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ABSTRACT 
A multigrid algorithm has been developed for solving the steady-state Euler equations in two 
dimensions on unstructured triangular meshes. The method assumes the various coarse and 
fine grids of the multigrid sequence to be independent of one another, thus decoupling the grid 
neneration - Drocedure from the multigrid algorithm. The transfer of variables between the vari- 
ous meshes employs a tree-search algorithm which rapidly identifies regions of overlap 
between coarse and fine grid cells. Finer meshes are obtained either by regenerating new glo- 
bally refined meshes, or by adaptively refining the previous coarser mesh. For both cases, the 
obsewed convergence rates are comparable to those obtained with structured multigrid Euler 
solvers. The adaptively generated meshes are shown to produce solutions of higher accuracy 
with fewer mesh points. 

This work was supported under the National Aeronautics and Space Administration under NASA Con- 
tract No. NAS1-18107 while the authors were in residence at the Institute for Computer Applications in 
Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 23665. 
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1. INTRODUCTION 
The ability to predict flow patterns and aerodynamic forces about complex configurations 

in the transonic regime is of primary importance to the aircraft designer. For slender bodies at 
small angles of attack, the flow remains attached, and the effect of viscosity is confined to rela- 
tively small boundary-layer and wake regions. Thus, an accurate description of the flow can 
be achieved using the inviscid Euler equations. These represent a system of non-linear partial 
differential equations in space and time. 

Steady-state solutions of the Eder equations about simple geometries in two and three 
dimensions have become fairly widespread over the past few years. However, for more com- 
plex geometries, the generation of suitable meshes remains an obstacle. One approach which 
has recently received increased attention in the literature is the use of unstructured triangular or 
tetrahedral meshes in two or three dimensions respectively [1,2]. The advantages of unstruc- 
tured meshes are two-fold. Firstly, they provide a means for generating meshes about arbi- 
trarily complex configurations. Secondly, they provide a natural setting for the use of adaptive 
meshing techniques, where local flow properties or error estimates are used to determine the 
distribution of mesh nodes. Because adaptive mesh refinement is a procedure which generally 
destroys the structure of an existing mesh, its implementation has often been constrained by the 
need to preserve the mesh structure. This has led to block structured composite meshes, where 
zonal regions are refined uniformly to preserve structure [3]. With unstructured meshes, these 
constraints are removed, and much more effective refinement strategies may be devised to 
develop "optimum" meshes. 

On the other hand, unstructured mesh flow solvers are generally much less efficient than 
available structured mesh solvers. Unstructured mesh solvers suffer from inherent limitations, 
such as the need to store the mesh connectivity, and the use of gather-scatter operations on 
vector computers. However, it is also evident that the development of unstructured mesh flow 
solvers has not kept pace with advances in structured mesh solvers. Many of the ideas 
developed for structured mesh solvers, such as approximate factorization and nested multigrid 
methods, cannot be applied to unstructured meshes. They must either be modified or aban- 
doned in favor of more general algorithms. 

In this work, a multigrid algorithm for unstructured meshes is presented. The algorithm 
operates on a sequence of coarse and fine meshes and assumes no relation exists between the 
various meshes of the sequence. The meshes are generated by triangulating a given set of 
points in the flow-field using the Delaunay triangulation algorithm [4]. The distribution of 
mesh points is either determined by conformal mapping techniques, or by adaptive refinement 
of the previous coarser grid. The decision to adopt a multigrid strategy involving a sequence of 
unrelated meshes was motivated by the desire to optimize both the accuracy and the efficiency 
of the solver. This type of approach has previously been attempted by Lohner and Morgan [5]  
for elliptic problems. Other approaches [6] have suggested using a sequence of unstructured 
nested meshes, where finer meshes are constructed by successively subdividing the cells of a 
coarse unstructured grid in some manner. Howevcr, for a multigrid algorithm, the accuracy of 
the solution is determined uniquely by the finest grid, whereas the convergence rate is deter- 
mined by the coarsest grid of the sequence. The present approach provides the maximum flexi- 
bility for determining the configuration of the coarse and fine grids of the sequence, thus 
optimizing the efficiency and accuracy of the solver. Furthermore, when adaptive meshing 
techniques are employed, sequences of nested meshes can be obtained only by resorting to 
local mesh enrichment. However, much more sophisticated adaptive techniques are presently 



being advocated in the literature, mainly in the interest of obtaining directional refinements and 
smoothly varying meshes. These include a combination of mesh enrichment and moving 
meshes [7], and complete remeshing using coarse grid flow variables as weighting functions 
[8]. The present multigrid strategy can be used in conjunction with any of these techniques. 

