen

c35

[NASA-CASE-LAR-12230-1]

regulator

]

N73-t3418

14

sensors

tip

Shuttle
solid

Diffusion

t 561-1

Electronically

valve

c 37

pressure

Space

Prelosdable

transfer

SlTU

value

compensating

c

measuring

[NASA-CASE-NPO-11150]

suit pressure

NASA-CASE-LEW-12718-1

for

[NASA-CASE-LAR-11648-1]

N71-18625

Underwater
space
NASA-CASE-MF$-20332-2]

NASA-CASE-MSC-t4905-1]

]

arterial

Miniature

control
regulator
c 05
N72-20097

modulating

[NASA-CASE-MFS-25853-1]

transducer

[NASA-CASE-NPO-13643-1]

drive
system
Patent
c 03
N71-12260

NASA-CASE-NPO-t3201-11

N72-22438

c 35

detecting

Catheter

N71-11203

suit pressure

regulator

N72-22204

securing

N79-33392

apparatus

Pressure
control
[NASA-CASE-ARC-11251-1

Oxygen

probe

[NASA-CASE-LEW-1
Leak
detector

pressure

compression

c 14

streams

Trielactrode
capacitive
[NASA-CASE-ARC-10711-2]

N71-11194

Underwater
space
NASA-CASE-MFS-20332]

pressure

for

monitoring

peening

and
apparatus
vessels

c 09
sensor

Static
pressure
probe
{NASA-CASE-LAR-11552-1]

Patent
c05

hydraulic

[NASA-CASE-MSC-14757-1]

research

system

]
for

c05

NASA-CASE-NPO-12142-1]

N72-21405

increase

pressure

pressure

Measurement

N70-38603

N72-17327

14

c

calibrating

gas

bead

14

control

[NASA-CASE-MFS-21761-1
N85-29800

c05
control

High impact
pressure
NASA-CASE-NPO-t0175]

diverter

for

Patent

]

environmental

Anti.backlash
circuit
NASA.CASE-XNP-01020]

Flow

Circuit

rocket engines
c 20
N85-20008

Patent

stabilizer

NASA-CASE-XMS-09632-1

Flow

pressure

glass

c

a

N70-41370

c 33

Patent

c

Method
:_ressure

c 32

Patent

NASA-CASE-ARC-10442-1]

to

N84-16803

Patent

vessel

[NASA-CASE-LEW-13822-1

[NASA-CASE-LAR-

t 15]

NASA-CASE-XLA-05332

Pressure

for

Stagnation

Patent

regulator

suit pressure

Combined

a pressure

dynamic

of supersonic

Patent

NASA-CASE-XNP-00710]

Portable

after

[NASA-CASE-LAR-11139-1

c 15

NASA-CASE-XMS-0t

Space

range

System

N84-23095

N71-27334

responsive

Pressurized
panel
[NASA-CASE-XLA-08916-2]

N84-14583

c 76

[NASA-CASE-XNP-00450]
apparatus

system

N71-29018

switch

[NASA-CASE-MFS-14216]

using

regulating

pressure

employing

shunt

growth
of crystals
by pressure
or subcritical
solution

Resuscitation

decrease

Wide

sputter-etched

c 52

Low loss injector
for
[NASA-CASE-MFG-25989-1]

Pressure

electrical

[NASA-CASE-LAR-10910-1]
an

[NASA-CASE-LEW-f3f07-2]

for

operated

[NASA-CASE-ARC-10263-1]
Differential
pressure

N80-14229

c 44

making

Patent

forces

switch

pressure

regulator

Gas

[NASA-CASE-LAR-1Of37-1]

for coal conversion

systems
[NASA-CASE-NPO-15100-1]

Method
supercritical

rocket

Patent
c 15

transducer

pressure

N77-21316

silicon

[NASA-CASE-NPO-14474-1]

ventricular

N69-21924
Patent
N71-1105t

lamps

Method
of purifying
metallurgical
grade
reduced
pressure
atmospheric
control

of

panel

[NASA-CASE-NPO-10832]

[NASA-CASE-XMS-05894-1

Method

c 14
pressurized

N62-26987

diaphragms

NASA-CASE-XLA-07390]
Heater-mixer
for stored

probe

Pressure

letdown

Patent

[NASA-CASE-LEW-10281-t]
c 35

valve

Pressure

transducers

[NASA-CASE-ERC-10087]

force

REDUCTION

Relief

sensitive

Method
of making
[NASA-CASE-XLA-08916]

sounding

and pressure
testing
NASA-CASE-LAR-13512-1]
PRESSURE

pressure

Controlled
]

of and apparatus

for

NASA-CASE-NPO-10298]

N71-26387

package

N78-17675

c 54

c 54

means

Thin-walled

N71-23036

N74-32546

c 54

gravitational

NASA-CASE-XNP-00610]

[NASAoCASE-XNP-01660]

c 54

SWITCHES

Calibrating

Patent

N72-25119

for simulating

NASA-CASE-XLE-04677]
c 52

NASA.CASE-ARC-11361-1

]

[NASA-CASE-XMF-04494-1]
PRESSURE
VESSELS

N71-21072

N72-20098

c05
garment

[NASA-CASE-XNP-01962]

Patent

c 05
suit

organism

PRESSURE

Patent

convolute

assembly

and apparatus

Reinforcing

pressure

differential

for a pressurized
12397-1
]

suit

N71-24730

restrained

[NASA-CASE-MSC-20202-1]
N70-37925

c 14

diaphragm

cord

for pressurizable

boot

on a living

Patent

[NASA-CASE-XAC-02981]

wind

joint

Method

Patent

[NASA-CASE-XAC-02877]
Inertia

root

Pressure
suit joint analyzer
INASA-CASE-ARC-11314-1]

N70-36824

c 15

sensor

a pressurized

[NASA-CASE-MSC-t1072]

Patent

[NASA-CASE-XLA-00128]

and

using

during

c 02

method

scanning

transducer

Flexible

N69-21541

c 14

assembly

a

[NASA-CASE-ARC-11101-1
c 14

for

c 05

forming

Restraint
torso
[NASA-CASE-MSC-

capacitor

measuring

section

[NASA-CASE-MSC-12398]

N83-32026

suppression
c 71
N84-14873

[NASA-CASE-XLA-00481]
Check

of

Walking

variable

Aerodynamic

measuring

N79-24203

testing

NASA-CASE-ARC-11264-2]

A-114

noise

[NASA-CASE-XMF-01974]

Non-invasive

High

for

c32

system

NASA-CASE-LAR-12261-1]

_rassure

jet

convolute

[NASA-CASE-XMS-09637-1]
Method
section

compensation

c35

[NASA-CASE-XNP-09752]

at high temperature

transitional

to

for

for

N83-21785

SENSORS

Dynamic

areas

eccelerometer
tunnel tests

]

pressure

apparatus
[NASA°CASE.LAR.12269-1

turbulent

system

in gases

[NASA-CASE-LAR-12375-1
Static

pressure

instrumentation
]

Apparatus
and method
[NASA-CASE-LAR-11903-2]

Pressure

fluctuations

catheter

method
]

pressure

ventricular

and

Foreshortened
Patent

N83-20152

c 52

apparatus
for sensitive
[NASA-CASE-LAR-12728-1

measurement
c 14
N73-30394

NASA.CASE-LAR-10812-1

High-temperature

c37

sputter-etched

Vibration

by diffusion

Apparatus
for absolute
NASAoCASE-LAR-10000]
tunnel

Fluid driven sump
pump
[NASA-CASE-ARC-11414-1]

hydrocephalus
shunt
[NASA-CASE-LEW-13107-1]

probe

NASA-CASE-LEW-t0281-1]

Wind

between

Ion

NASA-CASE-XER-11203]
Sensing

wherein

reflected

Patent

INDEX

N71-12335

Device

for

handling

c 09
printed

{ NASA-CASE-MFS-20453

Patent
c 05

N71-12344

c 05

N71-24623

Patent

Polyimide
circuit

resin-fiberglass

circuit

]

cards

boards

N7t-20705

Patent

c 15
cloth

N71-17685
circuit

laminates

N71-29133
for

printed

boards

[NASA-CASE-MFS-20408]

c 18

N73-12604


<table>
<thead>
<tr>
<th>SUBJECT INDEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>SEMICONDUCTORS (MATERIALS)</td>
</tr>
<tr>
<td>Voltage tunable Gunn-type microwave generator Patent</td>
</tr>
<tr>
<td>Method and device for determining battery state of charge Patent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS (LAMINATES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabrication of semiconductor junctions Patent</td>
</tr>
<tr>
<td>Pressure sensitive transducers Patent</td>
</tr>
<tr>
<td>Semiconductor surface protection material Patent</td>
</tr>
<tr>
<td>High vacuum planar multijunction solar cell</td>
</tr>
<tr>
<td>Screen printed integrated back contact solar cell</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS (DEVICES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposition of semiconductor films utilizing a thermal gradient</td>
</tr>
<tr>
<td>High efficiency multijunction solar cell</td>
</tr>
<tr>
<td>Method of forming single-crystal silicon solar cells with integrated back contact Patent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS (SYSTEMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage tunable Gunn-type microwave generator Patent</td>
</tr>
<tr>
<td>Method and device for determining battery state of charge Patent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS (MATERIALS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure sensitive transducers Patent</td>
</tr>
<tr>
<td>Semiconductor surface protection material Patent</td>
</tr>
<tr>
<td>High vacuum planar multijunction solar cell</td>
</tr>
<tr>
<td>Screen printed integrated back contact solar cell</td>
</tr>
<tr>
<td>Deposition of semiconductor films utilizing a thermal gradient</td>
</tr>
<tr>
<td>High efficiency multijunction solar cell</td>
</tr>
<tr>
<td>Method of forming single-crystal silicon solar cells with integrated back contact Patent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SEMICONDUCTORS (DEVICES)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deposition of semiconductor films utilizing a thermal gradient</td>
</tr>
<tr>
<td>High efficiency multijunction solar cell</td>
</tr>
<tr>
<td>Method of forming single-crystal silicon solar cells with integrated back contact Patent</td>
</tr>
</tbody>
</table>
SILOXANES
Synthesis of silicon-containing epoxy polymers Patent
[NASA-CASE-MFS-13994-1] c 06 N71-12400
Methods for producing alternating other siloxane copolymers Patent
[NASA-CASE-XMF-02564] c 06 N71-20905
Siloxane-containing episiloxane polymers
[NASA-CASE-MFS-13994-2] c 06 N71-25418
Siloxane/episiloxane polymers having in-chain perfluorocarbon groups
[NASA-CASE-MFS-20792] c 06 N71-25418
Low outgassing polysiloxane/methylsiloxane material and process thereof
[NASA-CASE-GSC-11358-1] c 27 N69-26389
Acetylene (ethynyl) terminated polysiloxane and process for preparation thereof
[NASA-CASE-LAR-13181-1] c 27 N67-14516
Thermal protection system
[NASA-CASE-ARC-11649-1] c 05 N71-12512
Carbide/silicide/silicon self-lubricating composite
[NASA-CASE-LEW-14196-1] c 24 N71-10179
Silver alloys
Brazing alloy composition
[NASA-CASE-XMF-00656] c 26 N75-27126
Silver chlorides
Electrode for biological recording
[NASA-CASE-XMS-02872] c 05 N69-21925
Brazing paste with silver chloride
[NASA-CASE-XGS-00956] c 15 N69-21925
Silver compounds
Water management system and an electrolytic cell thereof Patent
[NASA-CASE-MFS-13960-1] c 06 N73-26100
Silver zinc batteries
Electrolyte and a method for operating same Patent
[NASA-CASE-XGS-01676] c 05 N71-29129
Additive for zinc electrodes — electric automobiles
[NASA-CASE-LEW-12396-1] c 33 N84-14422
Simulation
Method and apparatus for simulating gravitational forces on a living organism
[NASA-CASE-MSC-20202-1] c 54 N84-16803
Simulators
Method and apparatus of simulating zero gravity conditions Patent
Pneumatic simulator Patent
[NASA-CASE-XGS-10846] c 05 N71-24606
Waveform simulator Patent
[NASA-CASE-NPO-12021] c 10 N71-27365
Laser Doppler velocity simulator — to induce frequency shift
[NASA-CASE-LAR-12176-1] c 36 N80-16321
Weightlessness simulation system and process
[NASA-CASE-ARC-11649-1] c 14 N87-15235
Simultaneous equations
Method and apparatus for self-calibration and phasing of array antenna
[NASA-CASE-NPO-15920-1] c 33 N85-21490
Sine series
Electro-mechanical sine/cosine generator
[NASA-CASE-LAR-15003-1] c 09 N71-21248
Function generator for synthesizing complex vibration mode patterns
[NASA-CASE-LAR-13010-1] c 10 N73-20253
STABILIZED PLATFORMS

[SUBJECT INDEX]

STABILIZED PLATFORMS

[HYDRAULIC DRIVE mechanism Patent]

[NASA-CASE-MFS-20550-1] c 15 N71-10568

Failure detection and control means for improved drift performance of a gimbaled platform system

[ARCHITECTURE-30251-1] c 04 N76-26175

Rotary levitating base platform

[NASA-CASE-ARC-10881-1] c 27 N74-27452

Magnetic bearing and motor

[NASA-CASE-GSC-12726-1] c 37 N83-34233

STABILIZERS

[Satellite despun device Patent]

[NASA-CASE-XMF-05520] c 71 N71-20396

STABILIZERS (AGENTS)

[Hydrogen-propellant stabilized with nitroglycerine]

[NASA-CASE-NPO-12200] c 27 N72-25699

[STABILITY (DYNAMICS)]

Assembly for recovering a capsule Patent

[NASA-CASE-XNP-00184] c 30 N70-13422

Mechanical stability augmentation system Patent

[NASA-CASE-XLA-02330] c 02 N71-32485

Maintenance stability system for automatically stabilizing the attitude of a rereduced platform

[NASA-CASE-ARC-10134] c 30 N72-78783

STACKS

Remote fire truck support system --- with solenoid-controlled valve

[NASA-CASE-MFS-20155-1] c 09 N89-39868

STAGE SEPARATION

Tubular coatings having frangible connecting means

[NASA-CASE-XLA-02854] c 15 N69-27490

[STAGE SEPARATION]

Missile stage separation indicator and stage initiator Patent

[NASA-CASE-XLA-00791] c 03 N70-39930

Quick release separation mechanism Patent

[NASA-CASE-XLA-01441] c 15 N70-45672

Spacecraft separation system for spinning vehicles and/or payload separation Patent

[NASA-CASE-XLA-02132] c 31 N70-10582

Payload/burned-out motor case separation system Patent

[NASA-CASE-XLA-05036] c 31 N71-10587

Single action separation mechanism Patent

[NASA-CASE-XLA-01185] c 15 N71-22874

Lateral displacement system for separated rocket stages Patent

[NASA-CASE-XLA-04804] c 31 N71-23008

Separation simulator Patent

[NASA-CASE-XKS-05831] c 10 N71-23663

Frangible line

[NASA-CASE-MSC-11849-1] c 15 N72-22448

Tanker orbit transfer vehicle and method

[NASA-CASE-XLA-02543] c 18 N84-22610

STAGNATION PRESSURE

Testing traverse Patent

[NASA-CASE-XMF-00097] c 21 N74-12492

Stagnation pressure probe --- for measuring pressure of supersonic gas streams

[NASA-CASE-LAR-11139-1] c 35 N74-32878

STAGNATION TEMPERATURE

Enthalpy and stagnation temperature determination of a high temperature laminar flow gas stream Patent

[NASA-CASE-XLE-00266] c 14 N70-34156

STAINING

Automated single-slide staining device

[NASA-CASE-LAR-11139-1] c 51 N71-27767

STAINLESS STEELS

Method of producing stainless steel Patent

[NASA-CASE-MFS-07199] c 15 N71-20443

Ultrafiltration system for in-place inspection of brazed tube joints Patent

[NASA-CASE-MFS-20597-1] c 38 N74-15130

Method of forming a wick for a heat pipe Patent

[NASA-CASE-NPO-12391-1] c 27 N76-27515

Method of making reinforced composite structure

[NASA-CASE-XLE-12181-1] c 24 N71-19711

Method of forming dynamic membranes on stainless steel support

[NASA-CASE-MSC-18172-1] c 26 N80-19237

Moving body velocity arresting line --- stainless steel cables with energy absorbing sleeves

[NASA-CASE-LAR-12372-1] c 37 N82-18601

STAMPING

Holding fixture for a hot stamping press

[NASA-CASE-GSC-12911-1] c 37 N84-12491

SUBJECT INDEX

Ultrasound angle beam standard reflector --- ultrasound nondestructive inspection

[NASA-CASE-LAR-11313-1] c 71 N86-21276

STANDARDS

Microwave integrated circuit for Josephson voltage standards

[NASA-CASE-MFS-23845-1] c 33 N81-17348

Ultrasound angle beam standard reflector --- ultrasound nondestructive inspection

