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MASS MODELING FOR BARS

by

Thomas G. Butler

BUTLER ANALYSES

Summary

Methods of modelin= mass for bars are surveyed. A method for

extending John Arche_"s concept of consistent mass beyond just

translational inertia effect3 to rotational inertia effects ks in-

cluded. Results ace compared against detailed models. Recommenda-

tions are published for various types of modeling situations.

Methods

Nould you say that the inertia matrix for beams ot these fouc

sections would be the same if the area, material and length fo_" all

_r
four were the same? l i

4 - _ /Z IZ - -_

= O IZ_N •

I I

IT_at Is exactly what NASTR2d_ will give you if you ask for Cou-

pled Mass on the VARAM card. NASTRAN looks at the area, the span

and the density and gives you a coupled mass matrix based only on

the amount of uniformly distributed mass between grid points. The

COUPMASS routine does not concern itself with the sectional data

that you include on your PBAR card other than area. It does compute

moment-of-inertia terms based on the assumption that inertia effects

are the same in plane 1 and plane 2. You may wonder why I bother to

engage In such an inquiry. It all came about as I was investigating

how to formulate the mass matrix for beams of variable cross-section
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when modeled as equivalent prlsmatical beams. I found that a con-

slderable correction was needed to balance the inertias in the two

principal planes after coupled mass formulation. I was inclined to

base any such corrections as an extension of the logic which may

have already been applied to the uniform bar. When I observed that

coupled mass formulation was insensitive to distribution over the

section, I thought that it would be worthwhile to try to extend the

theory to these additional terms.

That is the truth. Now let's form a judgement. Is this bad?

It will be shown below that coupled mass in spite of its insensitiv-

ity to differences in section is a definite improvement over the

default condition of breaking the total mass into two pieces and

lumping it at the two ends without first and second moments. In

order to form a basis of judgement, let's look at the various ways

to model mass in bar elements. NASTRAN only admits of prlsmatical

BAR elements. That means a constant cross-section over its entire

length. So this study will be confined to the modeling of mass for

prismatical beams. The criterion for goodness of modeling will be

the match that a given model makes with the frequencies of free-free

beam modes using Timoshenko (i) as the arbiter for correctness.

Free-free modes were chosen, because these modes activate more of

the bar mass than other modes. There are essentially two elastic

conditions that the user opts for in his modeling of bending--with

or without shear stiffness. Because the shear contribution to elas-

tic bending always acts in series with the contribution from curva-

ture, the net effect of including shear stiffnesss in the bending

behavior of a model, is to lower the modal frequencies. In reality,

there are 3 elastic conditions; because if the user includes a com-

plement of properties including lonqitudinal, bending and torsion,

but confines his freedoms to only translations, he is depriving his

model of some of the rotational contributions to bending, which act

in parallel with the transverse translational terms with the net

result that the modal frequencies will be lower than those contain-

inq a complete set of rotational freedoms. All of the beams that

were modeled in this study were done without shear deformation terms

in the stiffness matrix. Because of the importance of all of these

conditions, the descriptions of the various patterns of modeling
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that are to be described, will be identified with both the stiffness

and the mass modeling schemes.

Scheme I. SCALAR MASS

Translational DOF's 3 dof/GP

Stiffness properties A, I1, I2

Non-zero rows & cols of KGG Matrix 1,2,3 .... 7,8,9

Non-zero rows & cols of MGG Matrix 1,2,3 .... 7,8,9

m/2

A _m/2

.m/2

_m/,_

Figure 1

Scheme IA. SCALAR FINE MESH

Patterns the same as SCALAR except the mesh of GP's is fine.

Scheme IB. SCALAR 3 CONDENSE

Patterns the same as SCALAR FINE MESH

condensed to a coarse mesh.

except the fine mesh is

Scheme IC. SCAL,%q 5 CONDENSE

Translational & 2 Bending DOF's 5 dof/GP

Stiffness Properties A, Ii, 12

Non-zero rows & cols of KGG Matrix 1,2,3,..5,6,7,8,9 .... 11,12

Non-zero rows & cols of MGG Matrix 1,2,3, ...... 7,8,9 ........

Non-zero rows & cols of MAA Matrix 1,2,3,..5,6,7,8,9 .... 11,12

Scheme 2. LUMPED MASS

Translational & Rotational DOF's 6 dof/GP

Stiffness Properties A, Ii, I2, J

KGG Matrix All rows & cols active

MGG Matrix 6x6 groups/GP. No coupling between GP's
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Figure 2

Scheme 2A. LUMPED FINE MESH

Pattern same as LUMPED MASS except the mesh of GP's is fine.

Scheme 2B. LUMPED CONDENSED

Pattern same as LUMPED FINE MESH except MAA matrix develops

same coupling between GP's that KAA matrix has.

Scheme 3. TRANSLATIONAL COUPLING

No Torsional DOF's 5 dof/GP

Stiffness Properties A, II, IZ

Non-zero rows & cols of KGG 1,2,3,..5,6,7,8,9,..11,12

Non-zero rows & cols of MGG 1,2,3,..5,6,7,8,9,..11,12

(dm) (dm) (dm) (dm) (dm) (dm)

O O

/\ -I\- -I\- -I\- .I _. .I\,
............... 7 \ ..... 7..\ ........ if ........ e .... 7.. ,, ....
t- .................. I \...I .... _...l .... ,...I .... s_ • • •e- .... 7 \.7 \.I ..... ,...
_-.............................. / ...... ,x " . .\,.
======================================= ........ / ..... \.

Figure 3

Scheme 3A. TRANSLATIONAL COUPLING FINE MESH

Pattern the same as TRANSLATIONAL COUPLING

GP's is fine.

except the mesh of

Scheme 3B. TRANSLATIONAL COUPLING CONDENSED

Pattern the same as TRANSLATIONAL FINE MESH except the fine mesh

is condensed to a fine mesh.
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Scheme4. TRANSLATIONAL & ROTATIONAL COUPLING

Pattern the same as TRANSLATIONAL MESH except that

the MGG matrix, excluding longitudinal dof's,

c0ntributlons from the two types of coupling.

each term in

consists of

o -o

I% % I

...... I\ ...... _' ', ..... 71\ , ..... 7 I'_ ..... 7' \t ...... I\,

•,- ..... . ............ , _,_ ...... _/ .... :.\_..=:::::::::::::::::::::::::::::::::::::::: ....... .........

