CSDL-T-950
AN ADAPTIVE NUMERIC PREDICTOR-CORRECTOR GUIDANCE ALGORITHM FOR ATMOSPHERIC ENTRY VEHICLES

by
Kenneth Milton Spratlin

May 1987

Master of Science Thesis
Massachusetts Institute of Technology

The Charles Stark Draper Laboratory, Inc.
555 Technology Square
Cambridge, Massachusetts 02139
AN ADAPTIVE NUMERIC PREDICTOR-CORRECTOR GUIDANCE ALGORITHM FOR ATMOSPHERIC ENTRY VEHICLES

by

Kenneth Milton Spratlin

Submitted to the Department of Aeronautics and Astronautics on May 8, 1987, in partial fulfillment of the requirements for the Degree of Master of Science in Aeronautics and Astronautics

ABSTRACT

An adaptive numeric predictor-corrector guidance algorithm is developed for atmospheric entry vehicles which utilize lift to achieve maximum footprint capability. Applicability of the guidance design to vehicles with a wide range of performance capabilities is desired so as to reduce the need for algorithm redesign with each new vehicle. Adaptability is desired to minimize mission-specific analysis and planning. The guidance algorithm motivation and design are presented.

Performance is assessed for application of the algorithm to the NASA Entry Research Vehicle (ERV). The dispersions the guidance must be designed to handle are presented. The achievable operational footprint for expected worst-case dispersions is presented. The algorithm performs excellently for the expected dispersions and captures most of the achievable footprint.

Thesis Supervisor: Dr. Richard H. Battin
Title: Adjunct Professor of Aeronautics and Astronautics

Technical Supervisor: Timothy J. Brand
Title: Division Leader, The Charles Stark Draper Laboratory, Inc.
ACKNOWLEDGEMENT

This report was prepared at The Charles Stark Draper Laboratory, Inc. in support of NASA Langley Research Center (LaRC) Task Order No. 87-43 under Contract NAS9-17580 with the NASA Lyndon B. Johnson Space Center (JSC).

Publication of this report does not constitute approval by the Draper Laboratory or the sponsoring agency of the findings or conclusions contained herein. It is published for the exchange and stimulation of ideas.

I hereby assign my copyright of this thesis to The Charles Stark Draper Laboratory, Inc., Cambridge, Massachusetts.

Kenneth M. Sprattin

Permission is hereby granted by The Charles Stark Draper Laboratory, Inc. to the Massachusetts Institute of Technology to reproduce any or all of this thesis.

I wish to take this opportunity to thank some of the many people who have helped me during the preparation of this thesis and my stay at M.I.T. I would like to express my sincere gratitude to The Charles Stark Draper Laboratory for making my graduate study possible through the Draper Fellowship. I wish to thank all of the members of the Guidance and Navigation Analysis Division for their technical assistance and willingness to share their expertise. In particular I would like to thank T. Brand, J. Higgins, and A. Engel for their patience, assistance, and support during the preparation of this thesis and work on the Aeroassist Flight Experiment. I wish to thank my thesis advisor, Dr. R.H. Battin, for his assistance and in particular for his abilities as an educator. A special thanks for his encouragement and support goes to B. Kriegsman who recently passed away. He is greatly missed. I found the opportunity to interact with the people at CSDL to be the most rewarding aspect of my studies at M.I.T.

I also wish to thank H. Stone and R. Powell of NASA/LaRC for the opportunity to work on the ERV entry guidance problem and their assistance in answering my questions.

Most importantly, I wish to thank my parents and sisters for their unending love and support over the years.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 INTRODUCTION</td>
<td>21</td>
</tr>
<tr>
<td>2.0 MOTIVATION</td>
<td>23</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>23</td>
</tr>
<tr>
<td>2.2 Dispersions</td>
<td>26</td>
</tr>
<tr>
<td>2.3 Reference Trajectories</td>
<td>28</td>
</tr>
<tr>
<td>2.4 Guidance Approach</td>
<td>31</td>
</tr>
<tr>
<td>3.0 GUIDANCE DESIGN</td>
<td>33</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>33</td>
</tr>
<tr>
<td>3.2 Unit Target Vector</td>
<td>34</td>
</tr>
<tr>
<td>3.3 Commanded Attitude Computation</td>
<td>35</td>
</tr>
<tr>
<td>3.4 Corrector Algorithm</td>
<td>36</td>
</tr>
<tr>
<td>3.5 Predictor Algorithm</td>
<td>39</td>
</tr>
<tr>
<td>3.5.1 Introduction</td>
<td>39</td>
</tr>
<tr>
<td>3.5.2 Equations of Motion</td>
<td>40</td>
</tr>
<tr>
<td>3.5.3 Integration of the Equations of Motion</td>
<td>44</td>
</tr>
<tr>
<td>3.5.4 Termination Conditions for the Predictor</td>
<td>46</td>
</tr>
<tr>
<td>3.5.5 Final State Error Computation</td>
<td>46</td>
</tr>
<tr>
<td>3.5.6 Algorithm Coding</td>
<td>48</td>
</tr>
</tbody>
</table>
3.6 Estimators ... 48
3.7 Heat Rate Control .. 52

4.0 PERFORMANCE .. 57
4.1 Simulator .. 57
4.2 Open-Loop Footprint .. 57
4.3 Effect of Dispersions on Footprint 59
4.4 Estimator Performance .. 60
4.5 Closed-Loop Performance .. 61
4.6 Heat Rate Control Performance 63
4.7 Overcontrol ... 63
4.8 Algorithm Execution Time .. 66

5.0 FUTURE RESEARCH TOPICS AND CONCLUSIONS 69
5.1 Future Research Topics .. 69
5.2 Conclusions ... 71

Appendix

Appendix A. ERV AERODYNAMICS MODEL ... 133

Appendix B. ALGORITHM PROGRAM LISTINGS 135

List of References .. 211
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Three-View Drawing of the ERV</td>
<td>78</td>
</tr>
<tr>
<td>2.</td>
<td>Atmospheric Wind Profile</td>
<td>79</td>
</tr>
<tr>
<td>3.</td>
<td>Envelope of Density Profiles Derived from Shuttle Flights</td>
<td>80</td>
</tr>
<tr>
<td>4.</td>
<td>STS-1 Density Profile Comparison</td>
<td>81</td>
</tr>
<tr>
<td>5.</td>
<td>STS-9 Density Profile Comparison</td>
<td>82</td>
</tr>
<tr>
<td>6.</td>
<td>Multiphase Bank Angle Program for L/D = 1.5</td>
<td>83</td>
</tr>
<tr>
<td>7.</td>
<td>Crossrange Versus Number of Bank Steps</td>
<td>84</td>
</tr>
<tr>
<td>8.</td>
<td>Comparison of Optimum Bank Angle Programs</td>
<td>85</td>
</tr>
<tr>
<td>9.</td>
<td>Optimum Shuttle Angle of Attack Profile for Maximum Downrange</td>
<td>86</td>
</tr>
<tr>
<td>10.</td>
<td>Optimum Shuttle Bank Angle Profile for Maximum Crossrange</td>
<td>87</td>
</tr>
<tr>
<td>11.</td>
<td>Optimum Shuttle Angle of Attack Profile for Maximum Crossrange</td>
<td>88</td>
</tr>
<tr>
<td>12.</td>
<td>Landing Footprint for the ERV</td>
<td>89</td>
</tr>
<tr>
<td>13.</td>
<td>Altitude Histories for the Entry Missions of the ERV</td>
<td>90</td>
</tr>
<tr>
<td>14.</td>
<td>Bank Angle Histories for the Entry Missions of the ERV</td>
<td>91</td>
</tr>
<tr>
<td>15.</td>
<td>Angle of Attack Histories for the Entry Missions of the ERV</td>
<td>92</td>
</tr>
<tr>
<td>16.</td>
<td>Heat Rate Histories for the Entry Missions of the ERV</td>
<td>93</td>
</tr>
<tr>
<td>17.</td>
<td>Heat Load Histories for the Entry Missions of the ERV</td>
<td>94</td>
</tr>
<tr>
<td>18.</td>
<td>Bank Angle Versus Velocity Profile</td>
<td>95</td>
</tr>
<tr>
<td>19.</td>
<td>Definitions of Downrange and Crossrange Errors</td>
<td>96</td>
</tr>
<tr>
<td>20.</td>
<td>Predicted Lift Coefficient Profile for the ERV</td>
<td>97</td>
</tr>
<tr>
<td>21.</td>
<td>Predicted L/D Profile for the ERV</td>
<td>98</td>
</tr>
<tr>
<td>Number</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>--------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>22</td>
<td>Predicted L/D versus Angle of Attack Profile for the ERV</td>
<td>99</td>
</tr>
<tr>
<td>23</td>
<td>ERV Open-Loop Footprint with the Control Profile</td>
<td>100</td>
</tr>
<tr>
<td>24</td>
<td>Time Response of the Density Filter</td>
<td>101</td>
</tr>
<tr>
<td>25</td>
<td>Time Response of the L/D Filter</td>
<td>102</td>
</tr>
<tr>
<td>26</td>
<td>Closed-Loop Altitude History for the Maximum Downrange Case</td>
<td>103</td>
</tr>
<tr>
<td>27</td>
<td>Closed-Loop Velocity History for the Maximum Downrange Case</td>
<td>104</td>
</tr>
<tr>
<td>28</td>
<td>Closed-Loop Heat Rate History for the Maximum Downrange Case</td>
<td>105</td>
</tr>
<tr>
<td>29</td>
<td>Closed-Loop Heat Load History for the Maximum Downrange Case</td>
<td>106</td>
</tr>
<tr>
<td>30</td>
<td>Closed-Loop Downrange History for the Maximum Downrange Case</td>
<td>107</td>
</tr>
<tr>
<td>31</td>
<td>Closed-Loop Crossrange History for the Maximum Downrange Case</td>
<td>108</td>
</tr>
<tr>
<td>32</td>
<td>Closed-Loop Altitude History for the Maximum Crossrange Case</td>
<td>109</td>
</tr>
<tr>
<td>33</td>
<td>Closed-Loop Velocity History for the Maximum Crossrange Case</td>
<td>110</td>
</tr>
<tr>
<td>34</td>
<td>Closed-Loop Heat Rate History for the Maximum Crossrange Case</td>
<td>111</td>
</tr>
<tr>
<td>35</td>
<td>Closed-Loop Heat Load History for the Maximum Crossrange Case</td>
<td>112</td>
</tr>
<tr>
<td>36</td>
<td>Closed-Loop Downrange History for the Maximum Crossrange Case</td>
<td>113</td>
</tr>
<tr>
<td>37</td>
<td>Closed-Loop Crossrange History for the Maximum Crossrange Case</td>
<td>114</td>
</tr>
<tr>
<td>38</td>
<td>Closed-Loop Altitude History for the Minimum Downrange Case</td>
<td>115</td>
</tr>
<tr>
<td>39</td>
<td>Closed-Loop Velocity History for the Minimum Downrange Case</td>
<td>116</td>
</tr>
<tr>
<td>40</td>
<td>Closed-Loop Heat Rate History for the Minimum Downrange Case</td>
<td>117</td>
</tr>
<tr>
<td>41</td>
<td>Closed-Loop Heat Load History for the Minimum Downrange Case</td>
<td>118</td>
</tr>
<tr>
<td>42</td>
<td>Closed-Loop Downrange History for the Minimum Downrange Case</td>
<td>119</td>
</tr>
<tr>
<td>43</td>
<td>Closed-Loop Crossrange History for the Minimum Downrange Case</td>
<td>120</td>
</tr>
<tr>
<td>44</td>
<td>Angle of Attack Comparison for the Maximum Downrange Case</td>
<td>121</td>
</tr>
<tr>
<td>45</td>
<td>Bank Angle Comparison for the Maximum Downrange Case</td>
<td>122</td>
</tr>
<tr>
<td>46</td>
<td>Angle of Attack Comparison for the Maximum Crossrange Case</td>
<td>123</td>
</tr>
<tr>
<td>47</td>
<td>Bank Angle Comparison for the Maximum Crossrange Case</td>
<td>124</td>
</tr>
<tr>
<td>48</td>
<td>Angle of Attack Comparison for the Minimum Downrange Case</td>
<td>125</td>
</tr>
</tbody>
</table>
49. Bank Angle Comparison for the Minimum Downrange Case 126
50. Bank Angle Versus Time Comparison for Heat Rate Control 127
51. Angle of Attack Versus Time Comparison for Heat Rate Control 128
52. Heat Rate Versus Time Comparison for Heat Rate Control 129
53. Bank Angle Versus Velocity Comparison for Heat Rate Control 130
54. Angle of Attack Versus Time Comparison with Overcontrol 131
55. Required Execution Time for the Predictor-Corrector 132
LIST OF TABLES

<table>
<thead>
<tr>
<th>Table</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Characteristics of the ERV and Trajectory Entry Conditions</td>
<td>73</td>
</tr>
<tr>
<td>2. Dispersions Used in Performance Study</td>
<td>73</td>
</tr>
<tr>
<td>3. Dispersed Cases for Maximum Downrange Region</td>
<td>74</td>
</tr>
<tr>
<td>4. Dispersed Cases for Maximum Crossrange Region</td>
<td>75</td>
</tr>
<tr>
<td>5. Dispersed Cases for Minimum Downrange Region</td>
<td>76</td>
</tr>
<tr>
<td>6. Maximum Downrange Region Closed-Loop Results</td>
<td>77</td>
</tr>
<tr>
<td>7. Maximum Crossrange Region Closed-Loop Results</td>
<td>77</td>
</tr>
<tr>
<td>8. Minimum Downrange Region Closed-Loop Results</td>
<td>77</td>
</tr>
</tbody>
</table>
SYMBOLS

\(a\) = acceleration magnitude
\(\vec{a}\) = acceleration vector
\(\vec{a}_i\) = inertial acceleration measured by the inertial measurement unit
\(\vec{A}_i\) = total inertial acceleration vector
\(AOTV\) = Aerobraking Orbital Transfer Vehicle
\(BTU\) = British Thermal Unit
\(\bar{c}\) = mean aerodynamic chord
\(\cos(\Delta \phi)\) = cosine of incremental lift for heat rate control
\(C'\) = proportionality factor for the linear viscosity-temperature relationship
\(C_0\) = aerodynamic drag coefficient
\(C_L\) = aerodynamic lift coefficient
\(C_s\) = speed of sound
\(CPU\) = central processing unit
\(CR\) = crossrange
\(CSDL\) = The Charles Stark Draper Laboratory, Inc.
\(\text{det}\) = determinant of sensitivity matrix
\(DR\) = downrange
\(DOF\) = degree of freedom
\(ERV\) = Entry Research Vehicle
\(f_{\text{earth}}\) = flattening of oblate Earth
\(\vec{F}_i\) = inertial force vector
\(g\) = gravitational acceleration magnitude
\(\vec{g}_i\) = gravitational acceleration vector
GPS = Global Positioning System

h = altitude

\dot{h} = derivative of altitude with time

\ddot{h} = second-derivative of altitude with time

h_s = scale height for exponential atmosphere model

i = unit vector

J_2 = second zonal harmonic coefficient

JSC = Lyndon B. Johnson Space Center

k = term in geodetic to geocentric latitude conversion

K = term in heat rate control equation

\dot{K} = velocity vector term in the integration algorithm

\ddot{K} = acceleration vector term in the integration algorithm

$K_{\Delta t}$ = gain on acceleration magnitude in variable time step equation

$K_{L/D}$ = multiplicative scale factor on the nominal L/D

K_0 = gain on heat rate error in heat rate control equation

K_0' = gain on rate of change of heat rate in heat rate control equation

K_ρ = multiplicative scale factor on the standard density

K_1 = gain in first-order filter for density smoothing

K_2 = gain in first-order filter for L/D smoothing

L/D = lift-to-drag ratio

LaRC = Langley Research Center

m = mass

M = Mach Number

M^f = inertial-to-Earth-fixed transformation matrix

M_0 = mean molecular weight of air at sea level

$n.m.$ = nautical mile

NASA = National Aeronautics and Space Administration
POST = Program to Optimize Simulated Trajectories
\(\bar{q} \) = dynamic pressure
\(Q \) = heat load
\(\dot{Q} \) = heat rate
\(\ddot{Q} \) = time rate of change of heat rate
\(R \) = position vector magnitude
\(R_{\text{equator}} \) = radius of oblate Earth at equator
\(\vec{R} \) = inertial position vector
\(R_{\text{pole}} \) = radius of oblate Earth at pole
\(Re \) = Reynolds Number
\(S \) = Sutherland’s constant in viscosity equation
\(S \) = aerodynamic reference area

SEADS = Shuttle Entry Air Data System
\(t_{\text{GMT}} \) = Greenwich mean time
\(T' \) = reference temperature
\(T_m \) = molecular scale temperature
\(T_{\text{static}} \) = freestream static temperature
\(T_{\text{wall}} \) = wall temperature

TAEM = Terminal Area Energy Management
\(\bar{V} \) = Viscous Interaction Parameter
\(V_i \) = magnitude of inertial velocity
\(\vec{V}_i \) = inertial velocity vector
\(V_R \) = magnitude of Earth-relative velocity
\(\vec{V}_R \) = Earth-relative velocity vector
\(z \) = geocentric colatitude of the position vector
\(\alpha \) = angle of attack
\(\beta \) = angle of sideslip
\(\delta \) = small incremental change
\(\Delta \) = incremental change
\(\gamma \) = ratio of specific heats for air
\(\lambda \) = longitude
\(\mu \) = coefficient of viscosity for air
\(\mu \) = Earth gravitational constant
\(\omega_{\text{earth}} \) = Earth's rotation vector
\(\omega_n \) = natural frequency of heat rate control response
\(\phi \) = bank angle
\(\mathcal{R} \) = universal gas constant
\(\rho \) = atmospheric density
\(\sigma \) = standard deviation
\(\tau \) = time constant of filter
\(\zeta \) = damping ratio of heat rate control response

SUBSCRIPTS

\textit{aero} = aerodynamic
\textit{c} = geocentric
\textit{cmd} = command
\textit{d} = desired
\textit{des} = desired
\textit{drag} = drag term
e = error

EI = entry interface

f = final

g = geodetic

imu = inertial measurement unit

inplane = projection of target unit vector into plane formed by the position vector and the relative velocity vector

lat = direction perpendicular to the plane formed by the position vector and the relative velocity vector

$lift$ = lift term

lim = limiting value or boundary

L/D = lift-to-drag ratio

max = maximum

min = minimum

nom = nominal

$perpen$ = direction perpendicular to the plane formed by the position vector and the relative velocity vector

$pole$ = direction of the north pole

R = direction of the position vector

sl = sea level

std = standard value

t = target aim point

ρ = atmospheric density
SUPERSCRIPrTS

EF = coordinatized in Earth-fixed coordinates

imu = value measured by inertial measurement unit on current cycle

$imu\ past$ = value measured by inertial measurement unit on past cycle

\wedge = estimated or measured

$\dot{}$ = value from previous guidance cycle
1.0 INTRODUCTION

Routine access to space and the maintenance of a Space Station will increasingly require greater flexibility in mission planning and the requirement for lower system maintenance costs. The launch and recovery phases of space flight have historically been the most demanding phases of space flight and therefore require the most development effort and investment. Mission flexibility requires more frequent launch and deorbit opportunities. For the case of re-entry vehicles, deorbit opportunities are defined by the ranging capability of the vehicle. A high L/D vehicle increases the available deorbit opportunities increasing mission flexibility. High L/D vehicles also are of interest for over-flight missions for the purpose of reconnaissance.

Entry guidance algorithms developed to date have been highly vehicle-specific and required great development and maintenance efforts over the life of the vehicle. These algorithms were not applicable to other vehicles without extensive modification.

This study seeks to design an adaptive entry guidance algorithm that maximizes the usable footprint by making full use of the available vehicle capability. This algorithm should also be easy to maintain throughout the vehicle definition phase and operational life. Minimizing the number of mission-dependent input parameters (I-loads) is desirable. The algorithm should also be easily transported to other vehicles to minimize development cost. Transportability is accomplished by minimizing vehicle-specific features of the algorithm. Explicit heat rate control should be provided to allow full use of the entry corridor up to the heat rate limits.
This study seeks to design such an algorithm. A candidate entry guidance algorithm is defined for the NASA Entry Research Vehicle (ERV), but is easily adapted to other vehicles with minimal modification. The proposed algorithm attains almost complete coverage of the achievable footprint, while employing a simple one-phase entry algorithm with explicit heat rate control. Vehicle-specific features and I-loads are minimized, reducing algorithm development and maintenance costs.

The ERV [1] is a proposed high-performance entry vehicle designed as a test bed for future technology development in the areas of:

1. Maneuvering entry/synergetic plane change
2. Atmospheric uncertainties
3. Advanced thermal protection systems
4. Aerodynamic/aeroheating prediction
5. Adaptive guidance and navigation
6. Load-bearing thermostructures

The ERV is designed for deployment from the Space Shuttle, after which the ERV enters the atmosphere for demonstration of the synergetic plane change, over-flight, and entry missions. Figure 1 on page 78 shows a three-view drawing of the ERV and the surface areas of the aerodynamic control surfaces. Also seen is the size of the ERV in relation to the diameter of the Shuttle payload bay in which the ERV must fit.
2.0 MOTIVATION

2.1 INTRODUCTION

The goal of any entry guidance algorithm is to successfully guide the vehicle to the desired final state for the largest range of dispersions possible without violating any vehicle constraints while also maximizing the achievable footprint. It is also desirable to minimize the mission and vehicle-specific aspects of the guidance algorithm so as to minimize pre-mission analysis and planning. Transportability of the algorithm from one vehicle to another significantly reduces guidance algorithm development effort and cost.

To maximize the footprint attainable, the guidance algorithm must follow the optimal path to any particular point in the footprint. The algorithms developed to date for such vehicles as the Apollo capsule [2] and the Space Shuttle [3] have attempted to do this by fitting the optimal trajectory with phases that follow important parameters (reference profiles) over some range of conditions. These guidance algorithms were required to be computationally efficient because of the limited on-board computer resources available. Analytic expressions for the reference profiles allowed for low execution time and tailoring of the trajectory for vehicle-specific constraints. For example, trajectories for these vehicles had to be shaped to reduce and control the maximum heat rate experienced below that allowed for the available thermal protection system materials.
The Space Shuttle entry guidance system employs three major modes with seven phases:

1. Entry
 a. Pre-entry
 b. Temperature control
 c. Equilibrium glide
 d. Constant drag
 e. Transition

2. Terminal Area Energy Management

3. Approach and Landing

Except for the pre-entry phase which is open-loop, each phase is described by an analytic expression relating the desired drag and altitude rate (the measured feedback terms used) to the desired profile. Because the algorithms are tailored for a particular vehicle and the reference profiles do not follow the optimal profile to all points in the footprint, guidance algorithms developed to date can not be easily adapted to other vehicles or provide full coverage of the theoretically achievable footprint.

The next generation of entry vehicles will not be so constrained due to advances in thermal protection system materials and computer technology. For example, flight computers are now capable of supercomputer speeds on the order of 40 million instructions per second utilizing parallel processing architecture [4]. A different approach to guidance that attempts to follow an optimal profile to maximize footprint capability is therefore possible.

The proposed approach is a predictor-corrector algorithm that numerically predicts the final state for a particular control variable history and then corrects the control variable history to satisfy the specified final state constraints. This approach, proposed previously for
various guidance problems, has most often been impractical because of the long trajectories that must be predicted and the slow computer speeds.

Such an approach has been employed for the Space Shuttle Powered Explicit Guidance (PEG) [5] used for second stage ascent and orbit insertion burns where the trajectory is short enough to be predicted with the available computer resources. The Shuttle algorithm numerically predicts the gravitational effects during the powered flight phase with a 10 step integration of the 500 second trajectory.