[NASA-CASE-LAR-12513-1] c 71 N86-21276

STANDING WAVES

Tubular apparatus for shaping and enhancing acoustical excitation forces

[NASA-CASE-MFS-20550-1] c 71 N71-15767

Image reproduction device with electronically variable spatial resolution

[NASA-CASE-LAR-10526-1] c 33 N82-24416

Acoustic levitation methods and apparatus

[NASA-CASE-NPO-15562] c 71 N82-27086

Methods for controlling acoustic rotation of objects

[NASA-CASE-NPO-15522] c 71 N83-32516

Vibrating-chamber levitation systems

[NASA-CASE-XNP-00184] c 35 N86-20752

STAR TRACKERS

Roll attitude sensor system Patent

[NASA-CASE-XNP-01377] c 21 N70-41856

Sun tracker with rotatable plane-parallel plate and two photoelectronics Patent

[NASA-CASE-KGS-01119] c 21 N71-10678

Canopus detector including automotive control of photomultiplier tube Patent

[NASA-CASE-XNP-01421] c 21 N71-10771

Spacecraft attitude detection system by stellar reference Patent

[NASA-CASE-XNP-03431] c 21 N71-15642

Reference voltage switching unit

[NASA-CASE-XNP-11251] c 21 N72-17157

Star tracking reference and process for the production thereof

Star tracking relay

[NASA-CASE-GSC-11188-1] c 14 N73-32320

Formation of star tracking reference Patent

[NASA-CASE-GSC-11188-7] c 14 N74-20008

Space tracker --- with a relict with a pair of sets having differing frequency response

[NASA-CASE-GSC-11188-9] c 89 N74-20088

Programmable scan/read circuitry for charged couple device imaging detectors --- spacecraft attitude control and star trackers

[NASA-CASE-NPO-15345-1] c 74 N84-23247

STARK EFFECT

Resonant waveguide stark cell --- using microwaves spectrometers

[NASA-CASE-LAR-11352-1] c 33 N75-26245

Star effect modulation of CO2 laser with N2H2

[NASA-CASE-NPO-11945-1] c 36 N76-18427

Star cell optoacoustic detection of constituent gases in sample

Star effect spectroscopy for continuous absorption spectra monitoring --- a technique for gas analysis

[NASA-CASE-NPO-15102] c 25 N81-25159

STARTERS

Starting circuit for vapor lamps and the like Patent

[NASA-CASE-XNP-01058] c 09 N71-12540

Motor run-up system --- power lines Patent

[NASA-CASE-XNP-01374-1] c 33 N75-19524

Motor power factor controller with a reduced voltage starter

[NASA-CASE-MFS-25586-1] c 32 N82-11390

Portable device for use in starting air-start units for aircraft and having cable lead testing capability

[NASA-CASE-FRG-10113-1] c 33 N80-25599

STATIC DISCHARGERS

Use of glow discharge in fluidized beds

[NASA-CASE-XLE-12245-1] c 28 N82-18401

STATIC FRICTION

Fricition measuring apparatus Patent

[NASA-CASE-XNP-00207] c 14 N71-22995

Static coefficient test method and apparatus

[NASA-CASE-GSC-11893-1] c 36 N73-31498

STATIC INVERTERS

Static inverters which sum • plurality of waves Patent

[NASA-CASE-XNP-01058] c 33 N75-28245

Motor power factor controller with a reduced voltage starter

[NASA-CASE-MFS-25586-1] c 32 N82-11390

STATIC LOADS

Instrument for measuring torsional creep and recovery Patent

[NASA-CASE-XNP-01058] c 33 N75-28245

Tension measurement device Patent

[NASA-CASE-XLE-00445] c 14 N71-10781

A-144
SUBJECT INDEX

TURBOFAN ENGINES

TURBINE BLADES
- Transition cooled turbine blade manufactured from wires Patent
 [NASA-CASE-XLE-00020] c 15 N70-33226
- Modification and improvements to cooled blades Patent
 [NASA-CASE-XLE-00020] c 15 N70-33264

TURBINE ENGINES
- High speed, self-acting shaft seal --- for use in turbine engines Patent
 [NASA-CASE-XLE-11271-1] c 15 N78-20911
- Dual cycle aircraft engine Patent
 [NASA-CASE-ARC-09400-1] c 15 N77-21181
- Composite seal for turbocharging --- for jet engines Patent
 [NASA-CASE-LEW-12339-1] c 15 N77-20641
- External liquid-fire cooling of turbine blades Patent
 [NASA-CASE-LEW-12505-1] c 20 N70-23572
- Liquid spray cooling method Patent
 [NASA-CASE-LEW-12507] c 33 N71-21512
- Mixing blades to rotors Patent
 [NASA-CASE-LEW-10530-1] c 15 N73-28515
- Leading edge protection for composite blades Patent
 [NASA-CASE-LEW-12505-1] c 24 N77-19170
- Fully plasmasprayed compliant backed ceramic turbine seal Patent
 [NASA-CASE-LEW-12366-2] c 37 N82-26647
- Method of protecting a surface with a silicon-alumina/ammonium --- coatings for gas turbine engine blades and vanes Patent
 [NASA-CASE-LEW-12343-1] c 27 N84-28841
- Fully plasmasprayed compliant backed ceramic turbine seal Patent
 [NASA-CASE-LEW-12366-1] c 27 N82-29453
- Vertical shaft seal Patent
 [NASA-CASE-LEW-12923-1] c 37 N84-12493

TURBINE PUMPS
- Pulsed power system Patent
 [NASA-CASE-ARC-07371-1] c 15 N71-11057
- Cryogenic cooling system Patent
 [NASA-CASE-ARC-07371-1] c 15 N71-12045
- Supercritical-combustion rocket Patent
 [NASA-CASE-LEW-11990-1] c 20 N74-12522
- Supercharged topping rocket propellant feed system Patent
 [NASA-CASE-LEW-12006-1] c 20 N80-14189
- Pumped vortex Patent
 [NASA-CASE-LEW-12625-1] c 20 N83-19715

TURBINE WHEELS
- Locking device for turbine rotor blades Patent
 [NASA-CASE-XNP-08016] c 28 N71-28928
- Apparatus for blades to rotors Patent
 [NASA-CASE-LEW-10533-2] c 37 N74-11300
- Blade retainer assembly Patent
 [NASA-CASE-LEW-11550-1] c 37 N77-27116

TURBINES
- Rotating shaft seal Patent
 [NASA-CASE-LEW-12638-1] c 15 N71-26294
- Method for driving two-phase turbines with enhanced efficiency Patent

TURBOCOMPRESSORS
- Multistage multiple-reentry turbine Patent
 [NASA-CASE-XLE-00120] c 15 N70-36412
- Apparatus and method for reducing thermal stress in a turbine rotor Patent
 [NASA-CASE-LEW-12223-1] c 07 N79-10057
- Combustor liner construction Patent
 [NASA-CASE-LEW-14035-1] c 07 N84-24577
- Diesel engine catalytic combustor system --- aircraft engines Patent
 [NASA-CASE-LEW-12995-1] c 23 N84-33808
- Turbofan ENGINE Patent
 [NASA-CASE-ARC-11402-1] c 20 N74-28226

TURBULENCE
- Noise suppressor --- for turbofan engine by incorporating annular acoustically porous elements in exhaust and inlet ducts Patent
 [NASA-CASE-LAR-11441-1] c 07 N79-32418
- Variable thrust nozzle for quiet turbofan engine and method of operation Patent
 [NASA-CASE-LAR-13171-1] c 07 N78-17055
- Method and apparatus for rapid thrust increases in a turbofan engine Patent
 [NASA-CASE-LAR-13171-1] c 07 N78-17055
- Throttle reverser for a long duct fan engine --- for turbofan engines Patent
 [NASA-CASE-LEW-13199-1] c 07 N82-26293
ZINC
Potassium silicate zinc coatings
[NASA-CASE-GSC-10361-1] c 18 N72-23581
Rechargeable battery which combats shape change of the zinc anode
[NASA-CASE-HQN-10862-1] c 44 N76-29699

ZINC COMPOUNDS
Method of changing the conductivity of vapor deposited gallium arsenide by the introduction of water into the vapor deposition atmosphere Patent
[NASA-CASE-XNP-01961] c 26 N71-29156
Synthesis of zinc titanate pigment and coatings containing the same
[NASA-CASE-MFS-13532] c 18 N72-17532
 Brazing alloy
[NASA-CASE-XNP-00878] c 26 N75-27127
Zinc-halide battery with molten electrolyte
[NASA-CASE-NPO-11961-1] c 44 N76-18643
Method of preparing zinc orthotitanate pigment
[NASA-CASE-MFS-23345-1] c 27 N77-30237

ZINC COMPOUNDS
Stabilized zinc oxide coating compositions Patent
[NASA-CASE-XMF-07770-2] c 18 N71-26772
Method of forming transparent films of ZnO
[NASA-CASE-FRC-10019] c 15 N73-12487

ZIRCONIUM
Zirconium modified nickel-copper alloy
[NASA-CASE-LEW-12245-1] c 26 N77-30201
Nicral ternary alloy having improved cyclic oxidation resistance
[NASA-CASE-LEW-13339-1] c 26 N82-31505
Thermal barrier coating system
[NASA-CASE-LEW-14057-1] c 24 N85-35233
Nickel base coating alloy
[NASA-CASE-LEW-13834-1] c 26 N87-14482

ZIRCONIUM ALLOYS
Cassiable hot corrosion resistant alloy
[NASA-CASE-LEW-14134-1] c 26 N87-10192

ZIRCONIUM CARBIDES
Zirconium carbide as an electrocatalyst for the chromous-chromic redox couple
[NASA-CASE-LEW-13246-1] c 44 N83-27344

ZIRCONIUM OXIDES
Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide
[NASA-CASE-GSC-11577-1] c 37 N75-15992
Bonding of sapphire to sapphire by eutectic mixture of aluminum oxide and zirconium oxide
[NASA-CASE-GSC-11577-3] c 24 N79-25143
Typical Index Number Listing

<table>
<thead>
<tr>
<th>INVENTOR</th>
<th>TITLE</th>
<th>NASA CASE NUMBER</th>
<th>SUBJECT CATEGORY NUMBER</th>
<th>NASA ACCESSION NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMS, G. D.</td>
<td>Vacuum deposition apparatus Patent</td>
<td>NASA-CASE-XMF-01667</td>
<td>c 15</td>
<td>N71-17647</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by inventor. The title of the document provides the user with a brief description of the subject matter. The NASA Case Number is the prime access point to patent documents. The subject category number indicates the category in Section 1 (Abstracts) in which the citation is located. The NASA accession number denotes the number by which the citation is identified within the subject category. The titles are arranged under each inventor in ascending accession number order.
Apogee, M. J.

Argonne, A.

Asbestos, A.

Asbestos, A.

Astrom, H. T.

Aswan, G. D.

Aswan, G. D.

Aswan, G. D.

Aronh, I. J.

Arron, I. J.

Arrington, F. C.

Asbrock, R. L.

Asbrosch, R. L.

Asad, B. H.

Asad, B. H.

Ashtor, R. R.

Ashton, R. R.
BAKSTON, B.

[Author Index]

PERSONAL AUTHOR INDEX

BAKSTON, B.

Apparatus for the determination of the existence or nonexistence of a bonding between two members Patent

[Author Index]

BAKSTON, B.

[Author Index]
PERSONAL AUTHOR INDEX

BLOCH, J. T.
Method and apparatus for fabricating improved solar cells
NASA-CASE-NPO-14416-1 c 44 N81-14389

BLOOMFIELD, H. S.
In situ laser refining of oil shale
NASA-CASE-LEW-12217-1 c 43 N78-14452

BLOSSER, E. R.
Method for determining presence of OH in magnesium oxide
NASA-CASE-NPO-10774 c 06 N72-17095

BLUC, J. W.
Propulsion apparatus and method using boil-off gas from a cryogenic liquid
NASA-CASE-XNF-25946-1 c 20 N86-26368

BLUCK, RAYMOND M.
Seamless metal-clad fiber-reinforced organic matrix composite structures and process for their manufacture
NASA-CASE-LAR-13562-1 c 24 N87-16013

BLUE, J. W.
Production of high purity I-123
NASA-CASE-LEW-10518-1 c 24 N72-39681
Method of producing I-123
NASA-CASE-LEW-11390-2 c 25 N76-27383
Production of I-123
NASA-CASE-LEW-11390-3 c 25 N76-29379
Targets for producing high purity I-123
NASA-CASE-LEW-15018-3 c 25 N78-22726

BLUM, P.

BLUM, H. C.

BLUME, J. 1.

BLUNT, D. H.

BLOCH, J. 1.

BOEDY, D. D.

BOCKWOLDT, W. H.

BOGGESS, F. J.

BOILERS, R. D.

BONAZZA, W.

BOND, H. H., JR.

BONAZZA, WALTER J.

BONAZZA, WALTER J.

BOGNER, R. S.

BOEX, M. W.

BOEX, W.

BOER, H.

BOE, M. W.

BOEHRLE, R.

BOER, K. W.

BOEHLER, R.

BOEHME, R.

BOLTON, P. N.
Fire extinguishing apparatus having a slideable mass for a penumbra nozzle
NASA-CASE-KSC-11064-1 c 31 N81-14137

BONAZZA, WALTER J.
Coaxial cable connector
NASA-CASE-NPO-16964-1CU c 33 N87-15414

BOND, H. H., JR.
Digital interface for bi-directional communication between a computer and a peripheral device
NASA-CASE-MSC-20528-1 c 60 N84-28492

BOND, W. W.
Connector internal force gauge
NASA-CASE-XNP-13918 c 14 N71-23087

BONEBRIGHT, MARK E.
Ground plane interference elimination by passive elements
NASA-CASE-NPO-16632-1-UQ c 32 N87-15390

BONSHIC, F. H.
Locking redundant link
NASA-CASE-LAR-11900-1 c 37 N79-14382

BOON, L. W.
Wire grid forming apparatus Patent
NASA-CASE-XLE-00023 c 15 N70-33330

BOND, P.
Recoverable single stage spacecraft booster Patent
NASA-CASE-XMF-01973 c 31 N70-41588

BOODLEY, L. E.
Connector pins, positive, negative and T tabs
NASA-CASE-XGS-01395 c 03 N69-21539

BOOM, R. W.
Stable superconducting magnet
NASA-CASE-XMF-05373-1 c 33 N79-21624

BOOTH, B. C.
Condenser - Separator
NASA-CASE-XLA-06645 c 15 N69-21465

BOOTH, P. W.
Separator Patent
NASA-CASE-XMF-00415 c 15 N71-16079

BOOTH, R. A.
Soldering device Patent
NASA-CASE-XLA-00415 c 15 N71-21524

BOOTH, M.

BOOTH, J. A.

BOON, J. L.

BOONE, E. W.

BOONE, H.

BOONE, W. B.

BOON, J. L.

BOON, J. L.

BOOM, R. W.

BOOZE, D. E.

BOR, M.

BOR, J. M.

BOSTROCK, J. M.

BOSE, M. W.

BOSCH, G. B.
Rotating shaft seal Patent
NASA-CASE-XNP-02862-1 c 15 N71-26294

BOSCH, W.

BOSCH, W.
Beams variable at a given output angle

(CALVET, T. G. 2003-10194)

Couple

(CALCUTT, D. A. 2003-10599)

Coupled

(CALDERON, J. F. 2003-10693)

Coupled

(CAMP, E. L. 2003-2019)

Coupled

(CAMPBELL, C. C., JR. 2003-2033)

Coupled

(CAMPBELL, C. C., JR. 2003-2034)

Coupled

(CAMPBELL, C. C., JR. 2003-2035)

Coupled

(CAMPBELL, C. C., JR. 2003-2036)

Coupled

(CAMPBELL, C. C., JR. 2003-2037)

Coupled

(CAMPBELL, C. C., JR. 2003-2038)

Coupled

(CAMPBELL, C. C., JR. 2003-2039)

Coupled

(CAMPBELL, C. C., JR. 2003-2040)

Coupled

(CAMPBELL, C. C., JR. 2003-2041)

Coupled

(CAMPBELL, C. C., JR. 2003-2042)

Coupled

(CAMPBELL, C. C., JR. 2003-2043)

Coupled

(CAMPBELL, C. C., JR. 2003-2044)

Coupled

(CAMPBELL, C. C., JR. 2003-2045)

Coupled

(CAMPBELL, C. C., JR. 2003-2046)

Coupled

(CAMPBELL, C. C., JR. 2003-2047)

Coupled

(CAMPBELL, C. C., JR. 2003-2048)

Coupled

(CAMPBELL, C. C., JR. 2003-2049)

Coupled

(CAMPBELL, C. C., JR. 2003-2050)

Coupled

(CAMPBELL, C. C., JR. 2003-2051)

Coupled

(CAMPBELL, C. C., JR. 2003-2052)

Coupled

(CAMPBELL, C. C., JR. 2003-2053)

Coupled

(CAMPBELL, C. C., JR. 2003-2054)

Coupled

(CAMPBELL, C. C., JR. 2003-2055)

Coupled

(CAMPBELL, C. C., JR. 2003-2056)

Coupled

(CAMPBELL, C. C., JR. 2003-2057)

Coupled

(CAMPBELL, C. C., JR. 2003-2058)

Coupled

(CAMPBELL, C. C., JR. 2003-2059)

Coupled

(CAMPBELL, C. C., JR. 2003-2060)

Coupled

(CAMPBELL, C. C., JR. 2003-2061)

Coupled

(CAMPBELL, C. C., JR. 2003-2062)

Coupled

(CAMPBELL, C. C., JR. 2003-2063)

Coupled

(CAMPBELL, C. C., JR. 2003-2064)

Coupled

(CAMPBELL, C. C., JR. 2003-2065)

Coupled

(CAMPBELL, C. C., JR. 2003-2066)

Coupled

(CAMPBELL, C. C., JR. 2003-2067)

Coupled

(CAMPBELL, C. C., JR. 2003-2068)

Coupled

(CAMPBELL, C. C., JR. 2003-2069)