2. DISCRETIZATION OF THE GOVERNING EQUATIONS 
The variables to be determined are the pressure, density, Cartesian velocity components, 

total energy and total enthalpy denoted by p, p, u, v, E, and H, respectively. Since for a perfect 
gas we have 

P H = E + -  u2 + 3 +- P E = -  
(Y--l)P 2 '  P 

where y is the ratio of specific heats, we need only solve for the four variables p, pu, pv, and 
PE. 

These values are determined by solving the Euler equations, which in integral form read: 
- j b d x d y +  a J C f d y - g d r ) = O  
at an 

where SZ is a fixed area with boundary aSZ, x and y are Cartesian coordinates, and 

The w variables are stored at the vertices of each triangle. The control volume for vertex i is 
defined as the union of all triangles having a vertex at i, as shown in Figure 1. The boundary 
flux integral in equation (1) is approximated by first calculating the values of the fluxes f and g 
at the nodes on the outer boundary of this control volume. These can then be integrated about 
the control volume boundary by assuming that on each edge, the value of the flux can be taken 
as the average of the two values on either end of the edge. This finite-volume formulation can 
be shown to be equivalent to a Galerkin finite-element approximation, with a lumped mass 
matrix, and is second-order accurate in space [ 11. 

Additional dissipative terms are needed to prevent odd-even point decoupling, and to 
prevent the formation of numerical oscillations near a shock. Artificial dissipation terms are 
constructed as a blend of second and fourth differences in the flow variables, where the 
differences are taken along each edge of the mesh. Thus, for example, the second differences 
of w at node i are calculated as 

where n is the number of edges meeting at node i, and wk represents the value of w at the 
other end of each edge (cf. Figure 1). Fourth differences are constructed by first computing 
and storing the second differences, as shown above, and then differencing these values again. 
This can be achieved by replacing the flow variables in equation (2) with the previously calcu- 
lated second differences. The fourth difference terms form the background dissipation, which 
is applied throughout thc flow-field. These terms can be shown to be third-order accurate, and 
thus the second ord -accuracy of the scheme is preserved. The second differences represent 
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stronger first order dissipation which is needed to prevent oscillations near shocks. Because this 
strong dissipation compromises the accuracy of the scheme, it is applied only in the vicinity of 
a shock, and is turned off elsewhere. This behavior is achieved by multiplying the second 
differences by an adaptive coefficient, constructed as a second difference in the pressure. This 
coefficient assumes a small value (order Ax?) in regions of smooth flow, and becomes of 
order 1 near a shock. The present formulation of the dissipative terms is analogous to that used 
by Jameson for structured quadrilateral meshes [9], and provides a scheme which is second- 
order accurate everywhere, except in the vicinity of a shock where it becomes locally first- 
order accurate. 

3. INTEGRATION TO A STEADY-STATE 
Discretization of the Euler equations in space transforms the governing equations into a 

set of coupled ordinary-differential equations which must be integrated in time to obtain the 
steady-state solution. Thus, equation (1) becomes the set 

dwi 
Si- + [Q(wi) - D(w;)] = 0, i=1,2,3 ,... 

dt 

where Si is the area of the control volume i, and is independent of time. The convective opera- 
tor Q(w) represents the discrete approximation to the flux integral in (l), and the dissipative 
operator D(w) represents the artificial dissipation terms. These equations are integrated in time 
using a fully explicit 5-stage hybrid time-stepping scheme, where the operator Q(w) is 
evaluated at each stage in the time step, and the operator D(w) is only evaluated in the first 
two stages, and then frozen at that value. Thus we advance in time as 

1 
1 
1.  
1 
1 

where w" and w"+' are the values at the beginning and the end of the nth time step. The stan- 
dard values of the coefficients are 

al = 1/4 a2= 1/6 a3 = 3/8 a4 = 1/2 as = 1 

This scheme represents a particular case of a large class of hybrid time-stepping schemes, 
which has been specifically designed to produce strong damping characteristics of high fre- 
quency error modes. It is thus well suited to drive the multigrid algorithm. 