Figure 4

Scheme 4A. TRANSLATIONAL & ROTATIONAL COUPLING FINE MESH

Pattern the same as TRANSLATIONAL & ROTATIONAL COUPLING

that the mesh of GP's is.fine.

except

Scheme 4B. TRANSLATIONAL & ROTATIONAL COUPLING CONDENSED

Pattern the same as TRANSLATIONAL & ROTATIONAL COUPLING FINE ,MESH

except that the fine mesh is condensed to coarse.

The modeling schemes will be applied to one beam of circular

cross-sectlon and to another of rectangular cross-section. In order

to maintain the results as comparable as possible, the same eigen-

value extraction method was used wherever possible. GIVENS method

was used for all runs except two, where INVPWR was substituted when

GIVENS had difficulty. The results are shown in tabular form. But

before the results are discussed, the subject of coupled mass will

taken up. John Archer (2) made a huge contribution to our field

with his consistent mass method of modeling mass in finite elements.

He took the arbitrariness out of apportioning of mass into finite

elements. He operated on the premise that any particle of mass lo-

cated between the end points of a span had an influence in dynamics

on both connecting points. He very cleverly said that the dynamic

deformation in bending can be reasonably approximated by the static

deformation in bending, under loading conditions that matched those
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used during the determination of the stiffness terms. _us the
phrase consistent seemed appropriate. But the cleverest part of his
scheme was his method of vectoring the interior contributions to the

connecting points. He appealed to Maxwell's Reciprocity Law in the

particular form popularly know in Civil Engineering circle as the

Mueller-Breslau principle of influence lines. Graphically, here is

how it works. Impose a boundary deformation that is used for the

stiffness matrix for example a unit transverse deformation at end B

and solve for the deformation at all interior points, while holding

displacements at all other connecting degrees of freedom to zero.

Y

"l._ dx L

Figure 5

v=l

r
_B --'_ x

The non-dimensionalized equations for displacement and slope are

2 X' 3
"3

_low assume that v(x) m'epresent_ the amrlltude of the acceleration at

any location x along the beam.

Acc(x) = v(x) _.

The increment of mass at x is (p A dx) . So the approximate incre-

ment of force produced by thls assumed acceleration is

dF = (0 A dx) v(x)
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Because the cross-section is constant, the density can be written as
a linear density; i.e.

(0 A) : x.

The approximate increment of force at x due to transverse dynamic

displacement at end B i3

dF(B) : _ v_x) dx _.

To apportion (_v_ dx) to ends A _ B, Jo_n Archer applied the

Mueller-Breslau principle ¢f influence lines (_), which derives from

the Maxwell Reciprocity Rule, which in turn derives from the

Betti/Raylei_h Law. In o_de_ to emphasize a point that was not made

explicit in John Archez's paper, I choose to go directly to the Max-

well Reciprocity Theorem as it applies in the special case of beams

under concentrated loads. It says that if a beam is loaded with two

different sets of loads and constraints, F1 and F2, and the response

to these respective loads are ul and u2, the work done by the first

set of loads actin_ through the second set of displacements is equal

to the work done by the second set of load_ acting through the first

set of displacements (_).

F1 x u2 = FZ x ul.

The beam systems to which we wall apply this law are a_ follows.

The inertia _- _ dP_a_ actin_ at x on a beam that is clamped at both

ends and displaced a unit amount at end B. Label the displacement

curve v(x) and the curve of slopes @(x).

e(x)

Figure 6
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The other condition is for the beam to be displaced a unit amount at end A

and all other displacements and rotations are held to zero. Label the dis-

placement curve 8(x) and the curve of slopes _(x).

dK A

dQ A

E(x)

&(x)

Figu_-e 7

The nondimensionalized displacement and slope are calculated to be

S(x) : 1 -3 + : , _x) : - - _r!

Apply Maxwell's Law to the free bGdie3 f_'om A to x for this pair

dR A x C(0) + dP(x) x _(x) + d_ A x _(0) + dT(x) x ¢(x)

= dK A x v(0) _ dQA x 9(0)

Substitute the boundary values

dR A x 1 + dP(x) x %(x) + 0 + dT(x) x ¢(x) = 0 + 0

This collapses to

dR A = -dP(x) x &(x) - dT(x) x _(x).

Here dT(x) is approximated in terms of sectional p_operty I to be

dT(x) = (I dx) 8(x)
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Archer specialized the situation by considering the moment of iner-
tia dlstrlbu_ion I 8(x) dx to be negligible; thus the increment of
reaction at end A due to an increment of translational force at in-
termediate point x is

dRA = -dP(x) x _(x)

Using the previously stated approximation for dP(x) as x dx v(x) _,

it becomes

dR A = x v(x) _(x) _ dx.

If dR A is assumed to be made of an incremental inertia term dM A be-

ing accelerated through coordinate q, the equation can be written as

dR A = dM A _ = x [ x(x)_(x)] dx

The total inertial reaction from incremental contributions over the

whole beam is obtained by integrating over the length L.

L

M A =x[ v(x) %(x) dx .
0

So, for our example case, letting xL equal the total mass m of the

beam,

MA, B k 1 - 3 + 2 3 2 dx = 22 xS" _ 22L= 420 _ m.

In words, this term represents the amount of mass that couples to

the y translational dof at end A due to a dynamic displacement of

the y translational dof at end B. This is the pattern of analysis
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that is used to develop th e bending terms in the 12 x 12 coupled

tFanslatlonal mass matrix. Turning to similar coupling for axial

(lon-gltudinal) deformation, the shape functions are modified from

pure static deformation. No coupling is provided for torsion, be-

cause relationships between 2nd area moments in the KGG matrix and

2nd mass moments in the KGG matrix are highly variable for torsion.

The total translational coupled mass for a bar is shown on page 8.2-

22 of the Programmer's Manual which for convenience is duplicated

below.