Coupled

(CAMPBELL, C. C., JR. 2003-2070)

Coupled

(CAMPBELL, C. C., JR. 2003-2071)

Coupled

(CAMPBELL, C. C., JR. 2003-2072)

Coupled

(CAMPBELL, C. C., JR. 2003-2073)

Coupled

(CAMPBELL, C. C., JR. 2003-2074)

Coupled

(CAMPBELL, C. C., JR. 2003-2075)

Coupled

(CAMPBELL, C. C., JR. 2003-2076)

Coupled

(CAMPBELL, C. C., JR. 2003-2077)

Coupled

(CAMPBELL, C. C., JR. 2003-2078)

Coupled

(CAMPBELL, C. C., JR. 2003-2079)

Coupled

(CAMPBELL, C. C., JR. 2003-2080)

Coupled

(CAMPBELL, C. C., JR. 2003-2081)

Coupled

(CAMPBELL, C. C., JR. 2003-2082)

Coupled

(CAMPBELL, C. C., JR. 2003-2083)

Coupled

(CAMPBELL, C. C., JR. 2003-2084)

Coupled

(CAMPBELL, C. C., JR. 2003-2085)

Coupled

(CAMPBELL, C. C., JR. 2003-2086)

Coupled

(CAMPBELL, C. C., JR. 2003-2087)

Coupled

(CAMPBELL, C. C., JR. 2003-2088)

Coupled

(CAMPBELL, C. C., JR. 2003-2089)

Coupled

(CAMPBELL, C. C., JR. 2003-2090)

Coupled

(CAMPBELL, C. C., JR. 2003-2091)

Coupled

(CAMPBELL, C. C., JR. 2003-2092)

Coupled

(CAMPBELL, C. C., JR. 2003-2093)

Coupled

(CAMPBELL, C. C., JR. 2003-2094)

Coupled

(CAMPBELL, C. C., JR. 2003-2095)

Coupled

(CAMPBELL, C. C., JR. 2003-2096)

Coupled

(CAMPBELL, C. C., JR. 2003-2097)

Coupled

(CAMPBELL, C. C., JR. 2003-2098)

Coupled

(CAMPBELL, C. C., JR. 2003-2099)

Coupled

(CAMPBELL, C. C., JR. 2003-2100)

Coupled

(CAMPBELL, C. C., JR. 2003-2101)

Coupled

(CAMPBELL, C. C., JR. 2003-2102)

Coupled

(CAMPBELL, C. C., JR. 2003-2103)

Coupled

(CAMPBELL, C. C., JR. 2003-2104)

Coupled

(CAMPBELL, C. C., JR. 2003-2105)

Coupled

(CAMPBELL, C. C., JR. 2003-2106)

Coupled

(CAMPBELL, C. C., JR. 2003-2107)

Coupled

(CAMPBELL, C. C., JR. 2003-2108)

Coupled

(CAMPBELL, C. C., JR. 2003-2109)

Coupled

(CAMPBELL, C. C., JR. 2003-2110)

Coupled

(CAMPBELL, C. C., JR. 2003-2111)

Coupled

(CAMPBELL, C. C., JR. 2003-2112)

Coupled

(CAMPBELL, C. C., JR. 2003-2113)

Coupled

(CAMPBELL, C. C., JR. 2003-2114)

Coupled

(CAMPBELL, C. C., JR. 2003-2115)

Coupled

(CAMPBELL, C. C., JR. 2003-2116)

Coupled

(CAMPBELL, C. C., JR. 2003-2117)

Coupled

(CAMPBELL, C. C., JR. 2003-2118)

Coupled

(CAMPBELL, C. C., JR. 2003-2119)

Coupled

(CAMPBELL, C. C., JR. 2003-2120)

Coupled

(CAMPBELL, C. C., JR. 2003-2121)

Coupled

(CAMPBELL, C. C., JR. 2003-2122)

Coupled

(CAMPBELL, C. C., JR. 2003-2123)

Coupled

(CAMPBELL, C. C., JR. 2003-2124)

Coupled

(CAMPBELL, C. C., JR. 2003-2125)

Coupled

(CAMPBELL, C. C., JR. 2003-2126)

Coupled

(CAMPBELL, C. C., JR. 2003-2127)

Coupled

(CAMPBELL, C. C., JR. 2003-2128)

Coupled

(CAMPBELL, C. C., JR. 2003-2129)

Coupled

(CAMPBELL, C. C., JR. 2003-2130)

Coupled

(CAMPBELL, C. C., JR. 2003-2131)

Coupled

(CAMPBELL, C. C., JR. 2003-2132)

Coupled

(CAMPBELL, C. C., JR. 2003-2133)

Coupled
GARDOS, M. N.
Refactory porcelain enamel passive control coating for high temperature alloys
[NASA-CASE-MFS-20324-1] c 27 N75-21760

GARFINKEL, A. M.
Pressure sensitive transducers Patent
[NASA-CASE-ERC-10067] c 14 N71-27334

GARLAND, C. W.
Fluidic/microfluidic control Patent
[NASA-CASE-ERC-10067-2] c 27 N75-21760

GARMIRE, E. M.
Optical frequency waveguide Patent
[NASA-CASE-HQN-10541-1] c 07 N71-26291

GARRETT, J. R.
Jet engine Patent
[NASA-CASE-XGS-03427] c 10 N71-23029

GARTNER, H. D.
Dynamic pressure damper for spin stabilized vehicles Patent
[NASA-CASE-XLA-08491] c 05 N69-21380

GARSON, J. L.
Differential pressure cell Patent
[NASA-CASE-10519-2] c 05 N69-21544

GATEWOOD, J. R.
The thin film temperature sensor and method of making same Patent
[NASA-CASE-NPO-11775] c 26 N72-28761

GATLIN, J. A.
Wheel and axle slave synchronization system Patent
[NASA-CASE-XGS-03429] c 27 N71-27334

GAVIRIA, T. G.
Grain refinement Patent
[NASA-CASE-ARC-10049-1] c 04 N74-13420

GAYLORD, C. M.
Batch rheological measurement Patent
[NASA-CASE-XLA-08491] c 05 N69-21380

GEBBEN, W.
System for indicating fuel-efficient aircraft altitude Patent
[NASA-CASE-10519-2] c 05 N69-21544

GEISE, P. E., JR.
Magnetic heading reference Patent
[NASA-CASE-LAR-10970-1] c 33 N76-14372

GEBERT, J. H.
Magnetic heading reference Patent
[NASA-CASE-10970-1] c 33 N76-14372

GENNERY, D. B.
Conductive elastomeric extensor Patent
[NASA-CASE-MFS-21100-1] c 42 N72-28764

GEISE, P. E., JR.
Magnetic heading reference Patent
[NASA-CASE-LAR-10970-1] c 33 N76-14372

GENNERY, D. B.
Technique of preparing zinc orthotitanate pigment Patent
[NASA-CASE-MFS-13532] c 26 N72-28764

GEISE, P. E., JR.
Magnetic heading reference Patent
[NASA-CASE-LAR-10970-1] c 33 N76-14372

GENNERY, D. B.
Technique of preparing zinc orthotitanate pigment Patent
[NASA-CASE-10519-2] c 05 N69-21544

GEISE, P. E., JR.
Magnetic heading reference Patent
[NASA-CASE-LAR-10970-1] c 33 N76-14372

GENNERY, D. B.
Technique of preparing zinc orthotitanate pigment Patent
[NASA-CASE-MFS-13532] c 26 N72-28764

GEISE, P. E., JR.
Magnetic heading reference Patent
[NASA-CASE-LAR-10970-1] c 33 N76-14372

GENNERY, D. B.
Technique of preparing zinc orthotitanate pigment Patent
[NASA-CASE-MFS-13532] c 26 N72-28764

HIBBETT, E. A.

"Process for fabricating a metal solar array or single crystal or polycrystalline material." Patent [NASA-CASE-XNP-10770].

HIBGEN, G. E.

HICHEL, D.

HICKS, R. G.

HICKEY, J. A.

HICKMAN, M. J.

HIBBOUR, H. B.

HIBBS, J.

"Method and apparatus for determining the contents of liquid samples." Patent [NASA-CASE-GSC-10083].

HIBERSON, H. E.

HIBLEN, J.

"Method and apparatus for determining the contents of liquid samples." Patent [NASA-CASE-ARC-10083].

HIBERSON, J.

HICKS, J.

HICKMAN, M. J.

HICKEY, J. A.

HICKMAN, M. J.

HICKEY, J. A.

HICKMAN, M. J.

HICLEY, N. R.

"Temperature controlling J & E B Hilborn and B. N. Hillman, B-30"
Cross-linked polynvinyl alcohol and method of making same
[NASA-CASE-LEW-13101-2] c 23 N81-2960
Polyvinyl alcohol cross-linked with two aldehydes
Alkaline battery containing a separator of a cross-linked copolymer of vinyl alcohol and unsaturated carboxylic acid
[NASA-CASE-LEW-13102-1] c 33 N85-2914
HSU, M. T. S.
Copolymers of styrylterphenylvinyl or styryl dibenzochromes with bismaleimides
[NASA-CASE-ARC-11429-1-CU] c 27 N86-20550
High performance mixed bisimide resins and composites based thereon
[NASA-CASE-ARC-11598-150] c 24 N86-21590
Light weight fire resistant graphite composites
[US-PATENT-4,598,007] c 26 N86-28131
Boron-containing organosilane polymers and ceramic materials thereof
[NASA-CASE-ARC-11649-1-SB] c 27 N87-10265
HSU, S. S.
Preparation of T-Trichlorobenzonitrile
[NASA-CASEARC-11643-1-SB] c 23 N87-15275
Method of making same
[NASA-CASEARC-11459-2C1U] c 27 N87-15304
Vinyl stilbazoles
[NASA-CASEARC-11429-2C1U] c 27 N87-16308
HSU, Y.-Y.
Slg flow magnetohydrodynamic generator
[NASA-CASE-XLE-02083] c 03 N69-39983
HUANG, M. Y.
Self-calibrating threshold detector
[NASA-CASE-LEW-13070-1] c 35 N74-19527
HUBBARD, W. P.
Modulator-detector correlator
[NASA-CASE-ARC-12056] c 51 N74-15778
HUBBELL, T. E., JR.
Ion-beam binding of steels
HUBER, C. S.
Modification of the physical properties of freeze-dried rice
[NASA-CASE-MSC-13540-1] c 05 N72-33006
HUBER, R. F.
Compensating linkage for main rotor control
[NASA-CASE-LEW-13179-1] c 05 N81-19087
HUBER, W. C.
Hand-held self-manuvering unit Patent
[NASA-CASE-XLE-02083] c 03 N69-39983
HUBER, W. C.
Hand-held self-manuvering unit Patent
[NASA-CASE-XLE-02083] c 03 N69-39983
HUBERT, J.
Steam interface detection system
HUGHES, F. M.
Apparatus for sequentially transporting containers
[NASA-CASE-MFS-28346-1] c 37 N85-32271
HUGHES, G. M.
Preparation of dielectric coating of variable dielectric constant by plasma polymerization
[NASA-CASE-ARC-10892-2] c 27 N87-14214
HUDOCH, R.
Graphene Patent
[US-PATENT-6,000-777] c 10 N71-19469
HUELMANN, L. P.
RC networks and amplifiers employing the same
[NASA-CASE-XAC-05656-2] c 10 N72-17171
HUEY, C. A.
Digital numerically controlled oscillator
[NASA-CASE-MSC-13572-1] c 33 N81-17349
HUFF, R. G.
Apparatus for sensing temperature
[NASA-CASE-ARC-10760-1] c 45 N80-14579
HUGGINS, C. T.
Ion and electron detector
[NASA-CASE-LEW-13597-1] c 28 N76-27760
HUGHES, C. R.
Degradation of maleic anhydride Patent
[US-PATENT-5,000-777] c 10 N71-19469
HUGHES, C. T.
Method for forming pyrrole molding powders and products of said method
[NASA-CASE-LEW-14243-1] c 23 N82-29356
HUGHES, D. B.
Phase shift control for deflection type mass spectrometers
[NASA-CASE-LEW-11429-1] c 27 N85-34857
HUGHES, M. F.
Meteoroid detector
[NASA-CASE-LEW-10483-1] c 15 N73-32327
HULT, F.
Moving body velocity arresting line
[NASA-CASE-LEW-12372-1] c 37 N82-18601
HUMMEL, F. M.
Joint for deployable structures
[NASA-CASE-NPO-16038-1] c 37 N86-19605
HUMAN, D. H.
Automatic real-time pair-feeding system for animals
[NASA-CASE-ARC-10302-1] c 51 N74-15778
HUMENIK, F. M.
Gas turbine combustor Patent
[NASA-CASE-LEW-12086-1] c 26 N71-28951
HUMBER, D. M.
Impact measuring technique
[NASA-CASE-LEW-12091-1] c 14 N72-16282
HUNTER, R. E.
Scanner
[NASA-CASE-GSC-12032-2] c 43 N82-13465
HUMPHREY, D. E.
Modulated voltage metastable ionization detector
[NASA-CASE-11503-1] c 35 N85-34374
HUMPHREY, M. F.
Process for purification of waste water produced by a Kraft process pulp and paper mill
[NASA-CASE-NPO-13487-2] c 85 N70-17747
HUNTER, J. L.
Jet exhaust noise suppressor
[NASA-CASE-LEW-12354-1] c 14 N72-27466
HUNTER, S. R., JR.
Phase demodulation system with analog output
[NASA-CASE-LEW-11915-1] c 15 N76-32168
HUNTER, S. R., JR.
Phase demodulation system with analog output
[NASA-CASE-LEW-11915-1] c 15 N76-32168
HUNTER, W. J.
Conforming polisher for aspheric surface of revolution Patent
[NASA-CASE-XGS-02894] c 15 N71-22705
HUNKELER, R. E.
Foamed in place ceramic refractory insulating material Patent
[NASA-CASE-XGS-02894] c 15 N71-22705
HUNT, G. H.
System for the measurement of ultra-low stray light levels
[NASA-CASE-MFS-23513-1] c 74 N79-11865
HUNT, J. G.
Extrusion can
[NASA-CASE-NPO-10812] c 15 N73-13464
HUNT, J. L.
Hypersonic airbreathing missile Patent
[NASA-CASE-LAR-12294-1] c 15 N78-32168
HUNT, S. R., JR.
Multiparameter vision testing apparatus
[NASA-CASE-MSC-13801-2] c 54 N75-27759
HUNTER, R. E.
Method and apparatus for neutralizing potentials induced on spacecraft surfaces
[NASA-CASE-GSC-11953-1] c 74 N79-11865
HUNTRESS, W. T.
Ion and electron detector for use in an IC spectrometer
[NASA-CASE-NPO-13479-1] c 35 N77-10492
HUNTRESS, W. T., JR.
Microwave resonance ion source using small permanent magnet
[NASA-CASE-NPO-14324-1] c 72 N80-21763
HURO, W. A.
System for the measurement of ultra-low stray light levels
[NASA-CASE-MFS-23513-1] c 74 N79-11865
HURO, W. J.
Digital filter for reducing sampling jitter in digital control systems Patent
[NASA-CASE-NPO-10808] c 08 N71-29034
LAMPTON, M. L.

LAMPTON, M. L.

LAUB, J. H.

LAVIGNE, R. W.

LAIRD, J. W.

LAIRD, J. W.

LAMBERT, W. R.

LANDE, K. S.

LANE, J. W.

LANEY, C. C., JR.

LANEY, C. C., JR.

LANEY, C. C., JR.

LAMBERT, W. R.

LAMMEL, W. E.

LANDOWitz, P. F., JR.

LANDE, K. S.

LANE, J. W.

LANDE, K. S.

LANDE, K. S.

LANE, J. W.

LANE, J. W.

LANDE, K. S.

LANDE, K. S.

LANE, J. W.

LANE, J. W.

LANE, J. W.

LANDE, K. S.

LANDE, K. S.
Method and apparatus for calibrating the ionosphere and application to surveillance of geophysical events [NASA-CASE-NPO-15430-1] c 46 N65-21846

MALDEN, D. L

Digital television mixture separation cell Patent [NASA-CASE-XMS-09696] c 05 N71-12344

MANDELL, K. D.

MARCUS, B. D.

Flat plate heat pipe [NASA-CASE-GSC-11998-1] c 34 N77-32413

MARCUS, H. L

MARCUS, G. T.

MARK, C. J.

Supercritical fuel system [NASA-CASE-LAR-12260-1] c 07 N81-29129

MARGAULT, S.

Arrangement for damping the resonance in a laser diode [NASA-CASE-NPO-15958-1] c 36 N65-30305

MARGOLIS, J. S.

MARR, F. J.

MARRONI, R. A.

Coherently pulsed laser source [NASA-CASE-NPO-15111-1] c 36 N82-29589

MARSH, A. W.

Correlation spectrometer having high resolution and multiplexing capability [NASA-CASE-NPO-15558-1] c 27 N84-34705

MARGASON, P. M.

Electrostatic thruster with improved ion injector [NASA-CASE-LAR-12260-1] c 28 N71-10574

MARTY, R. J.

MARGRAB, H. J.

High pressure four-way valve Patent [NASA-CASE-XNP-00214] c 15 N70-39808

MARTINOS, C. A.

MARTY, R. J.

MARLOW, M. O.

System for enhancing tool-exchange capabilities of a portable robot [NASA-CASE-MFS-22283-1] c 37 N75-33395

MARLOW, R. E.

Remotely operable articulated manipulator [NASA-CASE-MFS-22283-1] c 37 N78-30946

MARUCCI, C. H.