Convergence to a steady-state is also accelerated by using the maximum permissible time 
step at each point in the flow-field, as determined by local stability analysis, by the use of 
enthalpy damping [9], and implicit residual averaging [lo]. 

4. THE FULL MULTIGRID ALGORITHM 
The basic idea of a multigrid strategy is to perform time steps on coarser meshes to cal- 

culate corrections to a solution on a finer mesh. The advantages of time-stepping on coarse 
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meshes are two-fold: first, the permissible time step is much larger, since it is proportional to 
the mesh width, and secondly the work involved is much less because of the smaller number 
of grid points. In order to combine, without compromise, the advantages of unstructured 
meshes with those of a multigrid strategy, it proves convenient to decouple the grid generation 
procedure from the multigrid algorithm. Thus, a multigrid method which operates on a 
sequence of unrelated meshes is needed. The key to such a strategy is the efficient transfer of 
flow variables back and forth between these meshes. 

The full multigrid algorithm begins by computing the solution to the problem at hand on 
a coarse mesh. When convergence has been reached, a new finer mesh is generated. This can 
either be performed by globally regenerating a new mesh with a higher density of mesh points 
in all regions of the flow-field, or by adaptively refining the existing mesh. Next, the patterns 
for transferring the flow variables back and forth between these two meshes must be deter- 
mined. Since the meshes are unnested, this is a non-trivial task. It is performed using a tree- 
search algorithm, which is described in detail in a following section. For any given flow calcu- 
lation, this operation is only performed once, immediately after the generation of the new 
mesh. Transfer coefficients and transfer addresses are computed and stored, and used subse- 
quently in the flow calculations. For each fine mesh point, three transfer addresses determine 
the three coarse grid nodes of the cell enclosing the fine grid node, to which the variables are 
to be transferred (see Figure 2). and the weighting is given by the corresponding transfer 
coefficients. The flow variables are then transferred to the new fine mesh, and these serve as 
the initial conditions for time stepping on this mesh. A multigrid saw-tooth cycle is then used 
to solve the equations on the new finer mesh, using the previous mesh as the background 
coarse grid. When convergence is obtained, a third finer mesh is generated, the transfer pat- 
terns are determined, and the flow variables are transferred to the new mesh. Time stepping 
resumes on this mesh using all three meshes as a sequence in the multigrid saw-tooth cycle. 
This procedure can be repeated as many times as necessary to obtain the desired accuracy, 
each time adding another mesh to the multigrid sequence. The full multigrid algorithm for a 
sequence of four meshes, beginning on the second mesh of the sequence, is depicted in Fig- 
ure 3. 

4.1. Multigrid Saw-Tooth Cycle 
For a given sequence of meshes, the multigrid saw-tooth cycle is initiated by performing 

a single time step on the finest mesh of the sequence. The flow variables and residuals are then 
transferred to the next coarser grid. The equations on the coarse grids must be modified to 
ensure that they represent the fine grid solution. If R‘ represents the transferred residuals and w’ 
the transferred flow variables, a forcing function on the coarse grid may be defined as 

P = R‘ - R(w’). 

Now, on the coarse grids, time stepping proceeds as 
w(q) = w(0) - a -( At ~ ( w ( e 1 ) )  + p )  

q S  

for the qth stage. In the first stage, w(P1) reduces to the transferred flow variable w’. Thus, the 
calculated residuals on the coarse grid are canceled by the second term in the forcing function 
P, leaving only the R’ term. This indicates that the coarse grid solution is driven by the fine 
grid residuals. This procedure is repeated on successively coarser grids, performing one time 
step on each grid level. When the coarsest grid is reached, the corrections are transferred back 
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to the finer grids without any intermediate time stepping. 

4.2. Grid Transfers 
Flow variables, residuals, and corrections are transferred between coarse and fine grids in 

different manners. Flow variables at a coarse grid node P are taken as the linear interpolation 
of the corresponding values at nodes 1, 2, and 3, as shown in Figure 2, which are the vertices 
of the fine grid triangle enclosing P. These three nodes include the fine grid node which is 
closest to P, thus ensuring an accurate representation of the flow-field on the come  grid. The 
fine grid residual R, at "a" in Figure 2 is linearly distributed to the coarse grid nodes A, B, and 
C, which are the vertices of the coarse grid triangle enclosing "a". This linear distribution is 
accomplished by the use of shape functions which have the value 1 at one of the coarse grid 
triangle vertices, and vanish at the other two vertices. This implies that the sum of the residual 
contribution to A, B, and C equals the residual at "a,', and the weighting is such that, if "a" 
and A coincide, then the contribution at A is equal to R,, and the contributions at B and C van- 
ish. This type of transfer is conservative. When transferring the corrections from the come  
grid back to the fine grid, a simple linear interpolation formula is used. Thus, the correction at 
the fine grid node "a" is taken as the linear interpolation of the three corrections at nodes A, B, 
and C which enclose "a" on the coarse grid. 

