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SUPERSONIC AERODYNAMIC INTERFERENCE EFFECTS OF
STORE SEPARATION, PART I:
COMPUTATIONAL ANALYSIS OF CAVITY FLOWFIELDS
By
Oktay Baysal*

1. INTRODUCTION AND BRIEF REVIEW OF EXISTING WORK

The first phase of the investigation is devoted to the study of the
cavity flowfields. It is aimed at developing a predictive method based on a
rational model of the cavity flowfield to obtain sufficiently accurate ve-
locity and pressure field determination needed to predict store motion while
in the region of influence of the cavity.

The simulation efforts are being conducted in two steps. The first
step is the simulation of a two-dimensional cavity, that is, the width is
considered infinitely long. Such an exercise is intended to be educational
in understanding the flow behavior around the leading edge, the front face,
the ceiling, and the rear face of the cavity, the formation of the shear
layer, its deflection and bridging characteristic, the possible interactions
of the shear layer, the boundary layer and shock waves. Due to tne symmetry
of the flowfield with respect to the h-L-plane'at w/2, two-dimensional
simulations represent the flow at this particular plane where the third
dimension effects are eliminated (Fig. 1). When sufficient learning
experience is achieved, and necessary confidence in the preliminary two-
dimensional code is acquired, the final step of the cavity flowfield study,
that is, the three-dimensional cavity, will be initiated.

Supersonic cavity flowfields, in the broadest sense, have been

*Assistant Professor, Department of Mechanical Engineering and Mechanics,
01d Dominion University, Norfolk, Virginia 23508.




investigated experimentally by Stallings et al. (Refs. 1 and 2) at NASA
Langley Research Center. There exist empirical formulae suggested by
earlier reports (Refs. 3, 4, and 5). More recent experimental studies have
been conducted by both U.S. Air Force and Soviet researchers (Refs. 7-9).
Sources of interest of these studies varied from store separation to acous-
tics and heat transfer.

Flow Mach numbers used vary from 0.3 to 6.0. Among the measured
quantities were shock wave pulsations and heat transfer coefficient.
Varfolomeyev et al. (Ref. 9) observed the vortices mentioned above in their
experiments. McGregor et al. (Ref. 6) proposed a drag coefficient relation
for the cavity and concluded that the effect of the wind tunnel was on the
strength of the pressure waves but not on their patterns. Wind tunnel ef-
fects diminished with increases in flow Mach number. Sinha et al.(Ref. 7)
concluded that the free shear region showed self-similarity and the recircu-
lating flow had the character of a wall jet in the reverse direction super-
imposed on a forward moving free shear layer. With the more efficient
application of numerics and advanced computational resources, analytical
simulations of the cavity flowfields started appearing in the literature
(Refs. 10-16). Although these efforts are presently restricted by assump-
tions, such as, inviscid, laminar, incompressible, two-dimensional, or only

certain length-to-height ratios, more complete studies are in the develop-

ment stage at present.

2. DESCRIPTION OF PHYSICAL AND MATHEMATICAL MODELS

Flow Development:

With the separation of the store, a cavity is created in the oncoming



supersonic flow. This causes a significant increase in the fluid-dynamic,
fluid-resonant drag, and generate fluid-elastic oscillations. The forward
corners generate the velocity and pressure fluctuations which are amplified
during the expansion and the convection of the flow downstream. The oncom-
ing viscous flow will separate from the cavity forward edye, generating the
highly vortical shear layer around the top and counter rotating eddies near
the bottom corners as a result of the adjustment of the shear and pressure
forces acting on the recirculating fluid to the no-slip condition imposed by
the walls. Viscous forces acting near body surfaces can reduce the momentum
of the fluid in a thin boundary layer region, so that when acted upon by
inertial forces, the boundary layer separates from the body. Depending on
the length-to-depth ratio the flow field inside the cavity varies (Fig. 2).
In deeper geometries, the cavity may be bridged by the shear layer which is
inherently unstable (open cavity.) In shallower geometries, the shear layer
is deflected inwards with a possible reattachment point at the bottom of the
cavity (closed cavity). The resonant effects are associated with compressi-
bility or free surface wave phenomena. The solid boundary may engage in an
elastic motion coupling with the flow oscillations.

Longitudinal vortices (Taylor-Gart1er 1ike vortices) originate in the

zone of separation between the primary eddy and the downstream secondary

eddy, and are convected around the cavity. This separated shear layer is
continuously pulled into and pushed out of the cavity. When the cavity
resonates the shear layer is deflected and pumps mass (carrying significant
momentum) into the cavity. This ingested mass is slowed down by various
dissipative processes within the cavity. Its presence causes the cavity
pressure to exceed the freestream pressure. The shear layer is then de-

flected out of the cavity by the excess pressure and mass is pumped out of




the cavity with low momentum. This oscillatory process extracts additional

freestream momentum during the cycle. The combination of pressure drag (due
to the cavity walls) and momentum drag (due to the transient eddy cycle) can
represent a violent oscillating force on the body. Furthermore, this flow-

field becomes dominated by regions of separated flow within a mixed locally

subsonic and supersonic flow.

The shallow cavity flow poses an added complexity to the overall flow
picture when the shear layer is deflected enough to touch the ceiling of the
cavity (Fig. 3). The inward bound flow is turned by a series of Mach waves
which in turn coalesce into a shock. An adverse pressure gradient is gener-
ated by such compression waves, which causes a secondary separation from the
ceiling of the cavity. Due to the oscillatory behavior of the flowfield the

points of separation and reattachment are periodic in time.