A predictor-corrector has also been proposed for Aerobraking Orbital Transfer Vehicles (AOTV) [6] which would utilize more advanced computers. This algorithm numerically integrates the equations of motion along a skimming trajectory through the upper atmosphere that is approximately 500 seconds long and requires about 100 integration steps.

The trajectories flown by the ERV or any high L/D entry vehicle are typically from 30 to 100 minutes long from entry interface (400K feet) to landing, so the computational demand for such an algorithm is very great early in the entry when the time to landing is long. However, because the entry is long and the vehicle has excess ranging capability for all but a small region along the edge of the footprint, the accuracy of the early predictions need not be as high as for the later predictions. Hence, large time steps can be used early in the predictor algorithm. Later, when the vehicle nears the landing site, the time remaining is short, and hence, the prediction is short. This allows the predictor-corrector to be executed more often near landing just like the current analytic algorithms. Throughout the entry, vehicles using an analytic guidance algorithm with reference profiles must closely follow the reference profile if the assumed reference profile is to guide the vehicle to the correct final state. A predictor-corrector effectively recomputes a new reference profile each time it is executed, so the guidance execution rate can be much lower than that for analytic algorithms.
2.2 DISPERSIONS

Before the guidance algorithm can be designed, the possible dispersions that may affect the trajectory must be considered. The Shuttle entry guidance system is required to reach the Terminal Area Energy Management (TAEM) interface with less than a 2.5 nautical mile position error from the target aim point. The dispersions of significance to an entry vehicle trajectory include:

1. Vehicle characteristics
 a. Mass
 b. Aerodynamics
 c. Maneuver rates

2. Environment characteristics
 a. Atmospheric density
 b. Atmospheric winds
 c. Atmospheric properties influencing aerodynamic flow regimes (temperature, mean free path, etc.)

3. Initial entry state vector
 a. Velocity
 b. Flight path angle
 c. Heading

4. Propagation errors in navigation state vector

Of these potential dispersion sources, only the vehicle mass, aerodynamics, and the atmospheric density and winds will be significant. By the early 1990’s, almost perfect navigation can be expected through use of the Global Positioning System (GPS). If the deorbit burn guidance and control systems are assumed to correctly guide to the navigated state
and there are no navigation errors, then the dispersions in the initial entry state vector are negligible.

The vehicle mass should be known accurately, so for this study, a 3σ error of ±5% is assumed. Experience from the Space Shuttle program shows that the vehicle aerodynamics should be known to within ±5% for the force coefficients on the first flight. Only the stability derivatives and control effectiveness were missed significantly [7]. Even though the force coefficients may be known to excellent accuracy, reduced control effectiveness can reduce the possible trim angle of attack range reducing the maximum L/D achievable. Therefore, for this study, a ±10% dispersion in the lift and drag coefficients is considered. It should be noted that the first few flights of a new vehicle are usually targeted to the middle of the footprint to maximize margin and allow for accurate determination of the vehicle characteristics before the full ranging capability of the vehicle is used. After the first few flights, the aerodynamic characteristics should be known to within a few percent, so only about a ±3% dispersion must be considered.

The atmospheric dispersions were obtained from two sources. Reference [8] specifies the atmospheric dispersions to which aerospace vehicles must be designed. The average of the steady state winds at four geographic locations is shown in Figure 2 on page 79. This model was incorporated into the simulator environment with a magnitude scale factor to simulate less than worst-case winds. The wind direction was selected for each run made with winds and held constant throughout the trajectory. Reference [8] specifies Reference [9] as the source for atmospheric density dispersions. However, the recent Shuttle flights have provided estimated density data of a quality never before available. Atmospheric density profiles derived from Shuttle accelerometer measurements of the normal force acceleration and the estimated normal force coefficient and relative velocity vector are presented in Reference [10]. Figure 3 on page 80, taken from that report, shows the envelope of the
derived density profiles for the first 12 Shuttle flights. Of particular interest is the range of dispersions seen: -47% to +12%. Figures 4 on page 81 and 5 on page 82 show the density profiles for the STS-1 and STS-9 Shuttle flights. High frequency density shear components and constant density biases from the standard atmosphere are seen. For this study, constant density biases of ±30% and the Shuttle derived density profiles from Reference [10] were used.

2.3 REFERENCE TRAJECTORIES

The size of the footprint for a particular vehicle is determined by the range in vehicle L/D and the constraints placed on the trajectory such as heat rate limits. The edges of the footprint correspond to the use of maximum or minimum L/D. Maximum downrange or crossrange, for example, requires maximum L/D, while minimum downrange requires minimum L/D.

The determination of the optimal angle of attack and bank angle control histories for maximum crossrange and downrange has been the topic of many papers [11] [12] [13]. Wagner [12] used several optimization techniques to evaluate the maximum crossrange achievable for a multiphase bank angle history flown at maximum L/D. The multiphase bank profiles considered are shown in Figure 6 on page 83. It is seen that as the number of phases increases, the multiphase profile approaches the optimal continuous profile also shown in this figure. It was determined that a three-phase bank angle profile as illustrated in Figure 6 achieved almost the same crossrange as a continuous bank profile. This is shown in Figure 7 on page 84 reproduced here from that paper. Further, as the number of phases
increases, the optimum bank angle profile approaches a continuous profile that is almost linear with velocity as shown in Figure 8 on page 85. It was also shown that flying at the maximum L/D maximizes the crossrange attained.

This result is confirmed in Reference [13] which utilized a nonlinear programming technique to optimize the Space Shuttle trajectory for the maximum downrange and maximum crossrange cases. The maximum downrange trajectory requires flying at zero bank angle and at the angle of attack corresponding to maximum L/D as shown in Figure 9 on page 86. The control histories for the maximum crossrange case are shown in Figures 10 on page 87 and 11 on page 88. Again, the optimal control history is the angle of attack corresponding to maximum L/D and an almost linear bank angle profile with velocity.

Optimized trajectories for the ERV were reported in Reference [14]. These trajectories were determined using the Program to Optimize Simulated Trajectories (POST) [15] and imposed the following constraints on the trajectories:

1. Maximum heat rate of 125 BTU/sq ft/sec
2. Maximum heat load of 150K BTU/sq ft

The achievable footprint with these constraints, reported in Reference [14], is shown here in Figure 12 on page 89. Subsequently, the heat load limit was increased to 175K BTU/sq ft resulting in the larger footprint shown in Figure 12. As will be seen, these footprints omit a large area in the minimum downrange region that is achievable within the heating constraints. Also shown is the footprint of the Space Shuttle which has a maximum hypersonic L/D of 1.2 as compared with 1.8 for the ERV.

Figure 13 on page 90 shows the altitude history for the maximum downrange, maximum crossrange, and minimum downrange cases. Figures 14 on page 91 and 15 on page 92
show the bank angle and angle of attack histories for these trajectories. Figures 16 on page 93 and 17 on page 94 show the heat rate and heat load histories for these cases.

Figure 15 shows that the constant angle of attack corresponding to maximum L/D is flown for the edge of the footprint except for the minimum downrange case. For the minimum downrange case, the angle of attack corresponding to the minimum L/D on the back side of the L/D curve (high drag coefficient) is flown early, followed by a ramp in angle of attack starting at 1500 seconds after entry interface. This ramp corresponds to the vehicle actually turning around and flying slightly back uprange, so maximum L/D is desired later to maximize the distance flown uprange. The angle of attack for the maximum downrange case is slightly greater than that for maximum L/D because this trajectory exceeds the heat load limit if flown at maximum L/D. The maximum downrange region of the footprint is therefore limited by the heat load limit set for the ERV. If the limit were relaxed, flight at maximum L/D would allow a longer downrange trajectory.

Figure 14 shows that the bank angle profile for maximum crossrange is approximately linear with time which is almost linear with velocity, which suggests that a linear bank angle profile with velocity is sufficient. The maximum downrange case has a constant bank angle of zero which is again linear with velocity. The minimum downrange case does not have a linear bank profile. As was mentioned previously, for this case, the vehicle turns around and flys back uprange.

The results of these studies suggest that use of a constant angle of attack profile and a linear bank with velocity profile will capture a large portion of the achievable footprint. As will be seen in the results, these profiles suffice to capture most of the footprint reported in Reference [14] and additionally reach a large area in the minimum downrange region out-
side the reported footprint. Only a small area of the reported footprint in the minimum downrange region is unachievable.

Also of interest are the peaks in heat rate seen in Figure 16. Because the peaks in heat rate are very short, explicit control of the heat rate should be possible in the maximum heat rate regions without significantly impacting the guidance.

2.4 GUIDANCE APPROACH

The guidance design will attempt to maximize the size of the footprint while flying a constant angle of attack profile and a linear bank angle with velocity profile. The predictor algorithm integrates the equations of motion forward in time using the assumed control profile and the necessary environment and vehicle models. The corrector then determines (using multiple predicted trajectories with various control histories) the sensitivities of the final state constraints to the control variables. The sensitivities are then used to compute the required control variable values to reach the desired final state conditions. Heat rate control is provided locally during the regions of maximum heating without significantly affecting the assumed control histories. Also, in-flight measurements are utilized to increase the accuracy of the predicted trajectories by compensating for off-nominal conditions.

Such a simple profile for the maximum downrange and crossrange cases simplifies the modeling of the control histories in the predictor. The only remaining question is how much of the footprint this profile will capture. As will be seen in Subsection "4.2 Open-Loop
Footprint on page 57, such a profile achieves almost complete coverage of the achievable footprint.

Also of concern is the linearity and convergence properties of the final state constraints with the control variables. As will be seen, over almost all of the footprint except near the edges, the constraints are highly linear and convergent with the control variables. Operationally, only about 75% of the achievable footprint is used to ensure guidance margin. Thus, the question of nonconvergence near the edges is avoided.
3.0 GUIDANCE DESIGN

3.1 INTRODUCTION

This section describes the implementational details of the guidance scheme described in the previous section. The equations of motion and environment and vehicle characteristics modeled in the predictor algorithm are described. The corrector algorithm to control the final state constraints with the two available control variables is derived. Also derived are the heat rate control and in-flight measurement algorithms. The heat rate control algorithm provides control of the peaks in stagnation heat rate during the early portion of entry. The in-flight measurement algorithm utilizes accelerations measured by the navigation system to more accurately model the expected environment and vehicle characteristics in the predictor algorithm. Because the predictor-corrector algorithm is computationally intensive, areas where significant execution time savings have been or can be realized are indicated. Program listings of the algorithm coded in the HAL/S computer language are presented in "Appendix B. ALGORITHM PROGRAM LISTINGS" on page 135.

As will be seen, the only inputs to the guidance system are the environment and vehicle models, the assumed control profiles, and the navigated state vector. The state vector is an input to any guidance system. The other inputs are developed for the analysis of any new vehicle. Therefore, the guidance system is highly transportable between vehicles because only the vehicle characteristics and aerodynamics model must be changed for a new vehicle.
3.2 UNIT TARGET VECTOR

The target aim point to which the vehicle is to be guided is specified by the longitude and geodetic latitude of the Terminal Area Energy Management (TAEM) interface point which occurs at 80K feet for the Shuttle. This point is selected based on the guidance algorithm employed during the TAEM guidance phase. TAEM guidance provides precise control of vehicle energy during the final stages of entry to guide to a specified runway with acceptable energy. For computational ease, the longitude and geodetic latitude are converted to a target unit vector in Earth-fixed coordinates by first computing the geocentric latitude from,

\[\phi_c = \tan^{-1} \left(\frac{\tan(\phi_g)}{k} \right) \]

where,

\[k = \left(\frac{R_{\text{equator}}}{R_{\text{pole}}} \right)^2 = \left(\frac{1}{1 - f_{\text{earth}}} \right)^2 \]

The unit target vector is then computed from,

\[\vec{i}_{\text{TAEM}} = \begin{bmatrix} \cos(\phi_c) \cos(\lambda) \\ \cos(\phi_c) \sin(\lambda) \\ \sin(\phi_c) \end{bmatrix} \]

Alternatively,
\[\mathbf{\hat{t}}_F^e = \begin{bmatrix} i_x \\ i_y \\ i_z \end{bmatrix} \]

where,

\[i_x = \sin(\phi_c) \]

\[i_y = \cos(\lambda) \sqrt{1 - i_z^2} \]

\[i_z = \text{sign}(\lambda) \sqrt{1 - i_x^2 - i_y^2} \]

3.3 COMMANDED ATTITUDE COMPUTATION

Because the predictor can not be executed as frequently as analytic guidance algorithms early in the entry, and because it in fact does not have to be executed as frequently, it is necessary to update the commands sent to the vehicle autopilot more frequently than the predictor-corrector execution rate. Typically, this would be done at the rate of current analytic guidance algorithms, e.g., the Space Shuttle rate of .52 hz. The commanded bank angle, \(\phi_{\text{cmd}} \), is computed for the linear bank with velocity profile as shown in Figure 18 on page 95 from the desired bank angle, \(\phi_d \), and the current navigated inertial velocity magnitude, \(V \).

\[\phi_{\text{cmd}} = \phi_d \frac{V_i - V_f}{V_{\text{EU}} - V_f} \]
to yield the near-optimal linear bank with velocity profile. The desired angle of attack control history is a constant angle of attack, and therefore,

$$\alpha_{\text{cmd}} = \alpha_d$$ \hspace{1cm} (9)

As implemented in the current design, the guidance algorithm executive is executed at 1.0 hz. The attitude commands are updated at this frequency using Eq. (8) and (9). The predictor-corrector algorithm is executed at .02 hz. during the entire entry phase, although it is practical to run it much more frequently late in the trajectory when the length of the trajectory to be predicted is short. The possible execution rate of the predictor-corrector for a typical flight computer is addressed in Subsection "4.8 Algorithm Execution Time" on page 66.

3.4 CORRECTOR ALGORITHM

The corrector algorithm is executed to update the commanded attitude control history to be flown. The guidance algorithm controls to two final state constraints, downrange error and crossrange error, using two control variables, a constant angle of attack and the intercept of the bank profile at the entry interface velocity as shown in Figure 18 on page 95 and expressed in Eq. (8).

Expanding the downrange and crossrange errors in a Taylor series expansion of the control variables and neglecting the second-order and higher terms yields,

$$\Delta DR_e = \frac{\partial DR_e}{\partial \alpha_d} \Delta \alpha_d + \frac{\partial DR_e}{\partial \phi_d} \Delta \phi_d + ...$$ \hspace{1cm} (10)
To intercept the target, the change in the constraint errors must null the predicted errors, or,

$$\Delta DR_s = -DR_s$$ \hspace{1cm} (12)

$$\Delta CR_s = -CR_s$$ \hspace{1cm} (13)

Equations (10) through (13) provide a set of two simultaneous equations in two unknowns,

$$\begin{vmatrix}
\frac{\partial DR_s}{\partial x_d} & \frac{\partial DR_s}{\partial \phi_d} \\
\frac{\partial CR_s}{\partial x_d} & \frac{\partial CR_s}{\partial \phi_d}
\end{vmatrix}
\begin{bmatrix}
\Delta x_d \\
\Delta \phi_d
\end{bmatrix}
=
\begin{bmatrix}
-DR_s \\
-CR_s
\end{bmatrix}$$ \hspace{1cm} (14)

which are solved for the control variable changes required,

$$\Delta x_d = \left(\frac{\partial DR_s}{\partial \phi_d} CR_s - \frac{\partial CR_s}{\partial \phi_d} DR_s\right) \div \text{det}$$ \hspace{1cm} (15)

$$\Delta \phi_d = \left(\frac{\partial CR_s}{\partial x_d} DR_s - \frac{\partial DR_s}{\partial x_d} CR_s\right) \div \text{det}$$ \hspace{1cm} (16)

where det is the determinant of the matrix in Eq. (14). The partial derivatives are approximated by finite difference equations of the form,

$$\frac{\partial DR_s}{\partial \phi_d} = \frac{DR_s(\phi_d = \phi_1) - DR_s(\phi_d = \phi_2)}{\phi_1 - \phi_2}$$ \hspace{1cm} (17)

There are four partial derivatives that must be evaluated. They can be evaluated from three predicted trajectories with control histories selected as:
1. \(\alpha_1 = \alpha'_d, \quad \phi_1 = \phi'_d \)
2. \(\alpha_2 = \alpha'_d + \delta \alpha_d, \quad \phi_2 = \phi'_d \)
3. \(\alpha_3 = \alpha'_d, \quad \phi_3 = \phi'_d + \delta \phi_d \)

where the primes denote the control variables from the previous guidance solution. The new guidance commands are then,

\[
\alpha_d = \alpha'_d + \Delta \alpha_d \\
\phi_d = \phi'_d + \Delta \phi_d
\]

Protection must be provided for the case where the determinant in Eq. (15) and (16) is small or identically zero which corresponds to a loss of control authority of the control variables over the control constraints. In this case, no change is made to the control variables, and the guidance command from the previous cycle is used. As the vehicle approaches the TAEM interface altitude, the control authority decreases. Large control variable changes become necessary to null the constraint errors in the short flight time remaining. This problem can be avoided in one of two ways. First, the guidance commands can be frozen at a selected point before the termination altitude. For entry guidance, this approach is not preferred because the vehicle still has not landed. Alternatively, the target aim point can be lowered below the TAEM interface altitude point at which TAEM guidance is activated. The decreasing control authority problem is therefore reduced.

For the simulated trajectories in this report, the first approach is employed because it is desired to evaluate guidance performance by considering the dispersions in the final state at the TAEM interface altitude. Because the guidance algorithm controls only the final state and not the intermediate states, it is necessary to target for the point at which the guidance is terminated.
3.5 PREDICTOR ALGORITHM

3.5.1 Introduction

The predictor algorithm is a simplified three-degree-of-freedom (3-DOF) trajectory simulator complete with models for those environment and vehicle characteristics necessary to model the translational equations of motion of the vehicle. Because the predictor is computationally intensive, the algorithm must be carefully designed to minimize computation, and the coding of the algorithm in a particular computer language should make use of any language-specific features to reduce computational requirements. Also, because the corrector only utilizes the final state vector errors to correct the control variables, only the accuracy of the predicted final state vector need be considered in selecting those effects to be modeled.

The environmental effects of concern for the long trajectories flown by entry vehicles over large altitude and velocity ranges are:

1. Variation of atmospheric properties with altitude
2. Earth oblateness effect on gravity vector
3. Effect of atmospheric rotation with Earth on relative velocity vector
4. Movement of runway due to Earth rotation

The vehicle characteristics of importance are:

1. Vehicle mass
2. Aerodynamic coefficient variation with flight regime
3. Aerodynamic coefficient variation with angle of attack
4. Control history during trajectory

Dispersions to be considered are:
1. Vehicle mass variation from nominal
2. Winds
3. Atmospheric density variation from nominal atmosphere
4. Aerodynamic coefficient variation from nominal

These dispersions can be measured in-flight because they affect the sensed acceleration measured by the vehicle’s inertial navigation system. The estimation of these dispersions is discussed in Subsection "3.6 Estimators" on page 48.

The predictor performs the following computations upon being called by the corrector with a desired control variable history:

1. Initialize the predictor state to the navigated state vector
2. Compute any ancillary parameters from the state vector
3. Compute the total acceleration vector from the predictor state vector and the environment and vehicle models using the control variable profiles specified by the corrector
4. Integrate the equations of motion forward in time one time step
5. Check the predictor termination conditions
 a. Repeat steps 3 and 4 if the conditions are not met
 b. Continue on to step 6 if the conditions are met
6. Compute and return to the corrector the final predicted state errors from the target state vector and the predicted final state vector

3.5.2 Equations of Motion

The corrector provides a time-homogeneous navigated state vector comprised of,

1. The GMT time tag of the state vector, \(t_{\text{GMT}} \)
2. The inertial position vector, \(\vec{R}_i \)
3. The inertial velocity vector, \(\vec{V}_i \)
Also provided is the control variable history to be followed for the prediction. The equations of motion to be integrated are,

\[
\frac{d \vec{R}_i}{dt} = \vec{V}_i
\]

(20)

\[
\frac{d \vec{V}_i}{dt} = \vec{A}_i
\]

(21)

The acceleration is computed from the atmosphere and vehicle models as follows,

\[
\vec{A}_i = \frac{\vec{F}_i}{m} = \vec{g}_i + \vec{a}_{aero}
\]

(22)

The gravitational acceleration, \(\vec{g}_i \), is computed including the \(J_2 \) term as,

\[
\vec{g}_i = -\frac{\mu}{|\vec{R}_i|^2} \vec{I}_g
\]

(23)

where,

\[
\vec{I}_g = \vec{I}_R + \frac{3}{2} J_2 \frac{R_{equator}^2}{|\vec{R}_i|^2} \left((1 - 5 z^2) \vec{I}_R + 2 z \vec{I}_{pole} \right)
\]

(24)

and,

\[
z = \vec{I}_R \cdot \vec{I}_{pole}
\]

(25)

The aerodynamic acceleration, \(\vec{a}_{aero} \), is computed from,

\[
\vec{a}_{aero} = a_{lift} \vec{I}_{lift} + a_{drag} \vec{I}_{drag}
\]

(26)

where,

\[
a_{lift} = \frac{C_L \bar{q} S}{m}
\]

(27)
\[a_{\text{drag}} = \frac{C_D \bar{q} S}{m} \quad (28) \]

\[\bar{q} = \frac{1}{2} \rho V_R^2 \quad (29) \]

\[V_R^2 = \vec{V}_R \cdot \vec{V}_R \quad (30) \]

\[\vec{V}_R = \vec{V}_I - \vec{\omega}_{\text{earth}} \times \vec{R}_I \quad (31) \]

\[\vec{I}_{\text{drag}} = -\frac{\vec{V}_R}{|V_R|} \quad (32) \]

\[\vec{I}_{\text{lift}} = (\vec{I}_{\text{drag}} \times \vec{i}_{\text{sat}}) \cos(\phi) + \vec{i}_{\text{sat}} \sin(\phi) \quad (33) \]

\[\vec{i}_{\text{sat}} = \frac{\vec{i}_R \times \vec{i}_{\text{drag}}}{|\vec{i}_R \times \vec{i}_{\text{drag}}|} \quad (34) \]

\[\vec{i}_R = \frac{\vec{R}_I}{|\vec{R}_I|} \quad (35) \]

The acceleration due to lift, \(a_{\text{lift}} \), is more easily computed from,

\[a_{\text{lift}} = \frac{L}{D} a_{\text{drag}} \quad (36) \]

since the nominal lift-to-drag ratio, \(L/D \), is corrected using in-flight accelerometer measurements of the actual vehicle sensed aerodynamic accelerations.

The atmospheric density, \(\rho \), is computed by the atmosphere model using the position vector, \(\vec{R}_I \). The 1962 U.S. Standard Atmosphere model is employed and is described in Reference [16]. If another atmosphere model is selected as being a more accurate estimate of the day-of-flight atmosphere, this model would replace the 1962 U.S. Standard Atmosphere model. An operational vehicle might employ monthly or seasonal atmospheres from such
sources as the GRAM Atmosphere [9] or even day-of-flight measurements to more accurately model the expected atmosphere in the predictions. The level of accuracy required in the atmosphere model will depend on the vehicle ranging capability and the amount of that capability to be used for a particular entry. Entries to the edges of the footprint will demand a very accurate atmosphere model.

The aerodynamic coefficients are highly vehicle dependent. To minimize computational requirements, they should be updated during the prediction as infrequently as possible. Of course, the update frequency required depends on the trajectory flown and the rate of change of the aerodynamic coefficients with flight regime change. The aerodynamic coefficient model for the ERV is presented in "Appendix A. ERV AERODYNAMICS MODEL" on page 133.