43. Search Algorithm 
The remaining difficulty lies in the determination of the nodes A, B, and C to be associ- 

ated with each fine grid node "a". This is equivalent to the problem of locating the address of 
the coarse grid cell which encloses a particular fine grid node. A naive search over all the 
coarse grid cells would require O(N2) operations, where N is the number of grid points, and 
thus would be prohibitively expensive, requiring more time than the flow solution itself. Hence, 
an efficient search algorithm is needed. In this work, a tree-search algorithm has been adopted. 
It requires that information about the neighbon of each node or cell be stored for both the 
coarse and fine grids. It is initiated by providing an initial guess IC1 for the coarse grid cell, 
and then testing IC1 to see if it encloses the fine grid node NF. Since we are free to begin the 
search with any fine grid node and any coarse grid cell, we choose points whose locations are 
known (such as trailing edge values). If the test is negative, then the neighbors of IC1 are 
tested. If these tests also fail, then the neighbors of these neighbors are tested. This process is 
continued until, after n tries, the address IC,, of the cell enclosing NF is located. This entire 
procedure is repeated for every node of the fine grid. The next fine grid node NF2 is thus 
chosen as a neighbor of NF, and the initial guess for the enclosing cell is taken as IC,, the 
coarse grid cell which is now known to enclose the previous NF. In this manner, we are 
assured of a good initial guess, since IC, and NF2 must be located in the same region of the 
computational domain. This type of search can be achieved in O ( N  log") operations. In prac- 
tice, of the order of 10 searches are required to locate an enclosing cell. Furthermore, this 
value is found to be insensitive to the size of the mesh. Because this operation is performed 
only once, just after the generation of the new mesh, the total amount of work involved is 
negligible when compared with the flow solution phase. 

5. MESH GENERATION 
Since the unstructured multigrid algorithm assumes the coarse and fine meshes of the 

multigrid sequence are independent of one another, any suitable mesh generation scheme may 
be employed. In this work, two approaches are illustrated, one where the global mesh point 
distribution is determined by conformal mapping techniques, and one where the mesh point 
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distribution is determined by adaptive refinement techniques. 
For both cases, the generation of unstructured triangular meshes is accomplished in three 

independent steps. First a distribution of mesh points in the flow-field is determined. These 
points are then joined together by line segments to form a set of triangular elements using the 
Delaunay triangulation algorithm. There exist many ways of triangulating a given set of points. 
The Delaunay algorithm represents a unique construction of this type. It also has the desirable 
property of minimizing the aspect ratios of the triangular cells. Further details on Delaunay tri- 
angulation can be found in [4,11]. The resulting mesh is then post-processed by a smoothing 
filter which slightly repositions the mesh points to ensure a distribution of smoothly varying 
elements. The new position of a mesh point is calculated as 

with a similar expression for the y-coordinate. o is a relaxation factor, and the sum is over all 
edges meeting at point i. 

5.1. Mesh Point Distribution by Conformal Mapping 
Conformal mapping techniques are used to generate global mesh point distributions about 

the multi-element airfoil configurations studied in this work. Each airfoil element of the 
configuration can be mapped to a circle by the application of a Karman-Trefftz transformation, 
followed by a shearing transformation. The resulting circle is fitted with a polar mesh. Upon 
mapping the circle back to the airfoil, a body-fitted regular quadrilateral 0-mesh is obtained. 
When this procedure is repeated for each element of the configuration, a series of overlapping 
0-meshes is obtained. If the mesh cells are ignored, and the points which overlap with neigh- 
boring airfoil elements are omitted, a distribution of points in the flow-field is obtained. These 
points are then used as a basis for the triangulation procedure. Global refinement is achieved 
by prescribing twice as many points in the radial and circumferential directions of each mapped 
airfoil element, and remeshing the new point distribution. 