Mathematical Statement

As it is evident from the results of the experimental studies mentioned
above, the flow field includes expansions, shocks, separations, recircula-
tions, and reattachments. The computational simulation of this fluid-dynam-
jcally rather complex flow field requires the inclusion of viscous terms,
modelling of turbulence, regionally clustered gridding, and a shock treat-
ment mechanism. Fully conservative Navier-Stokes equations are written in
generalized-curvilinear coordinates to enhance the flow adaptiveness. The
structure of the turbulence is modelled by the modified k-¢ model (ref. 3)
for recirculating flows. Shocks are captured using the divergence of velo-
city test and treated by the artificial dissipative terms.

The boundary conditions imposed at the solid walls are the conventional




impermeability and no-slip conditions. The wall temperature is assumed to
be the stagnation temperature (adiabatic wall). The pressure gradient nor-
mal to the surface is assumed to be zero, however, the gradient parallel to
the surface is computed from the momentum equation. Downstream and outer
boundaries are computed from the computation zone values by first-degree
extrapolation (extrapolation of property gradients). The upstream boundary
is either assumed to have property profiles computed by a boundary layer
code, or assumed to be at free stream conditions, thence, a leading edge
shock. To initialize the computation, the variables all over the computa-
tion zone are given the values of the upstream boundary (to save computation
time), with the exception of the points inside the cavity, where the flow is
assumed stagnant initially.

General form of the fluid flow equations:

®Lsv.fi=o0 (1)
ot
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Newtonian Fluid Stress-Strain Relations:
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The governing fluid motion equations are derived featuring the following:

- strong conservation form

- transformed into generalized curvilinear coordinate system

- k-e turbulence modeling or two-layer algebraic turbulence model

- two-dimensional

(g,n)

(6)

- artificial dissipative terms proportional to the second gradient

of pressure and temperature, and controlled with blending constants

- molecular viscosity from Sutherland law

ay; oF; 3G
- + — + = H
at 14 on

where

b =U/, Fp =[(F+$§)E +(6+S) Ey]/J

Gt = [F+ S1)ng + (G+ S2) "y]/J



and

B o
ou pu? + p - Tox
PV puv
us= E , F = u(E+p-Txx)-VTxy-qx
Pk pPuk - ka
pE pue - Dex
— - _
pv
Puv - Txy
2
pve + - T
P tyy
G = v (E+ 21 - Tyy) TR , H= p( P-g)
-D
P T ey i _
3u v 2
Tyx = (2u +2) —+ 2 — - = pk
X 3y 3
u av
T S (_... + ___)
Xy 3y ax
.. = (2 u+21) 3!.+ A EE -.g ok
¥y oy ax 3
oT oT
q = K— qy = K —
ax ay
u u
t ok t ok
Dy = (—+ m o > Dky (—=+ m)"’




9€
£X —* um) -

The Jacobian and the metrics are written as follows and obtained

nunerically from the grid generated for each node:
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Turbulence Models:

Since the k - ¢ turbulence model is devised for high Reynolds number
number flows, a wall function (Ref. 19) is adopted and used for the very low
Reynolds numbers regions near the walls (Fig. 4). The procedure of using

this wall function may be summed up as follows:

1. velocity profile from previous time step, u=f(y), v=Ff(y)

~
1]

I
+




5. Assume linear variation of =1, i.e.

T - T
w2 W
Tl = Tw + - (.Yw.,.l - )’w)
Y2 W
T
wtl
6. wuyq = (n + )
wtl U v m t/ wtl
—_ =)
3y ax wtl
3/2
7o Sl T K /Cy Wy = %)
1/2
8. kw+l = (o Cu €w+l)

Assume within the viscous sublayer:

| =

Y s near the wall

The derived equations above are subject to the following initial and
boundary conditions:

initial conditions:
- a given boundary layer profile, V = V(y)

with V(y > o) = UwT

10



- Compute E and T profiles from

2
E=p [T+l ¥
y-1 2
ka
-k, € U, — = - ¢
dx
de

where

f, = 1 - 0.3 exp[-pk2/ue)?]

upstream boundary:
same as initial conditions

solid wall:

V(y)

is the normal

Vw =0 no-slip, impermeable
(EELJ =0 adiabatic wall, where n
an wall direction to the wall

11



ap _ 2Txx . OTx
_E- = — 'y >
ax ax oy

Compute Py

downstream and outer boundary:

- first degree extrapolation from the computation zone, i.e.
gradient of a primitive variable at the boundary is equal to the
gradient of that variable at the neighboring internal point.

In view of the upcoming three dimensional simulations, where computer
storage and CPU time may become limiting constraints, a two-layer algebraic
turbulénce model of Baldwin and Lomax (Ref. 20) is also built in as an
option. When this option is turned on the k-e¢ equations are 'blanked
out'.

