RASTER GRAPHICS DISPLAY LIBRARY

A Final Report of
NASA Grant NAG-1-391
Presented to

NASA Langley Research Center
ACD M/S 124A
Hampton, Virginia 23665

by

Anders Grimsrud
Graduate Research Assistant

Michael B. Stephenson, Ph.D.
Associate Professor

30 June 1987

Engineering Computer Graphics Laboratory
Civil Engineering Department
Brigham Young University
Provo, Utah 84602
(801) 378-2812

Report No. ECGL-87-03
DISCLAIMER
for
RASTER GRAPHICS DISPLAY LIBRARY

Neither Brigham Young University nor their employees makes any warranty expressed or implied, or assumes any legal responsibility for the accuracy, completeness or usefulness of the computer programs described in this document.
RASTER GRAPHICS DISPLAY LIBRARY
USERS MANUAL

Table of Contents

ALPHABETICAL LIST OF SUBROUTINES ... iii

LIST OF ROUTINES BY FUNCTION ... viii
- Groups and Items Routines .. viii
- Animation Routines ... viii
- Display Device Routines ... ix
- Transformation Routines .. ix
- Text Routines .. x
- Vector and Scalar Function Routines .. x
- Input/Output Routines ... xi
- Raster Routines .. xi
- Hidden Line Removal Routines .. xii
- Normal Creation and Manipulation Routines xii
- Clipping Routines ... xii
- Input/Output File Routines .. xii
- Other Routines (Must be included in all user applications) xii

INTRODUCTION TO THE RASTER GRAPHICS DISPLAY LIBRARY xiv
- Raster Display Systems .. xiv
- A Common Problem of Raster Display Systems xiv
- The Raster Graphics Display Library .. xiv
- How To Use This Manual ... xiv

CHAPTER SUMMARIES ... xvi
- Chapter 1 EXAMPLE PROBLEMS .. xvi
- Chapter 2 TECHNICAL REFERENCES .. xvi
- Chapter 3 COMMON BLOCK REFERENCES xvi
- Chapter 4 INCLUDE FILE REFERENCES .. xvi
- Appendix A LINK MAP .. xvi
- Appendix B AN INTRODUCTION TO HIERARCHICAL DATA STRUCTURES xvii
- Appendix C SOFTWARE INSTALLATION ... xvii

CHAPTER ONE

EXAMPLE PROBLEMS ... 1.1
- Why should you go through the examples? 1.1
- Things you should know .. 1.1
- About the display device and host computer 1.1
- EXAMPLE 1 .. 1.2
- EXAMPLE 2 .. 1.3
- EXAMPLE 3 .. 1.4
- EXAMPLE 4 .. 1.6
- EXAMPLE 5 .. 1.9
- EXAMPLE 6 .. 1.12

TABLE OF CONTENTS

1
CHAPTER TWO
TECHNICAL REFERENCES ... 2.1
See pages iii and vii for indices of the routines.

CHAPTER THREE
COMMON BLOCKS .. 3.1
CATTRI .. 3.1
CFLAGS ... 3.2
CHFWAS ... 3.4
CLIMIT ... 3.5
CMEMRY ... 3.7
HIDSTF ... 3.9
KEEP ... 3.10
MASTER ... 3.11
PIXSTF .. 3.12
RESOLT .. 3.13
VEWSTF ... 3.14
ZBUFETR .. 3.15

CHAPTER FOUR
INCLUDE FILES .. 4.1
ANIM.INC ... 4.1
CVER.INC ... 4.2
FNCT.INC ... 4.3
HIDN.INC ... 4.4
MOVL.INC ... 4.5
MSTR.INC ... 4.7
USER.INC ... 4.8

APPENDIX A
LINK MAP ... A.1

APPENDIX B
AN INTRODUCTION TO HIERARCHICAL DATA STRUCTURES B.1
Hierarchical Data Structure Terms .. B.2
What Are Groups And Items? .. B.2

APPENDIX C
SOFTWARE INSTALLATION ... C.1
Installation .. C.1
Bugs, Problems, and Comments .. C.2
ALPHABETIZED LIST OF SUBROUTINES

<table>
<thead>
<tr>
<th>Subroutine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTGRP</td>
<td>2.2</td>
</tr>
<tr>
<td>ADDCAL</td>
<td>2.3</td>
</tr>
<tr>
<td>ANFILI</td>
<td>2.4</td>
</tr>
<tr>
<td>ANFILS</td>
<td>2.5</td>
</tr>
<tr>
<td>ANIDRV</td>
<td>2.6</td>
</tr>
<tr>
<td>AROCLR</td>
<td>2.7</td>
</tr>
<tr>
<td>ATRFROM</td>
<td>2.8</td>
</tr>
<tr>
<td>AUTOON</td>
<td>2.9</td>
</tr>
<tr>
<td>BEGANI</td>
<td>2.10</td>
</tr>
<tr>
<td>CAMERA</td>
<td>2.11</td>
</tr>
<tr>
<td>CENTER</td>
<td>2.12</td>
</tr>
<tr>
<td>CHRNUM</td>
<td>2.13</td>
</tr>
<tr>
<td>CLPLIN</td>
<td>2.14</td>
</tr>
<tr>
<td>CLPPOL</td>
<td>2.15</td>
</tr>
<tr>
<td>CLPPZE</td>
<td>2.16</td>
</tr>
<tr>
<td>CNTBAR</td>
<td>2.17</td>
</tr>
<tr>
<td>CNTPRT</td>
<td>2.18</td>
</tr>
<tr>
<td>COLERR</td>
<td>2.19</td>
</tr>
<tr>
<td>COLORS</td>
<td>2.20</td>
</tr>
<tr>
<td>COPNUM</td>
<td>2.21</td>
</tr>
<tr>
<td>DEFAUT</td>
<td>2.22</td>
</tr>
<tr>
<td>DEFINE</td>
<td>2.23</td>
</tr>
<tr>
<td>DELETE</td>
<td>2.24</td>
</tr>
<tr>
<td>DISALL</td>
<td>2.25</td>
</tr>
<tr>
<td>DISTXT</td>
<td>2.26</td>
</tr>
<tr>
<td>DODITH</td>
<td>2.27</td>
</tr>
<tr>
<td>DRWABS</td>
<td>2.28</td>
</tr>
<tr>
<td>DRWNBOR</td>
<td>2.29</td>
</tr>
<tr>
<td>ERASE</td>
<td>2.30</td>
</tr>
<tr>
<td>EXTCOP</td>
<td>2.31</td>
</tr>
<tr>
<td>FNDFRM</td>
<td>2.32</td>
</tr>
<tr>
<td>FOURVW</td>
<td>2.33</td>
</tr>
<tr>
<td>FRINGE</td>
<td>2.34</td>
</tr>
<tr>
<td>FRNBAR</td>
<td>2.35</td>
</tr>
<tr>
<td>GENTXT</td>
<td>2.36</td>
</tr>
<tr>
<td>GETAGR</td>
<td>2.37</td>
</tr>
<tr>
<td>GETCLP</td>
<td>2.38</td>
</tr>
<tr>
<td>GETCOM</td>
<td>2.39</td>
</tr>
<tr>
<td>GETCOP</td>
<td>2.40</td>
</tr>
<tr>
<td>GETDEF</td>
<td>2.41</td>
</tr>
<tr>
<td>GETGRU</td>
<td>2.42</td>
</tr>
<tr>
<td>GETITM</td>
<td>2.43</td>
</tr>
<tr>
<td>GETLIM</td>
<td>2.44</td>
</tr>
<tr>
<td>GETNUM</td>
<td>2.45</td>
</tr>
<tr>
<td>GETWND</td>
<td>2.46</td>
</tr>
<tr>
<td>Command</td>
<td>Value</td>
</tr>
<tr>
<td>-------------</td>
<td>-------</td>
</tr>
<tr>
<td>GETXT</td>
<td>2.47</td>
</tr>
<tr>
<td>GLBACT</td>
<td>2.48</td>
</tr>
<tr>
<td>GLBAXS</td>
<td>2.49</td>
</tr>
<tr>
<td>GRAINT</td>
<td>2.50</td>
</tr>
<tr>
<td>GTUROX</td>
<td>2.51</td>
</tr>
<tr>
<td>GTUROY</td>
<td>2.52</td>
</tr>
<tr>
<td>GTUROZ</td>
<td>2.53</td>
</tr>
<tr>
<td>GTUSCL</td>
<td>2.54</td>
</tr>
<tr>
<td>GTUTRN</td>
<td>2.55</td>
</tr>
<tr>
<td>HIDLIN</td>
<td>2.56</td>
</tr>
<tr>
<td>HIDSUR</td>
<td>2.57</td>
</tr>
<tr>
<td>HUDITM</td>
<td>2.58</td>
</tr>
<tr>
<td>INCONG</td>
<td>2.59</td>
</tr>
<tr>
<td>INITGI</td>
<td>2.60</td>
</tr>
<tr>
<td>INQBGCC</td>
<td>2.61</td>
</tr>
<tr>
<td>INQBOX</td>
<td>2.62</td>
</tr>
<tr>
<td>INQCNT</td>
<td>2.63</td>
</tr>
<tr>
<td>INQCON</td>
<td>2.64</td>
</tr>
<tr>
<td>INQDEV</td>
<td>2.65</td>
</tr>
<tr>
<td>INQDSP</td>
<td>2.66</td>
</tr>
<tr>
<td>INQDST</td>
<td>2.67</td>
</tr>
<tr>
<td>INQFLG</td>
<td>2.68</td>
</tr>
<tr>
<td>INQFNC</td>
<td>2.69</td>
</tr>
<tr>
<td>INQFOG</td>
<td>2.70</td>
</tr>
<tr>
<td>INQFRM</td>
<td>2.71</td>
</tr>
<tr>
<td>INQFRN</td>
<td>2.72</td>
</tr>
<tr>
<td>INQGLB</td>
<td>2.73</td>
</tr>
<tr>
<td>INQLAF</td>
<td>2.74</td>
</tr>
<tr>
<td>INQLEV</td>
<td>2.75</td>
</tr>
<tr>
<td>INQLIT</td>
<td>2.76</td>
</tr>
<tr>
<td>INQPER</td>
<td>2.77</td>
</tr>
<tr>
<td>INQPRT</td>
<td>2.78</td>
</tr>
<tr>
<td>INQRAT</td>
<td>2.79</td>
</tr>
<tr>
<td>INQREF</td>
<td>2.80</td>
</tr>
<tr>
<td>INQSCL</td>
<td>2.81</td>
</tr>
<tr>
<td>INQSPL</td>
<td>2.82</td>
</tr>
<tr>
<td>INQSUB</td>
<td>2.83</td>
</tr>
<tr>
<td>INQTEN</td>
<td>2.84</td>
</tr>
<tr>
<td>INQTXT</td>
<td>2.85</td>
</tr>
<tr>
<td>INQUIR</td>
<td>2.86</td>
</tr>
<tr>
<td>INRATG</td>
<td>2.87</td>
</tr>
<tr>
<td>INSPLG</td>
<td>2.88</td>
</tr>
<tr>
<td>INT4X4</td>
<td>2.89</td>
</tr>
<tr>
<td>INTENG</td>
<td>2.90</td>
</tr>
<tr>
<td>INTHD2</td>
<td>2.91</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>--------------</td>
<td>------</td>
</tr>
<tr>
<td>INTHID</td>
<td>2.92</td>
</tr>
<tr>
<td>INTHLR</td>
<td>2.93</td>
</tr>
<tr>
<td>INTSHA</td>
<td>2.94</td>
</tr>
<tr>
<td>ITABLE</td>
<td>2.95</td>
</tr>
<tr>
<td>LCUC</td>
<td>2.96</td>
</tr>
<tr>
<td>LENTXT</td>
<td>2.97</td>
</tr>
<tr>
<td>LITSRC</td>
<td>2.98</td>
</tr>
<tr>
<td>LODCOL</td>
<td>2.99</td>
</tr>
<tr>
<td>MAPWV</td>
<td>2.100</td>
</tr>
<tr>
<td>MAXMIN</td>
<td>2.101</td>
</tr>
<tr>
<td>MODIFY</td>
<td>2.102</td>
</tr>
<tr>
<td>MOV4X4</td>
<td>2.104</td>
</tr>
<tr>
<td>MOVABS</td>
<td>2.105</td>
</tr>
<tr>
<td>MUL4X4</td>
<td>2.106</td>
</tr>
<tr>
<td>NEWGRP</td>
<td>2.107</td>
</tr>
<tr>
<td>NORMAL</td>
<td>2.108</td>
</tr>
<tr>
<td>NORMTM</td>
<td>2.109</td>
</tr>
<tr>
<td>NORVEC</td>
<td>2.110</td>
</tr>
<tr>
<td>NRMAVE</td>
<td>2.111</td>
</tr>
<tr>
<td>OPNFIL</td>
<td>2.112</td>
</tr>
<tr>
<td>OUTBOX</td>
<td>2.113</td>
</tr>
<tr>
<td>PCHECK</td>
<td>2.114</td>
</tr>
<tr>
<td>PERDST</td>
<td>2.115</td>
</tr>
<tr>
<td>PIPLIN</td>
<td>2.116</td>
</tr>
<tr>
<td>PIPSRC</td>
<td>2.118</td>
</tr>
<tr>
<td>POLFIL</td>
<td>2.120</td>
</tr>
<tr>
<td>POLSTA</td>
<td>2.121</td>
</tr>
<tr>
<td>POLYS</td>
<td>2.122</td>
</tr>
<tr>
<td>PORMAN</td>
<td>2.123</td>
</tr>
<tr>
<td>PROMPT</td>
<td>2.124</td>
</tr>
<tr>
<td>PRSPC</td>
<td>2.125</td>
</tr>
<tr>
<td>PRSSSTF</td>
<td>2.126</td>
</tr>
<tr>
<td>PURGE</td>
<td>2.127</td>
</tr>
<tr>
<td>PVEC</td>
<td>2.128</td>
</tr>
<tr>
<td>RDINIT</td>
<td>2.129</td>
</tr>
<tr>
<td>READMV</td>
<td>2.130</td>
</tr>
<tr>
<td>REDCHK</td>
<td>2.131</td>
</tr>
<tr>
<td>RESET</td>
<td>2.132</td>
</tr>
<tr>
<td>ROTATE</td>
<td>2.133</td>
</tr>
<tr>
<td>RPLCOP</td>
<td>2.134</td>
</tr>
<tr>
<td>RPLGLB</td>
<td>2.135</td>
</tr>
<tr>
<td>RUNANI</td>
<td>2.136</td>
</tr>
<tr>
<td>SAVTXT</td>
<td>2.137</td>
</tr>
<tr>
<td>SCALE</td>
<td>2.138</td>
</tr>
<tr>
<td>SETBGC</td>
<td>2.139</td>
</tr>
<tr>
<td>Command</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>------</td>
</tr>
<tr>
<td>SETBOX</td>
<td>2.140</td>
</tr>
<tr>
<td>SETCLP</td>
<td>2.141</td>
</tr>
<tr>
<td>SETCNT</td>
<td>2.142</td>
</tr>
<tr>
<td>SETCOL</td>
<td>2.143</td>
</tr>
<tr>
<td>SETCON</td>
<td>2.144</td>
</tr>
<tr>
<td>SETDEF</td>
<td>2.145</td>
</tr>
<tr>
<td>SETDSP</td>
<td>2.146</td>
</tr>
<tr>
<td>SETDST</td>
<td>2.147</td>
</tr>
<tr>
<td>SETFLG</td>
<td>2.148</td>
</tr>
<tr>
<td>SETFNC</td>
<td>2.149</td>
</tr>
<tr>
<td>SETFOG</td>
<td>2.150</td>
</tr>
<tr>
<td>SETFRN</td>
<td>2.151</td>
</tr>
<tr>
<td>SETGLB</td>
<td>2.152</td>
</tr>
<tr>
<td>SETLIN</td>
<td>2.153</td>
</tr>
<tr>
<td>SETLUT</td>
<td>2.154</td>
</tr>
<tr>
<td>SETMOD</td>
<td>2.155</td>
</tr>
<tr>
<td>SETPER</td>
<td>2.156</td>
</tr>
<tr>
<td>SETPRT</td>
<td>2.157</td>
</tr>
<tr>
<td>SETRAT</td>
<td>2.158</td>
</tr>
<tr>
<td>SETREF</td>
<td>2.159</td>
</tr>
<tr>
<td>SETSCL</td>
<td>2.160</td>
</tr>
<tr>
<td>SETSCN</td>
<td>2.161</td>
</tr>
<tr>
<td>SETSPL</td>
<td>2.162</td>
</tr>
<tr>
<td>SETSTD</td>
<td>2.163</td>
</tr>
<tr>
<td>SETSUB</td>
<td>2.164</td>
</tr>
<tr>
<td>SETTEN</td>
<td>2.165</td>
</tr>
<tr>
<td>SETWND</td>
<td>2.166</td>
</tr>
<tr>
<td>SHRINK</td>
<td>2.167</td>
</tr>
<tr>
<td>SMOCLR</td>
<td>2.168</td>
</tr>
<tr>
<td>SMOGET</td>
<td>2.169</td>
</tr>
<tr>
<td>SMOSTR</td>
<td>2.170</td>
</tr>
<tr>
<td>STCONG</td>
<td>2.171</td>
</tr>
<tr>
<td>STOREL</td>
<td>2.172</td>
</tr>
<tr>
<td>STRATG</td>
<td>2.173</td>
</tr>
<tr>
<td>STSPLG</td>
<td>2.174</td>
</tr>
<tr>
<td>STTENG</td>
<td>2.175</td>
</tr>
<tr>
<td>SUMMARY</td>
<td>2.176</td>
</tr>
<tr>
<td>TEXT</td>
<td>2.177</td>
</tr>
<tr>
<td>TMPTS</td>
<td>2.178</td>
</tr>
<tr>
<td>TMPTSN</td>
<td>2.180</td>
</tr>
<tr>
<td>TRAVRS</td>
<td>2.181</td>
</tr>
<tr>
<td>TXTDIS</td>
<td>2.183</td>
</tr>
<tr>
<td>TXTINT</td>
<td>2.184</td>
</tr>
<tr>
<td>WARPOL</td>
<td>2.185</td>
</tr>
<tr>
<td>Address</td>
<td>Page</td>
</tr>
<tr>
<td>-----------</td>
<td>------</td>
</tr>
<tr>
<td>WRITMV</td>
<td>2.186</td>
</tr>
<tr>
<td>WRTCHK</td>
<td>2.187</td>
</tr>
<tr>
<td>WRTDRV</td>
<td>2.188</td>
</tr>
<tr>
<td>WRTGEO</td>
<td>2.189</td>
</tr>
<tr>
<td>ZPLSTA</td>
<td>2.190</td>
</tr>
</tbody>
</table>
LIST OF ROUTINES BY FUNCTION