5.2. Mesh Point Distribution by Adaptive Techniques 
Adaptive mesh techniques offer the advantage of obtaining higher solution accuracy with 

fewer mesh points. This is achieved by concentrating the mesh points only in areas where large 
discretization errors are observed. In principle, any type of adaptive meshing technique may 
be employed, since the present multigrid algorithm is decoupled from the mesh generation pro- 
cedure. Presently, a simple refinement technique is employed, based on the extensive investi- 
gation of Danenhoffer [ 121, for structured quadrilateral grids. The undivided first difference of 
density is used as a refinement criterion, since the density varies with all important flow 
features. For each edge of the mesh, that is, any line segment of the mesh which joins two 
nodes, the difference of the density between the two end nodes is examined. If this difference 
is larger than some fraction (i.e. taken as 0.5 in this work) of the RMS average difference 
over all mesh edges, a new mesh point is created midway along that edge. For mesh edges 
approximating a curved boundary, such as the airfoil surfaces, the new mesh point will not 
coincide with the boundary, and must be projected back onto the airfoil surface. Once all new 
mesh points have been determined, they are combined with old mesh points and retriangulated. 
Splitting along edges in such a manner, rather than subdividing entire triangular cells, avoids 
the introduction of unnecessary mesh points, and offers the possibility of directional 
refinement . 
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In both of the above cases, the new refined mesh point distribution may contain points 
from the previous coarser mesh. However, the connectivity of these meshes is determined by 
the retriangulation procedure, and in general, the sequence of meshes will be unnested. Further- 
more, the mesh points are displaced in the post-processing smoothing operation, and thus, none 
of the refined mesh points will coincide with the previous coarse mesh points. Thus, for both 
cases, the coarse and fine meshes of the sequence are independent from each other. 

6. RESULTS 
Results are presented for a two-element airfoil system in transonic flow. The basic 

configuration, which consists of a main airfoil fitted with a leading edge slat, has been the sub- 
ject of an extensive study to determine the effectiveness of slats as a transonic maneuvering aid 
for fighter configurations [13]. The Mach number is 0.7, and the angle of attack is 2.8". Fig- 
ure 4 depicts the sequence of four globally refined meshes used in the full multigrid algorithm. 
The finest mesh contains a total of 5629 points. The computed pressure distribution on the 
finest mesh of this sequence is shown in Figure 5. Large suction peaks are evident near the 
leading edges of both airfoil elements. A very small supersonic zone terminating with a shock 
is visible on the lower surface of the slat, near its leading edge. A strong shock at about mid- 
chord on the main airfoil is also observed. The convergence rate of the multigrid algorithm on 
this sequence of meshes is shown in Figure 6 ,  as measured by the RMS average of the density 
residuals in the flow-field. On the finest grid, an average residual reduction of 0.897 per mul- 
tigrid cycle is observed, reducing the residuals by 5 orders of magnitude in 100 cycles. The 
convergence rate is roughly the same on all meshes of the sequence, thus validating the 
effectiveness of the multigrid algorithm. 

The same case has been computed with adaptively generated meshes. A sequence of six 
meshes is employed. The first two meshes are identical to the two coarsest meshes of the glo- 
bally refined sequence in Figure 4. The next four meshes of the sequence, depicted in Fig- 
ure 7, were obtained by successive adaptive refinements. The finest mesh of the sequence con- 
tains 4697 points, roughly 16% less than the finest mesh of Figure 4. Figure 8 shows the sur- 
face pressure distribution computed on this mesh. The accuracy of this solution is clearly 
superior to that of Figure 5. The definition of the shock on the main airfoil as well as the 
shock on the slat is much sharper than in the former case, due to the higher density of mesh 
points in these regions. The suction peaks on both airfoils, as well as the "hook" on the lower 
surface near the leading edge of the main airfoil are resolved in much better detail. The lower 
surface of the main airfoil contains fewer points than in the previous case. However, the accu- 
racy of the solution is not affected, since no large flow gradients are present in this region. On 
the other hand, the resolution at the trailing edge of the main airfoil is somewhat lower than 
desired. Figure 9 shows the convergence rate for this sequence of meshes. An average residual 
reduction of 0.895 per multigrid cycle is achieved on the finest mesh, reducing the residuals by 
5 orders of magnitude in 100 cycles. This rate is also seen to be roughly equivalent on all 
meshes of the sequence. The adaptive mesh technique is thus seen to produce more accurate 
solutions for less work. A solution with equivalent accuracy to the globally refined mesh solu- 
tion depicted in Figure 4, can be obtained with roughly 113 the number of mesh points. 