Turbulence of the wall shear flow is called the inner turbulence, and
it is modeled using the Prandt] mixing length theory with the improvement of

the Van Driest formulation. Using the nomenclature of Baldwin and Lomax,

inner eddy viscosity coefficient is calculated as
2
= o2 |wf (25)

(“t)inner

where 2 = 0.4y [1 - exp (-y+/26)] (26)

12



and y = (p

where y is the local normal distance from a solid surface.
Turbulence of the outer region is based on the Clauser formulation
using the Klebanoff approximation to the Gaussian error function that gives

the intermittency factor. The outer eddy viscosity coeficient is calculated

as

() guter = 0-0269 2 Fora Fiien (28)
where the value of Fk]eb’ the Klebanoff intermittency factor, is given by

6. -

Fk]eb =1+ 5.5 (0.3 y/Ymax) ] (29)

and
+

F(y) =y lo| [1 - exp (- y /26)] (30)

where F(y) is maximum, F__, aty=Y . F is the minimun of
max max wake
(Ymax F 2
max 'max) or (0.25 Ymax Udif/Fmax)’ where
Ugse = {max [(Wo] - min [Wo]) (31)

at a fixed tangential location. The crossover point, where the switch is

made from (“t) to (n

outer t)inner, is the minimum value of y where

(“t) to (ut) is the minimum value of y where (“t)outer

outer inner?

becomes less than (”t)inner‘

13




3. COMPUTATIONAL METHODS
Explicit-Implicit MacCormack Scheme: (EMAC):

Since the mainstream flow is supersonic, the set of partial
differential equations (7) are predominantly hyperbolic, Therefore, the
explicit-implicit scheme of MacCormack (Ref. 21), which is developed for
hyperbolic equations, is one of the methods adopted. The method is second-
order accurate both in time and space which is achieved through using
predictor and corrector steps. Each step is consisted of an explicit
substep and an implicit step. The reasons for this substepping are: (1)
reduce tridiagonal flux Jacobian matrices to bidiagonal matrices and apply
direct solution, (2) when time step At meets the stability criterion
(CFL), the implicit substeps which require most of the computation time are
automatically bypassed, thence an explicit scheme.

|K| and |B| are matrices with positive eigenvalues, related to the
Jacobians

A= (3F/aU) and B = 3G/30).
(A+/AE) and (A+/An) are one-sided forward differences.

(A/ag) and (A /An) are one-sided backward differences.

The Jacobians A and B are related to the Jacobian A = 3F/3U and

B = 3G/3U by

>>)
"

At + Bg
X y (32)

o)
"

Anx + Bny

14



1. Explicit Predictor Step:

the calculation (33)
domain

A G.q = - At [ A+ g A+ G inj ] at every point inside
1 1]
Ag

An

4 ~n n+1 n
where aU;s = {U - Uy

J ij

2. Implicit Predictor Step:

+ AN +,A .
Solve | 1 -at & IAI||I- 8t a'jB[ |5 m1 _ 5 (34)
AE | N R
~ n+l]
for § UTJ
This is done in two steps.
Let
~ % ~ n+l
sU;; = 1-at Ll 605 - (35)
J An
This results in two equations, namely,
o n
A |A] o |

15



+ &N n+l *
b) [I - At A |B] ] 8Us5 = 8844
An

The above two equations can be solved by splitting |K| to

S DA S

£ -1 3s,

g

Now this equation may be simplified by algebraic manipulation as,

~n ~n ~ K ~n

[+ {at |A]%.} suss = au. " + at A%, . (50.7)
1) 1J 1] ‘|+1,J ij/e
But [A"=s. D, 5.
ut AT =S Dy S
I + t S D S-l T~k
{1+ 88 S35 Dpig Seigh 8Uy5
- ”~ n ~ -~ %
AN -~ P
J.¥ = ¢ -1.¢ -1
GUij SE (I+AtDA) ~SE W




This equation can be easily solved since SE and SE-I are known and

*
the inversion of the diagonal matrix (I+AtD is routine. After all Guij

A
inside the computation domain are determined the step (b) is carried out in
the same manner. Corrector steps are analogous to predictor steps.

The details of methodology are included in Appendix.

Line Gauss-Seidel Upwind Relaxation Scheme (ULGSR)

.
.

In the MacCormack scheme explained above, dissipative terms are added
for numerical stablity. Often the optimal determination of these terms is
not straightforward. Furthermore, such terms cause the “smearing" of the
solution at large-gradient zones and may cause drainage of the conserved
properties.

Recently, there has been considerable progress in the development of
upwind methods, which recognize the hyperbolic nature of the time-dependent
inviscid equations in the construction of naturally dissipative schemes.
The improvement in physical treatment comes generally at the expense of
increased computational work in comparison to central difference approxima-
tions. However, improved algorithms tailored to the propertiés of the up-
wind discretization are being developed. The diagonally dominant properties
of coefficient matrices arising from such discretizations allow efficient
relaxation procedures to be developed which can increase the overall
convergence rate, and thus offset the increased computational work per time
step (Refs. 22 and 23).

An efficient relaxation algorithm for the Navier-Stokes equations is
obtained by using upwind differencing for the convective and pressure terms

and central differencing for the viscous shear and heat flux terms. The

17




I

upwind differencing in the present work is implemented using the flux split-
ting method developed by Van Leer including third-order accurate spacial
differencing, although the techniques described could be applied to most
upwind difference methods.

Rewriting Eq. 7 with slightly different nomenclature is convenient at

this point.

~ -~ ~ '1 '1
Q26 Mgy {03 (R +nS)] (43)
dt 9an oz
-1
+
+ aC[J (¢, R cyS)]}
Q= Q4
G=(ngGt CyH)/J (44)
H = (ch + cyH)/J
) bu PV
Q=1 pu G = puZ+p H= | puv (45)
oV puv pvi+p
E u(E+p) v(E+p)

where n s the coordinate along the body and ¢ 1is the coordinate normal
to the body.