The density, \(\rho \), from the atmosphere model and the lift-to-drag ratio, L/D, from the aerodynamic model are both corrected by in-flight measurements as covered in Subsection "3.6 Estimators" on page 48. The estimated dispersions are compensated for using the following equations,

\[
\rho = K_\rho \, \rho_{\text{std}} \quad (37)
\]

\[
\frac{L}{D} = K_{\frac{L}{D}} \left(\frac{C_L}{C_D} \right)_{\text{nom}} \quad (38)
\]

where the density and lift-to-drag ratio scale factors, \(K_\rho \) and \(K_{\frac{L}{D}} \), are provided by the estimator and are held constant throughout the prediction being made.

The control history to be followed is the constant angle of attack, \(\alpha_c \), and the linear bank angle with velocity, \(\phi \). The latter is computed from.
\[\phi = \phi_d \frac{V_e - V_f}{V_e - V_f} \tag{39} \]

where \(\phi_d \) is the intercept of the linear bank angle profile at the entry interface velocity, \(V_e \). Because the entry interface and final velocities are not known a priori, and because small variations in them have little effect on the predicted trajectory compared with the selected control variables’ values, the velocities are selected as constant values that cover all expected dispersions in the entry and final velocities. These values are,

\[V_e = 26,000 \text{ ft/sec} \]
\[V_f = 1,000 \text{ ft/sec} \]

3.5.3 Integration of the Equations of Motion

The equations of motion are integrated using the 4th order Runge-Kutta algorithm with a variable time step to minimize the number of time steps required to integrate the trajectory to the final state. The 4th order Runge-Kutta algorithm requires four evaluations of the acceleration per time step, but permits a time step more than four times as large as an algorithm requiring only one acceleration evaluation per time step. The Runge-Kutta solution [17] for the differential equations of motion of the form,

\[\frac{d \vec{R}_i}{dt} = \vec{V}_i \tag{40} \]
\[\frac{d \vec{V}_i}{dt} = f(t, \vec{R}_i, \vec{V}_i) \tag{41} \]

is,
\[
\vec{R}(t + \Delta t) = \vec{R}(t) + \frac{\Delta t}{6} (K_0 + 2K_1 + 2K_2 + K_3) \tag{42}
\]

\[
\vec{V}(t + \Delta t) = \vec{V}(t) + \frac{\Delta t}{6} (K'_0 + 2K'_1 + 2K'_2 + K'_3) \tag{43}
\]

where,

\[
K_0 = \vec{V}, \tag{44}
\]

\[
K_1 = (\vec{V} + \frac{K'_0}{2}) \tag{45}
\]

\[
K_2 = (\vec{V} + \frac{K'_1}{2}) \tag{46}
\]

\[
K_3 = (\vec{V} + \frac{K'_2}{2}) \tag{47}
\]

\[
K'_0 = f(t, \vec{R}, \vec{V}) \tag{48}
\]

\[
K'_1 = f(t + \frac{\Delta t}{2}, \vec{R} + \Delta t \frac{K_0}{2}, \vec{V} + \Delta t \frac{K'_0}{2}) \tag{49}
\]

\[
K'_2 = f(t + \frac{\Delta t}{2}, \vec{R} + \Delta t \frac{K_1}{2}, \vec{V} + \Delta t \frac{K'_1}{2}) \tag{50}
\]

\[
K'_3 = f(t + \Delta t, \vec{R} + \Delta t K_2, \vec{V} + \Delta t K'_2) \tag{51}
\]

The time step is varied inversely with the total acceleration on the vehicle. This method of time step control was selected because of its simplicity. The time step control equation is of the form,

\[
\Delta t = \frac{K_\Delta t}{|A|} \tag{52}
\]
and the time step is limited between a minimum and maximum value,

\[\Delta t = \text{midval}(\Delta t_{\text{min}}, \Delta t_{\text{opt}}, \Delta t_{\text{max}}) \]

The optimization of the integration algorithm is important in developing a flight quality algorithm, but is beyond the scope of this study. Higher-order integration algorithms with time step control methods [17] may yield significant reductions in the required computation time.

3.5.4 Termination Conditions for the Predictor

After each integration time step, the predicted state is compared with the termination condition. The termination condition is defined by the altitude of TAEM interface (80K feet). Because the predicted state at the TAEM interface altitude may have a relatively large altitude rate and range rate, the predictor must be terminated accurately to provide an altitude-homogeneous set of predicted state errors. Also, the variable time step control may allow large integration time steps if the acceleration is low near the final state, further complicating the task of terminating accurately. Reasonable altitude homogeneity is ensured by forcing use of the minimum integration time step starting some safe altitude above the termination altitude.

3.5.5 Final State Error Computation

The final state errors are computed from the unit target vector and the predicted final state vector. Because the target is fixed to the Earth and moves a significant distance dur-
ing the long entry trajectory, the rotation of the Earth must be considered. This is done by transforming the final state vector from inertial to Earth-fixed coordinates with the rotation matrix \(M^{\text{EF}} \) which is computed from the predicted termination time, the known orientation of the Earth at some epoch time, and the known rotation rate of the Earth. This computation is performed in the Earth-Fixed-From-Reference subroutine of the predictor-corrector which may actually be a GN&C utility function also employed by the navigation principal function.

The downrange and crossrange errors are defined as shown in Figure 19 on page 96. The errors are computed by first computing the downrange (in-plane) and crossrange (perpendicular) directions as follows,

\[
\vec{R}^{\text{EF}} = M^{\text{EF}} \vec{R}^i
\]

(54)

\[
\vec{R}_{\text{R}}^{\text{EF}} = \frac{\vec{R}^{\text{EF}}}{|\vec{R}^{\text{EF}}|}
\]

(55)

\[
\vec{V}_{\text{R}}^{\text{EF}} = M^{\text{EF}} \vec{V}^i
\]

(56)

\[
\vec{v}_{\text{perpen}}^{\text{EF}} = \frac{\vec{i}_R^{\text{EF}} \times \vec{V}_{\text{R}}^{\text{EF}}}{|\vec{i}_R^{\text{EF}} \times \vec{V}_{\text{R}}^{\text{EF}}|}
\]

(57)

\[
\vec{v}_{\text{inplane}}^{\text{EF}} = \frac{\vec{i}_R^{\text{EF}} - (\vec{i}_R^{\text{EF}} \cdot \vec{v}_{\text{perpen}}^{\text{EF}}) \vec{v}_{\text{perpen}}^{\text{EF}}}{|\vec{i}_R^{\text{EF}} - (\vec{i}_R^{\text{EF}} \cdot \vec{v}_{\text{perpen}}^{\text{EF}}) \vec{v}_{\text{perpen}}^{\text{EF}}|}
\]

(58)

The downrange and crossrange errors are then,

\[
DR_e = R_{\text{equator}} \cos^{-1}(\vec{i}_R^{\text{EF}} \times \vec{i}_{\text{inplane}}^{\text{EF}}) \text{sign}(\vec{i}_R^{\text{EF}} \times \vec{i}_{\text{inplane}}^{\text{EF}} \cdot \vec{i}_{\text{perpen}}^{\text{EF}})
\]

(59)

\[
CR_e = R_{\text{equator}} \cos^{-1}(\vec{i}_{\text{inplane}}^{\text{EF}} \cdot \vec{i}_R^{\text{EF}}) \text{sign}(\vec{i}_{\text{inplane}}^{\text{EF}} \times \vec{i}_R^{\text{EF}} \cdot (\vec{i}_{\text{perpen}}^{\text{EF}} \times \vec{i}_{\text{inplane}}^{\text{EF}}))
\]

(60)
These errors have the dimensions of R_{equator} and are converted to nautical miles for ease of interpretation.

3.5.6 Algorithm Coding

A few comments regarding implementation of the predictor are appropriate. The computations required to update the aerodynamic coefficients are the major computational load for the predictor. It was found that it is not necessary to update the aerodynamics on each of the four acceleration evaluations of the 4th order Runge-Kutta algorithm. They are therefore only evaluated once each integration time step. The computational load could be reduced further if they are only updated when the independent variables (altitude, viscous interaction parameter, and Mach Number) change by a significant amount from the previous update. Also, although not done in this implementation, the aerodynamic coefficients should be curve-fit if possible to avoid a table lookup and interpolation implementation. It is noted in Figures 20 on page 97 and 21 on page 98 that the aerodynamic coefficients do not change very much below 300K feet until the Mach Number decreases below 2, so perhaps, two tables or curve-fits would suffice instead of the thirty tables currently used.

3.6 ESTIMATORS

The final state predicted by the predictor algorithm for a particular control history is a function of the assumed environment and vehicle characteristics. The accuracy of the predicted final state can be increased, and hence, the guidance margin increased, if in-flight
measurements are utilized to make the assumed models more accurately reflect the conditions actually experienced by the vehicle.

The accelerations modeled in the predictor are due to gravity and the aerodynamic forces. The gravity acceleration can be modeled to sufficient accuracy using standard gravity models. However, the aerodynamic accelerations are subject to significant variations due to uncertainties in the atmospheric density, atmospheric winds, vehicle aerodynamics, and vehicle mass. These uncertainties can be compensated for in the predictor by applying a multiplicative scale factor to the lift and drag accelerations modeled in the predictor that is equal to the ratio of the actual accelerations experienced to the predicted accelerations at any point in the trajectory.

The measured lift and drag accelerations are derived from the inertial measurement system sensed acceleration assuming a zero sideslip angle as follows,

\[
\begin{align*}
\hat{a}_{\text{drag}} &= -\vec{a}_i \cdot \frac{\vec{V}_R}{|\vec{V}_R|} \\
\hat{a}_{\text{int}} &= \sqrt{\vec{a}_i \cdot \vec{a}_i - \hat{a}_{\text{drag}}^2}
\end{align*}
\]

(61) (62)

where the inertial acceleration, \(\vec{a}_i\), is computed by back-differencing the accumulated sensed velocity counts from the inertial measurement unit,

\[
\vec{a}_i = \frac{\vec{V}_{imu} - \vec{V}_{imu \, \text{past}}}{\Delta t_{imu}}
\]

(63)

In the predictor, the aerodynamic accelerations are,

\[a_{\text{drag}} = \frac{C_D S}{m} \frac{1}{2} \rho V_R^2\]

(64)
Data from the Shuttle program [10] shows that the primary dispersion affecting the aerodynamic acceleration is in the atmospheric density. Further, over large altitude ranges, this dispersion can be modeled to an accuracy sufficient for the prediction process as a constant multiplicative bias. Therefore, for implementational purposes, the dispersion in the aerodynamic accelerations due to the atmospheric uncertainties will be lumped into a density scale factor as follows,

\[
K_{\rho} = \frac{\hat{\rho}}{\rho_{std}}
\] \hspace{1cm} (66)

where,

\[
\hat{\rho} = \frac{2}{V_{\infty}^2} \left(\frac{m}{C_{D} S} \right)_{nom}
\] \hspace{1cm} (67)

and the values for the nominal vehicle characteristics and the nominal atmospheric density are determined using the predictor models for the vehicle state at the time of the measurement. Because the nominal ballistic coefficient is assumed in deriving the measured density, and the measured acceleration is due to the actual ballistic coefficient, uncertainties in the ballistic coefficient will be reflected in the measured density. The equation for the drag acceleration in the predictor is then,

\[
a_{drag} = \left(\frac{C_{D} S}{m} \right)_{nom} \frac{1}{2} V_{\infty}^2 K_{\rho} \rho_{std}
\] \hspace{1cm} (68)

or substituting for \(K_{\rho} \) from Eq. (66) yields,

\[
a_{drag} = \left(\frac{C_{D} S}{m} \right)_{nom} \frac{1}{2} V_{\infty}^2 \hat{\rho}
\] \hspace{1cm} (69)

Substituting for \(\hat{\rho} \) from Eq. (67) then yields,
so the modeled drag is corrected for the dispersed drag coefficient, density, relative velocity, and vehicle mass.

In general, the measured drag acceleration is a noisy signal and will exhibit short term variations due to short lived local atmospheric dispersions [10]. Filtering of the density scale factor is therefore necessary and is implemented using a first-order filter,

\[K_p = (1 - K_1) K_p + K_1 \frac{\hat{p}}{p_{std}} \]

(71)

which has a time constant, \(\tau_p \), of,

\[\tau_p = \frac{\Delta t}{\ln(1 - K_1)} \]

(72)

where \(\Delta t \) is the sample rate of the measured drag acceleration, and \(K_1 \) is the filter gain. A similar lift-to-drag ratio scale factor is derived and applied to the lift acceleration,

\[a_{lift} = K_{L/D} \left(\frac{L}{D} \right)_{nom} a_{drag} \]

(73)

where,

\[K_{L/D} = \frac{\left(\frac{L}{D} \right)}{\left(\frac{L}{D} \right)_{nom}} \]

(74)
and,

$$\left(\frac{L}{D} \right) = \frac{\hat{a}_{in}}{\hat{a}_{drag}}$$ \hspace{1cm} (75)

Again, filtering is necessary,

$$K_c \left(1 - K_z \right) + K_z \left(\frac{\hat{L}}{D} \right)$$ \hspace{1cm} (76)

yielding a time constant, \(\tau_{L/D} \), of,

$$\tau_{L/D} = \frac{\Delta t}{\ln(1 - K_z)}$$ \hspace{1cm} (77)

A time constant of 25 seconds was selected for both the density and L/D filters. This value filtered out the high frequency density shear components seen in the Shuttle profiles while still providing adequate response to long term disturbances.

3.7 HEAT RATE CONTROL

The primary trajectory constraint on entry vehicles is the maximum heat rate the vehicle can withstand. In general, the thermal protection system material is selected to withstand
the maximum local heat rate on any particular portion of the vehicle, and the material thickness is selected to withstand the total integrated heat load over the trajectory. Accurate pre-flight predictions of the expected heat rate during entry can significantly reduce the thermal protection system weight, yielding significant performance increases for an entire mission.

Inspecting the reference trajectories in Figure 16 on page 93 shows that sharp peaks in the heat rate occur. If these peaks are accurately controlled, and this control can be accomplished using only short term departures from the predictor assumed control history, no significant departure will occur from the desired trajectory.

Heat rate control can be accomplished using either angle of attack, bank angle, or a combination of both. Of these, bank angle alone is preferred because a constant angle of attack trajectory is assumed and because angle of attack changes the vehicle drag coefficient resulting in a rapid change in energy rate and a rapid departure from the desired trajectory. Also, most entry vehicles restrict the angle of attack range during maximum heat rate regions to reduce the area on the vehicle that must be protected from the high heat rate. Although the ERV does not need to restrict the angle of attack range, and hence, the guidance does not provide for such a capability, the restriction can be handled by replacing the constant angle of attack control history by a reference angle of attack control history about which a constant angle of attack bias is applied for control.

Heat rate control is accomplished by computing the incremental bank angle required to fly along the specified heat rate boundary (assumed to be a constant heat rate for any flight regime) and then modulating bank angle according to the guidance value or the guidance value plus the incremental lift for heat rate control, whichever requires more lift up. Hence, no effort is made to pull the vehicle down into the atmosphere to follow the heat rate bound-
ary; instead, lift up is applied if the vehicle is flying “too low”. The incremental lift for heat rate control is computed to provide a second-order control response as follows,

\[\cos(\Delta \phi) = \frac{K_\phi}{q} (\ddot{Q} - \ddot{Q}_{des}) + \frac{K_\phi}{q} (\dot{Q} - \dot{Q}_{lim}) \] (78)

To fly along a constant heat rate boundary,

\[\dot{Q}_{lim} = \text{constant} \] (79)

and the desired rate of change of heat rate, \(\dot{Q}_{des} \), is,

\[\dot{Q}_{des} = 0 \] (80)

so,

\[\cos(\Delta \phi) = \frac{K_\phi}{q} \ddot{Q} + \frac{K_\phi}{q} (\dot{Q} - \dot{Q}_{lim}) \] (81)

The stagnation heat rate is determined using the Engineering Correlation Formula [18] for a one foot radius reference sphere as,

\[\dot{Q} = 17700 \sqrt{\rho} \left(\frac{V_R}{10000} \right)^{0.65} \] (82)

The time rate of change of heat rate, \(\ddot{Q} \), is determined by back-differencing the heat rate between guidance cycles,

\[\ddot{Q} = \frac{\dot{Q} - \dot{Q}_{past}}{\Delta t} \] (83)

The equations of motion assuming small flight path angle yield,

\[\ddot{h} = \frac{c_l \bar{q} S}{m} \cos(\phi) - g \] (84)
Considering only the perturbations due to the incremental lift, \(\cos(\Delta \phi) \), from Eq. (81) yields,

\[
\ddot{h} - \frac{C_l}{m} K_{\dot{\phi}} \dot{Q} + K_{\dot{\phi}} (\dot{Q} - \dot{Q}_{\text{lim}}) = 0
\]
(85)

Proper selection of the gains \(K_{\dot{\phi}} \) and \(K_{\ddot{\phi}} \) is accomplished by linearizing Eq. (85) in altitude and assuming that the time rate of change of \(V_R \) is small compared to the change in \(\sqrt{\rho} \). With these assumptions,

\[
\dot{Q} = 17700 \left(\frac{V_R}{10000} \right)^{\frac{3}{8}} \frac{d\sqrt{\rho}}{dh} h
\]
(86)

and,

\[
\ddot{Q} = 17700 \left(\frac{V_R}{10000} \right)^{\frac{3}{8}} \frac{d\sqrt{\rho}}{dh} \frac{dh}{dt}
\]
(87)

Therefore, the homogeneous second-order differential equation in altitude is,

\[
\ddot{h} + K K_{\dot{\phi}} \dot{h} + K K_{\ddot{\phi}} h = 0
\]
(88)

where,

\[
K = - \frac{C_l}{m} 17700 \left(\frac{V_R}{10000} \right)^{\frac{3}{8}} \frac{d\sqrt{\rho}}{dh}
\]
(89)

The natural frequency and damping ratio of the second-order differential equation are,

\[
\omega_n = \sqrt{K K_{\dot{\phi}}}
\]
(90)

\[
\zeta = \frac{K K_{\ddot{\phi}}}{2 \omega_n}
\]
(91)

or alternatively, for a desired natural frequency and damping ratio, \(K_{\dot{\phi}} \) and \(K_{\ddot{\phi}} \) are selected as,
The derivative in Eq. (89) can be evaluated assuming an exponential atmosphere of the form,

\[\rho = \rho_0 e^{-\left(\frac{n}{n_s}\right)} \]

yielding,

\[\frac{d\sqrt{\rho}}{dh} = -\frac{\sqrt{\rho_0}}{2h_s} e^{-\left(\frac{n}{n_s}\right)} \]

This logic is contained in the guidance algorithm in the Heat Rate Control subroutine. The incremental lift required for heat rate control is provided to the Attitude Command subroutine which adds it into the guidance command if it requires more lift up than the guidance command. This occurs when the incremental lift given by Eq. (81) is greater than zero,

\[\cos(\Delta \phi) > 0 \]

Appropriate values of the natural frequency and damping ratio were determined parametrically as,

\[\omega_n = 0.10 \text{ rad/sec} \]

\[\zeta = 1.00 \]
4.0 PERFORMANCE

4.1 SIMULATOR

Open-loop and closed-loop entry trajectories were simulated for the Entry Research Vehicle (ERV) using a derivative of the 6-DOF Aeroassist Flight Experiment Simulator (AFES-IM) [19] developed at The Charles Stark Draper Laboratory which is coded in the HAL computer language. For this study, the aerodynamic model described in "Appendix A. ERV AERODYNAMICS MODEL" on page 133 and the wind model shown in Figure 2 on page 79 were incorporated into the AFESIM. The characteristics of the ERV [14] are listed in Table 1 on page 73. The entry conditions with which all trajectories were initialized are also listed in Table 1 on page 73. Because only the performance characteristics of the guidance were being evaluated, the simulator was operated in the 3-DOF mode.

4.2 OPEN-LOOP FOOTPRINT

Open-loop trajectories were run using the constant angle of attack and linear bank with velocity profiles to determine the portion of the footprint achievable. All trajectories were terminated at the TAEM interface altitude of 80K feet, so the footprint can be increased about 100 nautical miles in all directions due to the range flown below 80K feet.
Figure 22 on page 99 shows the lift-to-drag ratio, L/D, for the ERV at Mach 10 versus angle of attack, \(\alpha \). It is seen that maximum L/D is obtained at an angle of attack of 15 degrees. It is desirable to fly on the back side of the L/D curve (angle of attack greater than 15 degrees) so as to maximize the drag coefficient for a given L/D. This reduces heating by causing a quicker loss of velocity early in entry than flying at the same L/D on the front side of the L/D curve. The L/D versus angle of attack curve shows the same shape with the maximum L/D at 15 degrees for all flight regimes with only a variation in the magnitude of L/D across the angle of attack range. Therefore, angle of attack is modulated between 15 and 50 degrees for the footprint with 15 degrees corresponding to maximum L/D and 50 degrees corresponding to minimum L/D.

The open-loop footprint is shown in Figure 23 on page 100. Also shown for comparison is the reported footprint for a heat load limit of 175K BTU/sq ft (shown earlier in Figure 12 on page 89). That footprint included the range flown below 80K feet, hence the slight differences. It is seen that almost the entire reportedly achievable footprint is captured with the assumed control profile. Most importantly, all of the maximum crossrange region is reached when the range flown below 80K feet is included. Also, most of the minimum downrange region of the footprint was captured even though the control profiles used do not correspond to the optimal profiles determined using POST and shown in Figures 14 on page 91 and 15 on page 92. Additionally, the footprint reported in Reference [14] does not include the large area in the minimum downrange region that the open-loop trajectories reached. The small area not reached in the minimum downrange region by the control profiles is relatively unimportant because the downrange ranging capability of the vehicle can be adjusted by changing the deorbit time. A vehicle in low earth orbit travels at about four nautical miles per second, so downrange is easily adjusted while on-orbit.
Because the predictor-corrector guidance algorithm will follow the same control histories as used to generate the open-loop footprint for a nominal trajectory, the guidance algorithm can reach all of the open-loop footprint for nominal conditions. It is seen that the achievable footprint is bounded by the heat rate and heat load limits imposed on the ERV. At least an additional 2000 nautical miles of ranging capability in the downrange direction exists if the heat limits are relaxed.

4.3 EFFECT OF DISPERSIONS ON FOOTPRINT

The effect of dispersions on the achievable footprint was determined by repeating the open-loop trajectories with the dispersions discussed in Subsection "2.2 Dispersions" on page 26. The worst-case (3σ) dispersions are summarized in Table 2 on page 73. Table 3 on page 74 shows the dispersions in downrange and crossrange for three of the control histories in the maximum downrange region of the footprint. It is seen that only variations in the lift and drag coefficients cause significant dispersions in the final state. Also, it is seen that the effect of a +10% C_L dispersion is the same as that of a -10% C_D dispersion. This is expected because both dispersions cause the same increase in the vehicle L/D. The same occurs for a -10% C_L dispersion and a +10% C_D dispersion, both of which decrease the vehicle L/D.

The effects of the dispersions on trajectories to the maximum crossrange region of the footprint are seen in Table 4 on page 75. Again, it is seen that aerodynamic dispersions have the greatest effect. A dispersion that increases L/D increases the range, while a dispersion that decreases L/D decreases the range.
Table 5 on page 76 shows the effects of the dispersions on the minimum downrange region of the footprint. The worst-case range dispersions again occur for the aerodynamic dispersions.

4.4 ESTIMATOR PERFORMANCE

Figure 24 on page 101 shows the time response of the density filter with a 25 second time constant for the STS-9 atmosphere. This trajectory also has dispersions of +1.9% in C_D, -3.2% in mass, and a 63.8% crosswind. Therefore, the filter output does not follow the actual density dispersion also shown in the figure. When the acceleration level is below 0.07 g's, the measurements are not incorporated, so the filter is inactive before 300 seconds and from 600 to 850 seconds. As the velocity drops, the wind becomes a greater contributor to the measured density error, hence the divergence in the measured density ratio starting at 1000 seconds. Figure 25 on page 102 shows the response of the L/D filter with a 25 second time constant for a -1.9% C_L and a +1.9% C_D dispersion. Again, the winds affect the measurement by creating errors in the navigated angle of attack, so the estimated L/D ratio is slightly in error.

