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INTRODUCTION:

The analogy between the equations of Heat Transfer and
Magnetostatics has been used by several researchers to calculate
magnetic filelds in a variety of applications and shown to give
correct results in theoretically verifiable cases. The resultant
fields and fluxes have been used to find forces upon moving
charged particles in the design of particle accelerators (1) and
upon electrical conductors in the design of electrical machinery
(2). Magnetostatic forces, due to the action of magnetic fields
on magnetically permeable bodies, are a less tractable problem.
Analytical methods (3,4,5) generally applied to obtaining an
net force on a body of iron in air have produced apparently
conflicting expressions for forces based upon the virtual work
method, calculation of Maxwell stresses, and use of a free
magnetic pole model. Carpenter hae reconciled the apparent
discrepancies (5) but the expressions obtained are not entirely
suitable for finite element analysis, as they are shown by
Carpenter to be mathematical devices to produce an equivalent
force on a body rather than a true representation of a force
distribution. While in many cases an equivalent force is all that
is required, such an approach is not appropriate to problems
involving structural deformation.

MAGNETOSTATIC EQUATIONS

The equations of Magnetostatics are based upon forces between
field sources. In the S.I. system of units, the Ampere is the
current required to produce unit force between two long parallel
conductors separated by unit distance. In the older c.g.s. e.m.u.
system, unit force was produced between unit magnetic poles in
vacuo at unit distance. The imaginary but convenient concept of a
magnetic pole 1is difficult to exprese in the modern system of
units . It is convenient to describe the properties of a magnetic
material in terms of the applied magnetic field, H, and the
volume magnetization, M, where the flux density, B, {s given by:

§ =/Ao\i+ﬂ (1)

where .is the permeability of free space. This 1s the Kennelly
SI system. In the Sommerfield S.I. system the magnetization is
dimenesionally the same as the field strength and ig also operated
on by the permeability constant to obtain B:
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§ =/uo('.'_“"!‘_") (2)

In order to use the NASTRAN heat transfer solver the equation
must be recast in the form

B=/AB (3)

where ig the permeability of the material. This formulation is
analogous to the heat transfer equation but in no way represents
the physical relationship between B and H. At the boundary
between, materials of different permeability the total magnetic
flux, , is conserved. The normal component of magnetic flux, Bn
and the tangential component of the magnetic field, Hn, are also
continuous across the interface. These conditions are essential
to all the subsequent force derivations. :

MAGNETOMECHANICAL DEVICES

A magnetic field has associated with it an energy given by the

U= \4H.48 (4)

Given that {in equation (3) the value of permeability in a
ferromagnetic material is several thousands, it is apparent that
the energy required to support a given flux density in an air gap
greatly exceeds that required if the same volume contains a
ferromagnetic material. Two categories of device utilize this
mechanically: devices employing electromagnets generate a
mechanical force to reduce the volume of an airgap, thereby
minimizing magnetic field energy, when a magnetizing force |is
generated by a coil, while in stored energy devices a permanent
field is generated by a permanent magnet, producing a force that
is eliminated by the action of an opposing electromagnet when it
is required to remove the mechanical force. The magnetic fileld
energy may be converted to kinetic energy or strain energy.

THE VIRTUAL WORK METHOD

The virtual work method is the most widely known means of
force calculation. It is generally applied by calculation of
the working gap energy, which is subsequently differentiated with
respect to a direction of motion to obtain a force in the
direction under consideration. In air, the usual working gap,

B =M, H (5)

Thus, by substitution in equation (4), an expression for air gap
energy from which forces may be derived is obtainable in certain
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geometriee. Between two large parallel plates the force per unit

F = "y poW? (&)

This formula neglects the energy changes within the magnetic
materfal, and applies to a highly idealised orientation. Further,
the result 1is a global force rather than a distributed force.
Physically, the assumptions are that the magnetic material is of
infinite permeability and that the source of magnetomotive force
(MMF), is infinitely stiff. If the field energy of the magnetic
material filling the gap is corcidered equation (6) becomes

l Moty . 2
F=hMl - e ) H (7
ADAPTION FOR FINITE ELEMENT METHOD

The finite element method carn be applied to the wvirtual work
model to obtain 3 higher degree of accuracy. Since the NASTRAN
heat Lransfer solver calculates both B and H it is possible to
obtain the energy associated with each element for an initial
configuration and geometrical perturbations thereof. If the
permeability across the element is constant, as it must be,
equation (4) becomes simply,

U = $B.H (%)

If a rigid body is being analysed, perturbation {in the sgix
degrees of freedom, with the system energy summed in each case,
should 1in theory provide complete data about the forces acting
upon the body. The advantages of the finite element approach over
analytical and boundary element methods are:

(I): Account i{s taken of field energy inside the magnetic materiales
(II): The technique comprehends non-uniform fields, leakage flux
etc. in the circuit

Since only an equivalent force is derived the approach |ie
inapplicable to problems where deformation occurs and a
distributed force is required. It is particularly suited,
however,to applications where the displacement or deformation is
conetrained to a single degree of freedom. Applications such as
linear and rotary solenoidal actuators or rotating armature
printheads may be modelled using this technique.