GROUPS AND ITEMS ROUTINES

<table>
<thead>
<tr>
<th>Routine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTGRP</td>
<td>2.2</td>
</tr>
<tr>
<td>ADDCAL</td>
<td>2.3</td>
</tr>
<tr>
<td>COPNUM</td>
<td>2.21</td>
</tr>
<tr>
<td>DEFAULT</td>
<td>2.22</td>
</tr>
<tr>
<td>DEFINE</td>
<td>2.23</td>
</tr>
<tr>
<td>DELETE</td>
<td>2.24</td>
</tr>
<tr>
<td>EXTCOP</td>
<td>2.31</td>
</tr>
<tr>
<td>GETAGR</td>
<td>2.37</td>
</tr>
<tr>
<td>GETCOP</td>
<td>2.40</td>
</tr>
<tr>
<td>GETDEF</td>
<td>2.41</td>
</tr>
<tr>
<td>GETGRU</td>
<td>2.42</td>
</tr>
<tr>
<td>GETITM</td>
<td>2.43</td>
</tr>
<tr>
<td>HUDITM</td>
<td>2.58</td>
</tr>
<tr>
<td>INITGI</td>
<td>2.60</td>
</tr>
<tr>
<td>INQUIR</td>
<td>2.86</td>
</tr>
<tr>
<td>MODIFY</td>
<td>2.102</td>
</tr>
<tr>
<td>NEWGRP</td>
<td>2.107</td>
</tr>
<tr>
<td>PURGE</td>
<td>2.127</td>
</tr>
<tr>
<td>RPLCOP</td>
<td>2.135</td>
</tr>
<tr>
<td>SUMMRY</td>
<td>2.176</td>
</tr>
</tbody>
</table>

ANIMATION ROUTINES

<table>
<thead>
<tr>
<th>Routine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANFILI</td>
<td>2.4</td>
</tr>
<tr>
<td>ANFILS</td>
<td>2.5</td>
</tr>
<tr>
<td>ANIDRV</td>
<td>2.6</td>
</tr>
<tr>
<td>BEGANI</td>
<td>2.10</td>
</tr>
<tr>
<td>CAMERA</td>
<td>2.11</td>
</tr>
<tr>
<td>FNDFRM</td>
<td>2.32</td>
</tr>
<tr>
<td>GLBACT</td>
<td>2.48</td>
</tr>
<tr>
<td>INCONG</td>
<td>2.59</td>
</tr>
<tr>
<td>INQCON</td>
<td>2.64</td>
</tr>
<tr>
<td>INQFRM</td>
<td>2.71</td>
</tr>
<tr>
<td>INQRTAT</td>
<td>2.79</td>
</tr>
<tr>
<td>INQSPL</td>
<td>2.82</td>
</tr>
<tr>
<td>INQSUB</td>
<td>2.83</td>
</tr>
<tr>
<td>INQTN</td>
<td>2.84</td>
</tr>
<tr>
<td>INRATG</td>
<td>2.87</td>
</tr>
<tr>
<td>INSPLG</td>
<td>2.88</td>
</tr>
</tbody>
</table>
ANIMATION ROUTINES (cont.)

<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTENG</td>
<td></td>
<td>2.90</td>
</tr>
<tr>
<td>RUNANI</td>
<td></td>
<td>2.136</td>
</tr>
<tr>
<td>SETCON</td>
<td></td>
<td>2.144</td>
</tr>
<tr>
<td>SETRAT</td>
<td></td>
<td>2.158</td>
</tr>
<tr>
<td>SETSPL</td>
<td></td>
<td>2.162</td>
</tr>
<tr>
<td>SETSUB</td>
<td></td>
<td>2.164</td>
</tr>
<tr>
<td>SETTEN</td>
<td></td>
<td>2.165</td>
</tr>
<tr>
<td>STCONG</td>
<td></td>
<td>2.171</td>
</tr>
<tr>
<td>STRATG</td>
<td></td>
<td>2.173</td>
</tr>
<tr>
<td>STSPLG</td>
<td></td>
<td>2.175</td>
</tr>
<tr>
<td>STTENG</td>
<td></td>
<td>2.176</td>
</tr>
</tbody>
</table>

DISPLAY DEVICE ROUTINES

<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLERR</td>
<td></td>
<td>2.19</td>
</tr>
<tr>
<td>DISTXT</td>
<td></td>
<td>2.26</td>
</tr>
<tr>
<td>DRWABS</td>
<td></td>
<td>2.28</td>
</tr>
<tr>
<td>ERASE</td>
<td></td>
<td>2.30</td>
</tr>
<tr>
<td>INQDEV</td>
<td></td>
<td>2.65</td>
</tr>
<tr>
<td>ITABLE</td>
<td></td>
<td>2.95</td>
</tr>
<tr>
<td>MOVABS</td>
<td></td>
<td>2.105</td>
</tr>
<tr>
<td>POLFIL</td>
<td></td>
<td>2.120</td>
</tr>
<tr>
<td>RDINIT</td>
<td></td>
<td>2.129</td>
</tr>
<tr>
<td>SETCOL</td>
<td></td>
<td>2.143</td>
</tr>
<tr>
<td>SETLN</td>
<td></td>
<td>2.153</td>
</tr>
<tr>
<td>SETLUT</td>
<td></td>
<td>2.154</td>
</tr>
<tr>
<td>SETMOD</td>
<td></td>
<td>2.155</td>
</tr>
<tr>
<td>SETSCN</td>
<td></td>
<td>2.161</td>
</tr>
</tbody>
</table>

