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ABSTRACT

The project initiated a study of a mathematical model of a tunable
Ti:Sappnife solid-state laser. A general matnematical model was developed
for the purpose of identifying design parameters which will optimize the

system, and serve as a useful predictor of the system's behavior.

PRECEDING PAGE BLANK NOT FILMED




TABLE OF CONTENTS

I ]

INTRODUCTION. o ettt ittt it it atee e ttineneserecnocnsnenonsannnns .

THE RATE EQUATIONS . it iiiiiiiiiieitietennnenanocncenoocnonnns .

QUALITATIVE ANALYSIS OF THE EQUATIONS.....ceiiiiiiniiennennnennn. .

L O T I Y

SUMMARY AND CONCLUSION. ..ttt it ittt iiiiiincanrnnnnennannnen .

ADDENDUM. ettt i i i i it ittt i .

ACKNOWLEDGMENT S, sttt e i i i ittt ittatneisanaaansnens

] ] o 0 N

Table

1

Figure

1

LIST OF TABLES

Numerical values of the parameters used in these .
calculations. Values come from measurements reported

in References 5 and B....ueeeeverieeeeerossonssoacassssnsensa

LIST OF FIGURES

Energy level diagram for the model four level laser.
Only those non-radiative transition to or from the lasing
levels are shown in this figure.........ciiiviiiiinvnnene.

Computed curves showing the evolution of the inverted
population density and the photon density for an end-pumped
laser. Both densities are normalized to the density of
dopant ions in the laser heads................. et

Curves showing the effect of increasing the intensity of the
punp beam. The strength of the output pulse increases with
PUMP TNEENS I Y.t e ittt iineennienoeensenonnsnosessensnnans

Extreme values of pump energy computed using a backward
difference algorithm on tne CYBER CY 173... ... .cceivinvne.

Stiffening of the equations with increasing pump energy

displayed in terms of the number of derivative evaluations
required in the Runge-Kutta-Fehlberg algorithm..............

iv

Page

AR

16
24
27
27
27

17

Page

19

21

22

23




TABLE OF CONTENTS - continued
LIST OF FIGURES - continued

Figure

6 The effects of increasing the intensity of the injection
signal is to initiate the laser pulse at earlier times and
to narrow the pulse shape.......cciiiiiiniiiiiiieeenennrnns

7 Inversion and photon densities illustrating relaxation
oscillations vefore stable solution is reacned. Individual
curves are combined together in a phase portrait............

Page

25

26




MATHEMATICAL MODELING OF A TI:SAPPHIRE SOLID-STATE LASER

By
John J, Swetits*

INTRODUCTION

Recently, several new experimental techniques involving the transient
behavior of solid state lasers have been developed to control the frequency
and shape of a laser beam (1-4). Among these is injection seeding, a tech-
nique which relies upon precise timing between the pumping beam, tne injec-
tion beam and the onset of lasing action. Its effective use requires accu-
rate understanding of the temporal development of the laser dynamical vari-
ables. It follows that there is a need to reexamine the transient behavior
of the laser under the conditions which prevail in this situation. In order
to study the use of injection seeding and other similar techniques, we have
developed a model of the dynamical process in a four-level solid-state las-
er. The analysis was developed for the Titanium-doped Sapphire system, but
it is of a general character, and can dbe applied broadly witnh minor moqifi-
cation to any system.

In solid-state lasers the optically active ions are fixed in place
within a transparent host. In Ti:Sapphire, the Ti3+ ion substitutes for the
Al3+ ion in A1203 to a concentration of about 1%. Because of a strong coup-
1ing between the active ion and the host lattice the absorption and emission
lines are broadened and the material can lase at over a range of wave-
lengths. If left running freely, the laser will operate at a wavelength
near to the peak of the emission cross-section. By introducing an injection
signal the laser can be made to lase at a different wavelength. The

solid-state laser material is formed into a cylindrical rod with its axis

*Professor, Department of Mathematical Sciences, 01d Dominion University,
Norfolk, Virginia 23508.



coincident with the optical axis of a Fabry-Perot cavity. This rod is
presumed to be pumped axially by another laser at the pumping wavelength
although this mode of pumping is not critical to the model. In addition, an
injection signal, at the desired lasing wavelength, is injected axially into
the material. |