The use of an air data system like the Shuttle Entry Air Data System (SEADS) could significantly improve the estimation process by providing accurate estimates of the angle of attack, atmospheric density, and wind magnitude and direction. More accurate estimates will increase the guidance margin, thereby increasing the achievable footprint for dispersed trajectories.
4.5 CLOSED-LOOP PERFORMANCE

Based on the results of the open-loop trajectories with dispersions, worst-case dispersions were selected for each of three regions of the footprint: maximum downrange, maximum crossrange, and minimum downrange. Closed-loop trajectories with the predictor-corrector guidance algorithm were then run to the three regions of the footprint. The three target points selected for the closed-loop performance evaluation are shown in Figure 23 on page 100. The 3σ errors defined in Table 2 on page 73 were scaled such that the total error due to multiple error sources would still represent a 3σ dispersion so as to test the guidance system for reasonably probable dispersion cases [20]. To run all dispersions at their 3σ levels would be unrealistic.

The nominal and dispersed results for trajectories to each of the three regions are listed in Tables 6 on page 77 through 8 on page 77. Plots of selected parameters from these cases are included. Figures 26 on page 103 through 31 on page 108 present the altitude, velocity, heat rate, heat load, downrange, and crossrange time histories for the nominal maximum downrange trajectory. Figures 32 on page 109 through 37 on page 114 present the altitude, velocity, heat rate, heat load, downrange, and crossrange time histories for the nominal maximum crossrange trajectory. Figures 38 on page 115 through 43 on page 120 present the altitude, velocity, heat rate, heat load, downrange, and crossrange time histories for the nominal minimum downrange trajectory. In each of these cases, it is seen that the heat rate does not approach the heat rate limit, so no incremental bank angle is needed for heat rate control.

The control histories for the nominal maximum downrange trajectory and the dispersed case listed second in Table 6 on page 77 are presented in Figure 44 on page 121 and
Figure 45 on page 122. Figure 44 shows the angle of attack histories for the nominal and dispersed maximum downrange cases. It is seen that a two degree change in angle of attack is required early in the trajectory increasing to four degrees by the end of the trajectory. Figure 45 shows the bank angle histories for the nominal and dispersed maximum downrange cases. The bank angle required shows no change from zero degrees for this case.

The control histories for the nominal maximum crossrange trajectory and the dispersed case listed second in Table 7 on page 77 are presented in Figure 46 on page 123 and Figure 47 on page 124. Again, it is seen that a four degree change in angle of attack is required for the dispersed case. The bank angle history shows no change for the dispersed case from that of the nominal case.

The control histories for the nominal minimum downrange trajectory and the dispersed case listed second in Table 8 on page 77 are presented in Figure 48 on page 125 and Figure 49 on page 126. For this case, approximately a one degree change in angle of attack is required. No change is required in the bank angle profile.

The required change in angle of attack for each of the dispersed cases shown was primarily due to the change in the vehicle L/D as this was shown to be the primary dispersion source in Subsection “4.3 Effect of Dispersions on Footprint” on page 59. The breaking point of the guidance occurs when the vehicle does not have enough L/D range to overcome the loss in L/D due to aerodynamic dispersions. As mentioned previously, the Shuttle entry guidance algorithm was required to guide to the TAEM interface aim point to within 2.5 nautical miles of position. The results presented for the nominal and dispersed cases show that this requirement is met with the predictor-corrector guidance algorithm. Also, the trajectory plots show that the algorithm achieves this performance with very infrequent guidance.
updates (.02 hz.) and with very small control variable changes from the nominal constant angle of attack and linear bank with velocity profiles. Most importantly, almost all of the achievable footprint is captured using the predictor-corrector algorithm.

4.6 HEAT RATE CONTROL PERFORMANCE

The closed-loop trajectories shown previously did not require heat rate control because the maximum heat rate experienced was significantly lower than the limit imposed on the ERV. The time responses for bank angle, angle of attack, and heat rate for the beginning of a typical trajectory with and without heat rate control are shown in Figures 50 on page 127 through 52 on page 129. The resulting bank angle versus velocity profile is shown in Figure 53 on page 130. These trajectories are for the middle of the footprint where the peak heat rate does not exceed the limit for the ERV. Therefore, for illustrative purposes, the heat rate limit was reduced to 100 BTU/sq ft/sec. Comparing the trajectories with and without heat rate control, it is seen that the heat rate control takes place over a fairly long time range, but requires a significant departure from the linear bank profile over only a very short velocity range. The impact on the trajectory is therefore small, and the predictor-corrector stays converged on almost the same control history even though the vehicle does not follow the assumed control profile during the heat rate control area.
4.7 OVERCONTROL

For those trajectories not at the edge of the footprint, excess vehicle capability exists that can be utilized to increase guidance margin for dispersions that may occur later in the trajectory. For example, a 13,800 nautical mile downrange trajectory for the ERV only requires flying at 20 degrees angle of attack instead of 15 degrees for the nominal trajectory. The ERV can modulate angle of attack between 15 degrees (maximum L/D) and 50 degrees (minimum L/D) on the back side of the L/D curve, so the modulation capability is not equally centered about the commanded angle of attack if flying at 20 degrees. By flying at 15 degrees (maximum L/D) early in the trajectory, guidance can center the remaining guidance capability equally about the aim point to cover dispersions in all directions, not just those that require less L/D to reach the target point. This approach is referred to here as overcontrol or command biasing.

Overcontrol can be implemented in several ways. First, the command can be biased from the desired command when that command is not in the center of the modulation range. As the vehicle flies a biased angle of attack, for example, the predicted final state will differ from that for the unbiased command in such a direction that the next guidance command will be moved in the direction opposite to the bias. By biasing in the proper direction, the command can be driven toward the center of the modulation range. If the guidance requires an L/D higher than that in the middle of the L/D range, flying at an even higher L/D will drive the required L/D toward the middle. Secondly, the target aim point can be moved from the nominal aim point early in the entry. For example, for a trajectory to the maximum downrange region of the footprint, the target aim point can be moved even farther downrange. Of course, at some point in the trajectory, the aim point must be moved back to the desired point.
The first approach was implemented in the predictor-corrector algorithm by biasing the angle of attack by five degrees when it was more than two degrees away from 30 degrees. The biasing was terminated at an inertial velocity of 13,500 feet per second so as to allow the guidance to fly the proper control history near the end of the trajectory to reach the target aim point.

Figure 54 on page 131 compares the angle of attack control history for a 13,760 nautical mile downrange trajectory with the dispersions used for the closed-loop trajectories shown earlier. Without overcontrol, the vehicle misses the target aim point by 19.20 nautical miles. This occurs because the wind contribution to the dispersion increases as the vehicle velocity drops, so the multiplicative scale factor on density does not properly model this dispersion. As the wind contribution increases, a higher L/D is required, and the angle of attack is driven to 15 degrees or maximum L/D. Because maximum L/D was not utilized earlier in the trajectory, the vehicle did not reach the target. Late in the trajectory, the predictor-corrector goes unconverged as control authority is exhausted, causing the angle of attack to jump between 15 and 30 degrees. By this point, the target aim point was unreachable anyway due to the dispersions.

With command biasing, the commanded angle of attack early in the trajectory is that corresponding to maximum L/D or 15 degrees. It is seen that biasing drives the commanded angle of attack to 25 degrees once the biasing is terminated at a velocity of 13,500 feet per second or a time of 3,700 seconds. Later, when the wind dispersion drives the angle of attack toward 15 degrees, there is significant margin remaining, and the angle of attack is only driven to 24.5 degrees by the dispersion. With command biasing, the miss distance at TAEM interface is only 0.27 nautical miles. Therefore, guidance margin is increased by using overcontrol. More of the theoretically achievable footprint is attainable for dispersed...
cases. An even larger magnitude dispersion could have been handled late in the trajectory since the angle of attack was not driven to that for maximum L/D.

Further work is needed in this area to determine the proper way to utilize overcontrol to maximize guidance margin for the expected dispersions. The probability of the various dispersions occurring and the histories of those dispersions along a trajectory must be considered. For example, if a "thick" atmosphere is encountered early in the trajectory equal to the worst-case expected dispersion, it is highly unlikely that the atmosphere will get "thicker" later in the trajectory. Therefore, it is unnecessary to preserve guidance margin in the direction needed to cover a "thicker" atmosphere beyond that already required for the expected worst-case atmosphere. Such considerations should be taken into account in the design of the overcontrol algorithm.

4.8 ALGORITHM EXECUTION TIME

An estimate of the execution time required for the predictor-corrector algorithm was made using the execution time estimate feature of the HAL compiler. The estimate is for the AP101 Shuttle flight computer. Figure 55 on page 132 shows the execution time required in seconds as a function of the time to the TAEM interface point for a maximum downrange trajectory. It is seen that early in the entry when the trajectory to be predicted is long, the predictor requires 43.7 seconds of CPU time. When only 500 seconds to the TAEM interface point remains, the required time drops to 4.5 seconds. This figure can also be interpreted as the minimum update interval for the predictor-corrector. Also, the guidance command will be computed and sent to the vehicle autopilot a period of time after the start of the guidance
cycle equal to the required execution time. It is seen that early in the entry, a significant delay occurs between the start of the guidance cycle and the computation of the guidance command. This delay was not simulated in the closed-loop trajectories, but will have a minimal effect on the guidance margin because the guidance is not trying to fly a reference trajectory like the analytic guidance algorithms. The predictor-corrector is numerically computing a trajectory that will fly directly to the target aim point. Any error that builds up between the start of the guidance cycle and the issuing of the guidance command can be nulled easily since the entry is long, and the error will shrink as the delay decreases with decreasing time to the TAEM interface point.

The Shuttle AP101 CPU is the product of early 1970's technology and is significantly slower than flight computers that might be employed in future entry vehicles. The 80C86 CPU for example is two to five times faster than the AP101 CPU, so the execution time required shown in Figure 55 on page 132 can be scaled down by a factor of two to five. Computers utilizing parallel processing architecture could predict the three required trajectories simultaneously in three CPUs, cutting the required execution time by a factor of three. If scaled by a factor of four due to the faster CPU and a factor of three due to parallel processing architecture, the maximum time required drops to 3.6 seconds, and the time with 500 seconds remaining to the TAEM interface point drops to 0.4 seconds. The predictor-corrector is therefore a viable guidance scheme for future entry vehicles.
5.0 FUTURE RESEARCH TOPICS AND CONCLUSIONS

5.1 FUTURE RESEARCH TOPICS

Several topics for further algorithm development and optimization are discussed. These are:

1. Further reductions in CPU execution time
2. Use of an air data system for in-flight measurements
3. Use of overcontrol to increase guidance margin
4. Control of more than two state constraints

Optimization of the predictor algorithm and the integration scheme can yield significant reductions in execution time beyond that already attained. Simplifying the aerodynamic model can yield a great reduction in execution time and an equally important reduction in the computer core required. The current model has 30 tables, each with 51 breakpoints over the angle of attack range. A curve fit of the aerodynamic coefficients over the angle of attack range and the flow regimes would reduce the core required to store the model data and the computations required for each lookup.

The estimator algorithm was shown to be effective in determining the dispersions from in-flight measurements. However, the estimator is unable to differentiate between density dispersions and atmospheric winds. Figure 24 on page 101 showed that the multiplicative density scale factor did not accurately model the wind contribution to the drag acceleration because the relative contribution of the wind to the dispersion increases as the vehicle...
velocity drops late in the trajectory. An air data system could provide an independent measurement of the atmospheric winds, improving the estimation process and increasing guidance margin by increasing the accuracy of the predicted trajectories.

The concept of overcontrol was introduced and shown to be effective for at least one dispersed case. Further investigations should be made to determine how much overcontrol is optimal for the expected dispersions. It may be possible to use the sensitivities of the constraints to the control variables to determine a proper amount of command biasing for any particular dispersion at any point in the trajectory.

Only the downrange error and crossrange error at TAEM interface are controlled in the current design. The vehicle energy is not controlled which can allow significant dispersions in the ranging capability during the TAEM phase of entry. Approaches include redefining the TAEM aim point in terms of a desired energy level or utilizing a third control variable to provide control over an energy level constraint. The Space Shuttle makes use of a split rudder as a speedbrake to provide a large energy control capability. Such an approach could be utilized with the predictor-corrector by computing the sensitivity of the three constraints to the three control variables. This would require four predictions instead of the three currently needed, but the fourth prediction could be made only during the latter part of entry to clean up any dispersions in energy level that occur during the entry due to dispersions. The CPU execution time would then increase by one-third over that currently projected when the third constraint is controlled.
5.2 CONCLUSIONS

A predictor-corrector entry guidance algorithm has been demonstrated that exhibits excellent performance and almost complete coverage of the achievable footprint. This algorithm employs a simple control variable history to achieve near-optimal guidance for the maximum downrange and maximum crossrange trajectories. Explicit heat rate control is employed without significantly impacting the achievable footprint. This is achieved because unlike previous guidance algorithms that included a long heat rate control phase with no active targeting, the proposed algorithm always actively targets to the aim point and only controls heat rate in the short high heat rate regions as required.

The algorithm has been demonstrated to handle atmospheric and aerodynamic dispersions within the capability of the vehicle. The required computer execution time is shown to be within the capability of new flight computers.

Algorithm adaptability is provided through the utilization of in-flight measurements to improve the accuracy of the predicted trajectory. Algorithm maintenance is simplified because there are no reference trajectories used, and there are a minimum of vehicle/mission-specific input parameters (I-loads). Transportability of the algorithm between different entry vehicles is provided by eliminating vehicle-specific entry phases other than the heat rate control phase which only requires the input of a heat rate limit. The guidance algorithm does require a vehicle aerodynamic model, but this is developed in the normal vehicle definition phase anyway.

In summary, an entry guidance algorithm has been developed that achieves near-optimal performance while maximizing flexibility, adaptability, and transportability. Although
more computationally intensive than analytic algorithms, execution of the predictor-corrector is within the capability of current flight computers. It is hoped that this guidance approach will significantly reduce the development and maintenance costs for new entry guidance systems.
Table 1. Characteristics of the ERV and Trajectory Entry Conditions

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass</td>
<td>186.0 slugs</td>
</tr>
<tr>
<td>Reference area</td>
<td>177.6 sq ft</td>
</tr>
<tr>
<td>Mean Aerodynamic Chord</td>
<td>25.0 ft</td>
</tr>
<tr>
<td>Altitude</td>
<td>400,000.0 ft</td>
</tr>
<tr>
<td>Inertial Velocity</td>
<td>25,778.843 ft/sec</td>
</tr>
<tr>
<td>Flight Path Angle</td>
<td>-0.996 deg</td>
</tr>
<tr>
<td>Inclination</td>
<td>28.50 deg</td>
</tr>
<tr>
<td>Latitude</td>
<td>-28.071 deg</td>
</tr>
<tr>
<td>Longitude</td>
<td>-69.313 deg</td>
</tr>
<tr>
<td>Vacuum Apogee</td>
<td>150.0 n.m.</td>
</tr>
<tr>
<td>Vacuum Perigee</td>
<td>20.0 n.m.</td>
</tr>
</tbody>
</table>

Table 2. Dispersions Used in Performance Study

<table>
<thead>
<tr>
<th>Dispersion</th>
<th>Symbol</th>
<th>Magnitude (%)</th>
<th>Direction (deg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aerodynamics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lift Coefficient</td>
<td>CL^+</td>
<td>+10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CL^-</td>
<td>-10%</td>
<td></td>
</tr>
<tr>
<td>Drag Coefficient</td>
<td>CD^+</td>
<td>+10%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CD^-</td>
<td>-10%</td>
<td></td>
</tr>
<tr>
<td>Vehicle Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mass</td>
<td>M^+</td>
<td>+5%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M^-</td>
<td>-5%</td>
<td></td>
</tr>
<tr>
<td>Atmospheric Properties</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Density</td>
<td>ρ^+</td>
<td>+30%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ρ^-</td>
<td>-30%</td>
<td></td>
</tr>
<tr>
<td>Tailwind</td>
<td>TW</td>
<td>99%</td>
<td>61.5 deg</td>
</tr>
<tr>
<td>Positive Crosswind</td>
<td>CW^+</td>
<td>99%</td>
<td>151.5 deg</td>
</tr>
<tr>
<td>Headwind</td>
<td>HW</td>
<td>99%</td>
<td>241.5 deg</td>
</tr>
<tr>
<td>Negative Crosswind</td>
<td>CW^-</td>
<td>99%</td>
<td>331.5 deg</td>
</tr>
</tbody>
</table>
Table 3. Dispersed Cases for Maximum Downrange Region

<table>
<thead>
<tr>
<th>α_d (deg)</th>
<th>ϕ_d (deg)</th>
<th>Dispersion</th>
<th>Downrange (n.m.)</th>
<th>Crossrange (n.m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>0</td>
<td>NOMINAL</td>
<td>14817</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>CL$^+$</td>
<td>16445</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>CL$^-$</td>
<td>13229</td>
<td>420</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>CD$^+$</td>
<td>13242</td>
<td>422</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>CD$^-$</td>
<td>16810</td>
<td>427</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>M$^+$</td>
<td>14890</td>
<td>498</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>M$^-$</td>
<td>14739</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>p^+</td>
<td>14615</td>
<td>494</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>p^-</td>
<td>15089</td>
<td>498</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>TW</td>
<td>14882</td>
<td>498</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>CW$^+$</td>
<td>14829</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>HW</td>
<td>14751</td>
<td>496</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>CW$^-$</td>
<td>14802</td>
<td>497</td>
</tr>
<tr>
<td></td>
<td>0</td>
<td>NOMINAL</td>
<td>13849</td>
<td>463</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>CL$^+$</td>
<td>15388</td>
<td>499</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>CL$^-$</td>
<td>12355</td>
<td>344</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>CD$^+$</td>
<td>12384</td>
<td>347</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>CD$^-$</td>
<td>15711</td>
<td>491</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>M$^+$</td>
<td>13909</td>
<td>466</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>M$^-$</td>
<td>13785</td>
<td>460</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>p^+</td>
<td>13659</td>
<td>453</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>p^-</td>
<td>14105</td>
<td>475</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>TW</td>
<td>13901</td>
<td>466</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>CW$^+$</td>
<td>13857</td>
<td>464</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>HW</td>
<td>13796</td>
<td>461</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>CW$^-$</td>
<td>13838</td>
<td>463</td>
</tr>
<tr>
<td>25</td>
<td>0</td>
<td>NOMINAL</td>
<td>12116</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>CL$^+$</td>
<td>13415</td>
<td>439</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>CL$^-$</td>
<td>10822</td>
<td>178</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>CD$^+$</td>
<td>10858</td>
<td>183</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>CD$^-$</td>
<td>13715</td>
<td>456</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>M$^+$</td>
<td>13161</td>
<td>325</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>M$^-$</td>
<td>12068</td>
<td>316</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>p^+</td>
<td>11950</td>
<td>305</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>p^-</td>
<td>12339</td>
<td>342</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>TW</td>
<td>12155</td>
<td>324</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>CW$^+$</td>
<td>12121</td>
<td>321</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>HW</td>
<td>12076</td>
<td>317</td>
</tr>
<tr>
<td></td>
<td>25</td>
<td>CW$^-$</td>
<td>12108</td>
<td>320</td>
</tr>
</tbody>
</table>
Table 4. Dispersed Cases for Maximum Crossrange Region

<table>
<thead>
<tr>
<th>α_ω (deg)</th>
<th>φ_ω (deg)</th>
<th>Dispersion</th>
<th>Downrange (n.m.)</th>
<th>Crossrange (n.m.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>60</td>
<td>NOMINAL</td>
<td>8308</td>
<td>1822</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>CL^+</td>
<td>9035</td>
<td>2149</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>CL^-</td>
<td>7602</td>
<td>1506</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>CD^+</td>
<td>7605</td>
<td>1531</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>CD^-</td>
<td>9200</td>
<td>2193</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>M^+</td>
<td>8342</td>
<td>1825</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>M^-</td>
<td>8271</td>
<td>1819</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>ρ^+</td>
<td>8197</td>
<td>1823</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>ρ^-</td>
<td>8465</td>
<td>1820</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>TW</td>
<td>8260</td>
<td>1737</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>CW^+</td>
<td>8473</td>
<td>1890</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>HW</td>
<td>8313</td>
<td>1866</td>
</tr>
<tr>
<td>15</td>
<td>60</td>
<td>CW^-</td>
<td>7984</td>
<td>1692</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>NOMINAL</td>
<td>7791</td>
<td>1661</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>CL^+</td>
<td>8476</td>
<td>1966</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>CL^-</td>
<td>7125</td>
<td>1370</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>CD^+</td>
<td>7132</td>
<td>1392</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>CD^-</td>
<td>8622</td>
<td>2007</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>M^+</td>
<td>7820</td>
<td>1664</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>M^-</td>
<td>7761</td>
<td>1659</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>ρ^+</td>
<td>7699</td>
<td>1662</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>ρ^-</td>
<td>7934</td>
<td>1660</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>TW</td>
<td>7766</td>
<td>1607</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>CW^+</td>
<td>7846</td>
<td>1686</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>HW</td>
<td>7775</td>
<td>1673</td>
</tr>
<tr>
<td>20</td>
<td>60</td>
<td>CW^-</td>
<td>7580</td>
<td>1572</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>NOMINAL</td>
<td>6940</td>
<td>1344</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>CL^+</td>
<td>7539</td>
<td>1602</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>CL^-</td>
<td>6355</td>
<td>1100</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>CD^+</td>
<td>6363</td>
<td>1119</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>CD^-</td>
<td>7661</td>
<td>1635</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>M^+</td>
<td>6915</td>
<td>1345</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>M^-</td>
<td>6915</td>
<td>1342</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>ρ^+</td>
<td>6848</td>
<td>1344</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>ρ^-</td>
<td>7070</td>
<td>1342</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>TW</td>
<td>6933</td>
<td>1317</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>CW^+</td>
<td>6958</td>
<td>1355</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>HW</td>
<td>6921</td>
<td>1347</td>
</tr>
<tr>
<td>25</td>
<td>60</td>
<td>CW^-</td>
<td>6819</td>
<td>1290</td>
</tr>
<tr>
<td>α_d (deg)</td>
<td>ϕ_d (deg)</td>
<td>Dispersion</td>
<td>Downrange (n.m.)</td>
<td>Crossrange (n.m.)</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>NOMINAL</td>
<td>2982</td>
<td>938</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>CL$^+$</td>
<td>3014</td>
<td>1102</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>CL$^-$</td>
<td>2934</td>
<td>778</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>CD$^+$</td>
<td>2914</td>
<td>793</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>CD$^-$</td>
<td>3045</td>
<td>1119</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>M$^+$</td>
<td>2996</td>
<td>937</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>M$^-$</td>
<td>2969</td>
<td>938</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>ρ^+</td>
<td>2914</td>
<td>943</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>ρ^-</td>
<td>3078</td>
<td>930</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>TW</td>
<td>2993</td>
<td>914</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>CW$^+$</td>
<td>2992</td>
<td>941</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>HW</td>
<td>2996</td>
<td>939</td>
</tr>
<tr>
<td>30</td>
<td>90</td>
<td>CW$^-$</td>
<td>2982</td>
<td>907</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>NOMINAL</td>
<td>3851</td>
<td>1041</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>CL$^+$</td>
<td>4011</td>
<td>1233</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>CL$^-$</td>
<td>3680</td>
<td>858</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>CD$^+$</td>
<td>3668</td>
<td>875</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>CD$^-$</td>
<td>4060</td>
<td>1254</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>M$^+$</td>
<td>3865</td>
<td>1041</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>M$^-$</td>
<td>3865</td>
<td>1041</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>ρ^+</td>
<td>3778</td>
<td>1046</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>ρ^-</td>
<td>3954</td>
<td>1034</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>TW</td>
<td>3856</td>
<td>1020</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>CW$^+$</td>
<td>3841</td>
<td>1044</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>HW</td>
<td>3834</td>
<td>1042</td>
</tr>
<tr>
<td>30</td>
<td>80</td>
<td>CW$^-$</td>
<td>3828</td>
<td>1007</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>NOMINAL</td>
<td>4932</td>
<td>1075</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>CL$^+$</td>
<td>5262</td>
<td>1279</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>CL$^-$</td>
<td>4602</td>
<td>881</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>CD$^+$</td>
<td>4600</td>
<td>898</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>CD$^-$</td>
<td>5337</td>
<td>1304</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>M$^+$</td>
<td>4949</td>
<td>1075</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>M$^-$</td>
<td>4915</td>
<td>1075</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>ρ^+</td>
<td>4854</td>
<td>1078</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>ρ^-</td>
<td>5043</td>
<td>1069</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>TW</td>
<td>4934</td>
<td>1057</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>CW$^+$</td>
<td>4925</td>
<td>1077</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>HW</td>
<td>4914</td>
<td>1074</td>
</tr>
<tr>
<td>30</td>
<td>70</td>
<td>CW$^-$</td>
<td>4884</td>
<td>1040</td>
</tr>
</tbody>
</table>
Table 6. Maximum Downrange Region Closed-Loop Results