TRANSFORMATION ROUTINES

<table>
<thead>
<tr>
<th>Routine</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATFROM</td>
<td></td>
<td>2.8</td>
</tr>
<tr>
<td>AUTOON</td>
<td></td>
<td>2.9</td>
</tr>
<tr>
<td>CENTER</td>
<td></td>
<td>2.12</td>
</tr>
<tr>
<td>FOURVW</td>
<td></td>
<td>2.33</td>
</tr>
<tr>
<td>GETWND</td>
<td></td>
<td>2.46</td>
</tr>
<tr>
<td>GTUROX</td>
<td></td>
<td>2.52</td>
</tr>
<tr>
<td>GTUROY</td>
<td></td>
<td>2.54</td>
</tr>
<tr>
<td>GTUROZ</td>
<td></td>
<td>2.55</td>
</tr>
<tr>
<td>GTUSCL</td>
<td></td>
<td>2.56</td>
</tr>
<tr>
<td>GTUTRN</td>
<td></td>
<td>2.57</td>
</tr>
<tr>
<td>INQDST</td>
<td></td>
<td>2.68</td>
</tr>
<tr>
<td>INQGLB</td>
<td></td>
<td>2.73</td>
</tr>
<tr>
<td>Transformation Routines (cont.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>INQLAF</td>
<td>2.74</td>
<td></td>
</tr>
<tr>
<td>INQPER</td>
<td>2.77</td>
<td></td>
</tr>
<tr>
<td>INQPRT</td>
<td>2.78</td>
<td></td>
</tr>
<tr>
<td>INQSCL</td>
<td>2.81</td>
<td></td>
</tr>
<tr>
<td>INT4X4</td>
<td>2.89</td>
<td></td>
</tr>
<tr>
<td>MAPWV</td>
<td>2.100</td>
<td></td>
</tr>
<tr>
<td>MOV4X4</td>
<td>2.104</td>
<td></td>
</tr>
<tr>
<td>MUL4X4</td>
<td>2.106</td>
<td></td>
</tr>
<tr>
<td>PERDST</td>
<td>2.115</td>
<td></td>
</tr>
<tr>
<td>PORMAN</td>
<td>2.123</td>
<td></td>
</tr>
<tr>
<td>PRSPC</td>
<td>2.125</td>
<td></td>
</tr>
<tr>
<td>PRSTTF</td>
<td>2.126</td>
<td></td>
</tr>
<tr>
<td>RESET</td>
<td>2.132</td>
<td></td>
</tr>
<tr>
<td>ROTATE</td>
<td>2.133</td>
<td></td>
</tr>
<tr>
<td>RPLGLOB</td>
<td>2.135</td>
<td></td>
</tr>
<tr>
<td>SCALE</td>
<td>2.138</td>
<td></td>
</tr>
<tr>
<td>SETDST</td>
<td>2.147</td>
<td></td>
</tr>
<tr>
<td>SETGLB</td>
<td>2.152</td>
<td></td>
</tr>
<tr>
<td>SETPER</td>
<td>2.156</td>
<td></td>
</tr>
<tr>
<td>SETPRT</td>
<td>2.157</td>
<td></td>
</tr>
<tr>
<td>SETSCL</td>
<td>2.160</td>
<td></td>
</tr>
<tr>
<td>SETWND</td>
<td>2.161</td>
<td></td>
</tr>
<tr>
<td>SHRINK</td>
<td>2.162</td>
<td></td>
</tr>
<tr>
<td>TMPTS</td>
<td>2.179</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Text Routines</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CHRNUM</td>
<td>2.13</td>
</tr>
<tr>
<td>GENTXT</td>
<td>2.36</td>
</tr>
<tr>
<td>INQTXT</td>
<td>2.85</td>
</tr>
<tr>
<td>SAVTXT</td>
<td>2.137</td>
</tr>
<tr>
<td>TEXT</td>
<td>2.177</td>
</tr>
<tr>
<td>TXTDIS</td>
<td>2.183</td>
</tr>
<tr>
<td>TXTINT</td>
<td>2.184</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Vector and Scalar Function Routines</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>AROCLR</td>
<td>2.7</td>
</tr>
<tr>
<td>CNTBAR</td>
<td>2.17</td>
</tr>
<tr>
<td>FRINGE</td>
<td>2.34</td>
</tr>
<tr>
<td>FRNBAR</td>
<td>2.35</td>
</tr>
</tbody>
</table>

List by function x
VECTOR AND SCALAR FUNCTION ROUTINES (cont.)

<table>
<thead>
<tr>
<th>Routine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INQCNT</td>
<td>2.63</td>
</tr>
<tr>
<td>INQDSP</td>
<td>2.66</td>
</tr>
<tr>
<td>INQFNC</td>
<td>2.69</td>
</tr>
<tr>
<td>INQFRN</td>
<td>2.72</td>
</tr>
<tr>
<td>INQLEV</td>
<td>2.75</td>
</tr>
<tr>
<td>INQREF</td>
<td>2.80</td>
</tr>
<tr>
<td>PVEC</td>
<td>2.128</td>
</tr>
<tr>
<td>SETCNT</td>
<td>2.142</td>
</tr>
<tr>
<td>SETDSP</td>
<td>2.146</td>
</tr>
<tr>
<td>SETFNC</td>
<td>2.149</td>
</tr>
<tr>
<td>SETFRN</td>
<td>2.151</td>
</tr>
<tr>
<td>SETREF</td>
<td>2.159</td>
</tr>
<tr>
<td>SETSTD</td>
<td>2.163</td>
</tr>
</tbody>
</table>

INPUT/OUTPUT ROUTINES

<table>
<thead>
<tr>
<th>Routine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>GETCOM</td>
<td>2.39</td>
</tr>
<tr>
<td>GETNUM</td>
<td>2.45</td>
</tr>
<tr>
<td>GETXT</td>
<td>2.47</td>
</tr>
<tr>
<td>LCUC</td>
<td>2.96</td>
</tr>
<tr>
<td>LENTXT</td>
<td>2.97</td>
</tr>
<tr>
<td>OPNFILE</td>
<td>2.112</td>
</tr>
<tr>
<td>PROMPT</td>
<td>2.124</td>
</tr>
</tbody>
</table>

RASTER ROUTINES

<table>
<thead>
<tr>
<th>Routine</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLORS</td>
<td>2.20</td>
</tr>
<tr>
<td>DODITH</td>
<td>2.27</td>
</tr>
<tr>
<td>HIDSUR</td>
<td>2.57</td>
</tr>
<tr>
<td>INQFOG</td>
<td>2.70</td>
</tr>
<tr>
<td>INQLIT</td>
<td>2.76</td>
</tr>
<tr>
<td>INTHD2</td>
<td>2.91</td>
</tr>
<tr>
<td>INTHID</td>
<td>2.92</td>
</tr>
<tr>
<td>INTSHA</td>
<td>2.94</td>
</tr>
<tr>
<td>LITSRC</td>
<td>2.98</td>
</tr>
<tr>
<td>PCHECK</td>
<td>2.114</td>
</tr>
<tr>
<td>PIPSRC</td>
<td>2.118</td>
</tr>
<tr>
<td>SETFOG</td>
<td>2.150</td>
</tr>
<tr>
<td>WARPOL</td>
<td>2.185</td>
</tr>
</tbody>
</table>

LIST BY FUNCTION xi
HIDDEN LINE REMOVAL ROUTINES

HIDLIN .. 2.56
INTHLR ... 2.93
LODCOL ... 2.99
STOREL ... 2.172

NORMAL CREATION AND MANIPULATION ROUTINES

NORMAL ... 2.108
NORMTM ... 2.109
NORVEC ... 2.110
NRMAVE ... 2.111
SMOCLR ... 2.163
SMOGET ... 2.169
SMOSTR ... 2.170
TMPTSN ... 2.180

CLIPPING ROUTINES

CLPLIN ... 2.14
CLPPOL ... 2.15
CLPPZE ... 2.16
GETCLLP .. 2.38

POLSTA ... 2.121
SETCLLP .. 2.141
ZPLSTA ... 2.190

INPUT/OUTPUT FILE ROUTINES

READMV ... 2.130
REDCMK ... 2.131
WRITMV ... 2.186

WRTCHK ... 2.187
WRTDRV ... 2.189
WRTGEO ... 2.190

INITIALIZATION ROUTINE (MUST BE INCLUDED IN ALL USER APPLICATIONS)

GRAINT ... 2.50

OTHER ROUTINES

CNTRPT ... 2.18
DISALL ... 2.19
DRWBOR ... 2.29
GETLIM ... 2.44
GLBAXS ... 2.49

LIST BY FUNCTION xii
OTHER ROUTINES (cont.)

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INQBGC</td>
<td>2.61</td>
</tr>
<tr>
<td>INQBOX</td>
<td>2.62</td>
</tr>
<tr>
<td>INQFLG</td>
<td>2.67</td>
</tr>
<tr>
<td>MAXMIN</td>
<td>2.100</td>
</tr>
<tr>
<td>OUTBOX</td>
<td>2.113</td>
</tr>
<tr>
<td>PIPLIN</td>
<td>2.116</td>
</tr>
<tr>
<td>POLYS</td>
<td>2.122</td>
</tr>
<tr>
<td>SETBGC</td>
<td>2.139</td>
</tr>
<tr>
<td>SETBOX</td>
<td>2.140</td>
</tr>
<tr>
<td>SETDEF</td>
<td>2.145</td>
</tr>
<tr>
<td>SETFLG</td>
<td>2.148</td>
</tr>
<tr>
<td>TRAVRS</td>
<td>2.181</td>
</tr>
</tbody>
</table>
Introduction

THE RASTER GRAPHICS DISPLAY LIBRARY

Raster Display Systems

When you use computer graphics to see complex three-dimensional data, your accuracy and productivity increase. Raster display systems show trends and patterns much more clearly than volumes of tabulated data because color and shading can be used to depict realistic scenes.

In engineering applications, color and shading may be used not only to realistically portray an object, but to present additional information. Distorted shapes and color coding of functions include failure criteria, stress or strain components, temperature, and pressure.

A Common Problem of Raster Display Systems

Many applications lack adequate presentation graphics. You may not have a set of software tools that allow you to generate quickly the raster image capabilities you need. Or the algorithms you want may be incorporated in commercial packages or proprietary codes, or be unavailable outside a specialized university environment. What you need is a raster display system that allows you to display the graphics you want.

The Raster Graphics Display Library

The Raster Graphics Display Library (RGDL) is a high level subroutine package that gives you the advanced raster graphics display capabilities you need. RGDL uses FORTRAN source code routines to build subroutines modular enough to use as stand-alone routines in a black box type of environment. With RGDL, you have a set of tools that are easily used, well documented, and error tolerant.

How To Use This Manual

This documentation is divided into four chapters and three appendices. The first chapter contains six examples you should go through if you want to learn how to use RGDL in the fastest, most complete way possible. Chapter two contains a technical reference section, chapter three a common block reference section, and chapter four a reference on include files.

The first appendix, a link map, contains information from MOVIE.BYU software and documentation. MOVIE.BYU is a general purpose computer graphics display system that uses RGDL software.