The model describes the time evolution of the occupancy of tne
electronic levels and of the lasing photon flux concentration within the
cavity. Most of the parameters used in the model can be obtained by direct
measurement; the effects of the few quantities which cannot be directly
measured are studied parametrically. The main purpose of this effort is to
understand the temporal characteristics of injection seeding on solid-state
lasers and so tne model avoids some complications of laser operation wnicn
are not essential to this objective. For-example, it treats a single lasing
wavelength with a narrow bandwidth. It also does not directly treat the
spatial distribution of excitation in the rod, but considers the spatial
average over the rod as a whole.

In the next section, the basic system of equations for the electron and
photon populations are introduced and put into the form finally used.
Following that, the quantitative properties of the solutions to this system
is derived. The system is proven to be asymptotically stable and general
bounds on tne population inversion are obtained. After that a nunerical

analysis of the system is described and solutions ootained.

THE RATE EQUATIONS

The emission and absorption spectra of Ti3+:A1203 (5-6) are the basis

for an idealized four-level model of the lasing action of Titanium in

Sapphire shown in Fig. 1.
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Figure 1. Energy level diagram for the mcdel four level laser.
Only those non-radiative transition to or from the
Tasing levels are shown in this figure.




The rate equations giving the time dependence of the population

densities, n;(t), for each of the electronic levels for this system are

given below.

dn n
3=N n -_3_ (1)
dt 03 0
3
dn n g n
_2=- 3 . (n2 L. nl) ohy - 2 (2)
at 13, 9 Y
dn n n g n
1.3 .2 _q - —=ny) o¢v - — - (3)
t T T 2 1
31 a1 92 1

In these equations T, is the lifetime for the ith electronic level,
while Tij-l is the rate for tne transition from level i to level j.

These rates are related by reciprocal sum rule

w03(t) is the pumping rate giving the number of photons per second pumped to

level 3 from the ground state. The degeneracy of the ith electron level is
95 The population densities, N, for each of the laser levels are

constrained by the relation

NrotaL = MotMtMotN3e (4)




wnere nTOTAL is the dopant concentration. The photon concentration
)

(number of pnotons per cin”) within the lTasing medium is represented by (1),
the emission cross-section by o and the speed of light in the crystal by v.
The rate of change of the photon concentration is given by the following

expression:

9 ¢ i
=2 = (n2-.___ nl) oV - — + Sp ¢ (5)
dt 97 T,

Here . is the cavity lifetime and it represents the loss of photons from
all mechanisms in the cavity; Sp is the contribution to the photon flux in
the laser beam coming from the spontaneous emission of excited atoms. It is
expressed as a fraction Spo of the total fluorescence decay rate, Tey Spo
depends both on the geometry of the laser cavity and on the fluorescence
spectrum of tne lasing ion.

We can simplify these equations somewhat without losing generality.
First, we assume that the non-radiative decay from the pumped level to the
upper lasing level is fast, 7.>> all other time scales. Then, integrating

3

the rate equation for n3 with this assumption, we obtain

n3(t) ~ w03(t)n0(t)r3

so that ny can be replaced by this expression in the subsequent equations.
This condition is equivalent to assuming that dn3/dt=0. Furthermore, we
assume that the dominant decay path from level 3 is the non-radiative decay
to level 2, that is T35 <<r31 and T3> SO that r3¢r32. In this case tne

punped photons are transferred to the upper laser level at a rate



(n3/r3p) = Wyanglrs/3,) = Wong,

and n3/r3= 0. Furthermore, if n <<ni for i = 0, 1, or 2, so that not many

3
electrons stay in their pumped level

= ~ + + .
“rotaL = Mo™1 M3 T MM T M,

Now the decay from level 2 has both radiative and non-radiative

contributions wnich are related by

Tz.1 = Te TR * (6)

With these assumptions the rate equations for the electron concentrations

become:

dn g1 n2
—2=W_n,y - (n,- 2 ny) aev - _< (7)
dt p 0 2 1 .
9 2
dn n g n
1.2 + (n -_L_n)cwv-._l_ (8)
dt T 2 1 T
f1 92 1
“rotaL = Mo F M "2 (9)