The viscous terms on the right-hand side are given by

0

R = Txx Txy 46
TXy S = Tyy ( )
Ry Sy
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Tex = (+2u) (ngup +zu )+ alngvy +zv) (47)
= +
Tyy (A+2u) (ny Vot ey vc) + A(nxun + cxuc) (47a)
= + + +
Ty u(nyun TM, TV vc) (47b)
Ry = uTyy + Vixy
+ pPr-1(y-1)-1 (nxana2 + Cxa;az) (47¢)
Se = uTxy * VTyy
tuPril(y-1)7t(ny, 3, @2 + ¢ 3, a2) (47d)

An implicit, upwind, finite-volume scheme described in Refs. 22 and 23 is
used to solve (1). Application of approximate factorization allows the

system of equations to be solved in two sweeps:

[ Lt o At + 9 *A-
n n

Jat : n
- - *
- Re 3 J NJAQ = -RHS (48)
I - .+ +,.
[E'FQCB +3C B x
-1 -1 AQ
- Re 3.J MlaQ = — (49)
: Jat
-+ + - -+ + -
RS =3 6 +3_ G +3 H +3_H
n n 4 4
-Re {3 [J (nR+ nyS)] (50)

+ o [0 (5 R + 2 9)])
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The (+) and (-) superscripts indicate flux split quantities, ac-
cording to the flux vector splittings of Van Leer. A and B are lineariza-
tions of the G and H fluxes, and M and N arise from the linearizations of
viscous terms in the ¢ - direction and n - direction, respectively. All
viscous terms are centrally differenced, and implicit cross-derivative terms

are neglected in the formulation.

A comparative study of these two schemes is to be reported in Ref. 24.

4. RESULTS AND DISCUSSION

Two Navier-Stokes codes are developed as the tools of analysis.

Both codes are second order accurate in time and in space. Code A is the
explicit and time unsplit MacCormack scheme, which proves its use from
straightforward vectorization point of view (Ref. 21). Code B is an impli-
cit fully-upwind line-Gauss-Seidel relaxation scheme that necessitates flux-
vector splitting (Ref. 22). For a class of unsteady flows, the explicit
scheme may be more computer-time efficient. However, despite its parallel-
jzation complications due to recursiveness, the implicit scheme is much
faster converging for steady flows, thence often preferred.

In an attempt to demonstrate the integrity of these schemes for various
flow dynamics phenomena and perform comparisons, a variety of high-Reynolds-
number flow cases are analyzed. These include flow over a flat over a flat
plate with a leading edge (Fig. 5), flow over a sharp concave corner (Fig.
6), and flow over a rearward facing step (Fig. 7). Among the phenomena
observed through simulation are, initiation and growth of a boundary layer,
shock-boundary layer, shock-boundary layer interaction, expansion around a
ninety-degree corner and separation, and detached shock.

The flow simulations are performed using CDC VPS-32 vector processor
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which has a virtual memory architecture. This memory-to-memory machine has
short stops which does not use vector registers. For this SIMD (single-
instruction-multiple-data) processing, the user has to do the memory manage-
ment and prescribe the required resources, such as, the working set sizes,
to the operating system. Page memories used by the code are not necessarily
adjacent, therefore, vector lengths larger than a page (64K-words) are
avoided. Thirty-two bit (half-precision) arithmetic option and very effi-
cient scatter-gather operations are available, therefore, they are widely
used in this code development. The vectors shorter in length than the
breakeven length are retained in scalar DO loops. The array indeces are
arranged in decreasing lengths and the nested DO loops containing these
indeces are ordered likewise, so that, the innermost loop corresponds to the
longest dimension. Avoidable uses of vector logical unit are eliminated.
The implicit scheme poses the recurrence problem from parallelization
standpoint. Most of the operations of the inversion, however, occurs in the
LU decomposition for four by four block 1ine inversions, and they can be
computed simultaneously for all the lines before beginning the relaxation
sweeps. The Gauss-Seidel line inversions constitute less than thirty per-
cent of total computations as indicated by the histograms (approximately 23%
in turbulent and 26% in laminar calculations). Therefore, a further im-
provement in computation times would have been achieved by employing a par-
allel algorithm. The scalar computational time on VPS-32 for the above
algorithm is approximately 800 microseconds per gridpoint per time step.
This vectorized upwind scheme achieves a speed up to approximately 17 micro-
seconds per gridpoint per time step for laninar Navier Stokes calculations
and 21 microseconds for turbulent Navier Stokes calculations. Another 21%

time reduction can be obtained if thin-layer Navier Stokes equations are
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used. The scaler computation time for the MacCormack code, 240 microseconds
per grid point per time step, is reduced to 40 microseconds through vectori-
zation. Better speed-ups are possible for larger mesh sizes.

Further discussion on computational methodology comparisons are dis-
cussed in Ref, 24. This reference also includes analyses and simulations
for flow over an airfoil and flow over an ogive-nosed cylinder at angles of
attack. Such cases are of interest to the second part of this investiga-
tion, therefore, not included in this report.

Two-dimensional simulations of cavity flowfields are demonstrated in
Figures 8 through 25. These results certainly do not reflect the third-
dimension effects of the side walls. The box-cavity flowfield is symmetri-
cal with respect to its centerplane which is at z = width/z (Fig. 1). Two-
dimensional simulations reflect the flowfield at this plane of symmetry.
Example cases included are two open cavities (length-to-depth ratios are 3
and 6), a transitional cavity (length-to-depth ratio is 12), and two closed
cavities (length-to-depth ratios are 16 and 24). Figures corresponding to
these cases are 11 through 13, 14 through 16, 17 through 19, 20 through 22,
and 23 through 25, respectively. All of these figures display the final
property values at 0.1 seconds after the computations are intiated. These
results are also reported in References 16 through 18, which are authored or

co-authored by the principal investigator of this research.