Appendix B is a section about hierarchical data structures. The third appendix contains installation information and our address.
If you want more information about each section, go to the next page or to the chapter introductions. If you want to make sure the contents on the magnetic tape you received are complete, go to page C.1. For installation information and our address, see page C.2.
CHAPTER SUMMARIES

Chapter 1 EXAMPLE PROBLEMS

The display library will be introduced to you using six example problems. When you compile and link these examples, you will get an understanding for what you can achieve using the library routines. Each example builds on the previous problem and gets more complicated from one example to the next.

You won't need to type in the example problems, because they are supplied with the software. Make sure you compile and link applications with the proper system flags set. Applications may become very large and some systems require special compiler and link options.

Chapter 2 TECHNICAL REFERENCES

Chapter three contains routines within the display library that you will call to produce raster graphics. The routines are in alphabetical order, each on a separate page. Each user-callable routine is described by function and calling parameters.

Chapter three does not contain a description of all routines in the display library, but rather only those routines that could be called by an applications program.

Chapter 3 COMMON BLOCK REFERENCES

Chapter four contains a common block reference. The chapter lists all common blocks that are used in the display library, and discusses the use of each variable within each common block.

Chapter 4 INCLUDE FILE REFERENCES

Chapter five contains a reference on the include files that are necessary to compile the display library. Each include file and its purpose are listed.

Appendix A LINK MAP

This appendix contains the link map for MOVIE.BYU version 6. MOVIE.BYU is a general purpose computer graphics display system that uses RGDL software. It uses the display library in addition to other routines, and is an excellent source as an auxiliary reference.

The link map is included to show you the amount of code that may be necessary to perform a function. The link map will also help if you don't have library utilities.
Appendix B AN INTRODUCTION TO HIERARCHICAL DATA STRUCTURES

Appendix B contains a section about creating new groups. The section will help you understand the hierarchical data structures used in RGDL. You are asked to create new groups in Examples Five and Six of Chapter One.

Appendix C SOFTWARE INSTALLATION

Appendix C contains installation information. It also gives you the address and phone number of the people you can contact if you find bugs or problems in RGDL software.
Chapter 1

EXAMPLE PROBLEMS

This chapter contains example drivers for the Raster Graphics Subroutine Library. The examples call routines described in chapter two, Technical References. You will learn how to create applications programs that use the graphics library routines. By going through the examples, you will also become familiar with many of the system's capabilities.

Why should you go through the examples?

Because you will save time and headaches. The examples are not busywork. They are six exercises that build on each other to teach you how the Raster Graphics Subroutine Library works.

You should study the examples carefully, then actually compile, link, and run them. You won't need to type them in because they are supplied on tape with the rest of the software.

Things you should know

Make sure you compile and link applications with the correct system flags set. The applications may become very large and some systems require special compiler and link options.

All examples are read in a hard-coded geometry file, EXP9.GEO. A common data base is used so you can follow along with the example problems through more complex operations. Of course, in most cases, you will want to create drivers that prompt for the geometry file names to be read into the data base.

The examples shown do not perform error checking. We strongly suggest you include error checking in applications you write.

About the display device and host computer

The examples will be most useful to you when they are run on a raster display device that allows for screen overlays, such as the Tektronix 4115.

Because no link maps are shown in the examples, the host computer you use should have a library utility. If the host computer does not have a library utility, refer to the link map in the appendix to see what routines must be linked with the drivers.

After the first example, all new additions to the next five exercises are shown in bold.
EXAMPLE 1

PROGRAM RSPEXI
C
C RASTER GRAPHICS SUBROUTINE PACKAGE EXAMPLE 1
C
C THIS EXAMPLE PROBLEM WILL READ IN A GEOMETRY FILE AND
C DISPLAY IT IN LINE DRAWING MODE WITH ALL DEFAULTS.
C
C THIS CALL IS NEEDED IN ALL PROGRAMS. IT INITIALIZES THE
C GRAPHICS PACKAGE.
C
CALL GRAINT
C
C READ IN A MOVIE.BYU GEOMETRY FILE CALLED EXP9.GEO. DO NOT READ IN
C A FUNCTION OR A DISPLACEMENT FILE.
C
CALL READMV('EXP9.GEO',' ',' ')
C
C DISPLAY LINE DRAWING PICTURE
C
CALL DISALL
STOP
END
EXAMPLE 2

PROGRAM RSPEX2

RASTER GRAPHICS SUBROUTINE PACKAGE EXAMPLE 2

THIS EXAMPLE PROBLEM ADDS A USER DEFINED LOOK FROM VECTOR TO EXAMPLE PROBLEM 1

REAL LOOKAT(3), LOOKFR(3)

C

THIS SECTION IS NEEDED IN ALL PROGRAMS. IT INITIALIZES THE GRAPHICS PACKAGE.

C

CALL GRAINT

C

READ IN A MOVIE.BYU GEOMETRY FILE CALLED EXP9.GEO. DO NOT READ IN A FUNCTION OR A DISPLACEMENT FILE.

C

CALL READMV('EXP9.GEO', ' ', ' ', ' ')

C

PROMPT FOR LOOK FROM VECTOR. SET THE LOOK AT POINT TO ZERO, AND CALL THE ROUTINE TO SET UP THE LOOK AT/FROM TRANSFORMATION.

C

WRITE(*,*),'ENTER LOOK-FROM VECTOR (X,Y,Z)'
READ(*,*)LOOKFR(1),LOOKFR(2),LOOKFR(3)
LOOKAT(1) = 0.
LOOKAT(2) = 0.
LOOKAT(3) = 0.
CALL ATFROM(LOOKAT,LOOKFR)

C

COULD ALSO DO THE ATFROM CALL BE GOING THROUGH GLBACT, THIS CALL WOULD LOOK LIKE:

CALL GLBACT('FRM',LOOKAT(1),LOOKAT(2),LOOKAT(3),LOOKFR(1),
& 'LOOKFR(2),LOOKFR(3))

C

GLBACT SHOULD BE USED IF A USER IS RUNNING ANIMATION, SINCE THIS ROUTINE WILL CAPTURE THE LOOK AT/FROM COMMAND AS A MOVEMENT THAT NEEDS TO BE ANIMATED.

C

DISPLAY LINE DRAWING OF PICTURE

C

CALL DISALL
STOP
END

Chapter One EXAMPLE PROBLEMS 1.3
EXAMPLE 3

PROGRAM RSPEX3

RASTER GRAPHICS SUBROUTINE PACKAGE EXAMPLE 3

THIS EXAMPLE PROBLEM USES THE I/O ROUTINES FOR ALL
PROMPTS AND USER INPUT. ALSO ADDED IS A USER DEFINED
ROTATION AND TRANSLATION OF PART 1. THE PICTURE IS
DISPLAYED IN LINE DRAWING MODE.

CHARACTER*(73) TEXT
CHARACTER*80 FORM
DIMENSION XNUM(40), VALUE(6)
REAL LOOKAT(3), LOOKFR(3)

C THIS SECTION IS NEEDED IN ALL PROGRAMS. IT INITIALIZES THE
C GRAPHICS PACKAGE.

CALL GRAINT

READ IN A MOVIE.BYU GEOMETRY FILE CALLED EXP9.GEO. DO NOT READ IN
A FUNCTION OR A DISPLACEMENT FILE.

CALL READMV('EXP9.GEO', ',', ' ')

PROMPT FOR LOOK FROM VECTOR. SET THE LOOK AT POINT TO ZERO, AND
CALL THE ROUTINE TO SET UP THE LOOK AT/FROM TRANSFORMATION.
PERFORM AN INTERNAL READ FOR THE PROMPT. CALL GETXT WITH THE
PROMPT, WHICH WILL RETURN THE TEXT STRING RESPONSE FROM THE USER
TEXT, AND THE NUMBER OF CHARACTERS IN TEXT - NCHAR. NEXT, CALL
GETNUM WHICH WILL PARSE THE USER TEXT STRING FOR NUMBERS. XNUM
WILL BE AN ARRAY OF NUMBERS, AND K2 IS THE NUMBER OF NUMBERS
FOUND.

WRITE(FORM,100)'ENTER LOOK-FROM VECTOR (X,Y,Z)'
CALL GETXT(TEXT,NCHAR,FOR1)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
LOOKAT(1) = 0
LOOKAT(2) = 0
LOOKAT(3) = 0
IF(K2 .EQ 0) THEN
 WRITE(FORM,100)'NO LOOK-FROM VECTOR SPECIFIED!'
 CALL PROMPT(FORM)
ELSE
 LOOKFR(1) = XNUM(1)
 LOOKFR(2) = XNUM(2)
 LOOKFR(3) = XNUM(3)
 CALL ATFROM (LOOKAT,LOOKFR)
END IF
EXAMPLE 3

PROMPT FOR AND PERFORM A ROTATION FOR PART 1

WRITE(FORM,100) 'X,Y,Z ROTATION ANGLES (DEGREES) FOR PART 1?'

CALL GETXT(TEXT,NCHAR,FORN)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
VALUE(1) = XNUM(1)
VALUE(2) = XNUM(2)
VALUE(3) = XNUM(3)

'1' IS THE PART TO MODIFY.
4 IS THE FLAG INDICATING ROTATION.
VALUE IS AN ARRAY OF NUMBERS
CORRESPONDING TO THE ACTION
FLAG.

CALL MODIFY('1',4,VALUE)

PROMPT FOR AND PERFORM A TRANSLATION FOR PART 1.

WRITE(FORM,100)'X,Y,Z TRANSLATION FOR PART 1
CALL GETXT(TEXT,NCHAR,FORN)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
VALUE(1) = XNUM(1)
VALUE(2) = XNUM(2)
VALUE(3) = XNUM(3)

THE ACTION FLAG 5 IS THE TRANSLATION FLAG

CALL MODIFY('1',5,VALUE)

DISPLAY LINE DRAWING OF PICTURE
CALL DISALL

FORMAT(A)
STOP
END
EXAMPLE 4

PROGRAM RSPEX4

RASTER GRAPHICS SUBROUTINE PACKAGE EXAMPLE 4

THIS EXAMPLE PROBLEM TAKES EXAMPLE PROBLEM 3, AND DEFINES FOUR DIFFERENT VIEW PORTS. THE FIRST VIEW PORT IS DRAWN IN LINE DRAWING MODE, THE SECOND VIEW PORT IS DRAWN IN HIDDEN LINE MODE, THE THIRD VIEW PORT IS DRAWN IN SHADED IMAGE MODE. THE FOURTH VIEW PORT IS DRAWN IN SHADED IMAGE MODE WITH DITHERING.

CHARACTER*(73) TEXT
CHARACTER*80 FORM
DIMENSION XNUM(40),VALUE(6)
REAL LOOKAT(3), LOOKFR(3)

THIS SECTION IS NEEDED IN ALL PROGRAMS. IT INITIALIZES THE GRAPHICS PACKAGE.

CALL GRAINT

READ IN A MOVIE.BYU GEOMETRY FILE CALLED EXP9.GEO. DO NOT READ IN A FUNCTION OR A DISPLACEMENT FILE.

CALL READMV('EXP9.GEO',' ',' ')

PROMPT FOR LOOK FROM VECTOR. SET THE LOOK AT POINT TO ZERO, AND CALL THE ROUTINE TO SET UP THE LOOK AT/FROM TRANSFORMATION. PERFORM AND INTERNAL READ FOR THE PROMPT. CALL GETXT WITH THE PROMPT, WHICH WILL RETURN THE TEXT STRING RESPONSE FROM THE USER - TEST, AND THE NUMBER OF CHARACTERS IN TEXT-NCHAR. NEXT, CALL GETNUM WHICH WILL PARSE THE USER TEXT STRING FOR NUMBERS. XNUM WILL BE AN ARRAY OF NUMBERS, AND K2 IS THE NUMBER OF NUMBERS FOUND.