Equations (5), (7), (8) and (9) form the basis of this model. We reorganize
tnem slightly. First, we introduce new variables replacing the laser level

populations, n

1 and Ny with the population inversion n = n2-(gz/gl)nl, and




N, the lower laser level population. HNext we scale tnese new variables and
the photon concentration to tne total cocentration of ions, NTOTAL

X = n/neora,
Y = MyMrotaL,
2= rgra

Finally, we scale the time variable to the time interval, ™ taken
here to be one nanosecond. With these changes the laser dynamic equations
assume the form

o« W
v =Cv + a(-{) (xz) + ("p (L=x=yy)+
0
1 I(t)
In this expression, v is a vector with components equal to the three
normalized concentrations (x,y,z). The matrix C representing tne linear

part of the differential equation has components given below.

_ 1 v-1 _ 1 v-1 1 _
cp = - (—+2) e = ) =+ —- =] c3=0
2 Tfe 2 T M1
_ 1 vl 1 =0
‘a® 2% 23
fe f2 1
. Spo -1
1% T ¢y = (r-liegy 32 % T
f2 ¢




The second term has the non-linearity of the system as the product of the
population inversion and photon concentration. The strength of this non-

Tinearity is given by the parameter.

T

@ =0 Vs N

Physically this quantity represents the number of ions seen by a photon in

time < The parameter y=1+gz/g1 is related to tne multiplicities of the

N
electronic states 955 for Titanium:Sapphire y=5/3. In this last form of the
equations we have introduced the possibility of stimulating emission with an

injection beam I(t). The notation (1l-x-vy),k means

l-x-yy if 1l-x-vy>0
(1-x-yy), = 0 , if 1l-x-yy< 0 -

QUALITATIVE ANALYSIS OF THE EQUATIONS
The purpose of this section is to establish a number of qualitative
properties of the solutions to the system [10]. We assume the physical

parameters satisfy

0 < 1 <<T1<Tf£
0 < Spo
0 < Te

Theorem: If wp(t), I(t) are positive, continuous and integrable on



V[O,+=) and if x(u)»0, y(0) >0, z(0)>0 then

(i) x(t) »0, y(t)»0, z(t)>0 for all t;

(i1)  x(t), y(t), z(t) are integrable on (0, + =);

(iii)  The system (10) is asymptotically stanle;

(iv) If x(0)+yy(o) <1, then x(t)+yy(t)<l for all t; and
(v) If x(0)+vy(o) >1, then there exits T

such that x(t)+yy(t)<1 for all t > T.

Proof: We establish the parts of the theroem in the order (iv), (v), (i),

(ii), (iii).
(vi) Since x(0)+yy(0)<1l, then, by continuity, x(t)+yy(t)<l for t close
to 0. Suppose x(T)+yy(T)=1 and x(t)+yy(t)<l for t<T. Then, at

t=T,

d ) ,
” (xtyy)=(cqq+ ¥Cyq )x+(Cynr+rCyy)y.

Since €11%¢5; <0 and C12 +y C22<0, then, if x(T) » 0 and y (T)>0 and not

both are zero, we would have

E— (x+yy) <0
dt

at t=T which would contradict x{t)+yy(t) <1 for t<T. Since x(T)+yy(T)=1,

not both x(T) and v(T) are zero.

Suppose y(T)<0. Since y(0)>0, there exists T1 <T such that y(Tl)= 0

and y(t)>0 for O<t<T.. Then, at t=T

1 v




dy . Coy X +axz = (c21+az)x.

dt

Suppose x(Tl) <0 and Chy * az(Tl) >0. Then there exists T2< T; such

that x (T2) =0 and x(t) > 0 for 0 < t < TZ' Then at t = T2
dx _
;{ = Clzy(Tz) + wp(Tz) (l’Y.Y(Tz))

> 0

since c,, > 0, y(Tz) > 0, wp(TZ) >0and 1 - Yy(tz) > 0.