<table>
<thead>
<tr>
<th>Dispersions</th>
<th>Final State</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL (%)</td>
<td>CD (%)</td>
</tr>
<tr>
<td>NOMINAL</td>
<td>+ 9.800</td>
</tr>
<tr>
<td>- 1.9</td>
<td>+ 1.9</td>
</tr>
</tbody>
</table>

Table 7. Maximum Crossrange Region Closed-Loop Results

<table>
<thead>
<tr>
<th>Dispersions</th>
<th>Final State</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL (%)</td>
<td>CD (%)</td>
</tr>
<tr>
<td>NOMINAL</td>
<td>- 2.300</td>
</tr>
<tr>
<td>- 1.9</td>
<td>+ 1.9</td>
</tr>
</tbody>
</table>

Table 8. Minimum Downrange Region Closed-Loop Results

<table>
<thead>
<tr>
<th>Dispersions</th>
<th>Final State</th>
</tr>
</thead>
<tbody>
<tr>
<td>CL (%)</td>
<td>CD (%)</td>
</tr>
<tr>
<td>NOMINAL</td>
<td>-14.900</td>
</tr>
<tr>
<td>+ 1.9</td>
<td>- 1.9</td>
</tr>
</tbody>
</table>
Theoretical wing area = 177.40 ft2
Body flap area = 7.50 ft2
Elevon area per side = 6.07 ft2
Aileron area per side = 0.88 ft2
Tip fin area per side = 4.16 ft2

Figure 1. Three-View Drawing of the ERV
SCALAR WIND SPEED V (m/sec) STEADY-STATE ENVELOPES AS FUNCTIONS OF ALTITUDE H (km) FOR TWO PROBABILITIES P (%) ENCOMPASSING ALL FOUR LOCATIONS

<table>
<thead>
<tr>
<th></th>
<th>P = 95</th>
<th></th>
<th>P = 99</th>
</tr>
</thead>
<tbody>
<tr>
<td>H V</td>
<td>H V</td>
<td>H V 1</td>
<td>60</td>
</tr>
<tr>
<td>1 22</td>
<td>17 44</td>
<td>1 28</td>
<td>15 70</td>
</tr>
<tr>
<td>3 31</td>
<td>20 29</td>
<td>3 38</td>
<td>20 41</td>
</tr>
<tr>
<td>6 54</td>
<td>50 150</td>
<td>5 56</td>
<td>23 41</td>
</tr>
<tr>
<td>6 60</td>
<td>60 150</td>
<td>6 60</td>
<td>50 170</td>
</tr>
<tr>
<td>10 75</td>
<td>75 120</td>
<td>7 68</td>
<td>60 170</td>
</tr>
<tr>
<td>11 76</td>
<td>80 120</td>
<td>9 88</td>
<td>75 135</td>
</tr>
<tr>
<td>12 78</td>
<td>80 120</td>
<td>11 88</td>
<td>80 135</td>
</tr>
<tr>
<td>13 74</td>
<td>13 88</td>
<td>13 88</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 2. Atmospheric Wind Profile
Figure 3. Envelope of Density Profiles Derived from Shuttle Flights
Figure 4. STS-1 Density Profile Comparison
Figure 5. STS-9 Density Profile Comparison
Figure 6. Multiphase Bank Angle Program for L/D = 1.5
Figure 7. Crossrange Versus Number of Bank Steps
Figure 8. Comparison of Optimum Bank Angle Programs

Reproduced from Reference (12)
Figure 9. Optimum Shuttle Angle of Attack Profile for Maximum Downrange
Figure 10. Optimum Shuttle Bank Angle Profile for Maximum Crossrange
Figure 11. Optimum Shuttle Angle of Attack Profile for Maximum Crossrange
Crossrange, nmi

Downrange, nmi

$Q_{limit} = 125$ BTU/sq ft/sec

$Q_{limit} = 150$ BTU/sq ft

$Q_{limit} = 175$ K BTU/sq ft

Figure 12. Landing Footprint for the ERV
Figure 13. Altitude Histories for the Entry Missions of the ERV
Figure 14. Bank Angle Histories for the Entry Missions of the ERV
Figure 15. Angle of Attack Histories for the Entry Missions of the ERV
Figure 16. Heat Rate Histories for the Entry Missions of the ERV
Figure 17. Heat Load Histories for the Entry Missions of the ERV
Figure 18. Bank Angle Versus Velocity Profile
Figure 19. Definitions of Downrange and Crossrange Errors
Figure 20. Predicted Lift Coefficient Profile for the ERV
Figure 21. Predicted L/D Profile for the ERV
Figure 22. Predicted L/D versus Angle of Attack Profile for the ERV
Figure 23. ERV Open-Loop Footprint with the Control Profile
Figure 24. Time Response of the Density Filter
Figure 25. Time Response of the L/D Filter
Figure 26. Closed-Loop Altitude History for the Maximum Downrange Case
Figure 27. Closed-Loop Velocity History for the Maximum Downrange Case.
Figure 28. Closed-Loop Heat Rate History for the Maximum Downrange Case
Figure 29. Closed-Loop Heat Load History for the Maximum Downrange Case
Figure 30. Closed-Loop Downrange History for the Maximum Downrange Case

Downrange, nm
Figure 31. Closed-Loop Crossrange History for the Maximum Downrange Case
Figure 32. Closed-Loop Altitude History for the Maximum Crossrange Case
Figure 33. Closed-Loop Velocity History for the Maximum Crossrange Case
Figure 34. Closed-Loop Heat Rate History for the Maximum Crossrange Case
Figure 35. Closed-Loop Heat Load History for the Maximum Crossrange Case
Figure 36. Closed-Loop Downrange History for the Maximum Crossrange Case
Figure 37. Closed-Loop Crossrange History for the Maximum Crossrange Case
Figure 38. Closed-Loop Altitude History for the Minimum Downrange Case
Figure 39. Closed-Loop Velocity History for the Minimum Downrange Case
Figure 40. Closed-Loop Heat Rate History for the Minimum Downrange Case
Figure 41. Closed-Loop Heat Load History for the Minimum Downrange Case
Figure 42. Closed-Loop Downrange History for the Minimum Downrange Case
Figure 43. Closed-Loop Crossrange History for the Minimum Downrange Case
Figure 44. Angle of Attack Comparison for the Maximum Downrange Case
Figure 45. Bank Angle Comparison for the Maximum Downrange Case
Figure 46. Angle of Attack Comparison for the Maximum Crossrange Case
Figure 47. Bank Angle Comparison for the Maximum Crossrange Case
Figure 48. Angle of Attack Comparison for the Minimum Downrange Case
Figure 49. Bank Angle Comparison for the Minimum Downrange Case
Figure 50. Bank Angle Versus Time Comparison for Heat Rate Control
Figure 51. Angle of Attack Versus Time Comparison for Heat Rate Control
Figure 52. Heat Rate Versus Time Comparison for Heat Rate Control
Figure 53. Bank Angle Versus Velocity Comparison for Heat Rate Control
Figure 54. Angle of Attack Versus Time Comparison with Overcontrol
Figure 55. Required Execution Time for the Predictor-Corrector
APPENDIX A. ERV AERODYNAMICS MODEL

The aerodynamics of the ERV were reported in Reference [14], and the longitudinal performance coefficients, C_L and L/D, are shown in Figures 20 on page 97 and 21 on page 98. Figure 22 on page 99 shows a typical L/D versus angle of attack profile. This profile is for a Mach Number of 10, but across the flow regimes, the maximum L/D always occurs at an angle of attack of approximately 15 degrees. This data was incorporated into the aerodynamic model of the simulator and into the aerodynamic model of the predictor. It is seen that the aerodynamic flow regimes are a function of:

1. Mach Number, M
2. Viscous Interaction Parameter, \overline{V}
3. Altitude, h

The Mach Number, M, is computed from,

$$
M = \frac{V}{C_s}
$$

(99)

where the speed of sound, C_s, is computed from,

$$
C_s = \sqrt{\gamma \frac{R}{M_0} T_w}
$$

(100)

The viscous interaction parameter, \overline{V}, is computed from,

$$
\overline{V} = M \sqrt{\frac{C'}{Re}}
$$

(101)

where,
\[C' = \left(\frac{T'}{T_{\text{static}}} \right)^{0.5} \left[\frac{T_{\text{static}} + 122.1 \times 10^{-5} \left(T_{\text{static}} \right)}{T' + 122.1 \times 10^{-5} \left(T_{\text{static}} \right)} \right]^{1.0} \]

(102)

and,

\[\frac{T'}{T_{\text{static}}} = 0.468 + 0.532 \frac{T_{\text{wall}}}{T_{\text{static}}} + 0.195 \frac{\gamma - 1}{2} \ M^2 \]

(103)

The Reynolds Number, \(Re \), is calculated from,

\[Re = \frac{\rho \ V R \ \bar{c}}{\mu} \]

(104)

where the coefficient of viscosity for air, \(\mu \), is given by,

\[\mu = \frac{\beta \ T_{\text{static}}^{1/2}}{S + T_{\text{static}}} \]

(105)
Compiled listings of the flight software principal functions for the predictor-corrector guidance algorithm as coded for use in the 6-DOF Aeroassist Flight Experiment Simulator (AFESIM) follow. The algorithms are coded in the HAL/S computer language. The principal functions are:

1. IL_LOAD - Values for all constants and I-loads
2. FSW_SEQ - Flight Software Sequencer
3. ORB_NAV - Orbit Navigation Algorithm
4. AERO_GUID - Predictor-Corrector Guidance Algorithm

At the beginning of each principal function is a description of the function and the input/output parameters. At the end of each principal function is a cross reference table listing the program line at which each variable is referenced or computed.
DECLARE PT SCALAR DOUBLE CONSTANT(3.1415926535897932385)
DECLARE DLO_TO_SEC SCALAR DOUBLE CONSTANT(3600)
DECLARE SEC_TO_DEG SCALAR DOUBLE CONSTANT(1 / DEG_TO_SEC)
DECLARE DEG_TO_RAD SCALAR DOUBLE CONSTANT(PI / 180)
DECLARE RAD_TO_DEG SCALAR DOUBLE CONSTANT(1 / DEG_TO_RAD)
DECLARE SEC_TO_RAD SCALAR DOUBLE CONSTANT(SEC_TO_RAD / 3600)
DECLARE RAD_TO_SEC SCALAR DOUBLE CONSTANT(1 / SEC_TO_RAD)
DECLARE FT_TO_M SCALAR DOUBLE CONSTANT(0.3048)
DECLARE M_TO_FT SCALAR DOUBLE CONSTANT(1 / FT_TO_M)
DECLARE FT_TO_M SCALAR DOUBLE CONSTANT(FT_TO_M / 1852)
DECLARE M_TO_FT SCALAR DOUBLE CONSTANT(1 / FT_TO_M)
DECLARE G_TO_FPS2 SCALAR DOUBLE CONSTANT(9.80665 M_TO_FT)
DECLARE FPS2_TO_G SCALAR DOUBLE CONSTANT(1 / G_TO_FPS2)
DECLARE LBM_TO_KG SCALAR DOUBLE CONSTANT(9.80665 M_TO_FT)
DECLARE KG_TO_LBM SCALAR DOUBLE CONSTANT(1 / LBM_TO_KG)
DECLARE SLUG_TO_KG SCALAR DOUBLE CONSTANT(LBM_TO_KG G_TO_FPS2)
DECLARE KG_TO_SLUG SCALAR DOUBLE CONSTANT(KG_TO_LBM FPS2_TO_G)
DECLARE LBF_TO_N SCALAR DOUBLE CONSTANT(4.44822415205)
DECLARE N_TO_LBF SCALAR DOUBLE CONSTANT(1 / LBF_TO_N)
```
HAL/S  STD 360-24.20  INTRMERTICS, INC.  APRIL 27, 1987  15:01:40.60

SYMT

CI  ------------
CI  FSN SEQ VARIABLES
CI  ------------
231 HI AERO_OAP_CNT = 1;
232 HI AERO_OAP_PHS = 0;
233 HI AERO_GUID_CNT = 5;
234 HI AERO_GUID_PHS = 0;
235 HI ORB_NAV_CNT = 5;
236 HI ORB_NAV_PHS = 0;

CI  ------------
CI  EPOCH DATA
CI

E | EF_TO_REF_AT_EPOCH = MATRIX
S | 20X20, 5.5
237 HI T_EPOCH = 0;

CI  ------------
CI  EARTH PHYSICAL PARAMETERS
CI

239 HI EARTH_FLAT = 1 / 298.3;
240 HI EARTH_J2 = 1082.7E-6;

E |
241 HI EARTH_MJ = (5.9940128E4 / 1.204E5)
E |
242 HI EARTH_POLE = VECTOR
S | 20X20, 5.5
243 HI EARTH_R = 6.378166.0 / .3048;
244 HI EARTH_RATE = 7.29211483225524E-5;
E |
245 HI ME_NAV = EARTH_RATE EARTH_POLE;
```
HAL/S STD 360-200
TERMICS, INC.

PREDICTOR-CORRECTOR I-LOADS (MISSION-SPECIFIC)

TARGET AIM POINT FOR MAXIMUM DOWNRANGE CASE
- ODN Range = 15049 N.M.
- CROSSRANGE = 497 N.M.

LATITUDE -20.971 DEG
LONGITUDE -69.313 DEG
INCLINATION 28.50 DEG
FLIGHT PATH ANGLE -0.996 DEG
INERTIAL VELOCITY 25778.803 FT/SEC
ALTITUDE 460000.0 FT

GEODETIC LATITUDE OF TAEN INTERFACE AIM POINT
20.694 LAT_TARGET = 3.0864

246 N LATITUDE 3.284

LONGITUDE OF TAEN INTERFACE AIM POINT
247 N LONGITUDE 157.659

PHI_EI = 0.0

248 M ALPHA_EI = 20.0

ESTIMATOR FILTER GAINS (TAU = 25.0 SECONDS)
K_RHO_FILTER_GAIN = .05921
L_OVER_D_FILTER_GAIN = .05921

VEHICLE MASS (SLUGS)

MASS_NAV = 186.0
HAL/S STD 360-24.20 INTERMETRICS, INC. APRIL 27, 1987 15:0:40.60

LINEAR BANK MISS VELOCITY PROFILE CONSTANTS

PHI_MAX = 180.0
PHI_MIN = 90.0
V_FINAL_MAG = 1000.0
V_INITIAL_MAG = 2500.0
V_MAG_CHANGE = V_INITIAL_MAG - V_FINAL_MAG

CONSTANT ANGLE OF ATTACK PROFILE CONSTANTS

ALPHA_MAX = 45.0
ALPHA_MIN = 15.0

VARIABLE TIME STEP CONTROL CONSTANTS

DELTA_T_PRED_GAIN = 200.0
DELTA_T_PRED_MAX = 20.0
DELTA_T_PRED_MIN = 2.0

HEAT RATE CONTROL CONSTANTS

HS = 23500.0
OMEGA_QDOT = 0.10
QDOT_LIMIT = 125.0
RHO_SL = 0.002378
ZETA_QDOT = 1.00
CLOSE IL_LOAD

COMPOOL VARIABLES USED

** BLOCK SUMMARY **

****END****
<table>
<thead>
<tr>
<th>STN</th>
<th>SOURCE</th>
<th>CURRENT SCOPE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>AERO_DAP_CNT*, AERO_DAP_PHS*, AERO_GUID_CNT*, AERO_GUID_PHS*, ORB_NAV_CNT*, ORB_NAV_PHS*, EF_TO_REF_AT_EPOCH*, T_EPOCH*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>LON_TARGET*, PHI_E*, ALPHA_E*, E_RHO_FILTER_GAIN*, L_OVER_O_FILTER_GAIN*, HASS_NAV*, ALT_EXIT*, ALT_FREEZE_GUID*, ALT_TAEM*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ALT_TAEM_BIAS*, ALT_TAEM, S_RUH_GUIDANCE*, GRAVITY_MODE*, S_REF*, DT_AEROGUID*, GUID_PASS_LINE*, PHI_DES_MAX*, PHI_MAX*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DELTA_T_PRED_MAX*, DELTA_T_PRED_MIN*, H_, OMEGA_QDOT, QDOT_LIMIT*, RHO_QDOT*, ZETA_QDOT*</td>
</tr>
</tbody>
</table>
ZL_POOL: EXTERNAL COHPool
IL_LOAD: PROCEDURE

HAL/S STD 360-20.20 INTERMETRICS, INC. APRIL 27, 1987 15:10:40.60
<table>
<thead>
<tr>
<th>DCL NAME</th>
<th>TYPE</th>
<th>ATTRIBUTES & CROSS REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 AERO_DAP_CNT</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>20 AERO_DAP_PHS</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>23 AERO_GUID_CNT</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0027 NOT REFERENCED</td>
</tr>
<tr>
<td>22 AERO_GUID_PHS</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>97 ALPHA_EI</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0009 NOT REFERENCED</td>
</tr>
<tr>
<td>209 ALPHA_MAX</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0029 NOT REFERENCED</td>
</tr>
<tr>
<td>79 ALT_EXIT</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0029 NOT REFERENCED</td>
</tr>
<tr>
<td>209 ALT_FREEZE_GUID</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0029 NOT REFERENCED</td>
</tr>
<tr>
<td>209 ALT_TAEM</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0029 NOT REFERENCED</td>
</tr>
<tr>
<td>209 ALT_TAEM_HAS</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0029 NOT REFERENCED</td>
</tr>
<tr>
<td>215 DEG_TO_RAD</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 0 0226</td>
</tr>
<tr>
<td>213 DEG_TO_SEC</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 0 0226</td>
</tr>
<tr>
<td>209 DELTA_T_PRED_GAIN</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0019 NOT REFERENCED</td>
</tr>
<tr>
<td>209 DELTA_T_PRED_MAX</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0019 NOT REFERENCED</td>
</tr>
<tr>
<td>209 DELTA_T_PRED_MIN</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0019 NOT REFERENCED</td>
</tr>
<tr>
<td>209 DT_AEROQUAD</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>159 EARTH_FLAT</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>160 EARTH_UJ</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>164 EARTH_XU</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>162 EARTH_POLE</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>159 EARTH_R</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>164 EARTH_RATE</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>4 EF_TO_REF_AT_EPOCH</td>
<td>SCALAR</td>
<td>4 X 3 MATRIX</td>
</tr>
<tr>
<td>224 EPSG_TO_G</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0015 2 0025</td>
</tr>
<tr>
<td>219 FT_TO_R</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 2 0025</td>
</tr>
<tr>
<td>223 FT_TO_NM</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 2 0025</td>
</tr>
<tr>
<td>209 G_RUN_GUIDANCE</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0025 NOT REFERENCED</td>
</tr>
<tr>
<td>24 G_TO_FPSZ</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 2 0025</td>
</tr>
<tr>
<td>365 GRAVITY_MODEL</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>209 GUID_PASS_LIM</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>209 H</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>231 H.Load</td>
<td>PROCEDURE</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>164 K_RHO_FILTER_GAIN</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 2 0025</td>
</tr>
<tr>
<td>224 KG_TO_G</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 2 0025</td>
</tr>
<tr>
<td>171 L_OVER_D_FILTER_GAIN</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>209 LAT_TARGET</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>229 LBF_TO_KN</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 2 0025</td>
</tr>
<tr>
<td>225 LBH_TO_KG</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 2 0025</td>
</tr>
<tr>
<td>209 LOAD_TARGET</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0015 NOT REFERENCED</td>
</tr>
<tr>
<td>220 M_TO_FT</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 2 0025</td>
</tr>
<tr>
<td>10 M_TTON</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 2 0025</td>
</tr>
<tr>
<td>230 N_TO_LBF</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT XREF: 0 0025 2 0025</td>
</tr>
</tbody>
</table>

(CROSS REFERENCE FLAG KEY: 4 = ASSIGNMENT, 2 = REFERENCE, 1 = SUBSCRIPT USE, 0 = DEFINITION)
DCL NAME

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
<th>Attributes & Cross Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH_TO_FT</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC, CONSTANT</td>
</tr>
<tr>
<td>QEQA_DOT</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>ORI_NAV_CNT</td>
<td>INTEGER</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>ONS_NAV_FHS</td>
<td>INTEGER</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>PHI_DES_MAX</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>PHI_EI</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>PHI_MAX</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>PI</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>QDOT_LIMIT</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>RAD_TO_DEG</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>RAD_TO_SEC</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>RHO_SL</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>S_REF</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>SEC_TO_DEG</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>SEC_TO_RAD</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>SUG_TO_EO</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>T_EPOCH</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>V_FINAL_MAG</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>V_INITIAL_MAG</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>V_MAG_CHANGE</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>WE_NAV</td>
<td>S - VECTOR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>ZETA_DOT</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
</tbody>
</table>
FUNCTION: EXECUTE FLIGHT SOFTWARE PRINCIPAL FUNCTIONS AT PROPER RATE AND IN PROPER ORDER WHEN FUNCTIONS ACTIVE

INPUTS:
- ORG_NAV_ACT - ORBIT NAVIGATION ACTIVE FLAG
- AERO GUID ACT - PREDICTOR-CORRECTOR ACTIVE FLAG
- AERO DAP ACT - DIGITAL AUTOPILOT ACTIVE FLAG

OUTPUTS: NONE

C CONTENTS: NONE

C LOCAL VARIABLES

C DECLARE FSM_PASS INTEGER DOUBLE INITIAL(0)
HAL/S STD 340-24.0

INTERNETRICS, INC.