MARUMI, R. A.

Controlled glass bead peening Patent [NASA-CASE-LAR-12261-1] c 15 N78-10224

MARVIN, M. A.

Thermal shock resistant hafnia ceramic material [NASA-CASE-NPO-11207-2] c 28 N72-22772

MARKLEY, F. R.

Polycarboxylic acid and method for preparing polymeric materials and a method for using polymeric materials [NASA-CASE-LAR-12261-1] c 15 N78-10224

MARKOS, P. M.

Analytical test apparatus and method for determining the oxide content of alkali metal [NASA-CASE-LAR-12261-1] c 15 N78-10224

MARGARITIS, K.

Electrostatic thruster with improved ion injector [NASA-CASE-LAR-12260-1] c 28 N71-10574

MARTINOS, C. A.

B-46

MCBRYAR

MCBRYAR, L. J.

MCBRAY, T.

MCCABE, J. C.

MCCAK, J. R.

MCCALL, J. R.

MCCALLIN, P. L.

MCCALLON, J. O.

MCCALWELL, J. R.

MCCAMPBELL, W. M.

MCCANTUELL, L. H.

MCCANNER, D. J.

MCCAUSER, D. J.

MCCAUSEY, D. J.

MCCAUSLEY, R. T.

MCCAUSELI, J. R.

MCCAW, D. L.

MCCAWLEY, D. J.

MCCAY, T. R.

MCCED, D. O.

MCCEDID, D. J.

MCCEDDO, D. G.

MCCEDDO, D. L.

MCCEDDO, D. L.
<table>
<thead>
<tr>
<th>Author</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phillips, W. C.</td>
<td>Method of forming a wick for a heat pipe [NASA CASE-NPO-15391-1]</td>
</tr>
<tr>
<td>Piersol, K. R.</td>
<td>component housing compositions [NASA CASE-NPO-13120-1]</td>
</tr>
<tr>
<td>Pickles, C. J.</td>
<td>Nuclear thermionic converter [NASA CASE-ARC-11110-1]</td>
</tr>
<tr>
<td>Pickrell, L. F.</td>
<td>Solar powered aircraft [NASA CASE-LAR-12615-1]</td>
</tr>
<tr>
<td>Phillips, W. M.</td>
<td>Shell side liquid metal boiler [NASA CASE-NPO-13001-1]</td>
</tr>
<tr>
<td>Pierrotto, T. J.</td>
<td>Patent [NASA CASE-GSC-10218-1]</td>
</tr>
<tr>
<td>Pigg, T.</td>
<td>Patent [NASA CASE-ARC-11100-1]</td>
</tr>
<tr>
<td>Pinnock, H. M.</td>
<td>Guide for a typewriter [NASA CASE-MFS-15218-1]</td>
</tr>
<tr>
<td>Pippo, B. D., JR.</td>
<td>Variable-geometry winged reentry vehicle Patent [NASA CASE-XLA-01481-1]</td>
</tr>
<tr>
<td>Pipkin, R. M.</td>
<td>Patent [NASA CASE-MFS-25707-1]</td>
</tr>
<tr>
<td>Pint, E.</td>
<td>Patent [NASA CASE-XLE-02624-1]</td>
</tr>
<tr>
<td>Pinto, J.</td>
<td>Patent [NASA CASE-XLE-00350-1]</td>
</tr>
<tr>
<td>Pipi, H.</td>
<td>Patent [NASA CASE-ARC-10390-1]</td>
</tr>
</tbody>
</table>

Additional Information:

- **Title:** Various patents and innovations related to aerospace, energy, and environmental technologies.
- **Authors:** Multiple authors listed, each associated with different projects or technologies.
- **Innovations:** Include variable-gain winged reentry vehicles, nuclear thermionic converters, solar powered aircraft, and more.
- **Patents:** Various patents are referenced, indicating the development and invention of new technologies.

Note: The table provides a concise representation of the document's content, focusing on key authors, titles, and technologies mentioned. This summary captures the essence of the document's contributions to the field of innovation and invention.
SNYDER, R. K.
Snyder, R. S.
PERSONAL
SOLTIS, S.
SOLONEN, S.
SOINI, H. E.
SOHL, G.
SODD, V. J.
SORENSEN, C. E.
SOURS, W. P.
SOTHERLMND, A. W., JR.
SOTER, G.

[NASA-CASE-MFS-23001-1] c 35 N86-32697
[NASA-CASE-MFS-23001-1] c 35 N86-32697
[NASA-CASE-MFS-23041-1] c 27 N86-28034

Apparatus for producing oxidation protection coatings for polymers
[SNA-CASE-LEW-14072-2] c 27 N86-32697
SOREY, J. A.
Sovstex, Inc.
Soyies, J. A., B.
Snell, R. G.
SOWE, W. D.
SOX, W. G.
SPADY, A., A., B.
SPARKS, R. H.
SPARKER,
[NASA-CASE-XLA-01787-1] c 11 N71-16028
SPAIN, L. L.
SPATT, P.
SPAWA, S.
SPEAR, J. L.
SPIESE, J. R.
SPEEGER, J. B.
SPECH, R. A.
SPEAR, R. R.
SPECH, R. A.
SPENCER, J. L.
TABACK, I. Small conductive particle sensor [NASA-CASE-LAR-12552-1] c 35 N75-14143
TADDEO, F. V. Protection for energy conversion systems [NASA-CASE-XGS-04808] c 03 N90-25146
TALBOT, M. Pulse generating circuit employing switch means on ends of small conductive particle sensor for depositing thin films [NASA-CASE-MFS-20775-1] c 31 N75-12161
TALBOΥ, W. M. Rotor motion module space station Patent [NASA-CASE-XGS-01906] c 31 N70-41373
TAUSCHER, P. C. Wind tunnel model and method [NASA-CASE-LAR-10812-1] c 09 N74-17955
TAYLOR, T. L. High resolution detecting of photosensitive resist [Patent] c 37 N71-15754
TAYLOR, L. L. Flexible composite resin mould [NASA-CASE-XNP-08837] c 18 N71-16210
TAYLOR, L. T. Aluminum ion-containing polyamide adhesives [NASA-CASE-LAR-12540-1] c 27 N82-11206
TAYLOR, R. L. Vibrational position stability and operativeness checking [Patent] c 10 N71-27272
TAYLOR, M. S. Field-effect modified epoxy compositions [NASA-CASE-ARC-11418-1] c 24 N84-11213
TAYLOR, R. C. Crop with high T superconducting NbN films [NASA-CASE-MSC-12561-1] c 18 N76-17185
TAYLOR, T. L. Complete hybridization system [NASA-CASE-ARC-13452-1] c 37 N75-15464
THIBODAUX, J. G. JR. Prosthetic occlusive device for an internal passageway [NASA-CASE-MFS-25740-1] c 52 N84-11744
THOMPSON, W. L. Method of producing high T superconducting NbN films [NASA-CASE-MSC-16681-1-CU] c 76 N86-21401
THOMAS, S. L. Method of producing high T superconducting NbN films [NASA-CASE-MSC-16681-1] c 76 N86-21401
THERIARD, G. JR. Precision heat forming of tetrafluoroethylene tubing [NASA-CASE-MSC-18430-1] c 37 N82-24491
THEAKSTON, H. A. Floating nut retention system [NASA-CASE-MSC-16938-1] c 37 N80-23653

TASHBVAR, P. W. Static deflecting and depositing thin films [NASA-CASE-MFS-20775-1] c 31 N75-12161
TAULB, W. M. Space vehicle system [NASA-CASE-MSC-12561-1] c 18 N76-17185
TAUSCHER, P. C. Filler for third order phase locked systems [NASA-CASE-NPO-11941-1] c 10 N73-27171
TEIPLER, J. L. Computer for testing and apparatus for an active feedback control array [NASA-CASE-NPO-11941-1] c 32 N79-24210
TEIPER, E. H. Regenerable device for scrubbing breathable air of CO2 and moisture without special heat exchanger equipment [NASA-CASE-MSC-14771-1] c 54 N77-23272
TERRAY, A. Method of making an apertured casing [NASA-CASE-XGS-01289] c 37 N76-23570
TEITELRUM, S. Patent for a piezoelectric mechanism [NASA-CASE-XGS-02889] c 32 N84-22546
TEITELRUM, S. Television signal scan rate conversion system Patent [NASA-CASE-LAR-13151-1] c 05 N86-19310
TEITELRUM, H. E. Method of making a solid propellant rocket motor [NASA-CASE-MSC-16681-1-CU] c 76 N86-21401
TEITELRUM, L. A. Apparatus for depositing thin films [NASA-CASE-MFS-20775-1] c 31 N75-12161
TEITELRUM, L. A. Apparatus for depositing thin films [NASA-CASE-MFS-20775-1] c 31 N75-12161
TEITELRUM, L. A. Apparatus for depositing thin films [NASA-CASE-MFS-20775-1] c 31 N75-12161
TEITELRUM, L. A. Apparatus for depositing thin films [NASA-CASE-MFS-20775-1] c 31 N75-12161
TEITELRUM, L. A. Apparatus for depositing thin films [NASA-CASE-MFS-20775-1] c 31 N75-12161
Inverted lift/drag controller for aircraft
[NASA-CASE-ARC-10456-1] c 05 N75-12930
Low heat leak connector for cryogenic systems
[NASA-CASE-XLE-02367-1] c 31 N79-21225
Airborne Instruments Lab., Deer Park, N. Y.
High-Q bandpass resonators utilizing bandstop resonator pairs
[NASA-CASE-GSC-10990-1] c 09 N73-26195
Altech, Inc., Washington, D.C.
Protection for energy conversion systems
[NASA-CASE-XGS-04808] c 03 N69-25146
Inverter with means for base current shaping for sweeping charge carriers from base region Patent
[NASA-CASE-XGS-06226] c 10 N70-25950
American Air Filter Co., Inc., St. Louis, Mo.
Gas filter mounting structure
[NASA-CASE-MSC-12297] c 14 N72-23457
Telespectrograph Patent
[NASA-CASE-XLA-02373] c 14 N71-18699
Pneumatic mirror support system
[NASA-CASE-XLE-02321] c 11 N69-24321
X-ray reflection collimator adapted to focus X-radiation directly on a detector Patent
[NASA-CASE-XHE-04106] c 14 N70-40240
Anamp Corp., Redwood City, Calif.
Method for making conductors for ferroelectric memory arrays
[NASA-CASE-LAR-10994-1] c 24 N75-13032
Anocut Engineering Co., Chicago, Ill.
Apparatus for electrolytically tapered or contoured cavities
[NASA-CASE-XNP-08385-1] c 37 N80-14395
Applied Magnetics Corp., Goleta, Calif.
Magnetic recording head and method of making same Patent
[NASA-CASE-GSC-10097-1] c 08 N71-27210
Intumescence paints Patent
[NASA-CASE-AARC-00991-1] c 18 N71-15469
Army Air Mobility Research and Development Lab., Hampton, Va.
Helicopter anti-torque system using strakes Patent
[NASA-CASE-LAR-13233-1] c 05 N84-33400
Army Aviation Research and Development Command, Moffett Field, Calif.
Clutchless multiple drive source for output shaft Patent
[NASA-CASE-XNP-11325-1] c 37 N82-22496
ARCO, Inc., Arnold Air Force Station, Tenn.
Phenolic spiral pair for rotating the plane of parallel light beams Patent
[NASA-CASE-XLE-11311-1] c 74 N83-13978
Astro Research Corp., Carperitia, Calif.
Foldable beam Patent
[NASA-CASE-LAR-12077-1] c 31 N81-25259
Astro-Space Labs., Inc., Huntsville, Ala.
Linear differential pressure sensor Patent
[NASA-CASE-XMF-01974] c 14 N71-22752
Athens Coll., Ala.
Apparatus and method for heating a material in a transparent ampoule Patent
[NASA-CASE-XNP-10412-1] c 27 N83-36220
Spherically-shaped resonator Patent
[NASA-CASE-XNP-01897] c 28 N70-35381
Auburn Research Foundation, Inc., Ala.
Shaped modulated fluid amplifier Patent
[NASA-CASE-XMF-01890] c 12 N71-17578
Laser coolant and ultraviolet filter Patent
[NASA-CASE-MSC-20180] c 16 N72-12440

Typical Source Index Listing

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>TITLE</th>
<th>NUMBER</th>
<th>CATEGORY</th>
<th>ACCESSION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Airborne Instruments Lab., Deer Park, N. Y.</td>
<td>High-Q bandpass resonators utilizing bandstop resonator pairs</td>
<td>NASA-CASE-GSC-10990-1</td>
<td>c 09</td>
<td>N73-26195</td>
</tr>
</tbody>
</table>

Listings in this index are arranged alphabetically by source. The title of the document provides the user with a brief description of the subject matter. The NASA Case Number is the prime access point to patent documents. The subject category indicates the category in Section 1 (Abstracts) in which the citation is located. The NASA accession number identifies the document by number by which the citation is identified within the subject category. The titles are arranged under each source in ascending accession number order.

A

Adjoint Systems, Inc., Huntsville, Ala.
Low-light video array tracking system Patent
[NASA-CASE-MFS-25717-1] c 35 N84-37266

Aeroflex Laba, Inc., Plainview, N. Y.
Rotary actuator Patent
[NASA-CASE-NPO-10244] c 15 N72-26371

Aerojet-General Corp., El Monte, Calif.
High-speed infrared furnace
[NASA-CASE-XLE-10466] c 17 N69-25147
Ammonium perchlorate composite propellant containing an organic transitional metal chelate catalytic additive Patent
[NASA-CASE-LAR-10173-1] c 27 N71-14090
Swirling flow nozzle Patent
[NASA-CASE-XNP-03692] c 28 N71-24321
Automatic battery charger Patent
[NASA-CASE-XNP-04758] c 03 N71-24905
Attitude control system for sounding rockets Patent
[NASA-CASE-XGS-01654] c 31 N71-24750
Tensile strength testing device Patent
[NASA-CASE-XNP-05634] c 15 N71-24834
Hydroforming techniques using epoxy molds Patent
[NASA-CASE-XLE-05641-1] c 15 N71-26346
Electrical apparatus for detection of thermal decomposition of insulation Patent
[NASA-CASE-XMF-03998] c 14 N71-27186
Method and apparatus for nondestructive testing of pressure vessels Patent
[NASA-CASE-NPO-12142-1] c 38 N76-28653

Aerojet-General Corp., Glendale, Calif.
Rotating shaft seal Patent
[NASA-CASE-XNP-02862-1] c 15 N71-26294

Aerojet-General Corp., Sacramento, Calif.
Process of forming particles in a cryogenic path Patent
[NASA-CASE-NPO-10250] c 23 N71-16212

Auburn Univ., Ala.
Automatic frequency control for FM transmitter Patent
[NASA-CASE-MFS-21540-1] c 32 N74-19790
Isolated output system for a class D switching-mode amplifier Patent
[NASA-CASE-MFS-21616-1] c 33 N76-30429
Frequency modulated oscillator Patent
[NASA-CASE-MFS-21811-1] c 33 N77-17351

Automatics, Anaheim, Calif.
Adaptive voting computer system Patent
[NASA-CASE-MSC-13932-1] c 62 N74-14920

Avco Corp., Cincinnati, Ohio.
Method for forming beryllium molding powders and products of said method Patent
[NASA-CASE-LAR-10423-1] c 23 N82-29358
Avco Corp., New York.
Signal multiplexer Patent
[NASA-CASE-XGS-01110] c 07 N69-24334

Avco Corp., Waltham, Mass.
Method and apparatus for making a heat insulating and ablative structure Patent
[NASA-CASE-XMS-20209-1] c 33 N71-20834

Baldwin Electronics, Inc., Little Rock, Ark.
Digitalplus analog output encoder Patent
[NASA-CASE-GSC-12115-1] c 62 N76-31946

Valve actuator Patent
[NASA-CASE-XHM-01206] c 15 N70-35409

Turnstile slot antenna Patent
[NASA-CASE-XSC-11428-1] c 32 N74-20684

Battelle Columbus Labs., Ohio.
Arrangement of strain gages to substrates Patent
[NASA-CASE-EFC-10065-1] c 35 N80-20560

Battelle Memorial Inst., Columbus, Ohio.
Process for preparation of dizainidosilanes Patent
[NASA-CASE-XMF-06409] c 06 N71-22320
Process for preparation of high-molecular- weight polyoxalysilanes Patent
[NASA-CASE-XMF-08674] c 06 N71-28807
Method for determining presence of OH in magnesium oxide Patent
[NASA-CASE-XNP-06957] c 14 N71-21688
Mineral carbon dioxide sensor and methods Patent
[NASA-CASE-MSC-13323-1] c 14 N72-21408
Wedge immersed thermistor bolometers Patent
[NASA-CASE-XGS-01245-1] c 35 N79-33449

Battelle Columbus Labs., Ohio.
Arrangement of strain gages to substrates Patent
[NASA-CASE-EFC-10065-1] c 35 N80-20560

Battelle Memorial Inst., Richland, Wash.
Low temperature aluminum alloy Patent
[NASA-CASE-XMF-02786] c 17 N71-20743

Battelle Northwest Labs., Richland, Wash.
Preparation of high purity copper fluoride Patent
[NASA-CASE-LEW-10794-1] c 06 N72-17095

Beaulac and Lomb, Inc., Rochester, N. Y.
Perovskite type objective including field shaping lens Patent
[NASA-CASE-GSC-10700] c 23 N71-30027
Illumination system including a virtual light source Patent
[NASA-CASE-EHM-01076] c 23 N71-30292

Baylor Univ., Houston, Tex.
EEG sleep analyzer and method of operation Patent
[NASA-CASE-MSC-13262-1] c 05 N71-24725
Superlow-temperature multi-component solvent coal extraction

C-12
CORPORATE SOURCE

Lockheed Aircraft Corp., Burbank, Calif.
Utton Systems, Inc., Minneapolis, Minn.
Utton Industries, Park, Md.