Hence x increases to the right of T It follows that x cannot be negative

5
for0< t < Tl' So x(Tl) > 0.
Now suppose 1 + az(Tl) < 0. Since Cy1 >0, a > 0, then Z(Tl) < 0.
So there exists T3 < T1 such that z(T3) =0 and z(t) > 0 for 0 < t < T3.
Then, at t = T3,
dz _ _
-;; = C3p X tep =yt I(T3) >0

since I(T3) > 0 and all other quantities are non-negative. Hence z

increases to the right of T3. So it follows that z(Tl) > 0.

Now suppose x(Tl) = 0 so that

dy

—~=0att-= Tl. Then, at t = Tl,
dt

dx

— = W (T,) > 0.

i Pl

Additionally, at t = T

10




d-y dx dy
s CZI.EE + Coy — +aflz =+ x =

c21wp (Tl) + az(Tl)wp(T1)>O

since ¢,y >0, W (T1)>0, >0 and z(T1>0. Thus y increases to the right of

P

of Tl. It now follows that y(T) >0.
Now suppose x(T)<0. Choose T1 < T such that x(Tl) = 0 and x(t)»0 for

0>t>T.. Then, at t=T

1 1°

dx _

'd_t CZIwwp(Tl)(l'w) >0
since y(T1)>0, c21>0, Np(T1)>0 and l-vy(T1)>0. Hence x increases to the
right of Tl' It follows that x (T)>0.

Since at least one of x(T), y(T) is strictly positive, then at £=T,
d

— (x+vy)<0.

dt

So x+yy is decreasing at t=T wnich contradicts x+yy<l for t<T. Thus
x(t)+yy(t) <1 for all t.
(v) The proof of (iv) shows tnat if x(0)+yy(u)=1, then x(t)+vy(t)<l
for all t >0.
Suppose x(0)+yy(0)>1. Then, for t close to 0,

d -
n (x#yy)=(cq+1Cyq Jx+(Cyo+vChy )y
<0

by an argument similar to that given in (i). Thus x+yy is decreasing for t
close to 0.

Suppose there exists A >l such tnat x+yy>»1 for all t. Then

11




| %; (x+vy) = (cy1*vCyy) (xtyy)

; + ety (e ey )y
< legpveg A

since c12+vc22-Y(c11+7c21) <0 and iyt Yc21<0. But then

x(£)+ry(t)-(x(0)+vy(0))< (e +ve, ) at.
It follows that

B2(x(t)+ry(t) = - «

which contradicts x +yy»>x >1 for all t.

Thus there exists T such tnat x(T) +yy(T)=1 and x(t)+yy(t)<l for t
close to T. The analysis in (i) now applies to show that x{t)+yy(t)<l for
all ©T.

(i) The arguments in (iv) show that x,y, are non-negative on an

interval where x+yy<l. Hence, if x(0)+yvy(0) <1,.then X, y, are
non-negative for all t. Suppose there exists T such that z(T)<0.

Choose T.<T such that z(T,)=0. Then, at t=T

1 1 1’
dz
since ¢ .>0, €4,70,x>0,y>0 and I(T1)>0-

Hence z increases to the right of T1 contradicting z(T)<0. Thus,
z(t)>0 for all t.

To complete the picture, suppose x(0)+yy(0)>l. Choose T such that

12




X(T)+yy(T)=1 and x(t)+yy(t)>1 for 0<t<T. Then suppose x(T1)=0, T1

x(t)»0 for O0<t<T.. Then at t=T

1 1’

dx

= C1oY.
dt 12

<T, and

Since c12>0 and y(T1)>0, x increases to the right of T.. Hence x>0 for all

1
t.
Now suppose y(T2)=O, T2<T and y(t)»0 for 0 < t <T,. AL t=T
d—'y'=C21X+aXZ e
dt

Again o1 >0, x>0 and z>0. So y increases to the right of T2.

for all t.

(i1) Fix T so that x(t)+yy(t)<l for t>T. Then

& (xtvy) = (cy1¥YCo ) (x+yy)

(C12+YC22-Y(C11+YC21))¥

Wp(l-X-Yy)
< (C11+YC21)(X+Y¥)

W (1-x-
p( Yy)

since c12+yc22-y(c22+yc21)<0 and y>0.