APRIL 27, 1987 15:19.08

STMT

SOURCE

CURRENT SCOPE

E1
520 M1 IF ORB_NAV_ACT = ON AND MODI(FSH_PASS, ORB_NAV_CNT) = ORB_NAV_PHS THEN
521 M1 CALL ORB_NAV;

E1
522 M1 IF AERO_GUID_ACT = ON AND MODI(FSH_PASS, AERO_GUID_CNT) = AERO_GUID_PHS THEN
523 M1 CALL AERO_GUID;

E1
524 M1 IF AERO_DAP_ACT = ON AND MODI(FSH_PASS, AERO_DAP_CNT) = AERO_DAP_PHS THEN
525 M1 CALL AERO_DAP;

526 M1 FSH_PASS = FSH_PASS + 1;
527 M1 CLOSE FSH_SEQ;

BLOCK SUMMARY

EXTERNAL PROCEDURES CALLED

ORB_NAV, AERO_GUID, AERO_DAP

COMPOOL VARIABLES USED

ORB_NAV_ACT, ORB_NAV_CNT, ORB_NAV_PHS, AERO_GUID_ACT, AERO_GUID_CNT, AERO_GUID_PHS, AERO_DAP_ACT, AERO_DAP_CNT, AERO_DAP_PHS

IF SH_SEQ

IF SH_SEQ
Symbol & Cross Reference Table Listing:

(Cross Reference Flag Key: 4 = Assignment, 2 = Reference, 1 = Subscript Use, 0 = Definition)

<table>
<thead>
<tr>
<th>DCL Name</th>
<th>Type</th>
<th>Attributes & Cross Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>517 AERO_DAP</td>
<td>PROCEDURE</td>
<td>EXTERNAL, VERSION=1 XREF: 0 0517 2 0525</td>
</tr>
<tr>
<td>256 AERO_DAP.ACT</td>
<td>BIT(1)</td>
<td>ALIGNED, INITIAL XREF: 0 0256 2 0524</td>
</tr>
<tr>
<td>21 AERO_DAP_CNT</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0021 2 0524</td>
</tr>
<tr>
<td>20 AERO_DAP.PHS</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0020 2 0524</td>
</tr>
<tr>
<td>516 AERO_GUID</td>
<td>PROCEDURE</td>
<td>EXTERNAL, VERSION=1 XREF: 0 0516 2 0523</td>
</tr>
<tr>
<td>256 AERO_GUID.ACT</td>
<td>BIT(1)</td>
<td>ALIGNED, INITIAL XREF: 0 0256 2 0522</td>
</tr>
<tr>
<td>23 AERO_GUID_CNT</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0023 2 0522</td>
</tr>
<tr>
<td>22 AERO_GUID.PHS</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0022 2 0522</td>
</tr>
<tr>
<td>519 FSH_PASS</td>
<td>INTEGER</td>
<td>DOUBLE, ALIGNED, STATIC, INITIAL XREF: 0 0519 2 0520 2 0522 2 0524</td>
</tr>
<tr>
<td>518 FSH_SEQ</td>
<td>PROCEDURE</td>
<td>6 0022 XREF: 0 0518 NOT REFERENCED</td>
</tr>
<tr>
<td>515 ORB_NAV</td>
<td>PROCEDURE</td>
<td>EXTERNAL, VERSION=1 XREF: 0 0515 2 0521</td>
</tr>
<tr>
<td>242 ORB_NAV.ACT</td>
<td>BIT(1)</td>
<td>ALIGNED, INITIAL XREF: 0 0242 2 0520</td>
</tr>
<tr>
<td>35 ORB_NAV_CNT</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0035 2 0520</td>
</tr>
<tr>
<td>34 ORB_NAV.PHS</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0034 2 0520</td>
</tr>
</tbody>
</table>
FUNCTION: MAINTAIN ESTIMATE OF VEHICLE STATE VECTOR AND COMPUTE STATE VECTOR DERIVED PARAMETERS
INPUTS:
T_ATTITUDE - TIME TAG OF STATE VECTOR
R - POSITION VECTOR
V - VELOCITY VECTOR
A - ACCELERATION VECTOR
QBR - ATTITUDE QUATERNION
PHI - BANK ANGLE
OUTPUTS:
T_NAV - TIME TAG OF STATE VECTOR
R_NAV - POSITION VECTOR
V_NAV - VELOCITY VECTOR
A_NAV - ACCELERATION VECTOR
QBTOT - ATTITUDE QUATERNION
R_NAV_MAG - MAGNITUDE OF POSITION VECTOR
UNIT_R - UNIT VECTOR IN DIRECTION OF POSITION VECTOR
ALT_NAV - ALTITUDE ABOVE FISHER ELLIPSOID
V_NAV_MAG - MAGNITUDE OF VELOCITY VECTOR
V_REL_NAV - RELATIVE VELOCITY VECTOR
V_REL_MAG - MAGNITUDE OF RELATIVE VELOCITY VECTOR
ROGT_NAV - RADIAL VELOCITY MAGNITUDE
QL load - SIGNED ACCELERATION MAGNITUDE IN G'S
ALPHA_NAV - ANGLE OF ATTACK
BETA_NAV - SIDESLIP ANGLE
PHI_NAV - BANK ANGLE
ENTRY_COMPLETE - TASK INTERFACE FLAG
COMMENTS: PERFECT NAVIGATION IS ASSUMED, SO THE STATE VECTOR FROM THE ENVIRONMENT MODEL IS COPIED.

DECLARE VREL_Body VECTOR(S) SINGLE INITIAL();
STHF	SOURCE	CURRENT SCOPE
C | COMPUTE STATE VECTOR DERIVED PARAMETERS | ORB_NAV
C | | ORB_NAV
531 | T_NAV = T_INI_NAV | ORB_NAV
532 | R_NAV_MAG = ABVAL(R_NAV); | ORB_NAV
533 | UNIT_R = R_NAV / R_NAV_MAG | ORB_NAV
534 | ALT_NAV = R_NAV_MAG - (1 - EARTH_FLAT) EARTH_R / SQRT(1 + (1 - EARTH_FLAT) - 1) - (UNIT_R | ORB_NAV
535 | | \[1 - EARTH_FLAT\] - 1) (UNIT_R | ORB_NAV
536 | EARTH_POLE) | ORB_NAV
537 | V_REL_MAG = ABVAL(V_REL); | ORB_NAV
538 | | ORB_NAV
834 | | ORB_NAV
539 | | ORB_NAV
540 | | ORB_NAV
541 | VREL_BODY = SQFORMI (R_TO_3) VREL_NAV | ORB_NAV
542 | ALPHA_NAV = SETCRAN(VREL_BODY, VREL_BODY) RAC_TO_DEG | ORB_NAV
543 | BETA_NAV = アーキシーニ(VREL_BODY / V_REL_MAG) RAD_TO_DEG | ORB_NAV
544 | | ORB_NAV
545 | IF (ALT_NAV > ALT_EXIT) AND (RDOT_NAV > 0) OR (ALT_NAV < ALT_TAKE) THEN | ORB_NAV
546 | AERO_BRAKE_COMPLETE = TRUE | ORB_NAV
HAL/S STD 340-24.20
INTERNETICS, INC.
APRIL 27, 1987 11:19:28.56

BLOCK SUMMARY

EXTERNAL FUNCTIONS INVOKED
SUFORM, SASSPKE, SANITADE

COMPOOL VARIABLES USED
T_TMJ_NAV, T_ATTITUDE, R_NAV, RT, V_NAV, VI, A_NAV, AI, Q_B_TO_1, QBAR, PHIT_NAV, PHI, T_NAV, T_TMJ_NAV, R_NAV_MAG, R_NAV
UNIT_R, R_NAV_MAG, ALT_NAV, EARTH_FLAT, EARTH_R, UNIT_R, EARTH_POLE, V_NAV_MAG, V_NAV, V_REL_NAV, ME_NAV, V_REL_MAG,
V_REL_NAV, ROOT_NAV, A_VAR, FPSZ_TO_G, Q_B_TO_1, ALPHA_NAV, RAD_TO_DEG, BETA_NAV, V_REL_MAG, ALT_NAV, ALT_EXIT
ROOT_NAV, ALT_TASK, AERO_BRAKE_COMPLETE
HAL/S STD 560-24.20

INTERNETRICS, INC.

APRIL 27, 1987

11:19:20.56

*** COMPI LATION LAYOUT ***

ENV_POOL: EXTERNAL COMPOOL;
FSH_POOL: EXTERNAL COMPOOL;
IL_POOL: EXTERNAL COMPOOL;
DOFORM: EXTERNAL FUNCTION;
Q_ERR_ANG: EXTERNAL FUNCTION;
SARCTAN: EXTERNAL FUNCTION;
SUFORM: EXTERNAL FUNCTION;
SUMULT: EXTERNAL FUNCTION;
SQUARE: EXTERNAL FUNCTION;
SRV_TO_SIL: EXTERNAL FUNCTION;
ORD_NAV: PROCEDURE;
<table>
<thead>
<tr>
<th>DCL NAME</th>
<th>TYPE</th>
<th>ATTRIBUTES & CROSS REFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_NAV</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0008 2 0518 2 0539</td>
</tr>
<tr>
<td>AERO BRAKE_COMPLETE</td>
<td>BIT11</td>
<td>ALIGNED, INITIAL XREF: 0 0078 4 0574 2 0530 NOT REFERENCED</td>
</tr>
<tr>
<td>A</td>
<td>5 - VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0516 NOT REFERENCED</td>
</tr>
<tr>
<td>ALPHA_NAV</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0075 2 0541 NOT REFERENCED</td>
</tr>
<tr>
<td>ALT_EXIT</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0247 2 0530 NOT REFERENCED</td>
</tr>
<tr>
<td>ALT_NAV</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0514 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>ALT_TASH</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0514 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>BETI_NAV</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0519</td>
</tr>
<tr>
<td>CABO</td>
<td>3 - VECTOR FUNCTION</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0519</td>
</tr>
<tr>
<td>DEFORM</td>
<td>SCALAR</td>
<td>DOUBLE, INITIAL, EXTERNAL, VERSION=2 XREF: 0 0516</td>
</tr>
<tr>
<td>EARTH_FLAT</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0464 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>EARTH_POLE</td>
<td>5 - VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0470 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>EARTH_R</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0482 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>FPS2_TO_G</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INPUT-PARM XREF: 0 0482 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>QIB</td>
<td>4 - VECTOR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0520</td>
</tr>
<tr>
<td>PHI_NAV</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0001 2 0517 NOT REFERENCED</td>
</tr>
<tr>
<td>PHI</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0001 2 0517 NOT REFERENCED</td>
</tr>
<tr>
<td>Q</td>
<td>4 - VECTOR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0517</td>
</tr>
<tr>
<td>Q1</td>
<td>4 - VECTOR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0517</td>
</tr>
<tr>
<td>Q2</td>
<td>4 - VECTOR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0517</td>
</tr>
<tr>
<td>R</td>
<td>4 - VECTOR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0517</td>
</tr>
<tr>
<td>R NAV</td>
<td>5 - VECTOR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0522</td>
</tr>
<tr>
<td>R1</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0517 NOT REFERENCED</td>
</tr>
<tr>
<td>R2</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0517 NOT REFERENCED</td>
</tr>
<tr>
<td>R_MAG</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0517 2 0533 2 0554</td>
</tr>
<tr>
<td>R1</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0517</td>
</tr>
<tr>
<td>R2</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0517</td>
</tr>
<tr>
<td>R_MAG</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0001 2 0516</td>
</tr>
<tr>
<td>S</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0001 2 0517 NOT REFERENCED</td>
</tr>
<tr>
<td>SARGO</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0001 2 0517 NOT REFERENCED</td>
</tr>
<tr>
<td>SQFORM</td>
<td>3 - VECTOR FUNCTION</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0067 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>SQPOSE</td>
<td>4 - VECTOR FUNCTION</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0067 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>S polarity</td>
<td>4 - VECTOR FUNCTION</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0067 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>S POLARITY</td>
<td>4 - VECTOR FUNCTION</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0067 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>S_R</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0067 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>S_R</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0067 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>SQFORM</td>
<td>3 - VECTOR FUNCTION</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0067 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>SQPOSE</td>
<td>4 - VECTOR FUNCTION</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0067 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>T_ATTITUDE</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0525</td>
</tr>
<tr>
<td>T_ATTITUDE</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0525</td>
</tr>
<tr>
<td>T_ATTITUDE</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0001 2 0525</td>
</tr>
<tr>
<td>U</td>
<td>3 - VECTOR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0067 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>U</td>
<td>3 - VECTOR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0067 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>UNIT_R</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0067 2 0534 NOT REFERENCED</td>
</tr>
<tr>
<td>DCL NAME</td>
<td>TYPE</td>
<td>ATTRIBUTES & CROSS REFERENCE</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>V</td>
<td>3-VECTOR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0522</td>
</tr>
<tr>
<td>V_JNAV</td>
<td>3-VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 004 4 0527 2 0535 2 0536</td>
</tr>
<tr>
<td>V_NAV_MAG</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 004 4 0535 NOT REFERENCED</td>
</tr>
<tr>
<td>V_REL_MAG</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 004 4 0537 2 0542</td>
</tr>
<tr>
<td>V_REL_NAV</td>
<td>3-VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 004 4 0536 2 0537 2 0540</td>
</tr>
<tr>
<td>V_REL_BODY</td>
<td>3-VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 004 4 0527</td>
</tr>
<tr>
<td>ME_NAV</td>
<td>3-VECTOR</td>
<td>SINGLE, ALIGNED, STATIC, INITIAL XREF: 0 0524 4 0540 Z 0541</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Z 0542</td>
</tr>
</tbody>
</table>

APRIL 27, 1987 11:19:28.56
FUNCTION: NUMERIC PREDICTOR/CORRECTOR ENTRY GUIDANCE ALGORITHM
FOR THE ENTRY RESEARCH VEHICLE (ERV).

INPUTS:
- A_NAV - SENSED INERTIAL ACCELERATION VECTOR
- ALPHA_NAV - ANGLE OF ATTACK
- ALT_NAV - ALTITUDE ABOVE FISHER ELLIPSOID
- G_LOAD - SENSED ACCELERATION MAGNITUDE IN G'S
- R_NAV - INERTIAL POSITION VECTOR
- T_GMT - GREENWICH MEAN TIME
- V_NAV - INERTIAL VELOCITY VECTOR
- V_NAV_MAG - INERTIAL VELOCITY MAGNITUDE
- V_REL_NAV - RELATIVE VELOCITY VECTOR
- V_REL_MAG - RELATIVE VELOCITY MAGNITUDE

OUTPUTS:
- ALPHA_CFD - COMMAND ANGLE OF ATTACK
- PHI_CMD - COMMAND BANK ANGLE

DESIGNED BY: K. SPRATLIN
C.S. DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
(617) 256-2641
/* LOCAL VARIABLES */

DECLARE INTERMETRICS, SOURCE

DECLARE ALPHA_DES SCALAR SINGLE;
DECLARE CL_EST SCALAR SINGLE;
DECLARE COSPHI_DOT SCALAR SINGLE INITIAL(-1.0);
DECLARE DELTA_T_PRED SCALAR SINGLE;
DECLARE E_FROM_REF_AT_EPOCH_MATRIX(3, 3) DOUBLE;
DECLARE GUID_PASS INTEGER SINGLE;
DECLARE I_TARGET_EF_VECTOR(3) DOUBLE;
DECLARE INITIALIZE_GUIDANCE_BOOLEAN INITIAL(TRUE);
DECLARE PHI_DES SCALAR SINGLE;
DECLARE RHO_NAV SCALAR SINGLE;
DECLARE RHO_NAV_SCALAR SINGLE;

/* ATOMSPHERIC PROPERTIES STRUCTURE */

STRUCTURE ATMOSPHER:

1 H SCALAR SINGLE,
1 RHO SCALAR SINGLE,
1 TS SCALAR SINGLE,
1 TM SCALAR SINGLE;
500 M1 CALL HEAT_RATE_CONTROL1
C| -------------------------------
C| UPDATE COMMANDED ATTITUDE
C| -------------------------------
541 M1 CALL ATTITUDE_COMMAND1
542 M1 END1
COPOOL VARIABLES USED
 EF_TO_REF_AT_EPOCH, ALPHA_EI, PHI_EI, ALPHA_CHD, ALPHA_MIN, ALPHA_MAX, PHI_MAX, LONG_TARGET, deg_to_rad, LAT_TARGET
 EARTH_FLAT, K_RHONAV, K_LID_NAV

OUTER VARIABLES USED
 EF_FROM_REF_AT_EPOCH, QUID_PASS, ALPHA_DES, PHI_DES, I_TARGET_EF
DECLARE A_DRAG_MAG SCALAR SINGLE)
573 HI DECLARE A_LIFT_MAG SCALAR SINGLE)
574 HI DECLARE ATMOS ATMOSP-STRUCTURE)
575 HI DECLARE CD_HOH SCALAR SINGLE)
576 HI DECLARE CL_NOM SCALAR SINGLE)
577 HI DECLARE LOD_MEAS SCALAR SINGLE)
578 HI DECLARE LOD_NOM SCALAR SINGLE)
579 HI DECLARE MACH SCALAR SINGLE)
580 HI DECLARE RHO_MEAS SCALAR SINGLE)
581 HI DECLARE V_BAR SCALAR SINGLE)
C] LOOK UP OF NOMINAL DENSITY AND L/D
C] -----------
C] CALL USATHOS6ZI R NAV, EARTH POLE ASSIGN ATMOS)
C] CALL AEROPARAMETERS(V_REL_MAG, ATMOS) ASSIGN V_BAR, MACH)
C] CALL LOOKUP(ALPHA_NAV, ATMOS, V_BAR, MACH) ASSIGN CD_NOM, CD_NOM)
C] LOD_NOM = CL_NOM / CD_NOM
C] COMPUTE DRAG AND LIFT ACCELERATION
C] -----------
C] A_DRAG_MAG = -(A_NAV . V_REL_NAV) / V_REL_MAG
BLOCK SUMMARY

OUTER PROCEDURES CALLED
- LOOKUP, AERO_PARAMETERS, USATHOS62

COMMON VARIABLES USED
- R_NAV, EARTH_POLE, V_REL_MAG, ALPHA_NAV, A_NAV, V_REL_NAV, MASS_NAV, S_REF, K_LOD_NAV, L_OVER_D_FILTER_GAIN, K_LOD_NAV, RHO_NAV, K_RHO_FILTER_GAIN, K_RHO_NAV

OUTER VARIABLES USED
- RHO_NAV, CL_EST

OUTER STRUCTURE TEMPLATES USED
- ATHOSPROP
HEAT_RATE_CONTROL

FUNCTION: CONTROL PEAK HEAT RATE

LOCAL VARIABLES

DECLARE COSPHI1 SCALAR SINGLE
DECLARE COSPH_Z SCALAR SINGLE
DECLARE FIRST_PASS BOOLEAN INITIAL TRUE
DECLARE HS_2 SCALAR SINGLE
DECLARE K_QDOT SCALAR SINGLE
DECLARE K_QDOT_RATE SCALAR SINGLE
DECLARE KI_GAIN SCALAR SINGLE
DECLARE KI_QDOT SCALAR SINGLE
DECLARE QBAR SCALAR SINGLE
DECLARE _DOT SCALAR SINGLE
DECLARE QDOT_PAST SCALAR SINGLE
DECLARE QDOT_RATE SCALAR SINGLE
DECLARE THETA_ZETAPHAGE SCALAR SINGLE

E: 3.05

E: QDOT = 17700.0 SQRT(RHO_NAV) (V_REL_MAG / 10000)

IF (FIRST_PASS = TRUE) THEN
DO
FIRST_PASS = FALSE;
C: HEAT RATE CONTROL CONSTANTS
HAL toxins.

STD 360-24.20

INTERNETICS, INC.

STMT

SOURCE

C J

614 M 1 HS_Z = HS_2

615 M 1 K1_GAIN = S_REF SORT(RHO_SL) / (HS_2 MASS Nav);

616 M 1 OMEGA_QDOT_SQUARED = OMEGA_QDOT OMEGA_QDOT;

617 M 1 THO_ZETA_OMEGA = Z ZETA_OMEGA OMEGA_QDOT;

C J

618 M 1 QDOT_RATE = 0;

619 M 1 END;

620 M 1 ELSE

621 M 1 QDOT_RATE = (QDOT - QDOT_PAST) / DT_AEROGUID;

622 M 1 IF (QDOT > 0.5 QDOT_LIMIT) THEN

623 M 1 DO;

C J

624 M 1 QBAR = 0.5 RHO_NAV V_REL_MAG V_REL_MAG;

C J

625 M 1 HEAT RATE CONTROL GAINS

C J

626 M 1 K1_GDOT = K1_GAIN CLEst (V_REL_MAG / 20000.0) EXP(-ALT_NAV / HS_2);

627 M 1 K QDOT = OMEGA_QDOT_SQUARED / K1_GDOT;

628 M 1 K QDOT_RATE = THO_ZETA_OMEGA / K1_GDOT;

C J

629 M 1 COSPHI_1 = K QDOT_RATE QDOT_RATE / QBAR;

630 M 1 COSPHI_2 = K QDOT (QDOT - QDOT_LIMIT) / QBAR;

631 M 1 COSPHI QDOT = COSPHI_1 + COSPHI_2;
STMT SOURCE CURRENT SCOPE
631 MI END; \HEAT_RATE_CONTROL
632 MI ELSE \HEAT_RATE_CONTROL
633 MI COSPHI_QDOT = -1.0; \HEAT_RATE_CONTROL
634 MI CLOSE \HEAT_RATE_CONTROL; \HEAT_RATE_CONTROL

**** BLOCK SUMMARY ****

COPOOL VARIABLES USED
V_REL_HAG, HS, S_REF, RHO_SL_ HASSNAV, OMEGA_QDOT, ZETA_QDOT, DT_AEROGUID, QDOT_LIMIT, ALT_NAV

OUTER VARIABLES USED
RHO_NAV, CL_EST, COSPHI_QDOT*
ATTITUDE_COMMAND

PROCEDURE

C | LOAD ALPHA_COMMAND

635 H | ALPHA_CMD = ALPHA_DES;

C | COMPUTE AND LIMIT PHI COMMAND

636 H | PHI_CMD = PHI_DES ABS(V_NAV_MAG - V_FINAL_MAG) / V_MAG_CHANGE;

637 H | PHI_CMD = MIDVAL(-PHI_MAX, PHI_CMD, PHI_MAX);

C | ADJUST COMMANDED BANK ANGLE FOR HEAT RATE CONTROL

638 H | IF (COSPHI_QDOT > 0) THEN

639 H | DO;

640 H | 1 | TEMPORARY COSPHI_CMD SCALAR SINGLE;

641 H | 1 | COSPHI_CMD = COS(PHI_CMD DEG_TO_RAD) + COSPHI_QDOT;

642 H | 1 | COSPHI_CMD = MIDVAL(-1.0, COSPHI_CMD, +1.0);

643 H | 1 | PHI_CMD = SIGN(PHI_CMD) ARCCOS(COSPHI_CMD) RAD_TO_DEG;

644 H | END;

C | LIMIT ALPHA AND PHI COMMANDS

645 H | ALPHA_CMD = MIDVAL(ALPHA_MIN, ALPHA_CMD, ALPHA_MAX);

646 H | PHI_CMD = MIDVAL(-PHI_MAX, PHI_CMD, PHI_MAX);

647 H | CLOSE ATTITUDE_COMMAND;

**** BLOCK SUMMARY ****

COMPOOL VARIABLES USED
ALPHA_CMD*, PHI_CMD*, V_NAV_MAG, V_FINAL_MAG, V_MAG_CHANGE, PHI_MAX, PHI_CMD, DEG_TO_RAD, RAD_TO_DEG, ALPHA_MIN, ALPHA_CMD

OUTER VARIABLES USED
ALPHA_DES, PHI_DES, COSPHI_QDOT
PROCEDURE:_
FUNCTION: PREDICTOR/CORRECTOR SEQUENCER

LOCAL VARIABLES
DECLARE ALPHA_TRY SCALAR SINGLE
DECLARE DELTAALPHA SCALAR SINGLE CONSTANT(3)
DECLARE DELTA_PHI SCALAR SINGLE CONSTANT(3)
DECLARE DETERH SCALAR SINGLE INITIAL(O)
DECLARE DDREDA SCALAR SINGLE
DECLARE DDRE_DP SCALAR SINGLE
DECLARE DCRE DA SCALAR SINGLE
DECLARE DCREDP SCALAR SINGLE
DECLARE CRE SCALAR SINGLE
DECLARE CRERROR ARRAY(3) SCALAR SINGLE
DECLARE CR_ERR SCALAR SINGLE
DECLARE PHI_TRY SCALAR SINGLE
DECLARE PRED_EXET 800LEAN
DECLARE DR_ERROR ARRAY(3) SCALAR SINGLE
DECLARE DR_ERR SCALAR SINGLE
DECLARE DRE SCALAR SINGLE