[NASA-CASE-MSC-18382-2] c 27 N84-14324
Heat resistant protective hand covering Patent
[NASA-CASE-MSC-20091-1] c 54 N84-23113
Heat resistant protective hand covering Patent
[NASA-CASE-MSC-20211-1] c 54 N84-26484

Apparatus for detecting the amount of material in a resonant cavity container Patent
[NASA-CASE-XNP-02500] c 18 N71-27937
Emergency earth orbit escape device Patent
[NASA-CASE-MSC-13281] c 31 N71-18859
Solar energy powered helicopter Patent
[NASA-CASE-MSC-10545-1] c 21 N72-31627
Coaxial inverted geometry transistor having bunched emitter Patent
[NASA-CASE-ARC-10330-1] c 09 N73-32112
Whole body measurement systems Patent
[NASA-CASE-MSC-13972-1] c 52 N74-10975
Fourier photometry Patent
[NASA-CASE-MSC-14240-1] c 33 N75-19457
Strain amplifier plate for fused silica Patent
[NASA-CASE-MSC-11130-1] c 27 N76-14264
Medical subject monitoring systems Patent
[NASA-CASE-MSC-14180-1] c 52 N76-14577
Two-component ceramic coating for silica insulation Patent
[NASA-CASE-MSC-14270-1] c 27 N76-22377
Process of forming catalytic surfaces for wet oxidation reactions Patent
[NASA-CASE-MSC-14831-1] c 25 N78-10225
Partial polarizer filter Patent
[NASA-GSC-12225-1] c 74 N79-14981
Method of fabricating a photovoltaic module of a substantially transparent construction Patent
[NASA-NPO-14203-1] c 44 N80-18550
Lockheed Propulsion Co., Redlands, Calif.

Propellant grain for rocket motors Patent
[NASA-CASE-XGS-00556] c 27 N70-35534
LTV Aerospace Systems, Dallas, Tex.

Method of fluxless brazing and diffusion bonding of aluminum containing containers Patent
[NASA-CASE-MSC-14435-1] c 37 N76-18455
LTV Aerospace Corp., Hampton, Va.

Explosively activated oregina area Patent
[NASA-CASE-LAR-12624-1] c 01 N83-35992

Macoun-Rust Co., Lexington, Ky.

Stretcher Patent
[NASA-CASE-XMF-06569] c 05 N71-23159
Marin-Rust Corp., Jamestown, N.Y.

Dried ball bearing with a piece one anti-tipping tape assembly Patent
[NASA-CASE-LEW-11825-1] c 37 N75-31446
Marguardt Corp., Van Nuys, Calif.

Fuel injection pump for internal combustion engines Patent
[NASA-MSC-1219-1] c 28 N71-14058
Multilist foam cooled pyrolytic graphite rocket nozzle Patent
[NASA-CASE-XNP-04389] c 28 N71-20942
Tube sealing device Patent
[NASA-NPO-10431] c 15 N71-29132
Martin Marietta Aerospace, Denver, Colo.

Method and apparatus for tensile testing of metal foil Patent
[NASA-CASE-MSC-13282-1] c 35 N76-18400
Pulse transducer with artifact signal attenuator Patent
[NASA-CASE-FRC-11012-1] c 52 N80-23969

Martin Marietta Corp., Baltimore, Md.

Landing gear Patent
[NASA-CASE-XMF-01174] c 02 N71-41589
Emergency escape system Patent
[NASA-CASE-XK-00242] c 05 N71-11199
Martin Marietta Corp., Denver, Colo.

Piezoresistive bridge array assembly Patent
[NASA-CASE-MSC-13512-1] c 15 N72-22485
Derivation of a tangent function using an integrated circuit for switching increment Patent
[NASA-CASE-MSC-13907-1] c 10 N73-26230
Low distortion automatic phase control circuit Patent
[NASA-CASE-MSC-12187-1] c 28 N74-22685
Variable ratio mixed-mode bilateral master-slave control system for shuttle remote manipulator system Patent
[NASA-CASE-MSC-21851-1] c 18 N75-27041
Filter regeneration systems Patent
[NASA-CASE-MSC-12473-1] c 37 N75-33342
Tumulus and shunt components Patent
[NASA-CASE-LAR-10970-1] c 33 N76-14372
Method and apparatus for bluffing, separating, and cleaning filters Patent
[NASA-CASE-LAR-11224-1] c 37 N76-18456
Hearing aid malfunction detection system Patent
[NASA-MSC-16042-1] c 33 N78-10375
Positive isolation disconnect Patent
[NASA-CASE-MSC-16043-1] c 37 N79-11402

McDonnell-Douglas Corporation, Huntington Beach, Calif.

Urine collection device Patent
[NASA-CASE-MSC-16433-1] c 52 N81-24711
Thermal protection system Patent
[NASA-CASE-MSC-18765-1] c 24 N82-26389
Amplifier for measuring low-level signals in the presence of high common mode voltage Patent
[NASA-CASE-MSC-25232-1] c 03 N86-20670
Maryland Univ., College Park.
Method and apparatus for optical modulating a light signal Patent
[NASA-CASE-GSC-10216-1] c 23 N71-26722

Massachusetts Inst. of Tech., Cambridge.

Proximity locator method for solid-walled materials Patent
[NASA-CASE-XMS-03537] c 15 N69-21471
Hydraulic drive mechanism Patent
[NASA-MSC-18796-1] c 10 N69-10658
Electronic amplifier with power supply switching Patent
[NASA-CASE-XMS-00945] c 09 N70-10798
Method and apparatus for stabilizing a gaseous optical maser Patent
[NASA-CASE-XGS-03644] c 25 N71-29748
Power supply Patent
[NASA-CASE-XMS-02159] c 10 N71-29261
Optical frequency waveguide Patent
[NASA-CASE-HDN-10541-1] c 07 N71-26291
Laser machining apparatus Patent
[NASA-CASE-HDN-10541-2] c 15 N71-27135
Optical frequency waveguide and transmission system Patent
[NASA-CASE-HDN-10541-3] c 16 N71-27183
Compact spectrometer Patent
[NASA-CASE-XMS-14389] c 14 N73-3489
Optical frequency waveguide and transmission system Patent
[NASA-CASE-HDN-10541-1] c 23 N72-26965
Low distortion receiver for bi-level baseband PCM Patent
[NASA-CASE-MSC-11445-1] c 27 N76-22462
Patent for stabilizing a gaseous optical maser Patent
[NASA-CASE-XMS-09026] c 20 N75-19292
Fault tolerant clock apparatus utilizing a controlled minority of clock elements Patent
[NASA-CASE-MSC-12531-1] c 35 N75-30504

Bald Associates, San Ramon, Calif.

Hypervelocity gun Patent
[NASA-CASE-XLE-03186-1] c 09 N79-21084
Martin Aircraft Co., St. Louis, Mo.

Method for making a heat insulating and ablative structure Patent
[NASA-CASE-XMS-01108] c 15 N69-24322
Heat flux sensor assembly Patent
[NASA-CASE-XMS-00509-1] c 14 N69-27459
Patent for purging systems handling toxic, corrosive, noxious and other fluids Patent
[NASA-CASE-XMS-10079] c 12 N71-21089
Power supply circuit Patent
[NASA-CASE-XMS-00919] c 10 N71-23543
Jet propulsion control device Patent
[NASA-CASE-XMS-20774-1] c 33 N75-22494
Apparatus for welding sheet material Patent
[NASA-CASE-XMS-01330] c 37 N75-27365
Fused switch Patent
[NASA-CASE-XMS-01244-1] c 33 N78-33393
Circuit system for high speed aircraft Patent
[NASA-CASE-LAR-12406-1] c 05 N81-26114

McDonnell-Douglas Astronautics Co., Huntington Beach, Calif.

Heat transfer device Patent
[NASA-CASE-MFS-22933-1] c 34 N76-18734
McDonnell-Douglas Astronautics Co., Santa Monica, Calif.

New polymers of perfluorobutadiene and method of manufacture Patent
[NASA-CASE-XNP-10883-1] c 06 N70-11251
Method of polymerizing perfluorobutadiene Patent
[NASA-CASE-XNP-10647-1] c 06 N70-11252

McDonnell-Douglas Astronautics Co., St. Louis, Mo.

Device for monitoring a change in mass in varying gravimetric environments Patent
[NASA-CASE-MSC-13021-1] c 35 N74-26945
Thrust-isolating mounting Patent
[NASA-CASE-MSC-21601-1] c 18 N74-27975

C-13
Tungsten contacts on silicon substrates

Bacterial contamination monitor

Honeypot panels formed of minimal surface periodic tule layers

Honeypot core structures of minimal surface tule sections

Gum-type solid state devices

Use of unilluminated solar cells as shunt diodes for a solar array

Electric motive machine including magnetic bearing

Signal-to-noise ratio determination circuit

System for stabilizing torque between a balloon and gondola

Diffuse reflection method using clock signals

Apparatus for operational testing of an article

Method and system for ejecting fanning sections from a rocket vehicle

System for determining the contents of contained gas samples

Flavin coenzyme assay

Fast response low energy imaging system

Solenoid valve including guide

Roll alignment detector

Caterpillar micro-processor

Facsimile video remodulation network

Position location system

Method and apparatus for eliminating coherent noise

Segmented superconducting magnet

Dish antenna having switchable beamwidth

Low speed phasorlock speed control system

Automatic character skew and optical misalignment correction

Automatic instrument for chemical processing to detect microorganisms in biological samples by measuring light reactions

High voltage switch

Star tracking reticles

Device for determining relative angular position between a spacecraft and a radiating emission celestial body

Polyurethane

Light to sound beamformer

Signal processing network

Bacterial contamination monitor

High efficiency multifequency feed

Turnstile slot antenna

Method and apparatus for checking fire detectors

Apparatus for controlling the temperature of balloon-borne equipment

Optical system support apparatus

Roll alignment detector

Radiation hardened microprocessor

Rocket conversion apparatus

Automatic character skew and optical misalignment correction

Automatic character skew and optical misalignment correction

Micrometerod velocity and trajectory analyzer

High voltage switches

Telemetry synchronizer

Apparatus for simulating optical transmission links

Telemetry synchronizer

Optical system support apparatus

Variable beamwidth antenna

Optical beam steering apparatus

Facsimile video remodulation network

Position location system

Method and apparatus for opticaly monitoring the angular position of a rotating mirror
Thrust augmented spin recovery device

Velocity vector control system augmented with direct lift control

Direction sensitive laser velocimeter

Lightweight structural components

Foldable beam

Adaptive polymer separation

Telescoping columns

Wind tunnel supplementary Mach number minimum section

Aluminum on-containing polyimide adhesives

Small conductive particle sensor

Moving body velocity sensing line

Variable response load limiting device

Wind tunnel adjustment for pulsed laser experiments

Aircraft control position indicator

Hydraulic actuator mechanism for control of wind tunnel models

Image readout device with electronically variable spatial resolution

Moving hot foil transducer skin friction sensor

Continuous self-locking spiral wound seal

Solar engine

Fuselage structure using advanced technology fiber reinforced composites

Electrically conductive paraflin containing polyimide fibers

Digital signal processable control system

Electro-optical imaging system for advanced target acquisition

Aircraft miniaturized cooperative target simulation system

Aircraft control position indicator

Large and small scale hypersonic vehicle model test facility

Aircraft flight simulation system

Small conductive particle sensor

Moving body velocity sensing line

Variable response load limiting device

Wind tunnel supplementary Mach number minimum section

Aluminum on-containing polyimide adhesives

Small conductive particle sensor

Moving body velocity sensing line

Variable response load limiting device

Wind tunnel supplementary Mach number minimum section
CIRCUIT FOR DETECTING INITIAL SYSTOLE AND DIASTOLIC NOTCH

Method of using sodium hydride for solvating electrode cells

Method of making encapsulated solar cells

Flow compensating pressure regulator

Apparatus for extraction and separation of a high temperature combustor

Vacuum impregnation system

Built-in shock absorbing device

Closed loop solar array-ion thruster system with power control circuitry

Method of producing solvating electrode cells

Method of using sodium hydride for solvating electrode cells

Method of making solar cells

Method of making Industry

Method of making Industry
in situ cross-linking of polyvinyl alcohol battery separators

[NASA-CASE-LEW-12972-1] c 44 N9-2516
Cross-linked polyvinyl alcohol and method of making same

Catalyst surfaces for the chromous/chromic redox couple

[NASA-CASE-LEW-13148-2] c 44 N9-29524
High thermal power density heat transfer

[NASA-CASE-LEW-13148-1] c 23 N9-11399
Modified face seal for positive film stiffness

[NASA-CASE-LEW-12896-1] c 37 N8-12442
Composite seal for turbomachinery

[NASA-CASE-LEW-13131-3] c 37 N8-19540
Method of making formulated plastic separators for soluble electrode cells

Multistage depressor collector for dual mode operation

[NASA-CASE-LEW-13282-1] c 33 N8-24415
Thrust reverser for a long duct fan engine

[NASA-CASE-LEW-13199-1] c 07 N8-26293
Improved thermal barrier coating system

(NASA-CASE-LEW-13004-1) c 26 N8-26431
Coupled cavity traveling wave tube with velocity sorting

[NASA-CASE-LEW-12296-1] c 27 N8-26940
Fully plasma-sprayed compliant backed ceramic turbine seal

[NASA-CASE-LEW-13033-1] c 26 N8-32049
Method of making a high voltage V-groove solar cell

[NASA-CASE-LEW-12398-3] c 07 N8-32396
Fixing refractory coating

[NASA-CASE-LEW-13032-1] c 26 N8-32449
Process of utilizing centerline air for a gas turbine engine

[NASA-CASE-LEW-12301-1] c 07 N8-14999
Improved refractory coating

[NASA-CASE-LEW-12319-1] c 26 N8-16209
Method for isolating thermal stress damage in laminates

[NASA-CASE-LEW-12493-1] c 24 N8-17170
Chemical method for preparing polyvinyl alcohol

[NASA-CASE-LEW-13026-1] c 27 N8-17260
Antistatic properties and surface characteristics of polyethylene

[NASA-CASE-LEW-12907-1] c 07 N8-19115
Integrated control system for a gas turbine engine

[NASA-CASE-LEW-13024-2] c 07 N8-19116
Composition and method for making polyimide resin-reinforced fabrics

[NASA-CASE-LEW-13003-1] c 27 N8-19296
Method of cold welding using ion beam technology

[NASA-CASE-LEW-12958-1] c 28 N8-19455
Multiple plate hydrostatic viscous damper

[NASA-CASE-LEW-12445-1] c 22 N8-23260
Sealing capability of metal-polyvinyl alcohol composites

[NASA-CASE-LEW-13125-2] c 27 N8-24257
Sealing capability of metal-polyvinyl alcohol composites

[NASA-CASE-LEW-12441-3] c 44 N8-24442
Heat exchanger and method of making

[NASA-CASE-LEW-13017-1] c 44 N8-24459
Turbine thermal barrier coating

[NASA-CASE-LEW-12991-1] c 25 N8-25186
Method for alleviating thermal stress damage in laminates

[NASA-CASE-LEW-12943-2] c 24 N8-26179
Circumferential shaft seal

[NASA-CASE-LEW-13161-1] c 37 N8-26477
Polyvinyl alcohol battery separator containing inert filler

[NASA-CASE-LEW-13356-1] c 44 N8-27615
Supercritical fuel injection system

[NASA-CASE-LEW-12990-1] c 07 N8-29129
Gyrotron transmitting tube

[NASA-CASE-LEW-13429-1] c 33 N8-31952
Thermionic energy converters

[NASA-CASE-LEW-12443-1] c 44 N8-32175
Advanced inorganic separators for alkaline batteries and method of making same

[NASA-CASE-LEW-13171-2] c 44 N8-32176
High voltage V-groove solar cell

[NASA-CASE-LEW-13317-1] c 44 N8-32177
Piezoelectric composite materials

[NASA-CASE-LEW-12582-1] c 76 N8-34796
Covering solid oxide fuel cells with a duplex thermal barrier coating

[NASA-CASE-LEW-13450-1] c 33 N8-35177
Joining lead wires to the platinum alloy filament

[NASA-CASE-LEW-13934-1] c 35 N8-35338
Apparatus for improving the fuel efficiency of a gas turbine engine

[NASA-CASE-LEW-13142-1] c 07 N8-36309
Additive for zinc batteries

[NASA-CASE-LEW-13386-1] c 33 N8-36442
Micronized coal burner faculty

[Laddertted support ring bar circuit

[NASA-CASE-LEW-13570-1] c 33 N8-36452
Titanium electrical signal system for a rotary engine

[NASA-CASE-LEW-13622-1] c 07 N8-22559
Tip cap for a rotor blade

[NASA-CASE-LEW-13881-1] c 07 N8-22560
Diamondlike flake compositions

[NASA-CASE-LEW-13837-1] c 24 N8-22695
Method of making a high brightness gallium nitride luminescence device