[He] = m

where

w

175 0 0 0

156 0 0

156 0

0
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0
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0
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0

4_2

p

Figure 8

One of the main purposes of this paper is to explore the siq-

nifigance of the moment terms that Archer de-emphasized. I use this

word advisedly, because Archer states his general formula in 3 di-

mensions, but he applies it to only translational inertia in one

dimension. The general formula is
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= f m(x,y,z) 7i(x,y,z) 7j(x,y,z) d Vol.
ml J "Vol

Note the density "m" is written as varying in 3 dimensions and so

are the two shape functions 7 i and 7j. I was encouraged on the

basis of this generality to enquire as to the contributions from

distributions of mass over the cross-section. _hy bother to inves-

tigate these details? Well, I was provoked into this inquiry when I

was concentrating on a related topic. I was wrestling with the

problem of finding a logical analytical approach to the mass proper-

ties of non-prismatical beams when modeling with equivalent bars. I

frequently referred to the mass matrix. I was startled by the mass

matrix which was generated with the coupled mass option for a bar

with a rectangular cross-section. The moments _f inertia for bend-

ing about both transverse axes were the same. I checked the theo-

retical manual. The formula there did not discriminate by axis. I

checked John Archer's paper and the formula he published matched

that in the theoretical manual. I checked the Programmer's Manual

for the algorithm actually used for the BAR element. It did not

discriminate either. I went back to John Archer's paper and studied

it very hard. Non-prismatical beams should be much more sensitive

to transverse variations of mass, so I had the incentive to explore

Archer's general equation further. But, the translational case

brought such startling improvements over the lumping practices of

the times of the early 60's that there was no immediate incentive to

explore coupled mass properties for terms other than translational.

I proceeded _n the same spirit that Archer used. The shape function

for the slope of the static deformation would be used as the dynamic

approxlmat_on to the amplitude of the rotational acceleration at a

point. This required that the slope functions as well as displace-

ment functions for the solutions of the Bernoulli-Euler beam would

both have to be catalogued. They are shown in Figure 9.
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d0f 's

I, 2, 3, 4, 5, 6

dof 's

7, 8, 9, i0, II, 12

2 3

v2 = 1 - 3 + _ _

2 3

v..3(_I2(_)

3 2 3

v 3 = 1 - 3 2 v 9 = 3 - 2

_..-_-[_-(_3_]
'9,

6

-.)

X _ X 3 _ 3
v5 = -x + 2 = x_i _ x_-

L L 2 Vll L L 2

x !_3_85 = -i + 4 _ - 3 811 : 2 _ - 3

X 2 3 _ 3X
V6 = X - 2 -- + x = - x___+ __

L _ v12 L L 2

2 2

86 1 - 4 + 3 812 = -2 + 3

Figure 9

Now we are ready to develop the rotational coupling inertia terms.

The contribution to the end reactions due roan incremental moment
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can be written according to the Maxwell equation for concentrated

loads on a beam as

dR i = dTj(x) x el(X) where,

dTj = p Ij ej_ dx and,

dRi : aMij ..... > dMij _ = (_ lj ejdx ) ei_.

Integrate all increments over the entire length of the beam with the

appropriate slope functions taken from the listings in Figure 9, to

obtain the expression for rotational couplina inertia at end j due

to an acceleration of end i. Density and Sectional area moment are

constant over the length. The matrix for all i and j then follows.

L

= [ e (x) 8.(x) dx.Mij p Ij 0 i ]

I I I

I l

Figure i0
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Notice that torsional and axial inertias are not addressed.

consistent with Bernoulli-Euler theory which assumes no
between bending and torsion and between bending and axial.
tention of this development is to augment the mass matrix

This is
coupling
The in-

based on

translationaI distributions; so it would not supplant the COUPMASS

operation. It would be added to it. It is interesting to compare

the matrix of translational coupling with rotational coupling term

by term to gauge their relative importance. Importance will be

based on comparing magnitudes of samplings of like terms, by using a

rectangular cross-section to reflect the difference in roles about

the two axes.

Let the height to breadth ratio h/b = 3/1. In order to put corre-

sponding terms in the same dimensions, the various quantities will

be written with rectangular factors substituted into the properties:

i.e.

bh 3 hb 3
: I =

m = pAL = _bhL. Izz _ . YY _ .

Term 2,2 Translational vs. Rotational

156 36p
42---5m vs _ Izz

156 36_ bh 3

pbhL _

12 13L 12 3h 2

6-5 (pbh) --T- 6--6 (pbh) 4 L

Simplify by factoring the common coefficient. Then compare on the

basis of a short beam (L/h = 4) and a long beam (L/h = 12).

13L 3h 2 52 L 2
-7- vs 4--E ..... >

21 h _ '
Short 39.6 vs I. Long 356.5 vs i.
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Term 2,6 Translational vs Rotational

22L 22L vs
3p 3p bh 3

Izz = _-5-I-_

ii L 2 h 2 44 L 2

210 vs 120 .... > 7 h 2
vs i. Short 100.6 : i. Long 905.1 : i.

Term 3,3 Translational vs Rotational

156 16
420 m = _-_ pbhL

vs
hb 3 b 2

= pbh 10L

Short L/b = 12.

Short 534.8 : I.
Long L/b = 36.
Long 4813.7 : 1

Term 6,6 Translational vs Rotational

4L 2 L2 4pL 4pL bh 3 (pbhL) h2
420 m = _ (pbhL) vs _ Izz : _ 12 -

6 L 2

7 h 2 vs i. Short 13.7 : 1 . Long 123.4 : 1

The conclusions from these samplings is that for a typical

beam cross-section, translational inertia coupling is 2 orders of

magnitude more important than rotational inertia couplings for short

beams, and for long beams is 3 orders of magnitude more important.

I found these results amazing. I had pre-judged that when the dis-

tribution in one direction was markedly different from that in the

other direction one would find the influence of the rotational cou-

pling to be signifigant. One is comfortable with the idea that the

sectional properties in the stiffness terms are limiting the non-

dimensionalized deflections and thus are limiting the assumed trans-

lational accelerations. But the idea that the overhung moments of

the translational masses should be the overriding influence vis-a-
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vls the sum of all distributed inertlas being accelerated in rota-
tion by the beam slope leaves one uncomfortable. This result adds
furthe_ ...._ommendat_on to the contribution of John Archer for provid-
inq us-w_t_--sO advanced a tool so early in the development of finite
elements,

Experimental Results

Results of modeling for bending, axial, and torsion will be

treated separately. Bending is discussed first. The most accurate

method for simulating mass properties in bending modes is transla-

tional coupling. The rule for its use was stated by Archer in his

original paper. One must employ one grid point more than the number

of nodes for the mode associated with the highest frequency of in-

terest. This is borne out by the data compiled from the NASTRAN

runs for translational coupling modeled respectively with 2, 3, 4,

and ii points.