WRITE(FORM,100) 'ENTER LOOK-FROM VECTOR (X,Y,Z)'
CALL GETXT(TEXT,NCHAR,FORM)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
LOOKAT(1) = 0.
LOOKAT(2) = 0.
LOOKAT(3) = 0.
IF(K2 .EQ. 0) THEN
 WRITE(FORM,100) 'NO LOOK-FROM VECTOR SPECIFIED!' CALL PROMPT(FORM)
ELSE
 LOOKFR(1) = XNUM(1)
 LOOKFR(2) = XNUM(2)
 LOOKFR(3) = XNUM(3)
 CALL ATFROM(LOOKAT,LOOKFR)
END IF
PROMPT FOR AND PERFORM A ROTATION FOR PART 1

WRITE(FORM,100) 'X,Y,Z ROTATION ANGLES (DEGREES) FOR PART 1?'
CALL GETXT(TEXT,NCHAR,FORM)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
VALUE(1) = XNUM(1)
VALUE(2) = XNUM(2)
VALUE(3) = XNUM(3)
CALL MODIFY('1',4,VALUE)

PROMPT FOR AND PERFORM A TRANSLATE FOR PART 1

WRITE(FORM,100) 'X,Y,Z TRANSLATION FOR PART 1?'
CALL GETXT(TEXT,NCHAR,FORM)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
VALUE(1) = XNUM(1)
VALUE(2) = XNUM(2)
VALUE(3) = XNUM(3)
CALL MODIFY('1',5,VALUE)

SET THE VIEWPORT TO THE UPPER LEFT QUARTER OF THE SCREEN
CALL SETPRT(0.,.5,.75)
DISPLAY LINE DRAWING OF PICTURE
CALL DISALL

SET THE VIEWPORT TO THE UPPER RIGHT QUARTER OF THE SCREEN
CALL SETPRT(.5,1.,.75)

SET THE HIDDEN LINE FLAG ON AND DISPLAY THE PICTURE
CALL SETFLG('HIDDEN', .TRUE.)
CALL DISALL

SET THE VIEWPORT TO THE LOWER LEFT QUARTER OF THE SCREEN
CALL SETPRT(0.,.5,.25)

SET THE SHADED IMAGE FLAG ON AND DISPLAY THE PICTURE
CALL SETFLG('SHADED', .TRUE.)
CALL DISALL

SET THE VIEWPORT TO THE LOWER RIGHT QUARTER OF THE SCREEN
CALL SETPRT(.5,1.,.25)

SET THE DITHERING FLAG ON, AND DISPLAY THE RASTER IMAGE OVER
CALL SETFLG('DITHER', .TRUE.)
CALL DISALL

C
100 FORMAT(A)
 STOP
 END
PROGRAM RSPEX5

RASTER GRAPHICS SUBROUTINE PACKAGE EXAMPLE 5

EXAMPLE 5

THIS EXAMPLE PROBLEM TAKES EXAMPLE PROBLEM 4 AND MODIFIES IT
BY CREATING A NEW GROUP. THE COLOR AND SHADING OF PART 1 IS SET,
AND THE COLOR OF THE HIGHER GROUP IS SET TO GREEN. THE UPPER
RIGHT VIEWPORT IS SHOWN IN FOUR VIEW MODE.

CHARACTER*(73) TEXT
CHARACTER*80 FORM
DIMENSION XNUM(40),VALUE(6)
REAL LOOKAT(3), LOOKFR(3)

CALL GRAINT

READ IN A MOVIE.BYU GEOMETRY FILE CALLED EXP9.GEO. DO NOT READ IN
A FUNCTION OR A DISPLACEMENT FILE.

CALL READMV('EXP9.GEO',',','','')

PROMPT FOR LOOK FROM VECTOR. SET THE LOOK AT POINT TO ZERO, AND
CALL THE ROUTINE TO SET UP THE LOOK AT/FROM TRANSFORMATION.
PERFORM AND INTERNAL READ FOR THE PROMPT. CALL GETXT WITH THE
PROMPT, WHICH WILL RETURN THE TEXT STRING RESPONSE FROM THE USER -
TEST, AND THE NUMBER OF CHARACTERS IN TEXT - NCHAR. NEXT, CALL
GETNUM WHICH WILL PARSE THE USER TEXT STRING FOR NUMBERS. XNUM
WILL BE AN ARRAY OF NUMBERS, AND K2 IS THE NUMBER OF NUMBERS
FOUND.

WRITE(FORM,100) 'ENTER LOOK-FROM VECTOR (X,Y,Z)' CALL GETXT(TEXT,NCHAR,FORM)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
LOOKAT(1) = 0.
LOOKAT(2) = 0.
LOOKAT(3) = 0.
IF(K2 .EQ. 0) THEN
WRITE(FORM,100) 'NO LOOK-FROM VECTOR SPECIFIED!' CALL PROMPT(FORM)
ELSE
LOOKFR(1) = XNUM(1)
LOOKFR(2) = XNUM(2)
LOOKFR(3) = XNUM(3)
CALL ATFROM(LOOKAT,LOOKFR)
END IF
EXAMPLE 5

PROMPT FOR AND PERFORM A ROTATION FOR PART 1

```
WRITE(FORM,100) 'X,Y,Z ROTATION ANGLES (DEGREES) FOR PART 1?'
CALL GETXT(TEXT,NCHAR,FORM)
CALL GETXT(TEXT,NCHAR,XNUM,K2)
VALUE(1) = XNUM(1)
VALUE(2) = XNUM(2)
VALUE(3) = XNUM(3)
CALL MODIFY('1',4,VALUE)
```

PROMPT FOR AND PERFORM A TRANSLATE FOR PART 1

```
WRITE(FORM,100) 'X,Y,Z TRANSLATION FOR PART 1?'
CALL GETXT(TEXT,NCHAR,FORM)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
VALUE(1) = XNUM(1)
VALUE(2) = XNUM(2)
VALUE(3) = XNUM(3)
CALL MODIFY('1',5,VALUE)
```

CREATE A NEW GROUP (SEE "AN INTRODUCTION TO HIERARCHICAL DATA STRUCTURES" IN APPENDIX B.)

```
CALL DEFINE('TOP GROUP')
```

COPY THE GROUP "ROOT" INTO THE NEW GROUP AND CALL THE COPY "COPY ROOT 1"

```
CALL ADDCAL('ROOT','COPY ROOT 1')
```

SET THE COLOR OF THE NEW COPY TO GREEN, AND SET THE COLOR OF PART 1 (PART 1 IS REALLY COPY 1) TO RED. ALSO SET THE SHADING ATTRIBUTE OF COPY 1 TO SMOOTH

```
VALUE(1) = 0.
VALUE(2) = 1.
VALUE(3) = 0.
CALL MODIFY('COPY ROOT 1',8,VALUE)
VALUE(1) = 1.
VALUE(2) = 0.
CALL MODIFY('1',8,VALUE)
VALUE(1) = 2.
CALL MODIFY('1',11,VALUE)
```

SET THE VIEWPORT TO THE UPPER LEFT QUARTER OF THE SCREEN

```
CALL SETPRT(0.,.5,.75)
```

DISPLAY LINE DRAWING OF PICTURE
CALL DISALL

SET THE VIEWPORT TO THE UPPER RIGHT QUARTER OF THE SCREEN
CALL SETPRT(0.5, 1.0, 0.75)

SET THE HIDDEN LINE FLAG ON AND DISPLAY THE PICTURE IN FOUR STANDARD VIEWS
CALL SETFLG('HIDDEN', .TRUE.)
CALL FOURVW

SET THE VIEWPORT TO THE LOWER LEFT QUARTER OF THE SCREEN
CALL SETPRT(0.0, 0.5, 0.25)

SET THE SHADED IMAGE FLAG AND DISPLAY THE PICTURE
CALL SETFLG('SHADED', .TRUE.)
CALL DISALL

SET THE VIEWPORT TO THE LOWER RIGHT QUARTER OF THE SCREEN
CALL SETPRT(0.5, 0.0, 0.25)

SET THE DITHERING FLAG ON, AND DISPLAY THE RASTER IMAGE OVER
CALL SETFLG('DITHER', .TRUE.)
CALL DISALL

100 FORMAT(A)
STOP
END
PROGRAM RSPEX6

RASTER GRAPHICS SUBROUTINE PACKAGE EXAMPLE 6

THIS EXAMPLE PROBLEM TAKES EXAMPLE PROBLEM 5 AND MODIFIES IT
BY CREATING TWO COPIES OF THE ORIGINAL GEOMETRY FILE. THE USER
IS PROMPTED FOR A TRANSLATE OF THE SECOND COPY.

CHARACTER*73) TEXT
CHARACTER*80 FORM
DIMENSION XNUM(40),VALUE(6)
REAL LOOKAT(3), LOOKFOR(3)

C- THIS SECTION IS NEEDED IN ALL PROGRAMS. IT INITIALIZES THE
GRAPHICS PACKAGE.

CALL GRAINT

READ IN A MOVIE.BYU GEOMETRY FILE CALLED EXP9.GEO. DO NOT READ IN
A FUNCTION OR A DISPLACEMENT FILE.

CALL READMV('EXP9.GEO',' ',' ')

PROMPT FOR LOOK FROM VECTOR. SET THE LOOK AT POINT TO ZERO, AND
CALL THE ROUTINE TO SET UP THE LOOK AT/FROM TRANSFORMATION.
PERFORM AND INTERNAL READ FOR THE PROMPT. CALL GETXT WITH THE
PROMPT, WHICH WILL RETURN THE TEXT STRING RESPONSE FROM THE USER -
TEST, AND THE NUMBER OF CHARACTERS IN TEXT - NCHAR. NEXT, CALL
GETNUM WHICH WILL PARSE THE USER TEXT STRING FOR NUMBERS. XNUM
WILL BE AN ARRAY OF NUMBERS, AND K2 IS THE NUMBER OF NUMBERS
FOUND.

WRITE(FORM,100) 'ENTER LOOK-FROM VECTOR (X,Y,Z)'
CALL GETXT(TEXT,NCHAR,FORM)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
LOOKAT(1) = 0.
LOOKAT(2) = 0.
LOOKAT(3) = 0.
IF(K2 .EQ. 0) THEN
WRITE(FORM,100) 'NO LOOK-FROM VECTOR SPECIFIED!'
CALL PROMPT(FORM)
ELSE
LOOKFR(1) = XNUM(1)
LOOKFR(2) = XNUM(2)
LOOKFR(3) = XNUM(3)
CALL ATFROM(LOOKAT,LOOKFR)
END IF

PROMPT FOR AND PERFORM A ROTATION FOR PART 1
EXAMPLE 6

WRITE(FORM,100) 'X,Y,Z ROTATION ANGLES (DEGREES) FOR PART 1?'

CALL GETXT(TEXT,NCHAR,FORM)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
LOOKAT(1) = (1) = XNUM(1)
LOOKAT(2) = (2) = XNUM(2)
LOOKAT(3) = (3) = XNUM(3)
CALL MODIFY('1',4,VALUE)

PROMPT FOR AND PERFORM A TRANSLATE FOR PART 1

WRITE(FORM,100) 'X,Y,Z TRANSLATION FOR PART 1?'
CALL GETXT(TEXT,NCHAR,FORM)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
VALUE(1) = XNUM(1)
VALUE(2) = XNUM(2)
VALUE(3) = XNUM(3)
CALL MODIFY('1',5,VALUE)

CREATE A NEW GROUP (SEE "AN INTRODUCTION TO HIERARCHICAL DATA
STRUCTURES" IN APPENDIX B.)