2’

Hence y>,0

13



Hence, letting

E(t) = exp(f1 (4, -qp ey ),

we have

4 (E(t) (x+vy))< E(E)W..

dt P

Thus,

E(t) (xtvy) = (x(T)rvy(T))<[T E(u)iy(u)du.

P

It follows that

0<xery<(E(6) [T E(M (u)du + x(T+ry(T)].

=/% (E()-E(u) ™M (w)du + (E(6)H(x(T)+ry(T)).
= R(t,T)

Hence

0<[T (x(t)+vy(t))dts[7 R(t,T)dt.
Note that, since wp >0,
exp(=/E W (r)dr)<1
u p :

Thus

0<[7 (x(t)+vy(t))dt

14




S SS explicyq#vey ) (E-u) )dtau

+

[3 exp((cy1#¥ey ) (£-T)) (x(T)+vy(T))dt

p—

exp((c, . +vc, . )(s-u))-1
= 3 W (u) 112l du
p
| 117721

L +

(x(T#ry(1) | exp((c, #rc, ) (5T))-1

i €11"¢

Since Ci1 + Y1 <0 and wp is integrable on [0,+=], it follows that x+yy is

integrable on [0,+«]. Consequently both x and y are integrable since each
is non-negative.

To see that z is integrable, note that

z2(t) - exp(f% (c33+ax) dr)z(T)
= exp(f¥ (c33+ax)dr) f?exp(-f#(c33+ax)dr)(c31x+c32y+1)du

Using the fact that x, y, I are non-negative and integrable, an argument

similar to the one above shows that z is integrable.

(ii1) Let Xo’ Yo’ Z0 solve the system (10). Let x=X+ Xo,

y=Y+yo, z=Z+zo. As suming xo(0)+yy0(0) <1 and x(0)+Yy(0)<l, we
obtain the system

15




dX

E- = (Cll-GYZo‘wp))S"'(Clz'pr)Z
-ayx Z-ayXZ
0 <
dy _
G;'- (C21+QZ0)§+C22aXZO+aZZ
az )X+ +
- (CarralpliregyYt(cagraxg) el

with X=0=Y=7 as a solution.

The linear system

dX

—=c,. X+ c,,Y

dt 11 - 12-

dy

— = CheY + CHhyY

dt 21' 22'

dz

—=c. X +c,,YcC,,Z
dt 31- 32- "33

is asymptotically stable since all eigenvalues of the coefficient matrix

- have negative real parts.

Since Xer Y0 %o W are non-negative and integrable, it follows from

p
Theorem 4.4 of [7] that X=0=Y=Z is an asymptotically stable solution of tne

non-1linear system.

NUMERICAL ANALYSIS

In this section, we discuss the numerical solution to equations (5),
(7), (8) and (9) subject to the quiescent initial conditions.

The equations were solved numerically on a DEC VAX 11/750 using a
Runge-Kutta-Fehlberg (RKF) algorithm {8] and also on a CYBER CY173 using a
backward difference method) [9]. The time interval over which the solutions
were computed was from 0 to 200 ns. Material parameters for Ti:Sapphire
used in the examples are given in Table 1. We were interested in the

gualitative behavior of the numerical solutions for various punping rates

16




Table 1. Numerical values of the parameters used in these

calculations. Values come from measurements reported

in Refs. 5 and 6.

PARAMETERS

G2=2

G1=3

SIGMA=3.0E-19 cm™

INDEX OF REFRACTION=1.76
NTOTAL=1.0E18
TAUFL=3800ns

TAU1=1.0ns

TAUC=16.5ns

TAU2=3000ns

17



and injection strengths as well as the efficiency of tne numerical
procedures.
In the examples described here the pump and injection signals were voth

assumed to be Gaussian beams given by
W (t)= W f(t,t , T ) and
p( ) ( PP

I(t) =1 f(t,tl,rz) where

)1/2 2

f(t,to,r)=2(1n2/w exp(-ln2((t-to)/.5*r) )

1
varied. Increased values of W and I correspond to increases in the energies

with tp=30 ns, rp=10 ns, t.=60 ns, and t2=20ns. The values of W and 1 were
delivered by the punp and injection sources, réspectively.