FREQUENCIES FOR FREE-FREE BENDING MODES MODELED WITH TRANSLATIONAL COUPLING

CIRCULAR CROSS-SECTION

TIMOSHENK0

MODE* FREQ
T2 874.92

T2 2411.68

T24728.44

T2 7815.6

II GRID POINTS

FREQ RATIO
874.97 1.00005

2412.41 1.0003

4732.45 1.00085

7834.57 1.00242

4 GRID POINTS

FREQ RATIO
879.49 1.005

2421.90 1.004

5465.33 1.156

3 GRID POINTS 2 GRID POINTS

FREQ RATIO FREQ RATIC
876.89 1.0023 1049.3 1.199_

2744.40 1.1380 3584.2 1.3797

*For a circular beam the modes in both transverse directions are the same,

they are both being represented here by the notation T2 only.

RECTANGULAR CROSS-SECTION

TIMOSHENK0 ii "GRID POINTS 4 GRID POINTS 3 GRID POINTS 2 GRID POINT_

MODE FREQ FREQ RATIO FREQ RATIO FREQ RATIO FREQ RATIC
T2 505.14 505.16 1.00005 507.77 1.005 506.27 1.0022 605.8 1.20

T2 1392.39 1392.80 1.00030 1398.28 1.004 1584.48 1.1379 2069.3 1.48

T3 1515.42 1515.49 1.00005 1523.32 1.005 1518.82 1.0022 1817.5 1.20
T2 2729.97 2732.28 1.00085 3155.40 1.156 3962.00 1.451
T3 4177.15 4178.40 1.00030 4194.85 1.004 4753.43 1.138 6207_9 11486

T2 4512.35 4523.28 1.00240 5361.27 1.188 . . .

In the two point model of the beam of circular section, the

frequency for the fundamental mode, which has 2 nodes, computes to

only 20% of the correct value. In the three point model, the fre-

quency of the fundamental is correct to 0.2%, but the 2nd bending

mode, which has three nodes, computes to only 14% of the correct
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value. In the four point model, the fundamental and 2nd bending

modes are accurate to within 0.5%, but the 3rd bending mode, which

has four nodes, computes to only 16% of the correct value. In the

ii point model, all frequencies for bending modes through the 9th

are accurate to within 0.5%, but the tenth mode, which has eleven

nodes is accurate to only 15%.

A similar pattern of accuracy evolves for the rectangular

cross-section as for the circular beam for any one type of bending

mode. Following the T2 modes to higher and higher harmonics shows

that the 2 point model is not adequate, but as soon as one more

point is added, the fundamental for the 3 point model gives 0.2_%

accuracy. That same pattern appears in following the T3 modes.

Likewise the pattern of accuracy for the 4 point model follows the

circular results taken one type of mode at a time.

Does this complete the discussion of modeling of mass for

beams? It would if the only consideration were accuracy. The cost

in manpower is in calculating the sectional properties and in pre-

paring the PBAR cards and a PARAM COUPMASS card. Computer time

would be considerable. Because the density of coupled mass matrices

of a pure series BAR model is 4% per 102 rows compared to 1% per 102

rows for the oft-used diagonal matrix or to 0.5% per 102 rows for

the scalar mass created by default from PBAR cards, If condensation

is used to reduce the order of the analysis set, the density of ma-

trices is further increased. Computer cost could decline due to

smaller order, but it could increase from being condensed to higher

density; what the net may become will depend on the connectivity of

the model (assuming that the model is other than a pure series

beam). A logical next question deals with the effect that condens-

ing has on the accuracy of the model. If one made all the right

decisions for the beams in his model and then was confronted with

the necessity to condense to small order, will condensing degrade

the model--or to put it another way, what things must be held sacred

against omitting so as to preserve a model's functional integrity.

A series of runs were made in which the ii point model with transla-

tional coupling were condensed to 2, 3, & 4 grid points.
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CONDENSATION EFFECT ON CIRCULAR BAR MODELED _qITH TRANSLATIONAL MASS COUPLING

TIM0SHENK0 ii GRID POINTS ii TO _ GP's [I TO 3 GP's ii TO 2 GP's

MODE FREQ FREQ RATIO FREQ RATIO E_EQ RATIO FREQ RATIO
T2 8?4.92 874.97 1.00005 879.49 1.005 8?6.89 1.0023 1049.3 1.120

T2 2411.68 2412.41 1.0003 2421.90 1.004 2744.40 1.138 2584.2 1.38
T2 %728.44 4732.45 1.00085 5465.33 1.156

T2 7815.6 7834._.=7 1.00242

CONDENSATION OF RECTANGULAR BAR MODELED WITH TRANSLATI0_AL MASS COUPLING

TIMOSHENK0

MODE FREQ
T2 505.14

T2 1392.39

T3 1515.42

T2 2729.97

T3 4177.15

T2 4512.35

Ii GRID POINTS

FREQ RATIO
505.16 1.00005

1392.80 1.00030

1515.49 1.00005
2732.28 1.00085

4178.40 1.00030

4523.28 1.00240

ii TO 4 GF's
FREQ RATIO

4Q_3.21 1 005

1253.79 i 004

1507.78 1 005
2c__9.19 1 156

4070.93 1 004

3886.84 1 188

ii TO 3 GP's

FREQ RATIO
482.02 1.002

1408.13 1.140

].503.41 1.002

3045.98 1.450

4620.92 1.140

4316.92

Ii TO 2 GP's

FREQ RAT I0
=_'3._.,74 1.135

1780.03 1.278

1805.78 1.192

Note that so long as enough degrees of freedom are retained

for a mode in the beam of circular section, the frequency degrades

only by a few tenths of a percent with condensation. Note also that

the accuracy of the frequency degrades markedly (jumps of 20%) when

condensation leaves insufficient dof's in the model. Exactly the

same kinds of observations can also be for the beam of _ectan_ular

cross-section, if one views bending in a given direction as a class.

Now we can geneualise by saying that translational coupling gives

precisely the same results out to five places for all modes in

a given class. More importantly, we observe _hat for an Z bendin_

class for an Z pri_matical beam, the accuracy of a coarse mesh is

exactly the same as that for startin_ _ith a fine mesh and

condensin_ to a mesh of like coarseness. A single table can

summarize the results for mass modeled with translational coupling

for all beams.