[NASA-CASE-LEW-13349-1] c 25 N8-22734
Multicolor printing plate joining

[NASA-CASE-LEW-13107-2] c 52 N8-23095
Combustor liner construction

[NASA-CASE-LEW-14035-1] c 07 N8-24577
Method and apparatus for gripping uniaxial fibrous composite materials

[NASA-CASE-LEW-13758-1] c 24 N8-27629
Coating with overlaid metallic-cermet alloy systems

[NASA-CASE-LEW-13269-1] c 52 N8-27855
Method of controlling the nitrime film temperature and rate

[NASA-CASE-LEW-13270-1] c 27 N8-27865
Dielectric based submission backward wave oscillator circuit

[NASA-CASE-LEW-13796-1] c 33 N8-27974
Chromium electrodes for REDOX cells

[NASA-CASE-LEW-13635-1] c 24 N8-28025
Ion sputter textured metal-electrolyte plate

[NASA-CASE-LEW-12919-2] c 70 N8-28565
Air modualtion apparatus

[NASA-CASE-LEW-13630-1] c 07 N8-33410
Overtal metallic-cermet alloy coating systems

[NASA-CASE-LEW-13639-1] c 26 N8-33555
Simulated to do this converter

[NASA-CASE-LEW-13626-1] c 29 N8-33516
Diesel engine catalytic combustion system

[NASA-CASE-LEW-13655-1] c 37 N8-33808
Deposition of diamondlike carbon films

[NASA-CASE-LEW-14080-1] c 31 N8-33820
Screen printed passivated back contacts solar cell

[NASA-CASE-LEW-13144-1] c 44 N8-20530
Ring-cusp ion thruster with shell anode

[NASA-CASE-LEW-13232-2] c 20 N8-21256
Thermal barrier coating system

[NASA-CASE-LEW-13132-2] c 24 N8-21266
Diamondlike flake compositions

[NASA-CASE-LEW-13067-2] c 24 N8-21267
Thermoelectric approach for controlling nitrime temperature and rate with metallic flame

[NASA-CASE-LEW-13770-3] c 27 N8-21350
Chemical approach for controlling nitrime temperature and rate with metallic flame

Chemical approach for controlling nitrime temperature and rate with metallic flame

[NASA-CASE-LEW-13770-5] c 27 N8-21352
Chemical approach for controlling nitrime temperature and rate with metallic flame

[NASA-CASE-LEW-13770-6] c 27 N8-21353
Chemical approach for controlling nitrime temperature and rate with metallic flame
Multispectral glancing incidence X-ray telescope

NASA-CASE-MFS-28013-1 c 89 N86-22459
Method for machining holes in composite materials

NASA-CASE-MFS-28044-1 c 97 N86-23750
Apparatus and furnace for containerless processing of high temperature materials in space

NASA-CASE-MFS-28087-1 c 35 N86-28989
Shuttle-launch triangular space station

NASA-CASE-MFS-28030-1 c 35 N86-25752
Magnetic spin reduction system for free spinning objects

NASA-CASE-MFS-29564-1 c 16 N86-26525
Propulsion apparatus and method using boil-off gas from a cryogenic liquid

NASA-CASE-MFS-29546-1 c 30 N86-26595
Solid sorbent air sampler

NASA-CASE-MSC-20653-1 c 35 N86-26595
Planar oscillatory stirring apparatus

NASA-CASE-MFS-20022-1 C 10 N87-32905
Angular measurement system

NASA-CASE-MFS-28118-1 C 39 N87-32905
Apparatus and method for inspecting a bearing ball

NASA-CASE-MFS-28533-1 c 35 N87-32905
Space ultra-vacuum facility and method

NASA-CASE-MFS-28561-1 c 35 N87-32905
High-temperature, high-pressure optical cell

NASA-CASE-MFS-28514-1 c 35 N87-32905
Non-backflowable free wheeling coupling

NASA-CASE-MFS-29213-1 c 37 N87-32905
Welding torch for welding torch

NASA-CASE-MFS-29131-1 c 37 N87-32905
Moving well, continuous flow electrophoresis apparatus

NASA-CASE-MFS-29142-1 c 25 N87-32905
Orbital maneuvering end effectors

NASA-CASE-MFS-29139-1 c 29 N87-32905
Method and apparatus for growing crystals

NASA-CASE-MFS-29137-1 c 16 N87-32905
National Aeronautics and Space Administration

National Space Technology Labs., Bay Saint Louis, Miss.

Method for treating wastewater using microorganisms and vascular aquatic plants

NASA-CASE-MFS-29137-1 c 45 N87-32905
National Aeronautics and Space Administration, Pasadena Office, Calif.

Phase control circuits using frequency multiplications for phased array antennas

NASA-CASE-MFS-29142-1 c 25 N87-32905
Preparing and using metal fuel particles

NASA-CASE-MFS-29139-1 c 29 N87-32905
Apparatus for controlling the rate of fluid flow in

NASA-CASE-MFS-29140-1 c 38 N87-32905
Apparatus for scanning the surface of a cylindrical

NASA-CASE-MFS-29140-1 c 44 N87-32905
Gated compressor, distortionless signal limiter

NASA-CASE-NPO-11820-1 c 32 N74-19788
Apparatus for scanning the surface of a cylindrical body

NASA-CASE-NPO-11861-1 c 32 N74-20009
Decision feedback loop for tracking a polyphase modulating carrier

NASA-CASE-NPO-13103-1 c 32 N74-20011
Optically actuated two position mechanical mover

NASA-CASE-NPO-13105-1 c 37 N74-21065
Flow control valve

NASA-CASE-NPO-11951-1 c 37 N74-21065
Thin film gage

NASA-CASE-NPO-10617-1 c 35 N74-22095
High isolation RF signal selection switches

NASA-CASE-NPO-11134-1 c 37 N74-22814
Single reflector interference spectrometer and drive system theretofore

NASA-CASE-NPO-11332-1 c 37 N74-23400
Multistage sequential system

NASA-CASE-NPO-11756-1 c 37 N74-23405
Rock sampling

NASA-CASE-NPO-10007-1 c 46 N74-23406
Rock sampling

NASA-CASE-NPO-00775 c 46 N74-23406
Rock sampling, remote multiplexing telemetry system

NASA-CASE-NPO-13065-1 c 52 N74-23406
Dispensing targets for ion beam generators

NASA-CASE-NPO-10764-1 c 73 N74-23406
Optically detonated explosive device

NASA-CASE-NPO-11120-1 c 28 N74-27425
Coherent receiver employing nonlinear coherence detection for carrier tracking

NASA-CASE-NPO-11120-1 c 32 N74-30523
Digital servo control of random sound test excitation

NASA-CASE-NPO-11623-1 c 71 N74-31148
Capacitance multiplier and filter synthesizing network

NASA-CASE-NPO-11346-1 c 33 N74-32712
Combination combustion and fuel cell

NASA-CASE-NPO-11120-1 c 32 N74-32712
Apparatus for forming drive bolts

NASA-CASE-NPO-11351-1 c 31 N74-32917
Tool for use in lifting supported objects

NASA-CASE-NPO-11351-1 c 37 N74-32918
Preparation of producing a storage bulb for an atomic hydrogen maser

NASA-CASE-NPO-13050-1 c 36 N75-15029
Laser for producing a storage bulb for an atomic hydrogen maser

NASA-CASE-NPO-13201-1 c 37 N75-15050
Reduction of blood serum cholesterol

NASA-CASE-NPO-13301-1 c 52 N75-15270
Simultaneous acquisition of tracking data from two stations

NASA-CASE-NPO-13329-1 c 32 N75-15854
Shock absorbing mount for electrical components

NASA-CASE-NPO-12130-1 c 37 N75-18573
Delay line for generating and controlling signals

NASA-CASE-NPO-13125-1 c 33 N75-19159
Motor run-up system

NASA-CASE-NPO-11974-1 c 28 N75-19254
Deep trap, laser activated image converting system

NASA-CASE-NPO-13121-1 c 29 N75-19651
Multichannel scanning spotter apparatus

NASA-CASE-NPO-13120-1 c 35 N75-19664
Wide angle sun sensor

NASA-CASE-NPO-13327-1 c 35 N75-23910
Material suspension within an acoustically excited resonant chamber

NASA-CASE-NPO-12863-1 c 12 N75-24774
Heat operated cryogenic electrical generator

NASA-CASE-NPO-13142-1 c 32 N75-24837
System for interference signal-nulling by polarization adjustment

NASA-CASE-NPO-13141-1 c 32 N75-24892
Heat detection and compositions and devices theretofore

NASA-CASE-NPO-10764-1 c 35 N75-25122
Servo-controlled high microprocessor

NASA-CASE-NPO-13214-1 c 35 N75-25123
Ultrasonically bonded wave assembly

NASA-CASE-NPO-13215-1 c 37 N75-25185
Vehicle locating system utilizing AM broadcast station carriers

NASA-CASE-NPO-12171-1 c 37 N75-26194
Asynchronous, multiplexing, single line transmission and recovery data system

NASA-CASE-NPO-13201-1 c 32 N75-26195
Brazing alloy

NASA-CASE-NPO-03878 c 26 N75-27127
Very high intensity light source using a cathode ray tube

NASA-CASE-NPO-01296 c 33 N75-27250
Apparatus for use in the production of ribbon-shaped crystals from a silicon melt
[NASA-CASE-NPO-14297-1] c 33 N81-19389
Elimination of parasitics in buck power converters
[NASA-CASE-NPO-14505-1] c 33 N81-19390
Copper doped poly-crystalline silicon solar cell
[NASA-CASE-NPO-14554-1] c 33 N81-19558
System and method for character recognition
[NASA-CASE-NPO-11337-1] c 74 N81-19866
X-ray projection
[NASA-CASE-NPO-12087-1] c 74 N81-19698
Controller for computer control of brushless dc motors
[NASA-CASE-NPO-10424-1] c 27 N81-24528
Low current linearization of magnetic amplifier for dc transducer
[NASA-CASE-NPO-14617-1] c 33 N81-24338
Coal desulfurization
[NASA-CASE-NPO-14588-1] c 32 N81-25278 Hot cathode with dual cathodes
[NASA-CASE-NPO-14221-1] c 37 N81-25370 Sandblasting nozzle
[NASA-CASE-NPO-14140-1] c 43 N81-26509 CCD correlated quadruple sampling processor
[NASA-CASE-NPO-11426-1] c 33 N81-27396 Terminal guidance sensor system
[NASA-CASE-NPO-14521-1] c 37 N81-27519 Medical diagnosis system and method with multispectral imaging
[NASA-CASE-NPO-14400-1] c 52 N81-27783 High-speed multiplexing of keyboard input
[NASA-CASE-NPO-14554-1] c 60 N81-27814 Baseband signal combiner for large aperture antenna array
[NASA-CASE-NPO-14641-1] c 32 N81-29308 Schottky barrier solar cell
[NASA-CASE-NPO-13966-2] c 44 N81-29525 Interferometer
[NASA-CASE-NPO-14448-1] c 74 N81-29963 Cooling system and apparatus for microgravity systems
[NASA-CASE-NPO-14596-1] c 31 N81-33191 Push-pull converter with energy saving circuit for protecting semiconductor transistors from peak power stress
[NASA-CASE-NPO-14316-1] c 33 N81-33404 PIN lock indicator for doped PIN code tracking loop
[NASA-CASE-NPO-14551-1] c 33 N81-33405 Optical gyroscope system
[NASA-CASE-NPO-14258-1] c 35 N81-33448 Head for high speed spinning having a vacuum chuck
[NASA-CASE-NPO-15339-1] c 37 N81-11469 Sewage sludge sulphur
[NASA-CASE-NPO-13877-1] c 45 N81-11634 Real-time multiple-look synthetic aperture radar processor for spacecraft applications
[NASA-CASE-NPO-14054-1] c 32 N81-12297 Microwave leap second
[NASA-CASE-NPO-14544-1] c 46 N81-22655 Faraday rotation measurement method and apparatus
[NASA-CASE-NPO-15318-1] c 35 N81-16351 Solar heated fluidized bed gasification system
[NASA-CASE-NPO-15071-1] c 44 N81-16475 Method for processing and aiming narrow beam waves
[NASA-CASE-NPO-14632-1] c 32 N81-18443 Fiber optic transmission line stabilization apparatus and method
[NASA-CASE-NPO-15036-1] c 74 N81-19029 Suspension system for a wheel rolling on a flat track
[NASA-CASE-NPO-15038-1] c 37 N81-21587 Crude oil desulfurization
[NASA-CASE-NPO-14361-1] c 32 N81-23376 Constant magnification optical tracking system
[NASA-CASE-NPO-14318-1] c 74 N81-24072 Pulse switching for high energy lasers
[NASA-CASE-NPO-10259-1] c 33 N81-24448 Hermetic seal for a shaft
[NASA-CASE-NPO-15115-1] c 37 N81-24490
COPORATE SOURCE

Old Dominion Univ., Norfolk, Va.
Instrumentation for measuring aircraft noise and sonic boom
[NASA-CASE-LAR-11476-1] c 07 N76-27232

High-temperature microphone system
[NASA-CASE-LAR-12106-1] c 71 N78-14887

Acceleration level meter
[NASA-CASE-LAR-12375-1] c 32 N79-24203

Aerodynamic side-force alleviator means
[NASA-CASE-LAR-12326-1] c 02 N81-14968

Leading edge vortex flats for drag reduction
[NASA-CASE-LAR-12750-1] c 15 N81-19016

Leading edge flap system for aircraft control augmentation
[NASA-CASE-LAR-12787-2] c 08 N85-19985

Oregon Univ., Portland.
Method for separating biological cells
[NASA-CASE-MSC-16096-1] c 51 N79-10693

Organon Diagnostics, El Monte, Calif.
Water system virus detection
[NASA-CASE-MSC-16096-1] c 51 N79-10693

Phlico-Ford Corp., Newport Beach, Calif.
Quantum Dynamics, Tarzana, Calif.
Radiation Systems, Inc., Indian Wells, Calif.
Radio Corp. of America, Lancaster, Pa.
RCA Corp., Providence, R. I.
Organizational Diagnostics, El Monte, Calif.
Raytheon Co., Sudbury, Mass.
Rockwell International Corp., Downey, Calif.
CONTRACT NUMBER INDEX

###NASA PATENT ABSTRACTS BIBLIOGRAPHY

Section 2

Typical Contract Number Index Listing

<table>
<thead>
<tr>
<th>CONTRACT NUMBER</th>
<th>ACCESSION NUMBER</th>
<th>SUBJECT CATEGORY NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS2-10334</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>NAS2-33523</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Listings in this index are arranged alpha-numerically by contract number. Under each contract number, the accession numbers denoting documents that have been produced as a result of research done under that contract are arranged in ascending accession number order. The subject category number indicates the category in Section 1 (Abstracts) in which the citation is located.