DO FOR TEMPORARY I = 1 TO 3;
 DO CASE I;
 ALPHA_TRY = ALPHA_DESk;
 PHI_TRY = PHI_DES;
 ENDCASE;
ENDDO;

DO FOR TEMPORARY I = 1 TO 3;
 DO CASE 1;
 ALPHA_TRY = ALPHA_DESk;
 PHI_TRY = PHI_DES;
 ENDCASE;
ENDDO;
HAL/S STD 360-24.20 INTERNETICS, INC. APRIL 27, 1967 14:13:10.05

STMT SOURCE CURRENT SCOPE

670 MI 2 END;
671 MI 2 DO;
672 MI 3 ALPHA_TRY = ALPHA_DES + DELTA_ALPHA;
673 MI 3 PHI_TRY = PHI_DES;
674 MI 2 END;
675 MI 2 DO;
676 MI 3 ALPHA_TRY = ALPHA_DES;
677 MI 3 PHI_TRY = PHI_DES + DELTA_PHI;
678 MI 2 END;
679 MI 1 END;

CALL PREDICTOR WITH DESIRED CONTROL HISTORY

680 MI 1 CALL PREDICTOR;

STORE FINAL STATE ERRORS

681 MI 1 DR_ERROR = DR_ERR;
682 MI 1 CR_ERROR = CR_ERR;
683 MI 1 END;

COMPUTE PARTIALS

684 MI 1 DDRE_DA = (DR_ERROR - DR_ERR) / DELTA_ALPHA;
685 MI 1 DDRE_DP = (DR_ERROR - DR_ERR) / DELTA_PHI;
686 MI 1 DCRE_DA = (CR_ERROR - CR_ERR) / DELTA_ALPHA;
687 MI 1 DCRE_DP = (CR_ERROR - CR_ERR) / DELTA_PHI;
SOLVE SET OF 2 SIMULTANEOUS EQUATIONS

690 M1 DETERM = DCRE_DP DORE_DA - DCRE_DP DCRE_DA;
691 M1 IF (DETERM =< 0) THEN
692 M1 DO;
693 M1 1 \text{ALPHA_DES} = \text{ALPHA_DES} + (\text{DDRE}_DP \text{CRE} - \text{DCRE}_DP \text{DRE}) / \text{DETERM};
694 M1 1 \text{ALPHA_DES} = \text{MEDVAL}(-\text{PHI_DES_MAX}, \text{PHI_DES}, \text{PHI_DES_MAX});
695 M1 1 \text{PHI_DES} = \text{PHI_DES} - (\text{DDRE}_DA \text{CRE} - \text{DCRE}_DA \text{DRE}) / \text{DETERM};
696 M1 1 \text{PHI_DES} = \text{MEDVAL}(-\text{PHI_DES_MAX}, \text{PHI_DES}, \text{PHI_DES_MAX});
697 M1 END;
DECLARE EARTH_FIXED_FROM_REFERENCE_FUNCTION_MATRIX(3, 3) DOUBLE;

DECLARE TOTAL_TIME_STEPS INTEGER SINGLE;

DECLARE A_PRED VECTOR(3) DOUBLE;

DECLARE A_PRED_MAG SCALAR SINGLE;

DECLARE ALPHA_PRED SCALAR SINGLE;

DECLARE ATMOS Atmosp-structure;

DECLARE CD_PRED SCALAR SINGLE;

DECLARE CL_PRED SCALAR SINGLE;

DECLARE DOT SCALAR DOUBLE;

DECLARE EF_FROM_REF_MATRIX(3, 3) DOUBLE;

DECLARE I_INPLANE VECTOR(3) DOUBLE;

DECLARE I_NORMAL VECTOR(3) DOUBLE;

DECLARE INTG_LOOP SCALAR SINGLE;

DECLARE IR_E VECTOR(3) DOUBLE;

DECLARE LOD_PRED SCALAR SINGLE;

DECLARE MACH_PRED SCALAR SINGLE;

DECLARE PHI_PRED SCALAR SINGLE;

DECLARE R_PRED VECTOR(3) DOUBLE;

DECLARE R_MAG_PRED SCALAR DOUBLE;

DECLARE R_DOT_PRED SCALAR SINGLE;
DECLARE T_PRED SCALAR DOUBLE;
DECLARE V_BAR_PRED SCALAR SINGLE;
DECLARE V_MAG_PRED SCALAR DOUBLE;
DECLARE V_PRED VECTOR(3) DOUBLE;
DECLARE V_REL_MAG_PRED SCALAR SINGLE;
DECLARE V_REL_PRED VECTOR(3) SINGLE;
DECLARE V_REL VECTOR(3) DOUBLE;

INITIALIZE PREDICTOR STATE VECTOR

T_PRED = T_GHT;
R_PRED = R_NAV;
R_HAG_PRED = ABVAL(R_PRED);
V_PRED = V_NAV;
V_HAG_PRED = ABVAL(V_PRED);
V_REL_PRED = V_PRED - (me_NAV + R_PRED);
V_REL_HAG_PRED = ABVAL(V_REL_PRED);

ANGLE OF ATTACK FOR PREDICTION

ALPHA_PRED = ALPHA_TRY;

INITIALIZE 1962 U.S. STANDARD ATMOSPHERE

CALL USATHOS62(R_PRED, EARTH_POLE) ASSIGN(ATHOS);

FORCE 1ST TIME STEP TO BE MINIMUM TIME STEP
HAL/S

```

SYMT

SOURCE

735 H1 A_PRED = VECTOR (999999, 999999, 999999)
SI 3SINGLE,5
C1 ---------------
C1 PREDICTOR LOOP
C1 ---------------

736 H1 DO FOR TEMPORARY TIME_INCREMENT = 1 TO 5000,
C1 -------------------------------
C1 COMPUTE TIME_STEP FOR 4TH ORDER RUNGE-KUTTA INTEGRATION
C1 -------------------------------

737 H1 TOTAL_TIME_STEPS = TIME_INCREMENT;

739 H1 IF (ATMOS.H <= ALT_TEMP_BIAS) THEN

740 H1 DELTA_T_PRED = DELTA_T_PRED_MIN;

740 H1 ELSE

C H1 ---------------
C H1 DO;

741 H2 A_PRED_MAG = ABSVAL(A_PRED);

742 H2 IF (A_PRED_MAG = 0) THEN

743 H2 DELTA_T_PRED = DELTA_T_PRED_GAIN / A_PRED_MAG;

744 H2 ELSE

C H2 ---------------
C H2 DELTA_T_PRED = DELTA_T_PRED_MAX;

745 H2 DELTA_T_PRED = MIDVAL(DELTA_T_PRED_MIN, DELTA_T_PRED, DELTA_T_PRED_MAX);

746 H1 END;
C1 -------------------------------
C1 AERODYNAMIC PROPERTIES LOOK-UP
C1 -------------------------------

747 H1 CALL AERO_PARAMETERS(V_REL_HAG_PRED, ATMOS) ASSIGN(V_BAR_PRED, MACH_PRED);

748 H1 CALL LOOKUP(ANGLE_PRED, ATMOS, V_BAR_PRED, MACH_PRED) ASSIGN(CL_PRED, CD_PRED);

749 H1 LOD_PRED = K_LOD_NAV CL_PRED / CD_PRED;
```
C I EQUATIONS OF MOTION FOR ERV ENTRY
C I --
750 M 1 DO FOR INTEG_LOOP = 1 TO 4
751 M 2 TEMPORARY AERO ACCEL VECTOR(3) SINGLE
752 M 2 TEMPORARY CPHI SCALAR SINGLE
753 M 2 TEMPORARY DRAG_ACCEL SCALAR SINGLE
754 M 2 TEMPORARY GRAY_ACCEL VECTOR(3) DOUBLE
755 M 2 TEMPORARY HS_NORM_PRED SCALAR SINGLE
756 M 2 TEMPORARY I_LAT VECTOR(3) SINGLE
757 M 2 TEMPORARY I_LIFT VECTOR(3) SINGLE
758 M 2 TEMPORARY I_VEL VECTOR(3) SINGLE
759 M 2 TEMPORARY LIFT_ACCEL SCALAR SINGLE
760 M 2 TEMPORARY RHO_PRED SCALAR SINGLE
761 M 2 TEMPORARY SPHI SCALAR SINGLE
762 M 2 TEMPORARY U_PRED VECTOR(3) DOUBLE
763 M 2 TEMPORARY Z_PRED SCALAR DOUBLE

C I --
C I ESTIMATED DENSITY
C I ----------------------
764 M 2 RHO_PRED = K_RHO_NAV ATMOS.RHO
C I ----------------------
765 M 2 PHI_PRED = PHI_TRY ABS(V_MAG_PRED - V_FINAL_MAG) / V_MAG_CHANGE
766 M 2 PHI_PRED = MIVAL(-PHI_MAX, PHI_PRED, PHI_MAX) DEG_TO_RAD
767 M 2 CPHI = COS(PHI_PRED)
768 M 2 SPHI = SINV(PHI_PRED)

C I --
C I AERODYNAMIC ACCELERATION
C I ----------------------
DRAG_ACCEL = 0.5 * RHO_PRED * V_REL_PRED / MASS_HAV

LIFT_ACCEL = LOG_PRED * DRAG_ACCEL

IVEL = V_REL_PRED / V_REL_PRED

ILAT = UNIT(IVEL * R_PRED)

ILIFT = UNIT(ILAT * IVEL * PHI) + I_LAT * PHI

AERO_ACCEL = LIFT_ACCEL * I_LIFT - DRAG_ACCEL * I_VEL

U_PRED = R_PRED / R_MAG_PRED

Z_PRED = U_PRED * EARTH_POLE

U_PRED = U_PRED + (3 * EARTH_J2 / 2) * EARTH_R / R_MAG_PRED * (1 - 5 * Z_PRED) * U_PRED + 2

Z_PRED = EARTH_POLE

GRAV_ACCEL = -(EARTH_MJ / R_MAG_PRED) * U_PRED

TOTAL_ACCELERATION

A_PRED = AERO_ACCEL + GRAV_ACCEL

CALL RUNGA-KUTTA INTEGRATOR

CALL INTEGRATOR:

R_MAG_PRED = ABVAL(R_PRED)

STDY SOURCE CURRENT SCOPE

 E1 782 M 2 V_MAG_PRED = ABVAL(V_PRED));
 | PREDICTOR
 C| ---------------
 C| RELATIVE VELOCITY
 C| ---------------
 E1 783 M 2 V_REL_PRED = V_PRED - (HE_NAV * R_PRED);
 | PREDICTOR
 E1 784 M 2 V_REL_MAG_PRED = ABVAL(V_REL_PRED);
 | PREDICTOR
 C| ---------------
 C| 1962 U.S. STANDARD ATMOSPHERE
 C| ---------------
 E1 785 M 2 CALL USATMOS42(R_PRED, EARTH_POLE) ASSIGN(ATMOS);
 | PREDICTOR
 786 M 1 END;
 | PREDICTOR
 C| ---------------
 C| STATE PARAMETERS.
 C| ---------------
 787 M 1 T_PRED = T_PRED + DELTA_T_PRED;
 | PREDICTOR
 E1 788 M 1 RDOT_PRED = V_PRED * R_PRED / R_MAG_PRED;
 | PREDICTOR
 C| ---------------
 C| CHECK FOR ATMOSPHERIC EXIT
 C| ---------------
 789 M 1 IF [ATMOS.H > 400000] AND [RDOT_PRED > 0]) THEN
 | PREDICTOR
 E1 790 M 1 PRED_EXIT = TRUE;
 | PREDICTOR
 E1 791 M 1 IF [PRED_EXIT = TRUE] THEN
 | PREDICTOR
 792 M 1 EXIT;
 | PREDICTOR
 C| ---------------
 C| CHECK FOR TAEH INTERFACE
 C| ---------------
 793 M 1 IF [ATMOS.H <= ALT_TAEM] THEN
 | PREDICTOR
 794 M 1 EXIT;
 | PREDICTOR
 795 M 1 END;
 | PREDICTOR
E1 796 M | EF_FROM_REF = EARTH_FIXED_FROM_REFERENCE(T_PRED1)

E1 797 M | IR_E = UNIT(EF_FROM_REF R_PRED1)

E1 798 M | VR_E = EF_FROM_REF(V_PRED - ME_NAV * R_PRED1)

E1 799 M | I_NORMAL = UNIT(IR_E = VR_E)

E1 800 M | I_INPLANE = UNIT(I_TARGET_EF = (I_TARGET_EF . I_NORMAL) I_NORMAL)

E1 801 M | DOT = I_INPLANE . I_TARGET_EF

E1 802 M | IF (ABS(DOT) > 1) THEN

E1 803 M | DOT = SIGN(DOT)

E1 804 M | CR_ERR = EARTH_R_FT_TO_NM_ARCCOS(DOT) SIGN(I_INPLANE . I_TARGET_EF . (I_NORMAL = I_INPLANE))

E1 805 M | DOT = IR_E * I_INPLANE

E1 806 M | IF (ABS(DOT) > 1) THEN

E1 807 M | DOT = SIGN(DOT)

E1 808 M | DR_ERR = EARTH_R_FT_TO_NM_ARCCOS(DOT) SIGN(IR_E . I_INPLANE) . I_NORMAL)
069 H4 INTEGRATOR:
099 H4 PROCEDURE:

C FUNCTION: 4TH ORDER RUNGE-KUTTA INTEGRATOR ALGORITHM
C
C LOCAL VARIABLES
C
810 H4 DECLARE ACCUM_ACCEL VECTOR(3) DOUBLE;
811 H4 DECLARE ACCUM_VEL VECTOR(3) DOUBLE;
812 H4 DECLARE ORIG_POS VECTOR(3) DOUBLE;
813 H4 DECLARE ORIG_VEL VECTOR(3) DOUBLE;

814 H4 DO CASE INTEG_LOOP;
815 H4 1 DO;

E1
816 H4 2 ORIG_POS = R_PRED;
E1
817 H4 2 ORIG_VEL = V_PRED;
E1
818 H4 2 ACCUM_VEL = V_PRED;
E1
819 H4 2 ACCUM_ACCEL = A_PRED;
E1
820 H4 2 R_PRED = ORIG_POS + .5 DELTA_T_PRED V_PRED;
E1
821 H4 2 V_PRED = ORIG_VEL + .5 DELTA_T_PRED A_PRED;
822 H4 1 END;
823 H4 1 DO;

E1
824 H4 2 ACCUM_VEL = ACCUM_VEL + 2 V_PRED;
E1
825 H4 2 ACCUM_ACCEL = ACCUM_ACCEL + 2 A_PRED;
HAL/S STD 340-24.20 INTERMETRICS, INC.

026 M2 R_PRED = ORIG_POS + .5 DELTA_T_PRED V_PRED;
027 M2 V_PRED = ORIG_VEL + .5 DELTA_T_PRED A_PRED;
028 M1 END;
029 M1 DO;
030 M2 R_PRED = ORIG_POS + .5 DELTA_T_PRED V_PRED;
031 M2 V_PRED = ORIG_VEL + .5 DELTA_T_PRED A_PRED;
032 M2 R_PRED = ORIG_POS + .5 DELTA_T_PRED V_PRED;
033 M2 V_PRED = ORIG_VEL + .5 DELTA_T_PRED A_PRED;
034 M1 END;
035 M1 DO;
036 M2 R_PRED = ORIG_POS + (ACCUM_VEL + V_PRED) DELTA_T_PRED / 64;
037 M2 V_PRED = ORIG_VEL + (ACCUM_ACCEL + A_PRED) DELTA_T_PRED / 64;
038 M1 END;
039 M1 END;
040 M1 CLOSE INTEGRATOR;

**** BLOCK SUMMARY ****
OUTER VARIABLES USED
 INTEG_LOOP, R_PRED, V_PRED, A_PRED, R_PRED*, DELTA_T_PRED, V_PRED*
DECLARE T SCALAR DOUBLE;
DECLARE LAMBDA SCALAR DOUBLE;
DECLARE SLAMBDA SCALAR DOUBLE;
CLAMBDA = COS(T - T_EPOCH) EARTH_RATE);
SLAMBDA = SIN(T - T_EPOCH) EARTH_RATE);
RETURN (MATRIX (CLAMBDA, SLAMBDA, 0, -SLAMBDA, CLAMBDA, 0, 0, 0, 1) DOUBBLE,3,3)
EF_FROM_REF_AT_EPOCH);
CLOSE EARTH_FIXED_FROM_REFERENCE;

**** BLOCK SUMMARY ****
COPOOL VARIABLES USED
T_EPOCH, EARTH_RATE
OUTER VARIABLES USED
EF_FROM_REF_AT_EPOCH
BLOCK SUMMARY

OUTER PROCEDURES CALLED

USATHOS42, AERO_PARAMETERS, LOOKUP

COMMON VARIABLES USED

T_MAX, XNAV, YNAV, EARTHP, ALT, THET, BIAS, DELTA, T_PRED_MIN, DELTA, T_PRED_MAX, K_400, NAV

COMMON VARIABLES USED

K, NAV, V_FINAL_MAG, MAG, CHANGE, PHI_NAV, DEG_TO_RAD, S_REF, EARTH_J2, EARTH_R, EARTH_MU, ALT, NAV, FT_TO_NM

OUTER VARIABLES USED

ALPHA_TRY, DELTA, T_PRED*, DELTA, T_PRED, PHI_TRY, PRED, EXIT*, PRED, EXIT, I, TARGET, EF, CR_ERR*, DR_ERR*

OUTER STRUCTURE TEMPLATES USED

USATHOSPROP
HAL/S STD 360-54.20

INTERMETRICS, INC.

SOURCE

CORRECTOR

850 M1 CLOSE CORRECTOR

**** BLOCK SUMMARY ****

COMPOOOL VARIABLES USED
ALPHA_NON, ALPHA_MAX, PHI_DES_MAX

OUTER VARIABLES USED
ALPHA_DES, PHI_DES, ALPHA_DES*, PHI_DES*
PROCEDURE(V_REL_HAG, ATMOS) ASSIGN(V_BAR, MACH);

FUNCTION: COMPUTE AERODYNAMIC FLOW REGIME PARAMETERS

DECLARATIONS:

DECLARE V_REL_HAG SCALAR SINGLE;
DECLARE ATMOS ATMOSPHERE-STRUCTURE;
DECLARE MACH SCALAR SINGLE;
DECLARE V_BAR SCALAR SINGLE;
DECLARE GPRIME SCALAR SINGLE;
DECLARE REYNOLDS_NUMBER SCALAR SINGLE;
DECLARE SPEED_OF_SOUND SCALAR SINGLE;
DECLARE T_PHIME SCALAR SINGLE;
DECLARE T_HALL SCALAR SINGLE;
DECLARE VISCOSITY SCALAR SINGLE;

LOCAL VARIABLES:

DECLARE C_BAR SCALAR SINGLE CONSTANT(25.01);
DECLARE DEG_R_TO_DEG_K SCALAR SINGLE CONSTANT(9 / 5);
DECLARE GAMMA SCALAR SINGLE CONSTANT(1.4);
DECLARE UNIV_GAS_CONST SCALAR SINGLE CONSTANT(0.42036);
DECLARE MOLE_MT_ZERO SCALAR SINGLE CONSTANT(28.9644);
DECLA3E SPEED_OF_SOUND_CONST SCALAR SINGLE CONSTANT(SQRT(GAMMA * UNIV_GAS_CONST / MOLE_MT_ZERO));
SPEED_OF_SOUND = SPEED_OF_SOUND_CONST M_TO_FT SQRT(ATHOS.TH)

IF SPEED_OF_SOUND = 0 THEN
 MACH = 0;
ELSE
 MACH = V_REL_MAG / SPEED_OF_SOUND;
ENDIF

VISCOSEY = 1.458 10 KS_TOSlug ATHOS.TS / ((110.4 + ATHOS.TS) M_TO_FT)

IF (VISCOSEY = 0 OR ATHOS.H > 50000) THEN
 REYNOLDS_NUMBER = 0;
ELSE
 REYNOLDS_NUMBER = ATMOS.RHO V_REL_MAG C_BAR / VISCOSEY;
ENDIF

IF REYNOLDS_NUMBER = 0 THEN
 V_BAR = 0;
ELSE
 ..
ENDIF
HAL/S STD 340-24.20

INTERNETRICS, INC.

APRIL 27, 1987

STHY SOURCE CURRENT SCOPE

DO

T_HALL FOR VISCOUS PARAMETER

IF (ATMOS.H < 240000) THEN

T_HALL = 2178.0 DEG_R TO DEG_K

ELSE IF (ATMOS.H > 240000) AND (ATMOS.H < 560000) THEN

T_HALL = (5913.0 - 0.015 ATMOS.H) DEG_R TO DEG_K

ELSE IF (ATMOS.H > 360000) THEN

T_HALL = 504.0 DEG_R TO DEG_K

END IF

GAMMA FOR VISCOUS PARAMETER

END IF

IF (ATMOS.H < 100000) THEN

GAMMA_VBAR = 1.4;

ELSE IF (ATMOS.H > 100000) AND (ATMOS.H < 170000) THEN

GAMMA_VBAR = 1.7 - 3.00E-6 ATMOS.H;

ELSE IF (ATMOS.H > 170000) AND (ATMOS.H < 215000) THEN

GAMMA_VBAR = 1.375 - 1.09E-6 ATMOS.H;

ELSE IF (ATMOS.H > 215000) AND (ATMOS.H < 300000) THEN

GAMMA_VBAR = 1.220 - 4.00E-7 ATMOS.H;

ELSE IF (ATMOS.H > 300000) THEN

GAMMA_VBAR = 1.11;

END IF

T_PRIME AND C_PRIME FOR VISCOUS PARAMETER

T_PRIME = (.408 * .531 * T_HALL / ATMOS.TS + .195 (GAMMA_VBAR - 1) MACH / 2) ATMOS.TS;

C_PRIME = (T_PRIME / ATMOS.TS) (((ATMOS.TS + 122.1 10) / T_PRIME + 122.1 10)

END IF

END IF

END IF

END IF

END IF

END IF
HAL/S STD 360-24.20
INTERNETRICS, INC.

STATEMENTS

E | V_BAR = MACH (C.PRIME / REYNOLDS_NUMBER);

END;

900 M| CLOSE AERO_PARAMETERS;

CURRENT SCOPE

** ** B L O C K S U M M A R Y ** **

COMPOOL VARIABLES USED
H_TO_FT, KG_TO_SLUG

OUTER STRUCTURE TEMPLATES USED
ATHOPROP

END.
PROCEDURE (ALPHA, ALT, V_BAR, MACH) ASSIGN (CL, CD);

FUNCTION: LOOK-UP OF CL AND CD VERSUS ALPHA, ALTITUDE, VISCOSITY PARAMETER, AND MACH NUMBER.

INPUTS: ALPHA - ANGLE OF ATTACK (DEG)
ALTITUDE - ALTITUDE ABOVE FISHER ELLIPSOID (FT)
V_BAR - VISCOSITY PARAMETER
MACH - MACH NUMBER

OUTPUT: CD - DRAG COEFFICIENT
CL - LIFT COEFFICIENT

FLOW REGIME:
1 = USE ALTITUDE DATA
2 = USE V_BAR DATA
3 = USE MACH DATA

REFERENCE: NOT DOCUMENTED.