MODAL ACCURACY VS. MESH FOR BARS MODELED _ITH TRANSLATIONAL MASS COUPLING

MODE II GP's 4 GP's 3 GP's 2 GP's

IST 1.00005 1.005 1.0023 1.120
2ND 1.0003 1.004 1.138 1.380
3RD 1.00085 1.156

4TH 1.00242

Turn now from the ideal to the more traditional ways to model

mass. The lazy approach is to invest no more time to model mass

than to make an entry for density (RH0) on the material card. In so
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doing the user depends on all of NASTRANdefault conditions to take
over. The mass matrix will have only scalar terms on the diagonal
positions of translation dof's. If he does not condense and uses
GIVENS method for eigenvalue extraction, he must provide an ASETI

card specifying dof's 1,2, & 3 for all Grid Points in order to re-
move the singularities from the rotational dof's of the mass matrix.
In this case it becomes extremely important to have a fine mesh. A
series of runs were made with increasinqly fine mesh from 2, 3, 4,
5, 6, and II. These models included these properties on the PBAR
card: A, If, & I2. J was omitted. No DMI nor CONM2 cards were

used. A value was inserted for RH0 on the MAT1 card and ASETI was

set to 123 for all Grid Points.

The results of these runs are shown in the following table•

FREQUENCIES FOR FREE-FREE BEND MODES MODELED WITH SCALAR MASS ONLY 3DOF/PT
CIRCULAR CROSS-SECTION

TIMOSHENK0 ii GP'S 6 GP'S 5 GP'S 4 GP'S 3 GP'S 2 GP'S

MODE FREQ RATIO RATIO RATIO RATIO RATIO RATIO
T2 874.92 0.97017 0.892 0.775 2.908 1.239 3.097
T2 2411.68 0.95086 0.838 0.745

T2 4728.44 0.93295 0.796

T2 7815.6 0.734 0.555 . .

TIMOSHENK0

MODE FREQ
T2 505.14

T2 1392.39

T3 1515.42
T2 2729.97

T3 4177.15
T2 4512.35

RECTANGULAR CROSS-SECTION

II GRID POINTS

FREQ RATIO
490.07 0•9702

1248.10 0.8964

1500.06 0.9898
2273.90 0.8329

4054.33 0.9706
3456.05 0.7659

4 GRID POINTS

FREQ RATIO
1468.93 2.908

1534.08 1.102

4406.79 2.909

3 GRID POINTS 2 GRID POINTS

FREQ RATIO FREQ RATIO

625.72 1.239 1564.26 3.097

1877.11 1.239

For the models with only 2, 3, or 4 GP's the fundamental was

not the lowest elastic mode. Some of the spurious modes had fre-

quencies that one might expect in the range of the true modes; con-

sequently one can be easily misled by coarse models with scalar

mass. The frequencies of the true modes are off not by percentages

but by factors as high as 3. But when the mesh is fine enough, fre-

quencies accurate to within 5% are obtainable. Thus we do not sneer

at this method. We say this can be quite useful for quick and dirty

investigations of tentative designs especially in this day and age
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ORIGI m. 18
OF POOR OUALrl"y

of CAD preprocessors for generating the models where it is simple to

specify a fine mesh. Scalar mass modeling can be characterized by

the qlrl wit_ the curl in the nursery rhymes. "_hen she was good,

she was very, very good; and when she was bad sh_ was awful." The

rule of thumbfor avoiding awful results is to have from 6 to i0

more GP's than the number of nodes in the highest mode of interest.

But there is a remarkably good side to Scalar modeling, as

well. This comes about from condensing. A series of runs were made

in which the ii point Scalar model was condensed to 2, 3, & 4 GP's.

The one added feature however is that the ASET dof's were set to 5

instead of 3. 0nly torsion was omitted. In the Guyan reduction the

stiffness matrix acts as a template for the condensation of mass.

If the stiffness matrix has terms corresponding to rotational de-

grees of freedom, i.e. terms based on Ii and I2, it will cause cou-

pling in the mass matrix such that terms in the rotational positions

will also appear.

EFFECT OF CONDENSATION ON SCALAR MASS MODELS RETAINING 5 DOF'GP

CIRCULAR CROSS-SECTIONS

TIMOSHENK0

MODE FREQ
T2 874.92
T2 2411.68

T2 4728.44

T2 7815.6

TIMOSHENK0

MODE FREQ
T2 505.14

T2 1392.39

T3 1515.42

T2 2729.97

T3 4177.15

T2 4512.35

ii GRID POINTS

FREQ RATIO
848.83 0.97017

2293.17 0.95086

4411.44 0.93295

II - % POINTS

FREQ RATIO
o _.78o5_ 0.975

2301.19 0.954

5039.87 1.066

ii - 3 POINTS ii - 2

FREQ RATIO FREQ
S50.53 0.9721 i001.0

_,9.81 1.07 3192 9

POINTS

RATIO
1.144
1 o_._4

RECTANGULAR CROSS-SECTIONS

II GRID POINTS

FREQ RATIO
490.07 0.9702

1248.10 0.8964

1500.06 0.9898

2273.90 0.8329

4054.33 0.9706

3456.05 0.7659

ii - 4 POINTS

FREQ RATIO
492.35 0.975

1328.59 0.954

1477.05 0.975

2909.77 1.066

3985.77 0.954

4858.28 1.077

ii - 3 POINTS

FREQ RATIO
%91.05 0.972

1489.45 1.07

1473.16 0.972

3368.46 1.234
4468.36 1.07

FREQ RATIO
_,7.93 1.144

1843.41 1.324

1733.79 1.144

In condensing to two dof's the frequency for the fundamental

is still not good, missing the correct value by 14%, but this is a

distinct improvement over thesingle span ratio of 3. In fact it

ranks with other single span models with initially more complete
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mass inputs. Condensing to three points gives good results for the
fundamental and a fair 10% ratio for the circular and a better 7%
for the two'_ctanqular 2nd bending modes. Condensing to four

points give acceptable results out through the 4th bending mode.

A happy observation can be made here, to wit: if the initial model-

ing was made fine enough to give good results in a mode, that ac-

curac7 is maintained during condensation so long as the final mesh

retains at least one grid point more than the number of nodes in the

highest mode of interest.

The scheme that was considered to be sophisticated compared to

scalar modeling before consistent mass was available for use was the

lumping into 6x6 matrices at each point. The scheme is to take an

arbitrary amount of mass surrounding the point and assign it and all

of its distribution properties to just one point. For instance in a

single span beam, one-half of the mass would be consigned to each

end point and its center of gravity would be designated to be in-

board from each end by one quarter of the length. It is incumbent

on the user to supply 8 pieces of information about the mass for

each grid point. Total mass, location of the center of gravity with

respect to the parent grid point, and moments and products of iner-

tia with respect to the center of gravity. With symmetrical beams

such as the circular beam being run in these examples, this amounts

to the three diagonal terms of moments of inertia, mass, and x-off-

set of the center of gravity. In our case the lumped mass matrix

would be assembled internally in NASTRAN to look as follows.

m/2 0 0 I 0 0 0

m i0 m/2 0 I 0 0

mi 0
0 0 m/2 1 0 -T

0 0

0 0

o

0 I Ixx 0 0

_m_£ I o z o
2 yy

0 I 0 0 I
zz

156



Data is supplied on a C0NM2card and NASTRAN assembles it into the

local matrix as shown above. A series of runs were made in which

lumped matri_es were supplied for a single span bar, double span,

triple span, and ten-span bars. No mass was formed with PBAR's, but

only with CONM2's. The results are in the following table.