Contract Number Listings

<table>
<thead>
<tr>
<th>Contract Number</th>
<th>Accession Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS7-150</td>
<td>N69-21337</td>
</tr>
<tr>
<td>NAS7-603</td>
<td>N70-11251</td>
</tr>
<tr>
<td>NAS7-746</td>
<td>N72-27151</td>
</tr>
<tr>
<td>NAS7-918</td>
<td>N85-20251</td>
</tr>
<tr>
<td>NAS8-11561</td>
<td>N86-20677</td>
</tr>
<tr>
<td>NAS9-10963</td>
<td>N87-18025</td>
</tr>
<tr>
<td>NAS7-919</td>
<td>N88-19999</td>
</tr>
<tr>
<td>NASA-32720</td>
<td>N89-31220</td>
</tr>
<tr>
<td>NAS7-12034</td>
<td>N90-12034</td>
</tr>
<tr>
<td>NAS8-11561</td>
<td>N91-11561</td>
</tr>
<tr>
<td>NAS9-10963</td>
<td>N92-10963</td>
</tr>
<tr>
<td>NAS2-10334</td>
<td>N93-24572</td>
</tr>
<tr>
<td>NAS3-36484</td>
<td>N94-36484</td>
</tr>
<tr>
<td>NAS4-12968</td>
<td>N95-12968</td>
</tr>
<tr>
<td>NAS5-12034</td>
<td>N96-12034</td>
</tr>
<tr>
<td>NAS6-20677</td>
<td>N97-20677</td>
</tr>
<tr>
<td>NAS7-27151</td>
<td>N98-27151</td>
</tr>
<tr>
<td>NAS8-20677</td>
<td>N99-20677</td>
</tr>
<tr>
<td>NAS9-10963</td>
<td>N00-10963</td>
</tr>
<tr>
<td>Patent Number</td>
<td>Date</td>
</tr>
<tr>
<td>---------------</td>
<td>------</td>
</tr>
<tr>
<td>US-PATENT-APPL-SN-815106</td>
<td>60</td>
</tr>
<tr>
<td>N86-24225</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-108</td>
<td>c 16</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>N73-30476</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-108</td>
<td>c 16</td>
</tr>
<tr>
<td>N73-30476</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-110</td>
<td>c 35</td>
</tr>
<tr>
<td>N78-13931</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-112</td>
<td>c 35</td>
</tr>
<tr>
<td>N78-13931</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-113</td>
<td>c 35</td>
</tr>
<tr>
<td>N74-23040</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-114</td>
<td>c 35</td>
</tr>
<tr>
<td>N71-12447</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-117</td>
<td>c 23</td>
</tr>
<tr>
<td>N71-16101</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-123</td>
<td>c 74</td>
</tr>
<tr>
<td>N76-21995</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-124</td>
<td>c 74</td>
</tr>
<tr>
<td>N79-11865</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-134</td>
<td>c 14</td>
</tr>
<tr>
<td>N72-20379</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-138</td>
<td>c 36</td>
</tr>
<tr>
<td>N73-33997</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-141</td>
<td>c 14</td>
</tr>
<tr>
<td>N73-38490</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-144</td>
<td>c 36</td>
</tr>
<tr>
<td>N74-41091</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-147</td>
<td>c 36</td>
</tr>
<tr>
<td>N74-30886</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-150</td>
<td>c 15</td>
</tr>
<tr>
<td>N71-29740</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-153</td>
<td>c 15</td>
</tr>
<tr>
<td>N78-21138</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-154</td>
<td>c 15</td>
</tr>
<tr>
<td>N78-14380</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-161</td>
<td>c 26</td>
</tr>
<tr>
<td>N73-26751</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-162</td>
<td>c 26</td>
</tr>
<tr>
<td>N76-19988</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-166</td>
<td>c 14</td>
</tr>
<tr>
<td>N71-23175</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-167</td>
<td>c 14</td>
</tr>
<tr>
<td>N72-11394</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-169</td>
<td>c 66</td>
</tr>
<tr>
<td>N78-27094</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-172</td>
<td>c 16</td>
</tr>
<tr>
<td>N74-21091</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-174</td>
<td>c 16</td>
</tr>
<tr>
<td>N73-33397</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-176</td>
<td>c 15</td>
</tr>
<tr>
<td>N74-14188</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-181</td>
<td>c 15</td>
</tr>
<tr>
<td>N73-26673</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-183</td>
<td>c 15</td>
</tr>
<tr>
<td>N79-14380</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-186</td>
<td>c 26</td>
</tr>
<tr>
<td>N73-26751</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-187</td>
<td>c 26</td>
</tr>
<tr>
<td>N76-19988</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-192</td>
<td>c 38</td>
</tr>
<tr>
<td>N71-23175</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-194</td>
<td>c 38</td>
</tr>
<tr>
<td>N72-21499</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-200</td>
<td>c 14</td>
</tr>
<tr>
<td>N74-27860</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-206</td>
<td>c 74</td>
</tr>
<tr>
<td>N76-19988</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-210</td>
<td>c 74</td>
</tr>
<tr>
<td>N79-11865</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-212</td>
<td>c 39</td>
</tr>
<tr>
<td>N79-11865</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-213</td>
<td>c 39</td>
</tr>
<tr>
<td>N81-25400</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-216</td>
<td>c 39</td>
</tr>
<tr>
<td>N81-25400</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-217</td>
<td>c 39</td>
</tr>
<tr>
<td>N81-25400</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-222</td>
<td>c 47</td>
</tr>
<tr>
<td>N82-23232</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-227</td>
<td>c 74</td>
</tr>
<tr>
<td>N71-17241</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-230</td>
<td>c 74</td>
</tr>
<tr>
<td>N79-11865</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-236</td>
<td>c 74</td>
</tr>
<tr>
<td>N86-21690</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-237</td>
<td>c 38</td>
</tr>
<tr>
<td>N78-17395</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-238</td>
<td>c 38</td>
</tr>
<tr>
<td>N78-17395</td>
<td>#</td>
</tr>
<tr>
<td>US-PATENT-CLASS-356-239</td>
<td>c 74</td>
</tr>
<tr>
<td>N77-10899</td>
<td>#</td>
</tr>
<tr>
<td>REPORT NUMBER INDEX</td>
<td></td>
</tr>
<tr>
<td>--------------------</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-CLASS-428-429</td>
<td>c 24 N78-1510</td>
</tr>
<tr>
<td>US-PATENT-CLASS-428-427</td>
<td>c 27 N81-24257</td>
</tr>
<tr>
<td>US-PATENT-CLASS-427-229</td>
<td>c 27 N81-26853</td>
</tr>
<tr>
<td>REPORT NUMBER INDEX</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,815,205</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,815,302</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,816,857</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,816,785</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,816,369</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,817,084</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,817,262</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,817,527</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,817,325</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,818,346</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,818,755</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,818,775</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,818,814</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,819,449</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,819,552</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,820,095</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,820,286</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,820,529</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,820,630</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,821,102</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,821,281</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,821,546</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,821,556</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,822,707</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,825,760</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,826,449</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,826,729</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,826,964</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,827,161</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,827,802</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,827,137</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,828,924</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,829,524</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,829,237</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,829,539</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,830,060</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,830,094</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,830,551</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,830,431</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,830,909</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,830,673</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,830,923</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,831,117</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,831,142</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,831,290</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,832,735</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,832,764</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,832,468</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,832,451</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,832,484</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,832,459</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,834,043</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,834,052</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,834,122</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,834,464</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,834,243</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,837,452</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,837,652</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,837,528</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,837,857</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,838,518</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,838,908</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,839,829</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,839,727</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,842,485</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,842,509</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,845,652</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,845,466</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,847,243</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,847,115</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,847,114</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,847,141</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,847,208</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,848,699</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,848,190</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,848,954</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,849,568</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,849,020</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,851,624</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,851,169</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,851,388</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,852,040</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,852,584</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,853,875</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,854,042</td>
<td></td>
</tr>
<tr>
<td>US-PATENT-3,854,471</td>
<td></td>
</tr>
</tbody>
</table>
NASA Patent Abstracts Bibliography

Accession Number Index

<table>
<thead>
<tr>
<th>Accession Number</th>
<th>Category</th>
<th>Number</th>
<th>Patent Number</th>
</tr>
</thead>
</table>

Listings in this index are arranged numerically by NASA accession number. The category numbers indicate the category in Section 1 (Abstracts) in which the citation is located. The NASA accession number denotes the number by which the citation is identified within the subject category. A pound sign (#) indicates that the item is a NASA report. A question mark (?) indicates that the item is available on microfiche.
N70-33279* c 21 NASA-CASE-XFR-00181
US-PATENT-APPL-SN-336175
US-PATENT-CLASS-244-83
US-PATENT-CLASS-75-171
US-PATENT-2,971,837
N70-33283* c 17 NASA-CASE-XLE-00151
US-PATENT-APPL-SN-848481
US-PATENT-CLASS-75-171
US-PATENT-2,971,837
N70-33284* c 28 NASA-CASE-XLE-00078
US-PATENT-APPL-SN-847176
US-PATENT-CLASS-60-35.5
US-PATENT-3,049,876
N70-33285* c 05 NASA-CASE-XLE-00119
US-PATENT-APPL-SN-840983
US-PATENT-CLASS-5-245
US-PATENT-3,038,175
N70-33286* c 02 NASA-CASE-XLA-00142
US-PATENT-APPL-SN-362755
US-PATENT-CLASS-244-46
US-PATENT-3,028,122
N70-33287* c 11 NASA-CASE-XLE-00112
US-PATENT-CLASS-73-147
US-PATENT-3,005,339
N70-33288* c 17 NASA-CASE-XLE-00120
US-PATENT-APPL-SN-398282
US-PATENT-CLASS-29-199
US-PATENT-3,017,773
N70-33305* c 12 NASA-CASE-XLE-00229
US-PATENT-APPL-SN-16780
US-PATENT-CLASS-1-114.65
US-PATENT-3,016,863
N70-33311* c 15 NASA-CASE-XLE-00048
US-PATENT-APPL-SN-698766
US-PATENT-CLASS-29-488
US-PATENT-3,008,229
N70-33312* c 09 NASA-CASE-XLE-00141
US-PATENT-APPL-SN-19971
US-PATENT-CLASS-219-34
US-PATENT-3,005,081
N70-33323* c 14 NASA-CASE-XLE-00135
US-PATENT-APPL-SN-986152
US-PATENT-CLASS-244-14
US-PATENT-3,004,735
N70-33323* c 15 NASA-CASE-XMF-00341
US-PATENT-APPL-SN-77256
US-PATENT-CLASS-62-45
US-PATENT-3,002,407
N70-33329* c 11 NASA-CASE-XLE-00119
US-PATENT-APPL-SN-842171
US-PATENT-CLASS-240-12
US-PATENT-2,964,735
N70-33330* c 15 NASA-CASE-XLE-00023
US-PATENT-APPL-SN-612255
US-PATENT-CLASS-78-1
US-PATENT-2,991,671
N70-33331* c 28 NASA-CASE-XLE-00105
US-PATENT-APPL-SN-719173
US-PATENT-CLASS-60-35.6
US-PATENT-3,001,363
N70-33332* c 02 NASA-CASE-XLE-00087
US-PATENT-APPL-SN-698059
US-PATENT-CLASS-62-50
US-PATENT-3,068,656
N70-33493* c 03 NASA-CASE-XLA-00115
US-PATENT-APPL-SN-847027
US-PATENT-CLASS-244-21
US-PATENT-3,050,020
N70-33434* c 33 NASA-CASE-XLA-00301
US-PATENT-APPL-SN-101917
US-PATENT-CLASS-244-1
US-PATENT-3,010,733
N70-33356* c 28 NASA-CASE-XLE-00267
US-PATENT-APPL-SN-59147
US-PATENT-CLASS-60-35.5
US-PATENT-3,016,693
N70-33372* c 28 NASA-CASE-XLE-00037
US-PATENT-APPL-SN-695989
US-PATENT-CLASS-253-39.15
US-PATENT-2,974,926
N70-33374* c 28 NASA-CASE-XLA-00154
US-PATENT-APPL-SN-31242
US-PATENT-CLASS-60-35.6
US-PATENT-3,012,400
N70-33375* c 28 NASA-CASE-XLE-00020
US-PATENT-APPL-SN-800370
US-PATENT-CLASS-60-35.6
US-PATENT-3,012,400
N70-3376* c 15 NASA-CASE-XLE-00019
US-PATENT-APPL-SN-551961
US-PATENT-CLASS-251-173
US-PATENT-2,945,667
N70-33882* c 15 NASA-CASE-XLE-00010
US-PATENT-APPL-SN-554699
US-PATENT-CLASS-60-35.6
US-PATENT-2,934,331
N70-33886* c 14 NASA-CASE-XLA-00113
US-PATENT-APPL-SN-250-320
US-PATENT-3,005,361
N70-33887* c 14 NASA-CASE-XLE-00046
US-PATENT-APPL-SN-216711
US-PATENT-CLASS-343-833
US-PATENT-3,020,899
N70-33915* c 14 NASA-CASE-XMF-00157
US-PATENT-APPL-SN-202024
US-PATENT-CLASS-73-175
US-PATENT-3,004,447
N70-33923* c 03 NASA-CASE-XLE-00066
US-PATENT-APPL-SN-195347
US-PATENT-CLASS-47-55
US-PATENT-3,026,889
N70-33926* c 14 NASA-CASE-XLE-00112
US-PATENT-APPL-SN-216711
US-PATENT-CLASS-343-333
US-PATENT-3,020,899
N70-33935* c 10 NASA-CASE-XLE-00066
US-PATENT-APPL-SN-216711
US-PATENT-CLASS-343-333
US-PATENT-3,020,899
N70-33944* c 14 NASA-CASE-XLE-00066
US-PATENT-APPL-SN-216711
US-PATENT-CLASS-343-333
US-PATENT-3,020,899
N70-34176* c 14 NASA-CASE-XLE-00112
US-PATENT-APPL-SN-216711
US-PATENT-CLASS-343-333
US-PATENT-3,020,899
N70-34175* c 14 NASA-CASE-XLE-00112
US-PATENT-APPL-SN-216711
US-PATENT-CLASS-343-333
US-PATENT-3,020,899
N70-34174* c 14 NASA-CASE-XLE-00112
US-PATENT-APPL-SN-216711
US-PATENT-CLASS-343-333
US-PATENT-3,020,899
N70-34173* c 14 NASA-CASE-XLE-00112
US-PATENT-APPL-SN-216711
US-PATENT-CLASS-343-333
US-PATENT-3,020,899
N70-34172* c 14 NASA-CASE-XLE-00112
US-PATENT-APPL-SN-216711
US-PATENT-CLASS-343-333
US-PATENT-3,020,899
N70-34171* c 14 NASA-CASE-XLE-00112
US-PATENT-APPL-SN-216711
US-PATENT-CLASS-343-333
US-PATENT-3,020,899
PUBLIC AVAILABILITY OF COPIES OF PATENTS AND PATENT APPLICATIONS

Copies of U.S. patents may be purchased directly from the U.S. Patent and Trademark Office, Washington, D.C. 20231 at $1.50 per copy. When ordering patents, the U.S. Patent Number should be used, and payment must be remitted in advance, preferably by money order or check payable to the Commissioner of Patents and Trademarks. Prepaid purchase coupons for ordering are also available from the Patent and Trademark Office.

NASA patent application specifications are sold in paper copy by the National Technical Information Service at price code A02. Microfiche are sold at price code A01. The US-Patent-AppI-SN-number should be used in ordering either paper copy or microfiche from NTIS.

LICENSES FOR COMMERCIAL USE: INQUIRIES AND APPLICATIONS FOR LICENSE

NASA inventions, abstracted in NASA PAB, are available for nonexclusive or exclusive licensing in accordance with the NASA Patent Licensing Regulations. It is significant that all licenses for NASA inventions shall be by express written instruments and that no license will be granted or implied in a NASA invention except as provided in the NASA Patent Licensing Regulations.

Inquiries concerning the NASA Patent Licensing Program or the availability of licenses for the commercial use of NASA-owned inventions covered by U.S. patents or pending applications for patent should be forwarded to the NASA Patent Counsel of the NASA installation having cognizance of the specific invention, or the Associate General Counsel for Intellectual Property, code GP, National Aeronautics and Space Administration, Washington, D.C. 20546. Inquiries should refer to the NASA Case Number, the Title of the Invention, and the U.S. Patent Number or the U.S. Application Serial Number assigned to the invention as shown in NASA PAB.

The NASA Patent Counsel having cognizance of the invention is determined by the first three letters or prefix of the NASA Case Number assigned to the invention. The addresses of NASA Patent Counsels are listed alongside the NASA Case Number prefix letters in the following table.

STANDING ORDER SUBSCRIPTIONS

NASA SP-7039, Section 2 is available from the National Technical Information Service (NTIS) on standing order subscription as PB-86-911100 at the price of $23.00 domestic and $46.00 foreign. Standing order subscriptions do not terminate at the end of a year, as do regular subscriptions, but continue indefinitely unless specifically terminated by the subscriber.
<table>
<thead>
<tr>
<th>NASA Case Number Prefix Letters</th>
<th>Address of Cognizant NASA Patent Counsel</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARC-xxxxx</td>
<td>Ames Research Center</td>
</tr>
<tr>
<td>XAR-xxxxx</td>
<td>Mail Code: 200-11A</td>
</tr>
<tr>
<td></td>
<td>Moffett Field, California 94035</td>
</tr>
<tr>
<td></td>
<td>Telephone: (415) 694-5104</td>
</tr>
<tr>
<td>ERC-xxxxx</td>
<td>NASA Headquarters</td>
</tr>
<tr>
<td>XER-xxxxx</td>
<td>Mail Code: GP</td>
</tr>
<tr>
<td>HQN-xxxxx</td>
<td>Washington, D.C. 20546</td>
</tr>
<tr>
<td>XHQ-xxxxx</td>
<td>Telephone: (202) 453-2417</td>
</tr>
<tr>
<td>GSC-xxxxx</td>
<td>Goddard Space Flight Center</td>
</tr>
<tr>
<td>XGS-xxxxx</td>
<td>Mail Code: 204</td>
</tr>
<tr>
<td></td>
<td>Greenbelt, Maryland 20771</td>
</tr>
<tr>
<td></td>
<td>Telephone: (301) 286-7351</td>
</tr>
<tr>
<td>KSC-xxxxx</td>
<td>John F. Kennedy Space Center</td>
</tr>
<tr>
<td>XKS-xxxxx</td>
<td>Mail Code: PT-PAT</td>
</tr>
<tr>
<td></td>
<td>Kennedy Space Center, Florida 32899</td>
</tr>
<tr>
<td></td>
<td>Telephone: (305) 867-2544</td>
</tr>
<tr>
<td>LAR-xxxxx</td>
<td>Langley Research Center</td>
</tr>
<tr>
<td>XLA-xxxxx</td>
<td>Mail Code: 279</td>
</tr>
<tr>
<td></td>
<td>Hampton, Virginia 23365</td>
</tr>
<tr>
<td></td>
<td>Telephone: (804) 865-3725</td>
</tr>
<tr>
<td>LEW-xxxxx</td>
<td>Lewis Research Center</td>
</tr>
<tr>
<td>XLE-xxxxx</td>
<td>Mail Code: 500-318</td>
</tr>
<tr>
<td></td>
<td>21000 Brookpark Road</td>
</tr>
<tr>
<td></td>
<td>Cleveland, Ohio 44135</td>
</tr>
<tr>
<td></td>
<td>Telephone: (216) 433-5753</td>
</tr>
<tr>
<td>MSC-xxxxx</td>
<td>Lyndon B. Johnson Space Center</td>
</tr>
<tr>
<td>XMS-xxxxx</td>
<td>Mail Code: AL3</td>
</tr>
<tr>
<td></td>
<td>Houston, Texas 77058</td>
</tr>
<tr>
<td></td>
<td>Telephone: (713) 483-4871</td>
</tr>
<tr>
<td>MFS-xxxxx</td>
<td>George C. Marshall Space Flight Center</td>
</tr>
<tr>
<td>XMF-xxxxx</td>
<td>Mail Code: CC01</td>
</tr>
<tr>
<td></td>
<td>Huntsville, Alabama 35812</td>
</tr>
<tr>
<td></td>
<td>Telephone: (205) 544-0024</td>
</tr>
<tr>
<td>NPO-xxxxx</td>
<td>NASA Resident Legal Office</td>
</tr>
<tr>
<td>XNP-xxxxx</td>
<td>Mail Code: 180-801</td>
</tr>
<tr>
<td>FRC-xxxxx</td>
<td>4800 Oak Grove Drive</td>
</tr>
<tr>
<td>XFR-xxxxx</td>
<td>Pasadena, California 91103</td>
</tr>
<tr>
<td>WOO-xxxxx</td>
<td>Telephone: (818)354-2700</td>
</tr>
</tbody>
</table>
PATENT LICENSING REGULATIONS

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

14 CFR Part 1245

Licensing of NASA Inventions

AGENCY: National Aeronautics and Space Administration.