CALL DEFINE('TOP GROUP')

COPY THE GROUP "ROOT" INTO THE NEW GROUP AND CALL THE COPY "COPY
ROOT 1"

CALL ADDCAL('ROOT','COPY ROOT 1')

COPY ANOTHER COPY OF ROOT INTO THE NEW
GROUP AND CALL THE COPY
"COPY ROOT 2"

CALL ADDCAL('ROOT','COPY ROOT 2')

PROMPT THE USER FOR A TRANSLATE OF "COPY ROOT 2"

WRITE(FORM,100) 'X,Y,Z TRANSLATION FOR COPY ROOT 2?'
CALL GETXT(TEXT,NCHAR,FORM)
CALL GETNUM(TEXT,NCHAR,XNUM,K2)
VALUE(1) = XNUM(1)
VALUE(2) = XNUM(2)
VALUE(3) = XNUM(3)
CALL MODIFY('COPY ROOT 2',5,VALUE)

SET THE COLOR OF "COPY ROOT 1" TO GREEN, AND SET THE COLOR OF PART
1(PART 1 IS REALLY COPY 1) TO RED. ALSO SET THE SHADING
ATTRIBUTE OF COPY 1 TO SMOOTH

VALUE(1) = 0.
VALUE(2) = 1.
VALUE(3) = 0.
CALL MODIFY('COPY ROOT 1',8,VALUE)
VALUE(1) = 1.
VALUE(2) = 0.
CALL MODIFY('1',8,VALUE)
VALUE(1) = 2.
CALL MODIFY ('1',11,VALUE)

SET THE ViewPORT TO THE UPPER LEFT QUARTER OF THE SCREEN

CALL SETPRT(0.,.5,.75)

DISPLAY LINE DRAWING OF PICTURE

CALL DISALL

SET THE ViewPORT TO THE UPPER RIGHT QUARTER OF THE SCREEN

CALL SETPRT(.5,1.,.75)

SET THE HIDDEN LINE FLAG ON AND DISPLAY THE PICTURE IN FOUR STANDARD VIEWS

CALL SETFLG('HIDDEN',.TRUE.)
CALL FOURVW

SET THE ViewPORT TO THE LOWER LEFT QUARTER OF THE SCREEN

CALL SETPRT(0.,.5,.25)

SET THE SHADED IMAGE Flag AND DISPLAY THE PICTURE

CALL SETFLG('SHADED',.TRUE.)
CALL DISALL

SET THE ViewPORT TO THE LOWER RIGHT QUARTER OF THE SCREEN

CALL SETPRT(.5,1.,.25)

SET THE DITHERING Flag ON, AND DISPLAY THE RASTER IMAGE OVER

CALL SETFLG('DITHER',.TRUE.)
CALL DISALL

100 FORMAT(A)
STOP
END
This chapter contains detailed descriptions of all the user-callable subroutines within RGDL. Use the information to write application programs for your needs.

The routines are listed in alphabetical order, each on a separate page. The function is listed at the top of each page, together with the name of the routine. The function of each routine is given, as well as parameters, common blocks, include blocks, and other routines that are used in conjunction with the given routine.

It is unlikely you will use the routines in alphabetical order, so we have provided an index of the routines according to their function on page vi, after the table of contents. An alphabetized index is also given on page iii. The index divided into functions will probably be the easiest way to find an unknown routine with a known function.
DECLARATION: Subroutine ACTGRP (grunam)

FUNCTION: Sets the active group to an existing group.

PARAMETERS

in: grunam The name of an existing group to be set active.
character: grunam*(*)
DECLARATION: Subroutine ADDCAL (giname, cpynam)

FUNCTION: Adds a call (item or group) to the active group.

PARAMETERS

in:
giname Name of group or item to be added to the active group.

cpynam Copy name that giname will be referred to.

character: giname*(*)*, cpynam*(*)

COMMON BLOCKS:
/CHFWAS/
/CLIMIT/
/CMEMRY/
DECLARATION: Entry ANFILI (inqnam)

FUNCTION: Returns the animation extension.

An animation file extension of '@#$' indicates that animation is not open.

PARAMETERS

out: inqnam Name of the animation extension.
character: inqnam(3)

SEE ALSO: ANFILS
DECLARATION: Entry ANFILS (newnam)

FUNCTION: Stores the animation extension.

An animation file extension of 'ANFILS' indicates that animation is not open. Use ANIDRV to open animation.

PARAMETERS

in: newnam Name of the new animation extension.
character: newnam(3)

SEE ALSO: ANFILI
ANIDRV
DECLARATION: Subroutine ANIDRV

FUNCTION: Drives the animation module. ANIDRV does many basic functions like opening and closing the animation module, setting up subframes, and setting up spline control.

All animation interfacing should be performed through ANIDRV.

COMMON BLOCKS: /CHFWAS/
/DEVI/
/CMEMRY/
DECLARATION: Entry AROCLR

FUNCTION: Clears the displacement arrow arrays.

Call AROCLR once for each part containing displacement vector arrows.
ATFROM

DECLARATION: Subroutine ATFROM (lookat, lookfr)

FUNCTION: Creates the viewing matrix based on the look-from and look-at positions.

Coordinates are in world coordinates.

PARAMETERS

in: lookat Look-at position.
 lookfr Look-from position.

real: lookat(3), lookfr(3)

COMMON BLOCKS: /VEWSTF/

SEE ALSO: INQLAF
DECLARATION: Subroutine AUTOON

FUNCTION: Turns auto center off.

COMMON BLOCKS: /DEV1/
 /VEWSTF/
SUBROUTINE BEGANI (aninam)

Starts the animation, opens necessary files, and initializes all appropriate variables.

PARAMETERS

in: aninam The three character extension names used for animation files.

character: aninam(3)

COMMON BLOCKS: /CHFWAS/
/CLIMIT/
/CMEMRY/
/DEVZ/
DECLARATION: Subroutine CAMERA

FUNCTION: Acts as the interface to a camera for animation.

CAMERA gets called after each frame is displayed. You can modify this routine for anything you wish to do after a frame is shown. For example, you may want to interface to a computer-controlled camera.
DECLARATION: Subroutine CENTER

FUNCTION: Sets up the viewing matrix, if not already specified. Also sets up the window and clipping planes to center the model.

The limits of the scene to be displayed must first be set up in SETLIM. Normally, this is done by a call to TRAVRS.

COMMON BLOCKS: /DEVI/ /VEWSTF/ /RESOLT/

SEE ALSO: SETLIM GETLIM TRAVRS
DECLARATION: Subroutine CHRNUM (number, lenchr, chrint, nchars)

FUNCTION: Converts integer data into an equivalent character string.

Negative numbers are not allowed.

PARAMETERS

in: lenchr Maximum length of the string.
 number The integer number to be made into a character string.

out: chrint The character string representation of an integer.
 nchars Maximum number of characters in the string to be returned.

integer: nchars, lenchr, number

character: chrint(*)
DECLARATION: Subroutine CLPLIN (corbeg, corend, wxmin, wxmax, wymin, wymax, plot)

FUNCTION: Clips lines in x and y.

All coordinates are eye coordinates.

PARAMETERS

in: corbeg X,Y,Z coordinate triplet of beginning point; may be modified after clipping.
corend X,Y,Z ending triplet of line may be modified after clipping.
wxmin Minimum X window coordinate.
wxmax Maximum X window coordinate.
ymin Minimum Y window coordinate.
ymax Maximum Y window coordinate.

out: plot .TRUE. if line is visible or partly visible.

real: corbeg(3), corend(3), wxmin, wxmax, wymin, wymax

logical: plot

SEE ALSO: CLPPOL

CLPPZE
DECLARATION: Subroutine CLPPOL (nedges, cordin, polnin, funcin, clpfun, clpnor, wxmin, wxmax, wymin, wymax, plot)

FUNCTION: CLPPOL clips polygons against the x and y boundaries.

The coordinate, normal, and function arrays must close the polygon. For example, the first vertex location is the same as the nedges + 1 location.

All coordinates are eye coordinates.

PARAMETERS

in: clpfun .TRUE. if clipping function values are being clipped.
clpnor .TRUE. if clipping normals are being clipped.
wxmin Minimum x window coordinate.
wxmax Maximum x window coordinate.
wymin Minimum y window coordinate.
wymax Maximum y window coordinate.
nedges Number of edges in the polygon.
cordin Coordinates of polygon.
cordin(1,1) = X coordinate of first polygon vertex
cordin(2,1) = Y coordinate of first polygon vertex
Cordin may be modified after clipping.

polnin Normals of polygon after clipping.
polnin(1,1) = X component of unit normal at vertex 1
polnin(2,1) = Y component of unit normal at vertex 1
Polnin may be modified after clipping.

funcin Function values of polygon after clipping.
Funcin may be modified after clipping.

out: plot Logical; .TRUE. if polygon is visible after clipping.

real: wxmin, wxmax, wymin, wymax, cordin(3,*), polnin(3,*), funcin(*)

integer: nedges

logical: clpfun, clpnor, plot

SEE ALSO: CLPPZE CLPLIN
DECLARATION: Subroutine CLPPZE (nedges, cordin, polnin, funcin, clpfun, clpnor, zmin, zmax, plot)

FUNCTION: Clips polygons against the z boundaries.

PARAMETERS

in:
 clpfun .TRUE. if clipping function values are being clipped.
 clpnor .TRUE. if clipping normals are being clipped.
 zmin Distance from eye to nearest clipping plane.
 zmax Distance from eye to farthest clipping plane.
 nedges Number of edges in the polygon. Nedges may be modified after clipping.
 cordin Coordinates of polygon. Cordin may be modified after clipping.
 polnin Normals of polygon. Polnin may be modified after clipping.
 funcin Function values of polygon. Funcin will be modified after clipping.

out: plot .TRUE. if polygon is visible.

real: zmin, zmax, cordin (3,*), polnin (3, *), funcin (*)

integer: nedges

logical: plot, clpfun, clpnor

SEE ALSO: CLPPOL
 CLPLIN
DECLARATION: Subroutine CNTBAR

FUNCTION: Outputs contour legend bar for contours.

Contours should be set up CNTBAR before calling this routine by calling SETFRN.

SEE ALSO: SETFLG
INQFRN
SETFRN
INQFLG
SETCNT
DECALARATION: Subroutine CNTRPT (nedges, coords, xcentr)

FUNCTION: Calculates a polygon's center point.

The coordinate array should close the polygon.

PARAMETERS

in: nedges Number of vertices in a polygon.
 coords Coordinate array for polygon.

out: xcentr Coordinate array of center point.

real: coords(3,*), xcentr(3)

integer: nedges
DECLARATION: Function COLERR (color)

FUNCTION: Calculates the error between the desired color and the next lowest color in the look-up table.

PARAMETERS

in: color The intensity of either the r, g, or b component of the desired color. (The range of color is from 0.0 to 1.0).

real: color
COLORS

DECLARATION: Subroutine COLORS (nedges, aatrib, polfun, coords, polnor, colnod, trnnod)

FUNCTION: Computes color values at polygon nodes according to user-defined light sources.

All coordinates are in the eye coordinate system.

PARAMETERS

in:
nedges Number of vertices in the polygon.

aatrib Attribute list for polygon.

coords Coordinate array for polygon vertices.

polfun Polygon function values at the vertices.

polnor Normals of the polygon vertices.

out:
colnod Red, green, and blue color intensity at polygon vertices.

trnnod Transparency values of polygon vertices.

real:
aatrib(*), colnod(3,*), coords(3,*), polfun(*), trnnod(*), polnor(3,*)

integer: nedges

COMMON BLOCKS: /CFLAGS/
/CATTRI/
/CHFWAS/
/CMEMRY/
DECLARATION: Subroutine COPNUM (sordex, numcop, jroot, jchild, itorgr, cpynam)

FUNCTION: Given the copy number, gets the copy name together with its copy item and parent.

PARAMETERS

out: sordex Sort number associated with the instance.
cpyname Copy name associated with sordex.
jroot Root group number.
jchild Item or group number of the copy name.
itorgr Flag 1 if a group; 0 if an item.
numcop Copy number.

integer: sordex, jroot, jchild, itorgr, numcop
character: cpynam(*)

SEE ALSO: GETCOP
DECLARATION: Subroutine DEFALT (atlist)

FUNCTION: Sets up a default attributes list.

PARAMETERS
 out: atlist Current attribute list.
 real: atlist (maxiaa)

COMMON BLOCKS: /CATTRI/
 /CLIMIT/
DECLARATION: Subroutine DEFINE (grunam)

FUNCTION: Defines and activate a new group.