FREQUENCIES FOR FREE-FREEMODES MODELED WITH LUMPED MASS
CIRCULAR CROSS-SECTION

TIMOSHENK0 II GRID POINTS 4 GRID POINTS 3 GRID POINTS 2 GRID POINTS

MODE FREQ FREQ RATIO FREQ RATIO FREQ RATIO FREQ RATIO
T2 874.92 857.45 0.9800 787.50 0.900 764.14 0.8734 533.9 0.6102

T2 2411.68 2292.15 0.9504 1842.91 0.764 1510.17 0.6262 SPUR. .

T2 4728.44 4312.48 0.9120 2130.72 0.4506 . . •

T2 7815.6 .....

RECTANGULAR CROSS-SECTION

TIMOSHENK0 II GRID POINTS 4 GRID POINTS 3 GRID POINTS 2 GRID POINTS

MODE FREQ FREQ RATIO FREQ RATIO FREQ RATIO FREQ RATIO
T2 505.14 480.95 0.9521 442.67 0.876 431.03 0.853 299.66 0.593

T2 1392.39 1248.10 0.8964 1038.64 0_746 826.21 0.593 303.01 0.218
T3 1515.42 1500.06 0.9898 1376.55 0.908 1323.52 0.873 933.90 0.616

T2 2729.97 2273.90 0.8329 1686.38 0.618 1101.49 0.403 . .

T3 4177.15 4054.33 0.9706 3216.82 0.770 2634.75 0.631

T2 4512.35 3456.05 0.766 1819.99 0.403 1113.13 0.247 • •

Note that even with an Ii point model the best accuracy that

can be obtained is for the fundamental frequency and it varies from

1% for the stiffer rectangular to 2% for the circular and 5% for the

softer rectangular. The 2nd bending frequency is accurate to 3% for

the stiffer rectangular to 5% for the circular and only 10% for the

softer rectangular. The 3rd bending frequency is within 9% for the

circular but is off by 17% for the softer rectangular. The 4th bend-

ing is off by 14% and 23%. The 2 point models introduce spurious

modes and miss the fundamental by 40%. The 3 point models give no

spurious modes but are off the mark by 13% on the fundamental, by

38% on the frequency for 2nd bending and by 55% on that for 3rd

bending. The 4 point models give only fair results for the funda-

mental frequency--within 10%-- and poor for the rest.

Now the question is, there are times when the nature of the

structure is such that lumped mass is the only practical thing

available to the analyst, so can the situation improve with conden-

sation?
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TIMOSHENK0
MODE FREQ
T2 874.92
T2 2411.68
T2 4728.44
T2 7815.6

EFFECT OF CONDENSATIONONBARSMODELEDWITH LUMPEDMASS
CIRCULARCROSS-SECTION

ii GRID POINTS
FREQ RATIO

857.45 0.9800
2292.15 0.9504
4312.48 0.9120

ii TO 4 GP's
FREQ RATIO

861.76 0.985
2301.71 0.954
4929.05 1.042
7843.33 1.004

ii TO 3 GP's
FREQ RATIO

859.36 0.982
2604.86 1.080
6192.49 1.296
9071.65 1.161

II TO 2 GP's
FREQ RATIO
1029.6 1.1769
3386.86 1.4044

TIM0SHENK0
MODE FREQ
T2 505.14
T2 1392.39
T3 1515.42
T2 2729.97
T3 4177.15
T2 4512.35

RECTANGULARCROSS-SECTION

II GRID POINTS
FREQ RATIO

480.95 0.9521
1248.10 0.8964
1500.06 0.9898
2273.90 0.8329
4054.33 0.9706
3456.05 0.766

ii TO 4 GP's
FREQ RATIO

483.21 0.956
1253.79 0.900
1507.78 0.995
2559.19 0.937
4070.93 0.975
3886.84 0.862

ii TO 3 GP's

FREQ RATIO
482.02 0.954

1408.13 1.011

1503.41 0.992
3045.98 1.116

4620.92 1.106

4316.93 0.957

II TO 2 GP's

FREQ RATIC
573.74 1.135

1780.031.278
is05781.192

6080[22 11456

Condensation improves the performance of lumped mass modeling

by a fraction of a percent, so long as there are sufficient dof's

for a nodal pattern. In the higher modes the overshooting of the

frequency from too few dof's tends to have a beneficial effect to

counteract the overconcentration of mass. For instance in the ii to

4 point condensation the 3rd and 4th modes are within 4% and 0.4%

respectively. The fundamental can be found to within 1% when suffi-

cient dof's are retained. Once again the stiffer modes perform bet-

ter than the softer ones. The three point model shows consistency

in good behavior into harmonics higher than expected.

When I started this project, I thought that what I'm now about

to present should be saved till last because it was supposed to be

the climax. Well, it is more appropriate to characterize what I'm

about to present as re-enforcing the adage "If it ain't broke, don't

fix it." I knew that translational coupling was good, but I never

looked closely at how it compared with theory. Consequently, when I

discovered that when Archer applied the Maxwell Reciprocity to the

beam, he omitted the rotational terms, I thought I could contribute

to the effectiveness of the coupled mass approach. Here are the

"complete" results. A series of runs were made in which the mass

matrix was composed of the sum of contributions from translational

coupling and rotational coupling. Timoshenko inferred that refine-

ments would be beneficial to the higher modes when rotary inertia
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was included, so it was in the higher modes that I had expected to

see proof of this notion• The models were composed of ii , 4, 3,

and 2 polnt_ Results are tabulated below•

FREQUENCIES FOR FREE-FREE MODES MODELED WITH TRANS & ROTN COUPLING
CIRCULAR CROSS-SECTION

TIMOSHENK0 ii GRID POINTS 4 GRID POINTS 3 GRID POINTS
MODE FREQ FREQ RATIO FREQ RATIO FREQ RATIO
T2 874.92 861.74 0.9849 866.04 .990 863•59 .987

T2 2411.68 2334.10 0.9678 2343.07 0.972 2649.22 1.098

T2 4728•44 4477.47 0.9469 5144.51 1.088 6306.74 1.334

T2 7815.6 7216.31 0•9233 8494.81 1.088 9791.12 1.253
T 11675.78 10483.74 0.8970 .