5. CONCLUDING REMARKS
An explicit-implicit and an implicit two-dimensional Navier-Stokes
code along with various grid generation capabilities are developed. A

series of classical benchmark cases are simulated using these codes.
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References 16, 17, 18, and 24. Current follow-up efforts may be summed up
as; developing explicit as well as implicit three dimensional codes, three-
dimensional cavity flowfield studies and simulations, two-dimensional and

three-dimensional store flowfield studies and simulations.

23



1.

2.

3.

10.

11.

12.

13.

14.

REFERENCES

Stallings, R. L., Jr., "Store Separation from Cavities at Supersonic
Flight Speeds," Journal of Spacecraft and Rockets, Vol. 20, No. 2,
pp. 129-132, 1983.

Blair, A. B. and Stallings, R. L., "Supersonic Axial-Force Characteris-
tics of a Rectangular-Box Cavity with Various Length-to-Depth
Ratios in a Flat Plate," NASA-TM-87659, April 1986.

Rossiter, J. E., "Wind Tunnel Experiment on the Flow Over Rectangular
Cavities at Subsonic and Transonic Speeds," R&M No. 3438, British
A.R.C., October 1964.

Charwat, A. F., Rous, J. N., Dewey, F. C., and Hitz, J. A., "An
Investigation of Separated Flows," J. of Aerospace Sciences, vol.
28 Part I, June 1961, Part II, July 1961.

McDearmon, R. W., "Investigation of the Flow in a Rectangular Cavity in
a Flat Plate at a Mach Number of 3.55," NASA TN D-523, September
1960.

McGregor, 0. W., and White, R. A., "Drag of Rectangular Cavities in
Supersonic and Transonic Flow Including the Effects of Cavity
Resonance, "AIAA Journal, vol. 8, November 1970.

Sinha, S. N., Gupta, A. K., Oberai, M. M., "Laminar Separating Flow
Over Backsteps and Cavities," AIAA Journal, Vol. 20, No. 3, 1982.

Antonov, A. N. and Shalaev, S. P., "Experimental Investigation of
Nonstationary Flow in Cavities in a Supersonic Flow," Fluid
Dynamics-Soviet Research, vol. 14, no. 5, 1980.

Varfolomeyev, I. M., Gortysher, Y. F. and Shekukin, V. K., "Heat
Transfer and Dynamics of Supersonic Airflow Past Cavities," Heat
Transfer-Soviet Research, vol. 13, 1981.

Clark, R. L., Kaufman, L. G., Maciulaitis, A., "Aeroacoustic

Measurements for Mach 0.6 to 3.0 Flows Past Rectangular Cavities,"
MR P Smer o 50 6656 2088, J

Borland, C. J., "Numerical Prediction of the Unsteady Flowfield in an
Open Cavity," AIAA Paper No. 79-0136, 1979.

Hankey, W. L.; and Shang, J. S., "Numerical Solution to Pressure
Oscillations in an Open Cavity," AIAA Paper No. 79-0136, 1979.

Gatski, T. B. and Grosch, C. E., "Embedded Cavity Drag in Steady
Laminar Flow," AIAA Journal, Vol. 23, No. 7, 1985.

Gorski, J. J. and Chakravarthy, S. R., "Calculation of Three

Dimensional Cavity Flowfields," AIAA Paper No. 87-0117, 1987 (to be
presented).

24



15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Om, D., "Navier-Stokes Simulation for Flow Past an Open Cavity," AIAA
Paper No. 86-2628, 1986.

Baysal, 0., Stallings, R. L., Srinivasan, S., "Unsteady Flow in a
Cavity at Supersonic Speeds and its Navier-Stokes Prediction with a
Vectorized Algorithm," AIAA Paper No. 86-0594, 1986.

Baysal, 0., Stallings, R. L., and Srinivasan, S., "Cavity Flowfield
Calculations," Virginia Journal of Science, vol. 37, no. 2, p. 39,
Summer 1986. —

Baysal, 0., Stallings, R. L., "Computational and Experimental
Investigation of Cavity Flowfields," AIAA Paper No. 87-0114,
January 1987 (to be presented).

Sindir, M. M. S., "A Numerical Study of Turbulent Flows in Backward
Facing Step Geometries," Ph.D. Thesis, University of California,
Davis, 1982.

Baldwin, B. S. and Lomax, H., "Thin Layer Approximations and Algebraic
Model for Separated Turbulent Flows," AIAA Paper No. 78-257, 1978.

MacCormack, R. W., "Current Status of Numerical Solutions of the
Navier-Stokes Equations," AIAA Paper 85-0032, 1985.

Thomas, J. L. and Walters, R. W., Upwind Relaxation Algorithms for the
Navier-Stokes Equations. AIAA Paper No. 85-1501 CP, July 1985.

Rumsey, C. L., Thomas, J. L., Warren, G. P., and Liu, G. C.,, "Upwind
Navier-Stokes Solutions for Separated Periodic Flows," AIAA Paper
No. 86-0247, 1986.

Baysal, 0., "Flow Simulations Using Upwind Line-Gauss-Seidel and
MacCormack Schemes On a Vector Processor," 1987 ASME Fluids
Engineering Conference, Cincinnati, Ohio, June 1987 (to be
presented) .

Carter, J. E., "Numerical Solutions of the Navier-Stokes Equations for

the Supersonic Laminar Flow Over a Two-Dimensional Compression
Corner," NASA-TR-R385, July 1972.