THE MAXWELL STRESS METHOD

Equation (8) may be rewritten:
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2 ()
U= -L}u\ H 4
2
For a spatially varying field, the equation has the more general
form
2
U = %4 S M H dxdyde (10)
F 3
glving x,y and 2 force components of the form

S C ARG

If the permeability is constant then equation (11) has a value of
zero. Concsequently, traction forces are only exerted at the
boundaries between regions of different permeability, or where
the permeability varies continuously. A spatially varying field
will not of itself produce traction forces. If a closed surface
is constructed around a magnetized part then, from equation (11)
a stress through the surface and a pressure tangential to it are

obtained, FS = é/AH‘ a (\7.)
Fp = _21-_»“7.* Q. (‘3) '

The expressiogg reduce to zero if no discontinuities in H are
enclosed. They may be resolved into components normal and
tangential to the surface:

F = %ﬂ (“nz = H:) (\4)
Fe = M Hn He (\s)

If the surface is constructed outside of a magnetic part (in free
space) then,ﬂ:’ o -Alternatively a surface may be constructed
within the part. In this latter case no field sources are
enclosed, since all field sources lie at the interface between
the part and free space, and a zero resultant force is obtained.

ADAPTION TO THE FINITE ELEMENT METHOD

Equations (14) and (15) may be applied by construction of a
surface enclosing a part, 1located arbitrarily close to the
boundary between the part and free space. This force acts thru a
closed surface on enclosed field sources, and are not necessarily
a physical representation of the true surface force distribution.
The case will now be considered where a pill-box is <constructed
normal to the boundary, of vanishingly small thickness, and
extending to both sides of the boundary. By this construction the
sources of field are localized within the box and forces may be
obtained in direction both out of and into the magnetic body:
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F‘O h t— F+£,b

where the suffixes o and i denote inside and ocutside values of
the field and permeability. If Mpis defined as the ratic of
internal to external permeability then

Fn =20 (1- 35 ) Hay (17)
Fe = o (1« }t‘) HagHeo (1)

This appears to be a local force, and reduces to equation (7)
for the case where the field is normal to the interface. The
model, however, does not 1impart physical ingsight into the

phenomena, and there are implied assumptions in the neglect of
the sides of the pill box surface. )

THE FREE POLE METHOD

The magnetization process consists of realignment of magnetic
domains in a ferromagnetic material so as to orient then with the
external magnetic field. Within the material, macroscopically,
each North pole produced will be cancelled by a South pole, and
there will be no discontinuities in H within the material. At rthe
boundaries of the material, however, the alignment (polarization)
of the domains produces free magnetic polecs. The magnetization,
M, is equal to the free pole density. The free poles are acted
upon by the field H with a force in proportion to both H and M,

E =HM (19)

The normal component of the force acting on M free poles is
obtained by considering the force which must be applied to an
increment dM, in order to move it to the interface from an
arbitrary noncoincident point. Since the free poles themselves
affect the relationship between internal and external values of
H, an integration is required to obtain the normal force:

"M i ( 2,1
F:n = So H“n'dM = Mlo H°n-H‘-b\) (203
In considering the field from the poles alone, it is physically

apparent that it must be normal to the surface on which the poles
lie. Therefore, the tangential force is simply:

FL = po Ho M (2!

These equations may be reformulated to be comparable with the
results of the other methods discussed:

211



Jz.Mo (\ - j,.") “on hl)

Mo (\-ir)“on“l‘ (13)

NASTRAN CALCULATIONS

Fn
Fe

For the theoretically verifiable case of an air gap between two
large parallel plates, forces on the plates have been calculated
from NASTRAN heat transfer output by the methods described above.
Since the methods reduce to the same theoretical base equation in
this geometry, it 1is not surprising that the results are 1in
agreement with theory and with each other. The problem of finding
a non-trivial yet theoretically verifiable test problem remains.

COMPARISON OF DERIVATIONS

Equations for a net magnetic traction force have been obtained
by virtual work and Maxwell stress methods. Distributed forces
have been obtained by the free pole method and a variation of the
Maxwell Stress method. All methods are equivalent for cases where
the magnetic field at an interface between the magnetic medium
and air 1is normal to the surface. The equations governing the
angle of field on either side of the medium are:

H{ Cosot{ = HgCosdlg = (M o)losX
H¢e Sinedg -« Ho Sinodp

where o€ is the incident angle of the internal field +*L and“o
ie the incident angle of the external field o- Thug,

tan X = H¢ gﬁxo/(ﬂoCosNo'(ﬂl,uM) (24)

For reasonable values of M, “LMO. Thus in all but extermely
saturated nmagnetic materials the normal force will be orders of
magnitude larger than the tangential forces, and the latter can
be ignored for all practical purpoces.

Although not admired by theoreticians, the polar model of
magnetism is mathematically valid and there is no reason to doubt
the results obtained above. The polarization model is based on an
analogy between electrostatic and magnetostatic phenomena which
is not entirely valid, but which provides the same results in
terms of force and energy as for the more correct domain model of
ferromagnetism. The use of analogy has been compared unfavourably
with the mathematical purity of Maxwell’s equationg, since it is
little known that these were derived using a tortuous mechanical
analog of electrostatics and magnetostatics. The Maxwell stress
method described above is one of three stress systems presented
by Maxwell, one of which is in total contradiction and has been
described by Carpenter (5) as completely useless. The discrepancy
between the Maxwell and free poles methods is likely due to the
neglect of the side surfaces of the pill-box structure described
above, and {n any case 1is of negligible magnitude.
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CONCLUSIONS

The methods described may be used with a high degree of
confidence for calculations of magnetic traction forces normal to
a4 surface. In thie circumstance all models agree, and test caseg
have resulted in the theoretically correct result. It is sghown
above that the tangential forces are in practice negligible. The
surface pole method ie pPreferable to the virtual work method
because of the necessity for more than one NASTRAN run in the
latter case, and because distributed forces are obtained. The
derivation of 1local forces from the Maxwell stress method
involves an undesireables degree of manipulation of the problem

and produces a result {n contradiction of the surface pole
method.

.
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