TIMOSHENK0

MODE FREQ
T2 505.14

T2 1392.39
T3 1515.42

T2 2729.97

T3 4177.15

T2 4512.35

RECTANGULAR CROSS-SECTION

ii GRID POINTS

FREQ RATIO
483.20 0.9566

1268.73 0.9119

1507•54 0.9948

2350.22 0.861

4130.85 0.9898
3651.26 0.8092

4 GRID POINTS

FREQ RATIO
485.47 0.961

1273.50 0.915

1515.44 1.000

2680.70 0.982

4147.84 0.993
4259.93 0.944

3 GRID POINTS

FREQ RATIO
484.21 0.959

1434.58 1.030

1511•03 0.997

3186.08 1.398
4696.57 1.124

4791.08 1.062

2 GRID POINTS
FREQ RATIO
1030.2 1.177

3409.83 1.414

2 GRID POINTS

FREQ RATIO
574.39 1.137

1805.32 1.297

1806.25 1.192

°

Instead of producing an improvement, the added terms from ro-

tational coupling depressed the frequencies such that none came

closer than 2 orders of magnitude of those with only translational

coupling. The higher modes, instead of being improved with order

number got worse. The frequency of the fifth bending mode came no

closer than 10%. The two point combination was 2% better than the

two point translational coupling model. Neither was good. The ex-

cellent performance of the translational 3 and 4 point models of

holding to within a fraction of a percent was violated by adding

rotational coupling by several percentage points. A more appropri-

ate test seemed to be one involving a beam of unequal moments of

inertia such as a beam with a rectangular cross-section. Even here

the translational alone matched within a few tenths of a percent

while the combination with rotational coupling was off by 1% in the

stiffer direction and by 4% in the limber direction. Condensing

gave the same results as the coarser models. So it can be concluded

that rotational coupling of mass is not only not helpful, it is

harmful to the coupling method of modeling mass.
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Axial Modes

There &re only two methods available for modeling mass in the

10ngitudinalaxis of the beam. Lumping or coupling. Axial lumping

puts all ter_s on the diagonal. Lumping by default to the PBAR card

puts the center of gravity of the lumped mass at the Grid Point

while lumping using C0NM2 input allows the user to assign the center

of gravity to a logical position. But it will be shown in the ex-

ample runs later that shifting the center of gravity along the cen-

troidal axis has no effect on axial modes. 0nly the fundamental

axial frequency will be compared against the two methods of model-

ing. Runs were made with ii, 6, 5, 4, 3, and 2 points along the

beam. Their results are shown below.

AXIAL MODES OF CIRCULAR BEAM.

FUNDAMENTAL AXIAL MODE FREQUENCY FROM TIMOSHENK0 4914.57
LUMPED COUPLED

# GP FREQ RATIO FREQ RATIO
II 4894.06 0.9959 4914.16 0.99998

6 4869.39 0.9908 4912.64 0.9996
5 4833.82 0.9836 4978.61 1.0131,

4 4546.16 0.925 4797.99 0.976

3 4424.39 0.9003 4846.67 0.9862

2 3128.52 0.6366 3831.63 0.7797

* This anomaly seems to have been caused by modeling 3 points close toge-
ther in the middle, instead of spacing the points evenly.

One can reason that axial modes for prismatical beams should

be independent of shape of the cross-section, so long as Poisson

effects are not taken into account, thus it will suffice to study

axial mass modeling with a circular section. Comparing the fine

mesh models for scalar, lumping, or translational coupling indicates

that Just breaking the longitudinal mass into small pieces and dis-

tributing them amongst elastic elements has a beneficial effect.

All three fine mesh models yield results within 0.5% of The funda-

mental frequency. So the question to be answered is "How fine is

fine?" Starting at the extreme of a single span puts all the mass

at the ends with all of the elastic material in between. The fre-

quency comes to only 64% of correct. A coupled mass model of a sin-

gle span puts 5 parts out of 12 parts of the mass at either end and

Puts 2 parts into the coupling between the ends. The improves the

frequency calculation to 78% accuracy. A double span lumped model
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(3 GP) puts half the mass in the middle and one quarter at either

end. The frequency calculation improves to 90%. A coupled mass

model of a two span beam puts 5 parts in 24 at either end and i0

parts in 24 at the middle while 4 parts in 24 do the coupling. This

brings the frequency to 98.5% of actual. Going next to a 3 span

lumped model, _ of the mass is put at either end while ½ of the mass

is put at the two middle points. The frequency for this 4 point

model is 92.5% accurate. This is now compared with a 3 span coupled

model wherein 5 parts out of 36 are put at the end points; 10 parts

out of 36 are assigned to each of the middle points and the remain-

ing 6 parts are assigned to coupling between points. Here we lose

ground a little achieving only 97.6% accuracy.

If one wants to achieve the same accuracy of staying within

0.5% in axial modeling as with bending, where the rule for meshes is

1 greater than the modal nodes, one must supply 5 more Grid Pointe

than nodes in an axial mode for the coupled option and 7 more G_id

Points than nodes in an axial mode for the lumped option.

The next question to ask is whether, if one modeled with the

ideal number, one can preserve the accuracy if he were to condense

to a coarser mesh? Data was gathered by condensing the ii point

models for lumped and coupled options to meshes of 2, 3, and 4

points.

EFFECT OF CONDENSATION ON AXIAL MODES OF CIRCULAR B_AM.

FUNDAMENTAL AXIAL MODE FREQUENCY FROM TIMOSHENK0 4914.57

COND LUMPED COUPLED

AMT. FREQ RATIO FREQ RATIO
11-2 5365.34 1.0917 5391.85 1.097

11-3 5365.34 1.0917 5391.85 1.097
11-4 5048.91 1.0273 5070.99 1.032

Condensing the lumped model to 2 points degrades the axial

fundamental frequency to 9% high. Strange to say adding one more

point does not improve the accuracy one bit. Similarly condensing

the coupled model to 2 and 3 points degrades the frequency to 10%

high. A fourth point does improve the accuracy for both models to

just 3% high_ Condensing has a more drastic effect on the axial
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mode than on the bending modes. Modeling with coupling has the ad-

vantage over lumped modeling here in that one does not need to model

a fine mesh first to achieve 3% accuracy.