25




30,00

Flat-piate wing

/—rm-um wing suppert

3.00 A

Flab-piste wing covily Balance saepter Dalance Qatance sting

Section A-A

Figure 1. Details of flat plate wing metric-box-cav

\W%

Support sting

ity from Ref. 2.

26




Eyponsion Shodks EY‘FM e

M Y10 //// ///
— W —
l | // ﬁczc;:\c:labm - // /
TS ) T T T
T///// ekt /77

- Wile in dime L _—
Cm&u.raho.{:nj
Corner Eady
(a)
Evpansion Shock //e'“?“"* Rl
, / / / / / /
M, > 10 éf/ /7
-/ _
"7 v
m—T \L/ ——

%

LT T T T

-— L

(=)

Figure 2. Hypothetical structure of flowfield variation due to depth-to-

length ratio: (a) Closed or shallow cavity, (b) open or deep

cavity.

27




7/
/////// ly/
-l wm P o= //// /// B R Y
177, 2
/4 i

initiation of shear layer

Expansion wave o turn the How
and sq’ora-l'ior\

Paraliel to dwa wall

Compression waves that furn tha {low

\s. Coalesce w0 o gsheck
M>Lo \,
-—— iy
pY
\ 7

. recovery shear
370
Va
T 7777
reattachment point

A-shock generating the g.Jvug. pressuie

gradient and hence o secondary separabon
Possi‘ole.

Figure 3. Hypothetical details: of flowfield structure at cavity corners and
cavity floor. :

1

Figure 4. Near-wall region for low-

Reynolds-number k-¢ calculations or wall
functions.

28




. g

STREAMLINE CONTOURS
FLAT PLATE. ALPHR=00. RE-2.E06
I76X52 GRID M- ].500

Figure 5.

T
2|—
0 - ULGSR
== EMAC
=
Qo -2F
J
B
-
&
S -6
-
-8
-10
-12 1 1 ]
0 200 400 600 800 1000
Iter ations

FLAT PLATE, ALPHA=QQ, RE=2ED8,
176 x 52 CRD M= 2380

@a

FLAT PLATE, M=, RE=2C08

178 x 32
N VAL -

-4
-004;

) STAT PRESS CONTOURS HIN VALUE= 1.0000
FLAT PLATE., RLPMA=00, RE:2.E0B.

178X52 GRID M= 2.3%0

continued

(<)

MIN VALUE= -.0007

(d)

MAXz  1.9892

MRX=

1.9778

29



T EMAC
Paessuee

Densivry d‘*-ﬂ'bu{ion
— Prevem

YA
8

@) (9)

ENAC MACH CONTOURS ‘/ Lo
/ ./ . Velocity  distribution
-3 §
— Tresant caladation
/‘[/‘/ : 00 Carter's resulk

1.0 Tﬁ'\flfd\an. Sintei bution

- Prevent

00 -Carker (Pef.25)

()

Figure 5. Supersonic flow over a flat plate with a leading edge: (a)
convergence comparison of EMAC and ULGSR codes, (b-d) sample
results by ULGSR code, (e-i) sample results by EMAC code.

30




OF POOR QUALITY

L5178

Rl YVRUE: 0.0008 s 15001
Ns |60 Ds

°
ConTons

NP UM, THETRe1O.. RE=2.0ER AWWP COXX

X100 erip

O

dabbhdubdi
ATTILYINTY

NN VALUEs  -.0029 s §.5638
WP FLOM. THETA=10.. RE=2.0E8APWRP COOE
05179

102X 100 GRID

YT LY e VETY
TEITTEY eI Y i Y
PRI TY I ATy YT T
TTTTLEEIY Y ey v T
ShINENGRREN RN
e e e
SUAUERUBOI MR DRSS,
RO DR NI T
T A T e
TYTTTEL ey P e T T
T re ey e L)
FYTYTRT I e T TR Y PRRLEs

Nz 1800 (D=

STREAMLINE CONTOLRS

C)

3)

-2

-1.0

-2

STAT PRESS CONTOURS

2 "t 10010

niN VRLUES

AP FLOM. TMETARI0.. NEz2.0E8.UMEWP CODL

08179

N2 1508 s

12X 100 GRID

(c)

2
.
-
\ +
LTS

1%

—®

L)
T LN LAY y Q
2 8 8 3 % g 2 87
207 Adpyu3 [0 o
=
e
L]

]

e

)

N T S N el S

T 9 2 @ @ v wn 4 zw.~
1)

uion AdoAuy

xA

)

(3

continued

Figure 6.

31




ORIGINAL PAZE i3
OF POOR QUALITY

40 x 10¢

B Skin Frickiwn
3 - Coefbvent

25 | —

EMAC Mach Centours

() (k)

Figure 6. Supersonic flow over a 10°-Compression Corner: (a-i) ULGSR cod
(j-k) EMAC code. (a-?) ©

32




&N tdibiisioq
AL IR by

it

LRTUNS WAy
Etn:-itltm

Y™

-.0427 MAX=  3.0869

MIN VALUE

RE

STRERMLINE CONTOURS

6.0. =2.0EB

M

CRAVITY FLOW.L/D
97 X30 GRID

1.500

(3)

\ <

3

mx= 2.3770

n{N VALUE= 0.C0C0

CONTOURS
= [NF

STEP  FLOW. L/D:

97 X0 GRID

. RE=2.0ES.
1.500 €0

MACH

1.3108

X

MIN VARLUE= .2546

RE=2.0ES
1.500 €D

STAT PRESS CONTOURS

37220

M=

STEP FLOW. L/D=INF,

320

M=

97 X390 GRID

«©)

)]

EMAC Mach Conkoue $

=

EMAC

fressure

Con&w« 1

)

ULGSR code,

)

a-C

(

.
.

g step

Supersonic flow over a rearward

(d-e) EMAC code.