For both cases, the multigrid convergence rates are comparable to convergence rates 
obtained with a structured multigrid Euler solver [14]. A better assessment of the real 
efficiency of the present multigrid algorithm is given in Figures 10 and 11, where the multigrid 
convergence rates for both of the above cases are plotted versus the number of work units. A 
work unit is defined as the amount of CPU time required to perform a single grid cycle on the 
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finest mesh of the multigrid sequence. For comparison, the appropriate single grid conver- 
gence rates are also plotted on the same figures. The multigrid convergence histories include 
the time spent calculating transfer addresses and coefficients, performing inter-grid transfers of 
variables, and time stepping on coarse grids. They do not, however, include the mesh genera- 
tion time. In aLl cases, the time spent calculating the transfer addresses and coefficients 
between any two meshes is of the order of 2 to 3 multigrid cycles on the newly generated 
mesh. In any particular multigrid saw-tooth cycle, the total fraction of time spent transferring 
variables back and forth between meshes is about 2%. The solution efficiency of the adaptive 
mesh sequence was found to be less than optimal, since time stepping occurs on all mesh lev- 
els, even in regions such as the far-field, where no mesh refinement takes place. In fact, little 
or no deterioration in the multigrid convergence rate was observed for this case, when time 
stepping on every second mesh of the sequence in the saw-tooth cycle was omitted. 

7. CONCLUSION 
The idea of uncoupling the multigrid algorithm from the grid generation procedure is an 

effective means for accelerating the convergence to a steady state of the Euler equations on 
arbitrary grids. The adaptive meshing technique produces significant increases in efficiency 
over global mesh refinement. Further work is required to determine more effective adaptive cri- 
teria, and to optimize the amount of work spent on each grid of adaptively generated multigrid 
sequences. 
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Figure 2 
Grid Transfers for the Unstructured Multigrid Algorithm: 
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Figure 3 
Full Multigrid Algorithm using the Saw-Tooth Cycle 
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Figure 4 
Sequence of Meshes Generated by Global Refinement for the 

Unstructured Multigrid Algorithm 
Mesh 1 : 114 Nodes 
Mesh2:  382Nodes 
Mesh 3 : 1458 Nodes 
Mesh 4 : 5629 Nodes 

cpartial View of Meshes Only) 
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Figure 5 
Surface Pressure Distribution on the Main Airfoil and the Leading Edge Slat 

Calculated on the Finest Mesh of the Globally Refined Mesh Sequence. 
Mach = 0.7 Incidence = 2.8' 
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Figure 6 
Convergence Rate as Measured by the RMS Average of the Density Residuals 

throughout the Flow-field versus the Number of Multigrid Cycles for the 
Globally Refined Mesh Sequence Beginning on the Second Mesh of the Sequence. 
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Figure 7 
Sequence of 4 Adaptively Generated Meshes Used in the Multigrid 

Algorithm in Conjunction with the 2 First Meshes of Figure 4 
Mesh 3 : 790 Nodes 
Mesh 4 : 1631 Nodes 
Mesh 5 : 3107 Nodes 
Mesh 6 : 4697 Nodes 

(partial View of Meshes Only) 
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Figure 8 
Surface Pressure Distribution on the Main Airfoil and the Leading Edge Slat 

Calculated on the Finest Mesh of the Adaptively Refined Mesh Sequence. 
Mach = 0.7 Incidence = 2.8O 
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Figure 9 
Convergence Rate as Measured by the RMS Average of the Density Residuals 

throughout the Flow-field versus the Number of Multigrid Cycles for the 
Adaptively Refined Mesh Sequence Beginning on the Second Mesh of the Sequence. 
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Figure 10 
Convergence Rate. as Measured by the Number of Work Units for the Full Multigrid Algorithm 

on the Globally Refined Mesh Sequence Beginning on the Second Mesh of the Sequence 
Compared with the Convergence Rate on the Single Finest Grid of the Sequence. 
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Figure 11 
Convergence Rate as Measured by the Number of Work Units for the Full Multigrid Algorithm 

on the Adaptively Refined Mesh Sequence Beginning on the Second Mesh of the Sequence 
Compared with the Convergence Rate on the Single Finest Grid of the Sequence. 
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