For relatively low values of W, the RKF algorithm was used to compute
tne solutions. All of the computations were done in dounle precision. In
the examples, an error tolerance of 10-8 was used, but the qualitative
behavior of the solutions was preserved for tolerances as large as 10'5.
Figure 2 shows a typical result of the computation.

The normalized population inversion and photon density are plotted as a
function of time for a system in which the punping rate W has the value .01
ns-1 and I has the value 0, i.e., no injection signal is present.

Initially, the number of ions in the upper energy levels and the photon
density in the medium is zero. At t=0, the punp is turned on and population
inversion increases, following the leading edge of the pump pulse, until it

has apsorbed the photons in the pump beam and it levels off. During tnis

18
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time the photon density has been increasing steadily (but not visibly on the
graph). The dynamics up to this point are dominated by the linear part of
the rate equations. The photon density increases until tne non-linear term
(n*¢) becomes comparable to the linear terms and it begins to dominate the
dynamics. When this occurs there is a rapid increase in the photon density
accompanied by a corresponding decrease in the population density. This
latter exchange of photons for excited states oy stimulated emission forms
the shape of the laser pulse.

We varied the pumping rate W from .01 ns'1 to 1.0 n's.'l by orders of
magnitude. It is evident from Fig. 3 that the larger the punping rate, the
earlier stimulated emission will occur and the stronger it will be. The RKF
algorithm was found to perform very efficiently in the case where W=.0l ns_1
requiring only 822 evaluations of the derivatives. However, as the pump
rate was increased, the number of derivative evaluations became much larger,
with 1944 and 6612 evaluations needed when W=.1 ns™' and W=1.0 ns™%,
respectively. The growth of the number of derivative evaluations with punp
rate is shown in Figure 5.

For large values of W, the RKF algoritnm failed to compute the solu-
tions over the entire time interval in a reasonable number of iterations. W
was set to 500 ns'1 and the RKF procedure required in excess of 67,000
derivative evaluations to compute the solutions from 0 to 44 ns. Using a
backward difference method, the solutions, shown in Fig. 4, were found over
the entire time interval 0 to 200 ns but 17,000 evaluations of the
derivatives and 3700 evaluations of the Jacobean matrix were necessary.

When the pump rates are high, the system of differential equations becomes
stiff, resulting in considerable effort necessary to compute tne solutions.

In order to examine the effect of the injection beam on the onset of

20
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lasing we systematically varied the strength of the injection pulse. Figure
6 shows the system with W held at .0l ns'1 but varying the value of I from 0
to I=1.0e-06 ns-1 and 1=1.0e-04 ns™L. Clearly, the presence of the
injection beam speeds up the onset of stimulated emission. The RKF
algorithm worked efficiently in these examples, with each case requiring no
more than 846 derivative evaluations.

The theorem of the previous section demonstrates that this system of
equations is asymptotically stable and the numerical calculations evidence
this same stability for a wide range of values of tne pump intensity. The
non-linearity of the system will support relaxation oscillations at the
onset of lasing before the stable state is reached. An illustration of these
oscillations is shown in Fig. 7. The variations of the inversion and pnoton
density are shown in separate graphs and also combined together in a pnase

portrait. An extensive study of the relaxation oscillations of this system

will appear elsewhere [10].

SUMMARY AND CONCLUSION

We have developed a model of the dynamics of an end-pumped injection
seeded, four level laser. The model was developed in order to examine the
early transient behavior of tunable solid state lasers and the effects of
injection seeding on the timing and shape of the output laser pulse. 1In
this paper we report on our analysis of the quantitative behavior of
solution to the model and on the guality of the numerical computation of
these solutions.

We nhave demonstrated the existence of integraple solutions to tne
system of equations forming the model provided that the pump and injection

source functions are sufficiently regular and that the initial conditions
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are physically realizable. Furthermore, we show that these solutions are
asymptotically stable and establish bounds on them.

The equations were solved numerically and the sensitivity of the
nunerical calculations to input parameter values was studied. A general
tendency toward stiffening of the system with increasing pump energy was

noted. The validity of the model in the anticipated operating regime was

established.

ADDENDUM
The material in this report is presently being prepared for submission

to the journal, Mathematical Modeling. Co-authors are A. M. Buoncristiani

and L. F. Roberts.
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