Figure 7.

facin

33

NS
[ 2%

QUAI:ITY

.

N e

3'::';,:"

OF POOR

UKy




ORIGINAL PRGE %
| OF POOR QUALITY

’ L 2 T
3 Hr”n T
l 71 " / AN
| ST
+H \
| e N
‘ ‘
|
(3)
(b)
(c)
(d)
Figure 8. Sqmp]e grid meshes for cavity flowfield calculations: (a-b) body-
fitted meshes, (c-d) patched rectangular meshes.

34




Figure 9.

ORIGINAL PAGE IS
OF POOR QUALITY

CAVITY FLOW FIELDS
OPEN CAVITY FLOW

Continued

L/D=11.2

L/D=8.0

L/D=2.0

35



L6 ) — ramy

TR E )

OF POOR QUALITY

3
3
-

CAVITY FLOW FIELDS
CLOSED CAVITY FLOW

L/D=24.0

L/D=16.0

L/D=11.6

Figure 9. Schlieren photographs of cavity flowfields from Ref. 2: (a) Open
cavity examples, (b) closed cavity examples.

36




"¢ 43y wouy spiaimoly
A3LARD 40 SUOLINQLUISLP B4NSSaud pauLwaa}dp ALiejuawiaadx3y Q1 aunbyry

(u) (un (uw)
Nmn_m a \n-mw Ow a _\n_n_w —n_n_m
¢ 0 } O cLoL 8 9 ¥ 2 O i o A
| g | ~nm r T 1 I T | — Ny -
% - : @8- {e- 3
& a
i . 000" co{0 &
c
] - . 412" ®
O
- i _ 1y %
o
=)
- -4 - - Im- —t
weasjsumop | aoe) Buijien d eoe;d weansdnloy
aje|d jel4 Jeay juoi4 ajeyd jel4
2ddg Eu_,mo,
uwado 9 o ~— _ uv_.c_m
feuonisues) gi O u gp = dug o~ ddgT \
pesoly ve O S 1="W A W
pPiIsymol4d an ~ q

SNOILLNAIYLSIA 3HNSS3Hd ALIAVD

37



=

—~@

)

~

>

-~

LY
o
[}
[

- -0

. J SR N R SR S

~ n =T @ N = O

€ dJ

e

=

@

o}

~

-2

4=

e

- o

(T [T S D B

m o~ lzau._.\.u

A Do

¢ dJ

-

~H=

e

p |

~

>

—=

e

-

1 1 | I I S I |

I E 8 &5 8 °

C (=]
N JL
—=
o
~o
[{ 1 1 ! 1 | 1 ) B |
8§ = z =2 8 3 8 8 2
b 4]
—
L0
—<@
_ —H
—_— Jg
! L1 | i | | ) J
~ 8 g8 ° 5§ 8 % £ 8§
- S dJ
9
g

(e)

(d)

Continued

Figure 11.

38




E5Y ol 1.2+

[+ 4

x
20 (2 3 ol

o

S 8
13-] o =
10 20

Figure 11.

‘00#10"

S b — \/—-—__

0 i 1 -.2 ! 1 | Il 1 1 1 1 1 |
-3.0 -2.4 -1.8 -|l.2 -fs (l) ,ls |32 ,fa 2&, 3f0 -3.0 2.4 -1.8 -1.2 -6 0 .8 1.2 1.8 z4 3.0
X/D X/0
. AP
(%) =P
LY
A2
A0
A .08
w
=
x
E 06—
p g
2 .m|-
02+
opF “"‘J
-.02 J f i 1 i H I 1 I I
-3.0 -2.4 -{.8 -1.2 ..§ 0 .8 1.2 1.8 2.4 3.0
X/D
(h)
Supersonic flow over L/D = 3.0 cavity: Pressure coefficient

distribution at, (a) front flat plate, Sgp1» (b) forward face,
Sgps (c) ceiling, S¢s (d) rearward face, E , (@) rear flat
p?ate, Sepos (f) skTn friction coefficient, (g) displacement
thickness,“(h) momemtum thickness distributions.

39



STREAMLINE CONTOURS MIN VALUE= -.1094 MAX= 1.645]
CAVITY FLOWN.H/0=3.0. RE=2.0E6 "
110 X 100 GRID M= 1.500

(b)

, .
- .
-

STREAMLINE CONTOURS "IN VRLUE:
CRVITY FLOW.H/D:3.3. RE:2.066
HOX 00 GRID M : 1.300

-.4378 Mxs 6.5805

()

Figure 12. Supersonic flow over L/D = 3.0 cavity: (a) streamline contours,
(b) velocity vectors of entire flowfield, (c) blow up of corner
flows.

Uﬁﬁ‘.’duwxg ?,; s 40
OF POOR QUALITY




Figure 13.

STAT PRESS CONTOURS MIN VALUE= .3084 MAX= 1.8617
CAVITY FLOW.H/D=3.0. RE=2.0E6-

110X 100 GRIO M= 1.500

DENSITY CONTOURS MIN VALUE= .2828 MAX= 1.5987
CAVITY FLOW.H/D=3.0. RE=2.0E6
110X 100 GRID M= 1.500

MACH CONTOURS MIN VALUE= 0.0000 MAX= 2.1188

CRVITY FLOW,H/0=3.0. RE=2.0E6.
110X 100 GRIB M= 1.500 (C)

Supersonic flow over L/D = 3.0 cavity: (a) Pressure contours,
(b) density contours, (c) Mach number contours.