ACTION: Interim regulation with comments requested.

SUMMARY: The National Aeronautics and Space Administration (NASA) is revising its patent licensing regulations to conform with Pub. L. 96-517. This interim regulation provides policies and procedures applicable to the licensing of federally owned inventions in the custody of the National Aeronautics and Space Administration, and implements Pub. L. 96-517. The object of this subpart is to use the patent system to promote the utilization of inventions arising from NASA supported research and development.

EFFECTIVE DATE: July 1, 1981. Comments must be received in writing by December 2, 1981. Unless a notice is published in the Federal Register after the comment period indicating changes to be made, this interim regulation shall become a final regulation.

FOR FURTHER INFORMATION CONTACT: Mr. John G. Mannix, (202) 755-3954.

SUPPLEMENTARY INFORMATION:

PART 1245—PATENTS AND OTHER INTELLECTUAL PROPERTY RIGHTS

Subpart 2 of Part 1245 is revised to read as follows:

Subpart 2—Licensing of NASA Inventions

Sec.
1245.200 Scope of subpart.
1245.201 Policy and objective.
1245.202 Definitions.
1245.203 Authority to grant licenses.

Restrictions and Conditions

1245.204 All licenses granted under this subpart

Types of Licenses

1245.205 Nonexclusive licenses.
1245.206 Exclusive and partially exclusive licenses.

Procedures

1245.207 Application for a license.
1245.208 Processing applications.
1245.209 Notice to Attorney General.

1245.200 Scope of subpart.

This subpart prescribes the terms, conditions, and procedures upon which a NASA invention may be licensed. It does not affect licenses which were in effect prior to July 1, 1981; nor may exist at the time of the Government’s acquisition of title to the invention, including those resulting from the allocation of rights to inventions made under Government research and development contracts. (a) Are the result of an authorized exchange of rights in the settlement of patent disputes; or (b) Are otherwise authorized by law or treaty.

1245.201 Policy and objective.

It is the policy and objective of this subpart to use the patent system to promote the utilization of inventions arising from NASA supported research and development.

1245.202 Definitions.

(a) “Federally owned invention” means an invention, plant, or design which is covered by a patent, or patent application in the United States, or a patent, patent application, plant variety protection, or design patent, respectively, in a foreign country, title to which has been assigned to or otherwise vested in the United States Government.

(b) “Federal agency” means an executive department, military department, Government corporation, or independent establishment, except the Tennessee Valley Authority, which has custody of a Federally owned invention.

(c) “NASA Invention” means a Federally owned invention with respect to which NASA maintains custody and administration, in whole or in part, of the right, title, or interest in such invention on behalf of the United States Government.

(d) “Small business firm” means a small business concern as defined at section 2 of Pub. L. 85-536 (15 U.S.C. 632) and implementing regulations of the Administrator of the Small Business Administration. For the purpose of these regulations, the size standard for small business concerns involved in Government procurement contained in 15 CFR 121.3-8, and in subcontracting, contained in 13 CFR 121.3-12, will be used.

(e) Practical application” means to manufacture in the case of a composition or product, to practice, in the case of a process or method, or to operate in the case of a machine or system; and, in each case, under such conditions as to establish that the invention is being utilized and that its benefits are to the extent permitted by law or Government regulations available to the public on reasonable terms.

(f) “United States” means the United States of America, its territories and possessions, the District of Columbia, and the Commonwealth of Puerto Rico.

1245.203 Authority to grant licenses.

NASA inventions shall be made available for licensing as deemed appropriate in the public interest. NASA may grant nonexclusive, partially exclusive, or exclusive licenses thereto under this subpart on inventions in its custody.

Restrictions and Conditions

1245.204 All licenses granted under this subpart.

(a) Restrictions. (1) A license may be granted only if the applicant has supplied NASA with a satisfactory plan, for development or marketing of the invention, or both, and with information about the applicant’s capability to fulfill the plan.

(2) A license granting rights to use or sell under a NASA invention in the United States shall normally be granted only to a licensee who agrees that any products embodying the invention or produced through the use of the invention will be manufactured substantially in the United States.

(b) Conditions. Licenses shall contain such terms and conditions as NASA determines are appropriate for the protection of the interests of the Federal Government and the public and are not in conflict with law or this subpart. The following terms and conditions apply to any license:

(1) The duration of the license shall be for a period specified in the license agreement, unless sooner terminated in accordance with this subpart.

(2) The license may be granted for all or less than all fields of use of the invention or in specified geographical areas, or both.

(3) The license may extend to subsidiaries of the licensee or other parties if provided for in the license but shall be nonassignable without approval of NASA, except to the successor of that part of the licensee’s business to which the invention pertains.
(4) The license may provide the licensee the right to grant sublicenses under the license, subject to the approval of NASA. Each sublicense shall make reference to the license, including the rights retained by the Government, and a copy of such sublicense shall be furnished to NASA.

(5) The license shall require the licensee to carry out the plan for development or marketing of the invention, or both, to bring the invention to practical application within a period specified in the license, and to continue to make the benefits of the invention reasonably accessible to the public.

(6) The license shall require the licensee to report periodically on the utilization or efforts at obtaining utilization that are being made by the licensee, with particular reference to the plan submitted.

(7) All licenses shall normally require royalty or other consideration.

(8) Where an agreement is obtained pursuant to § 1245.204(a)(2) that any products embodying the invention or produced through use of the invention will be manufactured substantially in the United States, the license shall recite such agreement.

(9) The license shall provide for the right of NASA to terminate the license, in whole or in part, if:

(i) NASA determines that the licensee is not executing the plan submitted with its request for a license and the licensee cannot otherwise demonstrate to the satisfaction of NASA that it has taken or can be expected to take within a reasonable time effective steps to achieve practical application of the invention;

(ii) NASA determines that such action is necessary to meet requirements for public use specified by Federal regulations issued after the date of the license and such requirements are not reasonably satisfied by the licensee;

(iii) The licensee has willfully made a false statement of or willfully omitted a material fact in the license application or in any report required by the license agreement; or

(iv) The licensee commits a substantial breach of a covenant or agreement contained in the license.

(10) The license may be modified or terminated, consistent with this subpart, upon mutual agreement of NASA and the licensee.

(11) Nothing relating to the grant of a license, nor the grant itself, shall be construed to confer upon any person any immunity from or defenses under the antitrust laws or from a charge of patent misuse, and the acquisition and use of rights pursuant to this subpart shall not be immunized from the operation of state or Federal law by reason of the source of the grant.

Types of Licenses

§ 1245.205 Nonexclusive licenses.

(a) Availability of licenses. Nonexclusive licenses may be granted under NASA inventions without publication of availability or notice of a prospective license.

(b) Conditions. In addition to the provisions of § 1245.204, the nonexclusive license may also provide that, after termination of a period specified in the license agreement, NASA may restrict the license to the fields of use or geographic areas, or both, in which the licensee has brought the invention to practical application and continues to make the benefits of the invention reasonably accessible to the public. However, such restriction shall be made only in order to grant an exclusive or partially exclusive license in accordance with this subpart.

§ 1245.206 Exclusive and partially exclusive licenses.

(a) Domestic licenses.

(1) Availability of licenses. Exclusive or partially exclusive licenses may be granted on NASA inventions: (i) 3 months after notice of the invention's availability has been announced in the Federal Register; or (ii) without such notice where NASA determines that expeditious granting of such a license will best serve the interests of the Federal Government and the public; and (iii) in either situation, specified in (ii)(i)(i) or (ii) of this section only if:

(A) Notice of a prospective license, identifying the invention and the prospective licensee, has been published in the Federal Register, providing opportunity for filing written objections within a 60-day period;

(B) After expiration of the period in § 1245.206(a)(1)(iii)(A) and consideration of any written objections received during the period, NASA has determined that:

(I) The interests of the Federal Government and the public will best be served by the proposed license, in view of the applicant's intentions, plans, and ability to bring the invention to practical application or otherwise promote the invention's utilization by the public;

(II) The desired practical application has not been achieved, or is not likely expeditiously to be achieved, under any nonexclusive license which has been granted, or which may be granted, on the invention;

(2) Exclusive or partially exclusive licensing is a reasonable and necessary incentive to call forth the investment of risk capital and expenditures to bring the invention to practical application or otherwise promote the invention's utilization by the public; and

(3) The proposed terms and scope of exclusivity are not greater than reasonably necessary to provide the incentive for bringing the invention to practical application or otherwise promote the invention's utilization by the public;

(C) NASA has not determined that the grant of such license will tend substantially to lessen competition or result in undue concentration in any section of the country in any line of commerce to which the technology to be licensed relates, or to create or maintain other situations inconsistent with the antitrust laws; and

(D) NASA has given first preference to any small business firms submitting plans that are determined by the agency to be within the capabilities of the firms and as equally likely, if executed, to bring the invention to practical application as any plans submitted by applicants that are not small business firms.

(2) Conditions. In addition to the provisions of § 1245.204, the following terms and conditions apply to domestic exclusive and partially exclusive licenses:

(i) The license shall be subject to the irrevocable, royalty-free right of the Government of the United States to practice and have practiced the invention on behalf of the United States and on behalf of any foreign government or international organization pursuant to any existing or future treaty or agreement with the United States.

(ii) The license shall reserve to NASA the right to require the licensee to grant sublicenses to responsible applicants, on reasonable terms, when necessary to fulfill health or safety needs.

(iii) The license shall be subject to any licenses in force at the time of the grant of the exclusive or partially exclusive license.

(iv) The license may grant the licensee the right of enforcement of the licensed patent pursuant to the provisions of Chapter 29 of Title 35, United States Code, or other statutes, as determined appropriate in the public interest.

(b) Foreign licenses.

(1) Availability of licenses. Exclusive or partially exclusive licenses may be granted on a NASA invention covered by a foreign patent, patent application, or other form of protection, provided that:

(i) Notice of a prospective license,
identifying the invention and prospective licensee, has been published in the Federal Register, providing opportunity for filing written objections within a 60-day period and following consideration of such objections;

(ii) NASA has considered whether the interests of the Federal Government or United States industry in foreign commerce will be enhanced; and

(iii) NASA has not determined that the grant of such license will tend substantially to lessen competition or result in undue concentration in any section of the United States in any line of commerce to which the technology to be licensed relates, or to create or maintain other situations inconsistent with antitrust laws.

(2) Conditions. In addition to the provisions of § 1245.204, the following terms and conditions apply to foreign exclusive and partially exclusive licenses:

(i) The license shall be subject to the irrevocable, royalty-free right of the Government of the United States to practice and have practiced the invention on behalf of the United States and on behalf of any foreign government or international organization pursuant to any existing or future treaty or agreement with the United States.

(ii) The license shall be subject to any licenses in force at the time of the grant of the exclusive or partially exclusive license.

(iii) The license may grant the licensee the right to take any suitable and necessary actions to protect the licensed property, on behalf of the Federal Government.

(c) Record of determinations. NASA shall maintain a record of determinations to grant exclusive or partially exclusive licenses.

Procedures
§ 1245.207 Application for a license. An application for a license should be addressed to the Patent Counsel at the NASA installation having responsibility for the invention and shall normally include:

(a) Identification of the invention for which the license is desired, including the patent application serial number or patent number, title, and date, if known;

(b) Identification of the type of license for which the application is submitted;

(c) Name and address of the person, company, or organization applying for the license and the citizenship or place of incorporation of the applicant;

(d) Name, address, and telephone number of representative of applicant to whom correspondence should be sent;

(e) Nature and type of applicant’s business, identifying products or services which the applicant has successfully commercialized, and approximate number of applicant’s employees;

(f) Source of information concerning the availability of a license on the invention;

(g) A statement indicating whether applicant is a small business firm as defined in § 1245.202(c);

(h) A detailed description of applicant’s plan for development or marketing of the invention, or both, which should include:

(1) A statement of the time, nature and amount of anticipated investment of capital and other resources which applicant believes will be required to bring the invention to practical application;

(2) A statement as to applicant’s capability and intention to fulfill the plan, including information regarding manufacturing, marketing, financial, and technical resources;

(3) A statement of the fields of use for which applicant intends to practice the invention; and

(4) A statement of the geographic areas in which applicant intends to manufacture any products embodying the invention and geographic areas where applicant intends to use or sell the invention, or both;

(i) Identification of licenses previously granted to applicant under Federally owned inventions;

(j) A statement containing applicant’s best knowledge of the extent to which the invention is being practiced by private industry or Government, or both, or is otherwise available commercially; and

(k) Any other information which applicant believes will support a determination to grant the license to applicant.

§ 1245.208 Processing applications.

(a) Applications for licenses will be initially reviewed by the Patent Counsel of the NASA installation having responsibility for the invention. The Patent Counsel shall make a preliminary recommendation to the Director of Licensing, NASA Headquarters, whether to: (1) Grant the license as requested, (2) grant the license with modification after negotiation with the licensee, or (3) deny the license. The Director of Licensing shall review the preliminary recommendation of the Patent Counsel and make a final recommendation to the NASA Assistant General Counsel for Patent Matters. Such review and final recommendation may include, and be based on, any additional information obtained from applicant and other sources that the Patent Counsel and the Director of Licensing deem relevant to the license requested. The determination to grant or deny the license shall be made by the Assistant General Counsel for Patent Matters based on the final recommendation of the Director of Licensing.

(b) When notice of a prospective exclusive or partially exclusive license is published in the Federal Register in accordance with § 1245.206(a)(1)(iii)(A) or § 1245.206(b)(1)(i), any written objections received in response thereto will be considered by the Director of Licensing in making the final recommendation to the Assistant General Counsel for Patent Matters.

(c) If the requested license, including any negotiated modifications, is denied by the Assistant General Counsel for Patent Matters, the applicant may request reconsideration by filing a written request for reconsideration within 30 days after receiving notice of denial. This 30-day period may be extended for good cause.

(d) In addition to, or in lieu of requesting reconsideration, the applicant may also appeal the denial of the license in accordance with § 1245.211.

§ 1245.209 Notice to Attorney General.

A copy of the notice provided for in §§ 1245.206(a)(1)(iii)(A) and 1245.206(b)(1)(i) will be sent to the Attorney General.

§ 1245.210 Modification and termination of licenses.

Before modifying or terminating a license, other than by mutual agreement, NASA shall furnish the licensee and any sublicensee of record a written notice of intention to modify or terminate the license, and the licenses and any sublicensees shall be allowed 30 days after such notice to remedy any breach of the license or show cause why the license should not be modified or terminated.

§ 1245.211 Appeals.

(a) The following parties may appeal to the NASA Administrator or designee any decision or determination concerning the grant, denial, termination, modification, or interpretation, modification, or termination of a license:

(1) A person whose application for a license has been denied;

(2) A licensee whose license has been modified or terminated, in whole or in part;

(3) A person who timely filed a written objection in response to the notice required by §§ 1245.206(a)(1)(iii)(A) or
1245.206(b)(1)(i) and who can demonstrate to the satisfaction of NASA that such person may be damaged by the Agency action.

(b) Written notice of appeal must be filed within 30 days (or such other time as may be authorized for good cause shown) after receiving notice of the adverse decision or determination; including, an adverse decision following the request for reconsideration under § 1245.208(c). The notice of appeal, along with all supporting documentation should be addressed to the Administrator, National Aeronautics and Space Administration, Washington, DC 20546. Should the appeal raise a genuine dispute over material facts, fact-finding will be conducted by the NASA Inventions and Contributions Board. The person filing the appeal shall be afforded an opportunity to be heard and to offer evidence in support of the appeal. The Chairperson of the Inventions and Contributions Board shall prepare written findings of fact and transmit them to the Administrator or designee. The decision on the appeal shall be made by the NASA Administrator or designee. There is no further right of administrative appeal from the decision of the Administrator or designee.

§ 1245.212 Protection and administration of inventions.

NASA may take any suitable and necessary steps to protect and administer rights to NASA inventions, either directly or through contract.

§ 1245.213 Transfer of custody.

NASA having custody of certain Federally owned inventions may transfer custody and administration in whole or in part, to another Federal agency, of the right, title, or interest in any such invention.

§ 1245.214 Confidentiality of information.

Title 35, United States Code, section 209, provides that any plan submitted pursuant to § 1245.207(h) and any report required by § 1245.204(b)(6) may be treated by NASA as commercial and financial information obtained from a person and privileged and confidential and not subject to disclosure under section 552 of Title 5 of the United States Code.

James M. Beggs,
Administrator.
October 15, 1981.

[FR Doc. 81-31088 Filed 10-30-81; 8:46 am]
BILLING CODE 7510-91-M
A subject index is provided for over 4600 patents and patent applications for the period May 1969 through June 1987. Additional indexes list personal authors, corporate authors, contract numbers, NASA case numbers, U.S. patent class numbers, U.S. patent numbers, and NASA accession numbers.