Torsion

The field is much more narrow when it comes to modeling the

torsional mass in beams. No coupling algorithm is available, so all

modeling is done by lumping. All of the data gathered from the runs

on torsion can be presented in one table.

FUNDAMENTAL TORSIONAL MODE OF BEAMS WITH AND WITHOUT CONDENSATION

TIMOSHENK0 CIRCULAR FN 3009.36 RECTANGULAR FN 1787.58

UNCONDENSED CONDENSED UNC0_a3ENSED CONDENSED

GP FREQ RATIO FREQ RATIO FREQ RATIO FREQ RATIO
ii 3035.19 1.009 . . 1705.11 0.967 . .

4 2819.39 0.937 3327 46 1 38 1583.89 0.889 1759 06 0 987

3 2743.90 0.912 3327.46 1.38 1541._7 0.865 1869.31 1.049

2 1940.23 0.645 3327.46 1.38 1089.98 0.612 1869.31 1.049

A fine mesh model gives accuracy to within 1% for circular and

1
3% for rectangular and it degrades slowly with _ mesh to 94% and 90%

1
with _ mesh to 91% and 87%, but a single span gives a poor 64% and

61%. Condensing from an eleven point model to a coarser one has a

uniformly degrading effect of 38% for circular, but has a uniformly

beneficial effect for rectangular. Introducing the stiffness matrix

into the condensation for rectangular sections has a different ef-

fect than circular sections in torsion because it couples according

to a stiffer pattern than that through which the mass actually acts.

Grid Point Weight Generator

It might be well to examine the relationship of the mass pro-

perties computed by the GPWG module versus the character of the ma-

trices MGG . GPWG computes the total mass of a structure, then em-

ploys a user specified reference point to locate the center of gra-

vity and for computing the moments of inertia of the distribution of

scalar mass throughout the structure. GPWG completely ignores any

moments of inertia that are supplied to the individual grid points
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of the MGG matrix. Therefore GPWG will report moments of inertia

for a model which has absolutely no rotational degrees of freedom.

GPWG gives information about the mass in a structure when viewed as

a rigid body, while MGG indicates how localized mass is modeled

amongst the elastic elements of a model. It is a good idea in a

study such as this one to include the GPWG in every run to ensure

that the rigid body properties of every model is exactly alike to

give assurance that the same structure is being treated in every

run.

Summary of Beam Findings

If all we want to model is a beam or a beam-like structure we

can form a few guide lines that can serve us well. It is when we

get to complex structures in which beams make up only a part that

the rules are less clear cut. Start with just beam-like structures.

We will separate the decision making into three parts. Even before

anything else, start with the back of an envelope and a reference

like Den Hartog (4) or Timoshenko. Determine the frequency range of

interest. Next decide what accuracy would be suitable for the task

at hand. Estimate the average properties of the beam-like struc-

ture. Use those averages in the formulas, which Den Hartog has so

logically published, to find out how many harmonics in bending, in

torsion, and in longitudinal fall into the frequency range of inter-

est. Decide on the level of detail that you want to invest and the

degree of accuracy you want to achieve in your analysis. If a

structure is in the early stage of design, many elements may be

sketchy so that the approach may be to use a generous number of gird

points in a model with primitive properties, then condense it. Then

for modeling the mass one would use the rules for a scalar model.

For bending, condense to a number of grid points equal to one more

than the number of nodes in the highest harmonic. For axial modes

condense to a grid point count equal to the number of nodes in the

highest harmonic plus 7. For torsion, try to have as many grid

points in the original model to represent the highest torsional mode

without condensing, because they are liable to be degraded.

If the object is to certify a design, one generally has a
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generous number of points in his model in order to recover stresses.

In such cases, condensation will probably result in the retention of

a mes_ of po_ts_tl%at wfll appear as a fine mesh to the vibrational

modes. It is well however that the highest torsional mode and the

highest axfal mode be represented by a margin of about ten grid

points.

One is advised to limit the use of CONM2 modeling of mass to

those situations where there is not other alternative. For example,

a hon-prismatical beam, or mounted equipment, or a non-natlve por-

tion of structure. If CONM2 elements are used with a well defined

elastic model, it would be advisable to condense it by several fac-

tors to improve the mass modeling.

Summary for General Mass Modeling

One should still be guided by the expected harmonic nodal pat h.

tern as to the minimum number of gird points to assign to a model.

For complicated structures this is not easy to estimate. As a start

one could isolate individual pieces such as beams, plates, shells,

or solids. Idealize each piece into classical closed form solution

types such as free-free, pin-clamped, etc. Consult reliable sources

for the modes and frequencies of these classical individuals, such

as Den Hartog or Leissa (5). Determine the largest nodal pattern in

the assembly, then try to extrapolate the mutual stiffening effect

after these pieces are joined for the influence on the nodal pat-

tern. You will probably have an adequate number based on the es-

timates from individual pieces. After the vibration analysis has

been rLhn, examine the nodal pattern of the highest harmonics of each

class to see if you are close to a change in sign at every grid

point. If so, you may have provided too coarse a mesh for harmonics

that couldn't be found. If there are several grid points between

nodes of the highest harmonics, you can be assured of having provid-

ed a good margin for that mode. Be especially careful in using

lumped modeling to guard against too few grid points to avoid spuri-

ous modes.
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Conclusion

The_ modeling of mass for BARelements has been reviewed based
on the accuracy to which various schemes predict the frequencies of
modes wlth-Tree_free boundary conditions only. The stiffness of

BARS did not include the elasticity due to shear deformation. Find-

ings confirmed that modeling by translational coupling will give

almost perfect results for bending by following the guide line of

one more grid point than nodes of the highest mode. Condensation

has only a slight degrading effect on frequency prediction of bend-

ing modes when modeling mass with translational coupling. Condensa-

tion has an immensely beneficial effect on the bending modes when

modeling mass with the scalar option or with CONM2 elements. Con-

densation can be tolerated for prediction of axial modes if the mar-

gin of retained grid points to nodes in the highest harmonic is gen-

erous. Condensation has a uniformly degrading effect on torsional

modes. The ground work has been laid for extending the study of

mass modeling from exclusively prismatical beams to non-prismatlcal

beams. It was found that mass modeling by translational coupling

cannot be improved upon by including rotary inertia coupling.
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