LOCAL VARIABLES

DECLARE ALPHA SCALAR SINGLE
DECLARE ALT SCALAR SINGLE
DECLARE CD SCALAR SINGLE
DECLARE CL SCALAR SINGLE
DECLARE HACH SCALAR SINGLE
DECLARE V_OAR SCALAR SINGLE

DECLARE ALPHA_HAX SCALAR SINGLE CONSTANT (50)
DECLARE ALT_HAX SCALAR SINGLE CONSTANT (0)
DECLARE ALT_RUN SCALAR SINGLE CONSTANT (ALT_HAX - ALT_HAX)

DECLARE CD_I SCALAR SINGLE

DECLARE ALPHA_MAX SCALAR SINGLE CONSTANT (150)
DECLARE ALPHA_MIN SCALAR SINGLE CONSTANT (150)
DECLARE ALT_MAX SCALAR SINGLE CONSTANT (155)
DECLARE ALT_MIN SCALAR SINGLE CONSTANT (150)
DECLARE ALT_RUN SCALAR SINGLE CONSTANT (ALT_MAX - ALT_MIN)

DECLARE CD_1 SCALAR SINGLE;
<table>
<thead>
<tr>
<th>Component</th>
<th>Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{\text{BAR}}</td>
<td>\text{MEDV}{\text{BAR}} + \text{MEDV}{\text{BAR}} - \text{MEDV}_{\text{BAR}}</td>
</tr>
<tr>
<td>V_{\text{BAR}}</td>
<td>\text{MEDV}{\text{BAR}} + \text{MEDV}{\text{BAR}} - \text{MEDV}_{\text{BAR}}</td>
</tr>
<tr>
<td>\text{MEDV}_{\text{BAR}}</td>
<td>\text{MEDV}{\text{BAR}} + \text{MEDV}{\text{BAR}} - \text{MEDV}_{\text{BAR}}</td>
</tr>
</tbody>
</table>

Note: The original page is of poor quality, and the text is not clearly visible.
974 M| 2 CD_2 = CD_MACH I+1,J * (CD_MACH I+1,J - CD_MACH I+1,J) ALPHA_FRACT)
 5| 1+1,J 1+1,J 1+1,J
975 M| 2 FRACT = (MACH_L / Z - I)
976 M| 1 END;
977 M| END1;
 C| -----------------------------------
 C| INTERPOLATE BETWEEN TABLES
 C| -----------------------------------
978 M| CL = CL_1 + (CL_2 - CL_1) FRACT)
979 M| CD = CD_1 + (CD_2 - CD_1) FRACT)
400 M| CLOSE LOOKUP;
PROCEDURE(R, POLE) ASSIGN ATOMS;

DECLARE R VECTOR[3] DOUBLE;
DECLARE POLE VECTOR[3] DOUBLE;
DECLARE GO SCALAR SINGLE CONSTANT(9.80665);
DECLARE HO SCALAR SINGLE CONSTANT(2.96913);
DECLARE RR SCALAR SINGLE CONSTANT(8.31446);
DECLARE KGTO_LBH SCALAR SINGLE CONSTANT(1.35963);
DECLARE A SCALAR DOUBLE CONSTANT(6378178);
DECLARE F SCALAR DOUBLE CONSTANT(1.0 / 298.32);
DECLARE K2 SCALAR SINGLE CONSTANT(GO MO / RR);
DECLARE H_TO_ET SCALAR DOUBLE CONSTANT(1.0 / 30480);
DECLARE KGTO_LBH SCALAR SINGLE CONSTANT(4.6579237);
DECLARE R TO FT SCALAR DOUBLE CONSTANT(1 / 30480);
DECLARE F SCALAR DOUBLE CONSTANT(1 / 298.32);

INPUTS:
 R - INERTIAL POSITION VECTOR (FT)
 POLE - INERTIAL NORTH POLE (NO)

OUTPUTS:
 ATOMS.H - ALTITUDE (FT)
 ATOMS.RH - DENSITY (LB/FT^3)
 ATOMS.TS - STATIC TEMPERATURE OF AIR (DEG K)
 ATOMS.TH - MOLECULAR TEMPERATURE OF AIR (DEG K)

NOLEMENCLATURE:
 A - EARTH EQUATORIAL RADIUS (FT)
 F - EARTH FLATTENING (ND)
 GO - EARTH RADIUS (FT) = (A / (1 - F))
 NO - EARTH RADIUS (FT) = (A / (1 - F^2))
 PHI - GEOGRAPHIC LATITUDE (DEGS)
 PSE - GEOCENTRIC LATITUDE (DEGS)
 KO - SEA-LEVEL GRAVITY (FT/SEC^2)
 HO - MEAN MOLECULAR WEIGHT OF AIR (MO)
 RR - UNIVERSAL GAS CONSTANT (JOULES / (DEG K) / (KG-MOL))
DECLARE R_MAG, H, SPSE;
DECLARE SCALAR DOUBLE,
DH, EXP0, ALTADJ, ALT10, GRAYRAT10, TEMPRATIO;

Determine altitude above Fisher ellipsoid.

DECLARE R_MAG = ABVAL(R);
SPS = (R / R_MAG) * POLE;
IF (DTHDH = 0) THEN
 I
ATMOS.RHO = RHO_BASE * EXP(-K2 DH / TH_BASE);
I
ELSE
DO;
EXPO = 1 + K2 / DTHDH;
I
END;

ATMOS.RHO = RHO_BASE (TH_BASE / ATMOS.TH);
I
END;

DO;

ALTDJ = RO + H_BASE - TH_BASE / DTHDH;
I
I
I
ALTRATIO = (RO + H) / (RO + H_BASE);
I
I
TEHRATIO = (RO + H) / ALTRATIO;

EXPO = (K2 / DTHDH) / ALTDJ;
EXPO = (TEHRATIO ALTRATIO) EXP((K2 / DTHDH) GRAVRATIO ALTRATIO (DH / ALTDJ))

ATMOS.RHO = ATMOS.RHO (KG_TO_LBM / (H_TO_FT G_TO_FPS2));
BLOCK SUMMARY

COMPOUND VARIABLES USED
G_TO_FPSZ

OUTER STRUCTURE TEMPLATES USED
ATHSPROP
1042 M| CLOSE AERO_GUID;

**** BLOCK SUMMARY ****

COMMON VARIABLES USED
 G_LCLM, G_RM, GNAV, ALT_NAV, ALT_FREEZE_GUID, GUID_PASS_LIM
HAL/S STD 360-24.20
INTERNETRICS, INC.
APRIL 27, 1987 14:15:28.85

COMPI LATION LAYOUT

FISH_POOL: EXTERNAL COPPOOL;
IL_POOL: EXTERNAL COPPOOL;
AERO_GUID: PROCEDURE;
 INITIAL_GUID: PROCEDURE;
 FILTERS: PROCEDURE;
 HEAT_RATE_CONTROL: PROCEDURE;
 ATTITUDE_COMMAND: PROCEDURE;
CORRECTOR: PROCEDURE;
PREDICTOR: PROCEDURE;
 INTEGRATOR: PROCEDURE;
 EARTH_FIXED_FROM_REFERENCE: FUNCTION;
AERO_PARAMETERS: PROCEDURE;
LOOKUP: PROCEDURE;
USATHS562: PROCEDURE;
<table>
<thead>
<tr>
<th>ECL Name</th>
<th>Type</th>
<th>Attributes & Cross Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>526 ATNOSPROP</td>
<td>STRUCTURE TEMPLATE</td>
<td>ALIGNED XREF: 0 0526 2 0574 2 0582 2 0583 2 0584 2 0591</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 0592 2 0794 2 0794 2 0758 2 0747 2 0748 2 0764 2 0785</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 0789 2 0793 2 0663 2 0864 2 0875 2 0876 2 0880 2 0880</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 0892 2 0894 2 0896 2 0897 2 0898 2 1007 2 1009 2 1009</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 1010 2 1020 2 1021 2 1022 2 1023 2 1024 2 1025 2 1026</td>
</tr>
<tr>
<td>826 H</td>
<td>1 SCALAR</td>
<td>SINGLE, ALIGNED XREF: 0 0526 2 0564 2 0748 2 0789</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 0792 2 0650 2 0584 2 0585 2 0586 2 0587 2 0588 2 0589</td>
</tr>
<tr>
<td>526 RHO</td>
<td>1 SCALAR</td>
<td>SINGLE, ALIGNED XREF: 0 0526 2 0591 2 0592 2 0748 2 0876</td>
</tr>
<tr>
<td>526 TS</td>
<td>1 SCALAR</td>
<td>SINGLE, ALIGNED XREF: 0 0526 2 0575 2 0864 2 0897 4 1022</td>
</tr>
<tr>
<td>993 A</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0591 2 0985 2 1006</td>
</tr>
<tr>
<td>572 A_DRAG_MAD</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0572 4 0556 2 0587 2 0588</td>
</tr>
<tr>
<td>573 A_LIFT_MAD</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0575 4 0587 2 0588</td>
</tr>
<tr>
<td>87 A_NAV</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0701 4 0718 4 0741 4 1077</td>
</tr>
<tr>
<td>701 A_PRED</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0701 4 0718 4 0741 4 1077</td>
</tr>
<tr>
<td>702 A_PRED_MAD</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0702 4 0741 4 0742 4 0743</td>
</tr>
<tr>
<td>830 ACCUM_ACCEL</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0810 4 0819 4 0825 4 0831</td>
</tr>
<tr>
<td>811 ACCUM_VEL</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0811 4 0818 4 0824 4 0850</td>
</tr>
<tr>
<td>781 AERO_ACCEL</td>
<td>3 - VECTOR</td>
<td>SINGLE, TEMPORARY XREF: 0 0751 4 0774 2 0779</td>
</tr>
<tr>
<td>515 AEROGUID</td>
<td>PROCEDURE</td>
<td>XREF: 0 0615 NOT REFERENCED</td>
</tr>
<tr>
<td>653 AERO_PARAMETERS</td>
<td>PROCEDURE</td>
<td>XREF: 2 0583 2 0797 0 0851</td>
</tr>
<tr>
<td>901 ALPHA</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0901 0 0902 0 0918 2 0599</td>
</tr>
<tr>
<td>552 ALPHA_CND</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0352 4 0353 4 0355 4 0648</td>
</tr>
<tr>
<td>516 ALPHA_CES</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0516 4 0551 2 0655 2 0648</td>
</tr>
<tr>
<td>401 ALPHA_EI</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0617 2 0674 4 0695 4 0696</td>
</tr>
<tr>
<td>908 ALPHA_FRAC</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0695 4 0696 2 0971 2 0972</td>
</tr>
<tr>
<td>513 ALPHA_MAX</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0515 2 0555 2 0646 2 0649</td>
</tr>
<tr>
<td>909 ALPHA_MAX</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0909</td>
</tr>
<tr>
<td>910 ALPHA_MIN</td>
<td>SCALAR</td>
<td>NOT REFERENCED</td>
</tr>
<tr>
<td>76 ALPHA_NAV</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0903 2 0904 2 0905 2 0906</td>
</tr>
<tr>
<td>703 ALPHA_CLOSED</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0526 4 0735 2 0748 2 0751 2 0757</td>
</tr>
<tr>
<td>649 ALPHA_TRY</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INPUT-PARM XREF: 0 0901 0 0903 2 0941 2 0948</td>
</tr>
<tr>
<td>DCL NAME</td>
<td>TYPE</td>
<td>ATTRIBUTES & CROSS REFERENCE</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>ALT_FREEZE_GUID</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0515 2 0555</td>
</tr>
<tr>
<td>ALT_L</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0911 4 0948 2 0953</td>
</tr>
<tr>
<td>ALT_MAX</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0912 2 0914</td>
</tr>
<tr>
<td>ALT_MIN</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0915 2 0914</td>
</tr>
<tr>
<td>ALT_NAV</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0079 2 0555 2 0425</td>
</tr>
<tr>
<td>ALT_TAEM</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0916 2 0953</td>
</tr>
<tr>
<td>ALT_TAEM_BIAS</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0799</td>
</tr>
<tr>
<td>ALT_ADJ</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 1003 4 1035 2 1036 2 1037</td>
</tr>
<tr>
<td>ALT_TAEH</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 1005 4 1035 2 1037</td>
</tr>
<tr>
<td>ALT_ADJ_BZAS</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 1003 2 1036 2 1037</td>
</tr>
<tr>
<td>ALTADJ</td>
<td>STRUCTURE</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 1003 2 1036 2 1037</td>
</tr>
<tr>
<td>ALTRATIO</td>
<td>STRUCTURE</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 1003 2 1036 2 1037</td>
</tr>
<tr>
<td>ATNOSPROP-STRUCTURE</td>
<td>STRUCTURE</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 1003 2 1036 2 1037</td>
</tr>
<tr>
<td>ATNOSPROP-STRUCTURE</td>
<td>STRUCTURE</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 1003 2 1036 2 1037</td>
</tr>
<tr>
<td>ATHOSPROP-STRUCTURE</td>
<td>STRUCTURE</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 1003 2 1036 2 1037</td>
</tr>
<tr>
<td>ATNOSPROP-STRUCTURE</td>
<td>STRUCTURE</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 1003 2 1036 2 1037</td>
</tr>
<tr>
<td>ATNOSPROP-STRUCTURE</td>
<td>STRUCTURE</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 1003 2 1036 2 1037</td>
</tr>
<tr>
<td>ATTITUDE_COMMAND</td>
<td>PROCEDURE</td>
<td>XREF: 2 0541 0 0634</td>
</tr>
<tr>
<td>C_BAR</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0901 0 0904 4 0979</td>
</tr>
<tr>
<td>C_LANE</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0916 4 0951 4 0965 4 0974</td>
</tr>
<tr>
<td>C_LANE</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0917 0 0950 4 0978</td>
</tr>
<tr>
<td>CD_ALT</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(12,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0955</td>
</tr>
<tr>
<td>CD_MACH</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0955</td>
</tr>
<tr>
<td>CD_MACH</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0955</td>
</tr>
<tr>
<td>CD_PROP</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(12,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0955</td>
</tr>
<tr>
<td>CD_PROP</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(12,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0955</td>
</tr>
<tr>
<td>CO_VISC</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(12,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0955</td>
</tr>
<tr>
<td>CD_1</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0915 4 0951 4 0964 4 0971</td>
</tr>
<tr>
<td>CD_Z</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0916 4 0951 4 0965 4 0974</td>
</tr>
<tr>
<td>CL</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0901 0 0904 4 0978</td>
</tr>
<tr>
<td>CL_ALT</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(12,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0952</td>
</tr>
<tr>
<td>CL_EST</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0917 4 0953 2 0625</td>
</tr>
<tr>
<td>CL_MACH</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(12,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0954</td>
</tr>
<tr>
<td>CL_MACH</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(12,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0954</td>
</tr>
<tr>
<td>CL_PROP</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(12,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0955</td>
</tr>
<tr>
<td>CL_PROP</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(12,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0955</td>
</tr>
<tr>
<td>CL_VISC</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(12,51), SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0955</td>
</tr>
<tr>
<td>CL_1</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0917 4 0949 4 0962 4 0971</td>
</tr>
<tr>
<td>CL_Z</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0918 4 0950 4 0963 4 0972</td>
</tr>
</tbody>
</table>

Notes:
- The table contains declarations and attributes of various named constants or variables, likely related to attitude and navigation systems, with specific types and attributes such as alignment, static, and constant properties.
- The table is referenced in the context of the International Business Machines (IBM) HAL/S language, indicated by the HAL/S STD 360-24.20 reference.
- The table is part of a larger documentation set, possibly from Intermetrics, Inc., dated April 27, 1987, for reference and error checking in the systems and software development process.
<table>
<thead>
<tr>
<th>DCL NAME</th>
<th>TYPE</th>
<th>VALUE</th>
</tr>
</thead>
<tbody>
<tr>
<td>EF_FROM_REF</td>
<td>3 x 3 MATRIX</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0708 4 0774 Z 0797 2 0798</td>
</tr>
<tr>
<td>EF_FROM_REF_AT_EPOCH</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0520 4 0594 Z 0667</td>
<td></td>
</tr>
<tr>
<td>EF_TO_REF_AT_EPOCH</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0520 2 0594</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 1003 4 1028 Z 1029 4 1036</td>
</tr>
<tr>
<td>FILTERS</td>
<td>PROCEDURE</td>
<td>ALIGNED, STATIC, INITIAL XREF: 0 0598 2 0613 4 0633</td>
</tr>
<tr>
<td>FLOX</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0921 4 0960 4 0962 4 0994</td>
</tr>
<tr>
<td>FRACT</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0920 4 0955 4 0966 4 0975</td>
</tr>
<tr>
<td>FT_TO_NM</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, CONSTANT XREF: 0 0013 2 0012 2 0094</td>
</tr>
<tr>
<td>G_LOAD</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0013 2 0012 2 0094</td>
</tr>
<tr>
<td>G_RUN_GUIDANCE</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0515</td>
</tr>
<tr>
<td>G_TO_FP2</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, CONSTANT XREF: 0 0013 2 0013 2 0017</td>
</tr>
<tr>
<td>GAMMA</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0065 2 0068</td>
</tr>
<tr>
<td>GAMMA_VBAR</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0065 2 0068</td>
</tr>
<tr>
<td>GRAV_ACCEL</td>
<td>3 - VECTOR</td>
<td>DOUBLE, TEMPORARY XREF: 0 0754 4 0778 4 0779</td>
</tr>
<tr>
<td>GRAV_RATIO</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 1003 2 1013 6 1014</td>
</tr>
<tr>
<td>GUID_PASS</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, STATIC XREF: 0 0521 2 0555 6 0537 2 0558</td>
</tr>
<tr>
<td>GUID_PASS_LIM</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL XREF: 0 0513 2 0513</td>
</tr>
<tr>
<td>GTO</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0985 2 0988</td>
</tr>
<tr>
<td>H</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 1002 4 1006 Z 1007 2 1008</td>
</tr>
<tr>
<td>HS</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 0985 2 0988</td>
</tr>
<tr>
<td>HC</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, CONSTANT XREF: 0 0985 2 0988</td>
</tr>
<tr>
<td>H_BASE</td>
<td>SCALAR ARRAY</td>
<td>AB Array[15], SINGLE, ALIGNED, STATIC, CONSTANT XREF: 0 0996</td>
</tr>
<tr>
<td>HEAT_RATE_CONTROL</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 094 4 0956</td>
</tr>
<tr>
<td>HG</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 094 4 0956</td>
</tr>
<tr>
<td>H_HORPRED</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL XREF: 0 094 4 0956</td>
</tr>
<tr>
<td>H_OS</td>
<td>INTEGER</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0922 4 0958 1 0962 1 0963</td>
</tr>
<tr>
<td>I_LAT</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0709 4 0800 Z 0800 2 0804</td>
</tr>
<tr>
<td>I_NORMAL</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0709 4 0800 Z 0800 2 0804</td>
</tr>
<tr>
<td>I_TARGET_EF</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0709 4 0800 Z 0800 2 0804</td>
</tr>
<tr>
<td>I_VEL</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0709 4 0800 Z 0800 2 0804</td>
</tr>
<tr>
<td>I_INPLANE</td>
<td>3 - VECTOR</td>
<td>SINGLE, TEMPORARY XREF: 0 0754 4 0772 4 0773</td>
</tr>
<tr>
<td>I_LAT</td>
<td>3 - VECTOR</td>
<td>SINGLE, TEMPORARY XREF: 0 0754 4 0772 4 0773</td>
</tr>
<tr>
<td>I_NORMAL</td>
<td>5 - VECTOR</td>
<td>SINGLE, TEMPORARY XREF: 0 0754 4 0772 4 0773</td>
</tr>
<tr>
<td>I_VEIL</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, STATIC XREF: 0 0754 4 0772 4 0773</td>
</tr>
<tr>
<td>DCL NAME</td>
<td>TYPE</td>
<td>ATTRIBUTES</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>612 ORIG_POS</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>613 ORIG_VEL</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>25 PHI_CHD</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>524 PHI_RES</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>513 PHI_RES_MAX</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>512 PHI_EI</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>710 PHI_PRED</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>440 PI.Try</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INPUT-PARM</td>
</tr>
<tr>
<td>902 POLY</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>661 PRED_EXIT</td>
<td>PROCEDURE</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>460 QBAR</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>901 R</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>1002 R_MAG</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>717 R_MAG_PRED</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>910 R_NAV</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>716 R_PRED</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>8 RAD_TO_REG</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, CONSTANT</td>
</tr>
<tr>
<td>718 RHO_TEND</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>850 REYNOLDS_NUMBER</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>526 RHO</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>999 RHO_BASE</td>
<td>SCALAR ARRAY</td>
<td>ARRAY(15), SINGLE, ALIGNED, STATIC, CONSTANT</td>
</tr>
<tr>
<td>500 RHO_MEAS</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>525 RHO_NAV</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>760 RHO_PRED</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>513 RHO_SLP</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>967 RH</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>995 RO</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>478 S_REF</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>917 SIZM_ALPHA</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>804 SLALPHA</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>859 SPECS_OF_SOUND</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>846 SPEED_OF_SOUND_CONST</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>761 SPHIE</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>4002 SPCE</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>NAME</td>
<td>TYPE</td>
<td>ATTRIBUTES & CROSS REFERENCE</td>
</tr>
<tr>
<td>-----------------</td>
<td>------------------</td>
<td>------------------------------</td>
</tr>
<tr>
<td>T</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INPUT-PARM</td>
</tr>
<tr>
<td>T_BASE</td>
<td>SCALAR ARRAY</td>
<td>ARRAY (2) 1, 2 0 1 0 0 0 6 6</td>
</tr>
<tr>
<td>T_EPOCH</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>T_GHT</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>T_PRED</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CONSTANT</td>
</tr>
<tr>
<td>T_URM</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>TEMPRAWI</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CON</td>
</tr>
<tr>
<td>TIME_INCREMENT</td>
<td>INTEGER</td>
<td>SINGLE, TEMPORARY</td>
</tr>
<tr>
<td>T_BASE</td>
<td>SCALAR ARRAY</td>
<td>ARRAY (2) 1, 2 0 1 0 0 0 6 6</td>
</tr>
<tr>
<td>TOTAL_TIME_STEPS</td>
<td>INTEGER</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>V</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>V_BAR</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CON</td>
</tr>
<tr>
<td>V_BAR_L</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>V_BAR_MAX</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>V_BAR_MIN</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>V_PRED</td>
<td>SCALAR ARRAY</td>
<td>ARRAY (2) 1, 2 0 1 0 0 0 6 6</td>
</tr>
<tr>
<td>V_LOAD_TABLE</td>
<td>SCALAR ARRAY</td>
<td>ARRAY (2) 1, 2 0 1 0 0 0 6 6</td>
</tr>
<tr>
<td>V_FINAL_MAG</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>V_MAG_CHANGE</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>V_MAG_PRED</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>V_MAG</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>V_NAV</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC, CON</td>
</tr>
<tr>
<td>V_PRED</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>V_REL_MAG</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>V_REL_MAG</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INPUT-PARM</td>
</tr>
<tr>
<td>V_REL_MG_PRED</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>V_REL_NAV</td>
<td>SCALAR</td>
<td>DOUBLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>V_REL_PRED</td>
<td>3 - VECTOR</td>
<td>DOUBLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>VISCOITY</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>VISCOSITY</td>
<td>3 - VECTOR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>W</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, INITIAL</td>
</tr>
<tr>
<td>W</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>W</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>W</td>
<td>SCALAR</td>
<td>SINGLE, ALIGNED, STATIC</td>
</tr>
<tr>
<td>NAME</td>
<td>TYPE</td>
<td>ATTRIBUTES & CROSS REFERENCE</td>
</tr>
<tr>
<td>----------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>540 Z</td>
<td>SCALAR</td>
<td>6 0566 2 0567 S 大行, ALIGNED, STATIC XREF: 0 0548 4 0560 2 0559 2 0565 2 0567</td>
</tr>
<tr>
<td>763 z_pred</td>
<td>SCALAR</td>
<td>2 0567 DOUBLE, TEMPORARY XREF: 0 0763 4 0776 2 0777</td>
</tr>
<tr>
<td>515 zeta_root</td>
<td>SCALAR</td>
<td>2 0567 SINGLE, ALIGNED, INITIAL XREF: 0 0515 2 0617</td>
</tr>
</tbody>
</table>
LIST OF REFERENCES