41




220 30 ) B
18+ 2 08—
A4 A 05
A0+ or D4
- N [<p)
a, 08 o -1 a8
Q Q &)
02+ -2 02
-.02 -3r 01—
-08 -4 \\/ or
~aobt ! i L L1 _5Lx i | { LV TR ) 1 p
0 2 4 & B8 10 4 . 8 1.0 2 4 5 B 10
X/L Y/D X/L
(a) (&) (c)
12
o _ i
.08
ol i
024
0
o+ w %
= a -
a. —-02 ©
< .08 |-
-4
A2
-.06}
BT
-.08
-.2DLL 11 L 1 J
-0l L 1 1 1 I 0 2 4 -6 8 1.0
0 2 M -6 8 1.0 X/L
Y/D

(d) (e)

Figure 14. Supersonic flow over L/D = 6.0 cavity. Pressure coefficient

distribution over; (a) front flat plate (Sgpy), (b) forward face
FE) s ) cei]ing (d) rearward-face (% ), and (e) rear
flaE plate (SFPZ) (gee Fig. 10 for compar1sgﬁ)

42



ORIGIHAL PAGE 15
OF POOR QUALITY

STREAMLINE CONTOURS MIN VALUE= -.1054 MAX= 1.8093
CAVITY FLOW.H/D=6.0, RE=2.0E6
110X 100 GRID M= 1.500

Figure 15. continued

43




Figure 15. contiﬁued
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= - +
A u UE
v UE +
B Ayq
where
A'+1 Ug [G(
Ay o
Ayg = - U
a = E.(u2 + v2)
2
8 = (y-1)
a= fvp/p
gx = a;/ax
Ey = 38/3y

APPENDIX

DETAILS OF MACCORMACK SCHEME ADAPTATION

0
Ex B a UE
Ey Ba -8 Ey
Ay 2
g-1) - Ei ]
8

Ex

- (8-1) g u

u+
&V

€y 0
Syu - BEX v B &,
U - (8-1) Ev 8 Ey
Ay 5 (g+1) UE
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u

£

and Un are contravariant velocities

an/ax
an/3y

Jacobian matrix B s obtained similarly as follows:

-

0 nx ny
B = -ul +n Ba U, - (8-1) nu. nu -8n v
vU +n Ba, -Bn y+ny U -(B-1) ny
n y y X n y
By 1 By 2 Bys
— 2
Byy = U [a (8-1) - 7]
n
]
a2
Bup = - g U u+ L;‘ *a] n,
A, = 122
7T el Y[ e

The integration scheme can be simplified by diagonalising A

—1
0
an
8n
(B+1) Un
and B.
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~

Once the eigenvalues of A and B are known, it is possible to express A

and § in the form

~ ~ I\-l
A Sg Ap SE
~ - ~ ‘\_1
B Sn Ag Sn

where AA and AB are diagonal matrices consisting of the eigenvalues of

A, A

ALl "'AA,4 and B, AB,l’ cee AB,4’ respectively. The vectors SE

and §n are constructed using the eigenvalues of A and §, respectively,

as columns.

where
(1 0 p o N
a V2 a V2
- £ g
S, = | u o £y/cy p [U_+ X /VIZ o [Y-X) /]2
3 a C a C1
13
v 13 v
voo-e g/ o [L+2Y J/[2 o [Y -2/ [2
a o a o
o UE a o UE a
o e fue-ve ] o[+ =+ /‘/2 o [2-=+23] /[2
Y a c; B a c¢c; B
€1
2 2
C1 = 5X+5y
~ -1 -1 -1
SE = T ME
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where M = | 1 0 0 0 |
u p 0 0
v 0 ) 0
a pu pv 1/8
A_l '_ - B
S 1-c (pu/a2) (Bv/a?) -B/a2
3 a2
-ugy + vgx gy - Ex
pCy pCy pC1
a8 '3 Bu BY
a_- - UE/CI X ¢y i
o ]2 C a c; @
pY?2 pY?2
ZE EE - Ef+ii - EL;+EL
a ¢ c, a Cy a
| P , 2 [o 2 [0 2
V

% 0 0 0
AA= 0 % 0 0
0 0 Ue + acy 0
0 0 0 Ug - ac,.
‘Sﬁ‘l = 1-a8 Bu/ a2 Bv/a2 -8/ a2
a2
- un, + vn, ny/ec, -nx/pcl 0
n B
a C1 C1 a (o} ] a 8




S =
n — n. — n
u p n./C1 o [ U4+ X /,2 p | Y- X /]2
y ba Cl— L—a Cl
[ n| B n —
v - o nJ/c o | Y + 2 /,2 o fvia - 2 /\[2
| a ¢ | | !
— U ~u ]
a p [un_ -v nx:] P .i + 1+ 2 2 »p .i -1+ 2 /{2
y | 4 9] B a Ci p
S

o= [ 0 0 0o
0 Un 0 0
0 Un + acy 0
0 0 U -ac

The matrices IKI and |B| are formed by replacing the matrices A, and

AB by positively valued diagonal matrices DA and DB such that

D, = |AA| *a, L

Dg = |AB| g L
where Ay = 2 [g2+g2]-1288
Ao XY F .
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v = max [u, (A+2u), k]

The expressions for DA and DB assume that viscous effects are modeled in
the implicit part of the scheme by the addition of the terms AA’ )‘B which
include viscosity through the coefficient. wv.

67