PARAMETERS

in: grunam The name of the new group to be activated.
character: grunam(*)
DECLARATION: Subroutine DELETE (cpynam)

FUNCTION: Deletes a call to an instance.

PARAMETERS

 in: cpynam Copy name to be deleted from the database.
 character: cpynam(*(*))
DECLARATION: Subroutine DISALL

FUNCTION: Displays the picture for all options.

PARAMETERS

COMMON BLOCKS: /DEVI/
/CMEMRY/
/CHFWAS/
/CLIMIT/
DECLARATION: Subroutine DISTXT (string, nchars, r, g, b, ix, iy)

FUNCTION: Displays text strings.

PARAMETERS

in: string Text string to be displayed.
nchars Number of characters in string.
r, g, b Desired color of text (0.0-1.0).
ix, iy Origin of the string in screen coordinates.

real: r, g, b

integer: nchars, ix, iy

character: string(*)
DECLARATION: Subroutine DODITH (r,g,b)

FUNCTION: DODITH performs dithering for a pixel.

PARAMETERS

in: r,g,b Color components of the pixel (0.0 - 1.0) modified on return.

real: r,g,b
DECLARATION: Subroutine DRWABS (ix,iy)

FUNCTION: Draws a line from the current location to the specified point (ix,iy).

PARAMETERS

in: ix,iy The screen coordinates of the point to be drawn to. The (0,0) point is in the lower left corner, x increases from left to right, and y increases from bottom to top. The ix,iy point should become the current point after the draw command.

integer: ix,iy
DECLARATION: Subroutine DRWBOR

FUNCTION: Draws a border around the current viewport.

When using DRWBOR, you must put graphics device into and out of the graphics mode.

SEE ALSO: SETMOD
DECLARATION: Subroutine ERASE

FUNCTION: Clears the current viewport to the background color.
DECLARATION: Subroutine EXTCOP (cpynam, ctm, atlist)

FUNCTION: Extracts transformation and attribute information for an instance.

PARAMETERS

in: cpynam The instance name.

out: atlist Attribute list for the instance.
 ctm Transformation matrix for the instance.
 real: atlist(maxatt), ctm(4,4)

character: cpynam(*)

COMMON BLOCKS: /CHFWAS/
 /CLIMIT/
 /CMEMRY/

SEE ALSO: RPLCOP
DECLARATION: Subroutine FNDFRM (chrfrm, keyfrm, subfrm, ierr)

FUNCTION: Finds the keyframe and subframe from a character string of the form keyframe.subframe.

PARAMETERS

in: chrfrm
A character string defined in the form keyfrm.subfrm.

out:
keyfrm
Keyframe number.
subfrm
Subframe number.
ierr
Error flag. 0 if operation was successful; 1 if chrfrm was not in the form keyframe.subframe.

integer: subfrm, ierr, keyframe

character: chrfrm(*)

Chapter Two TECHNICAL REFERENCES 2.32
DECLARATION: Subroutine FOURVW

FUNCTION: FOURVW displays the four standard views.

COMMON BLOCKS: /CFLAGS/
 /RESOLT/
DECLARATION: Subroutine FRINGE (nlevel, colfnc, fncllev, valnod, xir, xig, xib)

FUNCTION: Calculates color at a node of a polygon when fringes are on.

Fringes should be set up using SETFRN before calling FRINGE.

PARAMETERS

 in:
 colfnc Color at each fringe function level.
 fncllev Function value at each level.
 nlevel Number of function levels.
 valnod Function value at the node.

 out:
 xir Red color component at node.
 xig Green color component at node.
 xib Blue color component at node.

 real: colfnc(3,nlevel), fncllev(nlevel), xir, xig, xib, valnod

 integer: nlevel

SEE ALSO: SETFLG
 FRNBAR
 INQFRN
 SETFRN
 INQFLG
DECLARATION: Subroutine FRNBAR

FUNCTION: Displays fringe bar (legend) for color fringes.

Fringes should be set using SETFRN before calling FRNBAR.

SEE ALSO: FRINGE
SETFLG
INQFRN
SETFRN
INQFLG
DECLARATION: Entry GENTXT

FUNCTION: Generates text string for display.

SEE ALSO: TXTDIS
 TXTINT
DECLARATION: Entry GETAGR (i)

FUNCTION: Returns the active group number.

PARAMETERS

 out: i Active group number.
 integer: i

SEE ALSO: NEWGRP
GETCLP

DECLARATION: Entry GETCLP (znear, zfar, zdist)

FUNCTION: Gets z clipping information.

PARAMETERS

out: znear Distance from eye to the nearest z clipping plane.
 zfar Distance from eye to the farthest z clipping plane.
 zdist Distance from znear to zfar.

real: znear, zfar, zdist

SEE ALSO: SETCLP
DECLARATION: Subroutine GETCOM (text, nchar, word, n, key, kl)

FUNCTION: Parses a text string for key words.

PARAMETERS

in:
 n Number of words in the key word array.
 word Array of key words that are being looked for.
 nchar Number of characters in entered text string.
 text Entered text string to be parsed.

out:
 kl Number of key words found in the text string.
 key Array of key word starting locations in the word array that were found in the text string.

integer: n, kl, nchar, key(*)

character: text*73, word(n)*4

SEE ALSO: GETNUM
DECLARATION: Subroutine GETCOP (cpynam, iflag, jroot, jchild, itorgr, sordex, numcop, postfl)

FUNCTION: Given the copy name, gets the copy number and associated indexes.

PARAMETERS

in: cpynam Copy name to get information on.
iflag 1 if adding a copy name.
 2 if deleting a copy name.
 3 if traversing with the copy name to get group and item information.
 4 if purging all calls to an item or group.
 5 if printing the copy names to the screen.

out: postfl 0 if the copy is posted; 1 if unposted.
sordex Sort number for groups and items.
itorgr Flag 1 if a group; 0 if an item.
numcop Copy number associated with the copy name.
jroot Root group number.
jchild Item or group number of the copy name.

real: postfl

integer: iflag, sordex, itorgr, numcop

character: cpynam(*)(*)

SEE ALSO: COPNUM
DECLARATION: Entry GETDEF (numcol, red, grn, blu)

FUNCTION: Returns the red, green, and blue color intensities for color number numcol.

All color values are from 0 to 1.

PARAMETERS

out: numcol Number of the default color to return information for.
 red Red intensity default color number numcol.
 green Green intensity default color number numcol.
 blu Blue intensity default color number numcol.

real: red, grn, blu

integer: numcol

SEE ALSO: SETDEF
SUBROUTINE GETGRU (grpnam, jroot, iflag)

FUNCTION: Gets group name and group number relationships.

PARAMETERS

in: grpnam Name of the group. Grpnam will be in or out depending on iflag option).
 iflag 1 if adding a group name to the list.
 2 if deleting a group from the list.
 3 if getting the name from the number.
 4 if getting the number from the name.
 5 if listing out defined group names.
 6 if changing the name of a group.

out: jroot Number of the group. Jroot will be in or out depending on iflag option).

integer: jroot, iflag

character: grpnam(*)

SEE ALSO: GETITM
DECLARATION: Subroutine GETITM (itname, jchild, iflag)

FUNCTION: Gets item name and item number relationships.

PARAMETERS
in:
 itname Name of the item. Itname will be in or out depending on iflag option.
 iflag 1 if adding a item name to the list.
 2 if deleting a item from the list.
 3 if getting the name from the number.
 4 if getting the number from the name.
 5 if listing out defined item names.

out:
 jchild Number of the item (in or out depending on iflag option).

integer: jchild, iflag
character: itname*(*)

SEE ALSO: GETGRU
DECLARATION: Entry GETLIM (small, big)

FUNCTION: Returns the maximum and minimum model coordinates of all parts processed with MAXMIN.

PARAMETERS

out: big Maximum coordinates returned.
small Minimum coordinates returned.

real: small(3), big(3)

COMMON BLOCKS: /CLIMIT/
/MASTER/

SEE ALSO: MAXMIN
DECLARATION: Subroutine GETNUM (text, nchar, xnum, k2)

FUNCTION: Parses a text string for numbers.

PARAMETERS

in: nchar Number of characters in line of entered text.
text Entered text string to be parsed.
out: k2 Number of numbers found in the text string.
xnum Array of numbers found in the text string.
real: xnum(40)
integer: k2, nchar
character: text*73

SEE ALSO: GETCOM
DECLARATION: Entry GETWND (xmin, xmax, ymin, ymax)

FUNCTION: Inquires on the world window bounds. The scene is clipped to these values.

PARAMETERS

out: xmin Minimum x world coordinate for window currently set.
 xmax Maximum x world coordinate for window currently set.
 ymin Minimum y world coordinate for window currently set.
 ymax Maximum y world coordinate for window currently set.

real: xmin, xmax, ymin, ymax

SEE ALSO: SETWND
DECLARATION: Subroutine GETXT (text, nchar, textin)

FUNCTION: Prompts for and retrieves a text string.

PARAMETERS

in: textin Optional prompt string that will be written to display device prior to reading text string. If textin is blank, the prompt will not be displayed.

out: nchar Number of characters in line of entered text.
 text Entered text string.

integer: nchar

character: text*73, textin*80
DECLARATION: Subroutine GLBACT (code, val1, val2, val3, val4, val5, val6)

FUNCTION: Provides an interface between global actions and the animate module.

It is not necessary to call GLBACT unless animation is being done.

PARAMETERS

in: code Code that determines the operation performed in GLBACT.

'SCL' Global scales for this subroutine.
'ROT' Global rotate.
'COL' Background color.
'WND' Window.
'PER' Perspective angle.
'DST' Distance.
'FRM' Look-from position or vector.
'ATT' Look-for position.
'CLP' Z-clipping planes.
'VEW' Viewport.
'LIT' Lightsource information.
'FOG' Fog planes.

val1 Val1 through val6 are values needed to perform wanted operation.

real: val1, val2, ... val6

character: code*3

COMMON BLOCKS: /CMEMRY/
/CHFWAS/

Chapter Two TECHNICAL REFERENCES 2.48
DECLARATION: Subroutine GLBAXS (tm, atribt)

FUNCTION: Draws the global axis.

PARAMETERS

in: tm Viewing matrix.
 atribt Attribute list.

real: tm(4,4), atribt (maxiaa)

COMMON BLOCKS: /CATTRI/
 /CFLAGS/
 /CLIMIT/
 /RESOLT/
 /VEWSTF/
DECLARATION: Subroutine GRAINT

FUNCTION: Initializes the graphics package.

GRAINT must always be called before any other graphics application is called.

COMMON BLOCKS: /CATTRI/
/CHFWAS/
/CLIMIT/
/CMEMRY/
/DEVI/
/VEWSTF/
GTUROX

DECLARATION: Subroutine GTUROX (theta, ctm)

FUNCTION: Concatenates a right-handed rotation about the x-axis to a transformation matrix.

PARAMETERS

in: theta Angle in degrees.
ctm Current transformation matrix that is modified on return.

real: theta, ctm(4,4)

SEE ALSO: GTUROY
 GTUROZ
 GTUSCL
 GTUTRN
 INT4X4
DECLARATION: Subroutine GTUROY (theta, ctm)

FUNCTION: Concatenates a right-handed rotation about y-axis to a transformation matrix.

PARAMETERS

in: theta Angle in degrees.
 ctm Current transformation matrix modified on return.

real: theta, ctm(4,4)

SEE ALSO: GTUROX
 GTUROZ
 GTUSCL
 GTUTRN
 INT4X4
GTUROZ

DECLARATION: Subroutine GTUROZ (theta, ctm)

FUNCTION: Concatenates a right-handed rotation about z-axis to a transformation matrix.

PARAMETERS

in: theta Angle in degrees.
 ctm Current transformation matrix modified on return.

real: theta, ctm(4,4)

SEE ALSO: GTUROX
 GTUROY
 GTUSCL
 GTUTRN
 INT4X4
DECLARATION: Subroutine GTUSCL (sx, sy, sz, ctm)

FUNCTION: Concatenates scalings to a transformation matrix.

PARAMETERS

in:
- sx Scaling in x-direction.
- sy Scaling in y-direction.
- sz Scaling in z-direction.
- ctm Current transformation matrix modified on return.

real: sx, sy, sz, ctm(4,4)

SEE ALSO: GTUROX
- GTUROY
- GTUROZ
- GTUTRN
- INT4X4
DECLARATION: Subroutine GTUTRN (dx, dy, dz, ctm)

FUNCTION: Concatenates a translation to a transformation matrix.

PARAMETERS

in: dx Translation in x-direction.
 dy Translation in y-direction.
 dz Translation in z-direction.
 ctm Current transformation matrix modified on return.

real: dx, dy, dz, ctm(4,4)

SEE ALSO: GTUROX
 GTUROY
 GTUROZ
 GTUSCL
 INT4X4
DECLARATION: Subroutine HIDLIN (prtcol)

FUNCTION: Perform hidden line removal and contour generation.

HIDLIN can be called after all polygons have been loaded with STOREL.

PARAMETERS

in: prtcol Array of rgb colors for each part in the picture.

real: prtcol(3,*)

COMMON BLOCKS: /HIDSTF/
/KEEP/

SEE ALSO: STOREL
DECLARATION: Subroutine HIDSUR

FUNCTION: Performs hidden surface removal.

HIDSUR can be called after calls to INTHID and INTHD2, and after all polygons have been packed down.

COMMON BLOCKS: /RESOLT/
/CMEMRY/
/CHFWAS/

SEE ALSO: INTHID
INTHD2
DECLARATION: Subroutine HUDITM (jpar, jitm, jcopy)

FUNCTION: Deletes an item call from the hierarchical data structure.

PARAMETERS:

in: jpar Parent group number.
 jcopy Instance copy number.
 jitm Item number.

integer: jpar, jcopy, jitm
DE CLARATION: Entry INCONG (congin)

FUNCTION: Returns the continuity for the look-at and look-from locations for animation.

PARAMETERS

out: congin Array of continuity values.

real: congin(maxprt,2)
DECLARATION: Subroutine INITGI (grpdex, grsort, trndex, gstart, sgrcnt, sitcnt, namgrp, namitm, igrupa, ichida, iorga, numcpy, namcpy)

FUNCTION: Initializes groups and items.

PARAMETERS

in:
grpdex Group number array.
grsort Group sort array.
igrupa Root group array.
trndex Transformation number index array.
gstart Group start array.
sgrcnt Subgroup counter array.
sitcnt Subitem counter array.
namgrp Group names array.
namitm Item names array.
ichida Child array.
iorga Item or group flag array.
numcpy Copy number array.
namcpy Copy name array.

integer:
namgrp(maxchr,0:maxgrp)
namitm(maxchr,0:maxitm)
namcpy(maxchr,0:maxins)
igrupa(maxins)
ichida(maxins)
iorga(maxins)
numcpy(maxins)
grpdex(maxins)
grsort(maxins)
trndex(maxins)
gstart(maxgrp)
sgrcnt(maxgrp)
sitcnt(maxgrp)
DECLARATION: Entry INQBGC (red, green, blue)

FUNCTION: Returns on the background color.

All values are from 0 to 1.

PARAMETERS

out: red Red intensity of background color.
green Green intensity of background color.
blue Blue intensity of background color.

real: red, green, blue

SEE ALSO: SETBGC
Declaration: Entry INQBOX (npart, cormax, cormin)

Function: Returns the x, y, z limits of a bounding box for an instance.

Parameters:

- **In:**
 - npart: Number of parts in the model.
 - cormax: Maximum x, y, and z coordinates of box.
 - cormin: Minimum x, y, and z coordinates of box.

- **Real:** cormax(3), cormin(3)

- **Integer:** npart

See Also: SETBOX
DECLARATION: Entry INQCNT (iflag)

FUNCTION: Returns the number of defined contour levels.

PARAMETERS

out: iflag Number of contour levels to be displayed.

integer: iflag

SEE ALSO: SETCNT
DECLARATION: Entry INQCON (coninq)

FUNCTION: Returns the instance continuities at the keyframes for animation.

PARAMETERS

out: coninq Array of continuities.
real: coninq(maxfrm,maxprt)
DECLARATION: Subroutine INQDEV (shaded, polfil, hrdwar)

FUNCTION: Checks to see if the device has special hardware capabilities that are being taken advantage of in display. INQDEV also checks to see if the device can fill polygons or do shading.

PARAMETERS

out: hrdwar .TRUE. if special hardware available.
 polfil .TRUE. if polygon fills available.
 shaded .TRUE. if shaded images possible.

logical: hrdwar, polfil, shaded
INQDSP

DECLARATION: Entry INQDSP (xdis, ydis, zdis, valnod)

FUNCTION: Returns the magnitude of a displacement at a node.

PARAMETERS

in: xdis X displacement of a node.
ydis Y displacement of a node.
zdis Z displacement of a node.

out: valnod Magnitude of displacement of the node.

real: xdis, ydis, zdis, valnod
DECLARATION: Entry INQDST (dist)

FUNCTION: Inquires distance from eye to look-at point.

Use INQDST only in perspective angle mode and when not doing auto center.

PARAMETERS

in: dist Distance from eye to look-at point.

real: dist

COMMON BLOCKS: /VEWSTF/

SEE ALSO: SETDST
DECLARATION: Entry INQFLG (cflag, lflag)

FUNCTION: Inquires on global flags set.

PARAMETERS

in: cflag Key that indicates what is being inquired on one of the following:

 'ALIA' Anti-aliasing flag.
 'SHDO' Shadow flag.
 'AXIS' Axis are to be drawn flag.
 'BOUN' Draw bounding box instead of model flag.
 'BORD' Draw border flag.
 'CENT' Auto center flag.
 'COLO' Draw colored lines flag.
 'DISP' Displacements are performed flag.
 'DITH' Dithering status flag.
 'ELEM' Element labeling flag.
 'FOUR' Four view flag.
 'GLAS' Transparency flag.
 'HAZE' Haze/fog flag.
 'HIDD' Hidden line flag.
 'LABE' Label contours flag.
 'LEG' Display contour legend flag.
 'NODE' Node labeling flag.
 'ONED' Warped polygons on edge flag.
 'OVER' Overlay flag.
 'PERA' Perspective or windowing toggle flag.
 'PERS' Perspective flag.
 'POLY' Polygon clipping flag.
 'POOR' Poorman flag.
 'SHAD' Shaded images flag.
 'SYMM' Symmetric contours or fringes flag.
 'VECT' Vector arrows flag.
 'WARP' Function warping flag.
 'TEXT' Text display flag.
 'TK41' Tektronix 4129 hardware flag.
 'LABV' Label for views flag.
 'PLY' Polygon fill shaded images flag.

out: lflag .TRUE. or .FALSE. status of cflag.

integer: iflag
character: cflag(*)

COMMON BLOCKS: /CFLAGS/

SEE ALSO: SETFLG
ENTRY: INQFNC (nlevel, valmin, valmax)

FUNCTION: Returns the number of color fringes set, and the minimum and maximum range of fringes.

SETFNC should be called before calling INGFNC.

PARAMETERS

out: nlevel Number of function levels defined.
valmin Minimum value of color fringes.
valmax Maximum value of color fringes.

real: valmin, valmax

integer: nlevel

SEE ALSO: SETFNC
INQFOG

DECLARATION: Entry INQFOG (dstner, dstfar)

FUNCTION: Returns the distance to the nearest and farthest fog planes.

PARAMETERS

out: dstnera Distance to nearest fog plane.
 dstfar Distance to farthest fog plane.

real: dstner, dstfar

SEE ALSO: SETFOG
DECLAIRATION: Entry INQFRM (numfrm)

FUNCTION: Returns on the animation keyframe being worked on.

You should call ANFILI before calling INQFRM to see if animation is really going on.

PARAMETERS

out: numfrm The number of the keyframe being worked on.

integer: numfrm

SEE ALSO: SETFRM ANFILI
DECLARATION: Entry INQFRN (iflag)

FUNCTION: Returns the number of fringe levels.

PARAMETERS

 - **out:** iflag Number of fringe levels to be displayed.
 - **integer:** iflag

SEE ALSO: SETFRN
DECLARATION: Entry INQGLB (tm)

FUNCTION: Returns the global transformation matrix.

PARAMETERS

out: tm Transformation matrix.
real: tm(4,4)

SEE ALSO: SETGLB
ROTATE
SCALE
RESET
Subroutine INQLAF (lookat, lookfr, icentr)

Returns the look-at and look-from position. If icentr is .TRUE., INQLAF will return a vector for lookfr.

PARAMETERS

in: icentr .TRUE. if auto-center is on.

out: lookat Look-at position.
 lookfr Look-from position.

real: lookat(3), lookfr(3)

logical: icentr

COMMON BLOCKS: /VEWSTF/
INQLEV

DECLARATION: Entry INQLEV (nlevel, colfnc, fnclcv)

FUNCTION: Inquires on the number of function levels, and the function value and color used with each level for fringes.

PARAMETERS

out: nlevel Number of function levels defined.
colfnc Array of colors at each function level.
fnclcv Array of function values at each level.
real: colfnc (3, maxlev), fnclcv (3, maxlev)
integer: nlevel
DECLARATION: Subroutine INQLIT (litnum, xltint, litloc, xltxyz)

FUNCTION: Given the light source number, INQLIT returns intensity of the light, whether or not it is at the eye of the observer, and returns its position if not at the eye of the observer.

PARAMETERS

in: litnum Maximum number of lights allowed.

out: xltint Light source intensity.
 litloc Light source location flag:
 0 - at the eye of the observer
 1 - at a specified location
 2 - on a specified vector at infinity
 xltxyz x,y,z light source locations.

real: xltint, xltxyz (3)

integer: litnum, litloc

COMMON BLOCKS: /CHFWAS/
 /CMEMRY/

SEE ALSO: LITSRC
DECLARATION: Entry INQPER (anginq)

FUNCTION: Inquires perspective angle.

Use INQPER only if you are in the perspective mode.

PARAMETERS

out: anginq Perspective angle that is currently set (in degrees).

real: anginq

SEE ALSO: SETPER INQFLG
DE CLA R AT I O N: Entry INQPRT (ileft, iright, ibottm, itop)

F U N CT I O N: Returns the viewport boundaries.

 All coordinates are screen coordinates.

P A R A M E T E R S

 out: ileft Left viewport boundary.
 iright Right viewport boundary.
 ibottm Bottom viewport boundary.
 itop Top viewport boundary.

 integer: ileft, iright, itop, ibottm

S E E A L S O: SETPRT
DECLEARATION: Entry INQRAT (speed)

FUNCTION: Returns the instance rates at the keyframes for animation.

PARAMETERS

out: speed Array of rates.
real: speed(maxfrm,maxprt)
DECLAARATION: Entry INQREF (ncolor, colfnc)

FUNCTION: Inquires on the reference colors for color fringes.

PARAMETERS

out: ncolor Number of reference colors defined.
colfnc Array of colors at each function level.

real: colfnc (3, maxlev)

integer: ncolor

SEE ALSO: INQLEV
INQFNC
SETREF
DECLARATION: Entry INQSCL (scalex, scaley)

FUNCTION: Inquires on the window to viewport scale factors.

SETSCL must be called before calling this routine.

PARAMETERS

out: scalex X direction scale factor.
scaley Y direction scale factor.

real: scalex, scaley

COMMON BLOCKS: /RESOLT/

SEE ALSO: SETSCL
DECLARATION: Entry INQSPL (splinq)

FUNCTION: Returns the instance on spline flags at the keyframes for animation.

PARAMETERS

out: splinq Array of spline flags for global.

real: splinq(maxfrm,maxprt)
DECLARATION: Entry INQSUB (isub)

FUNCTION: Returns the number of subframes that exist between the frames for animation.

PARAMETERS

out: isub Array of subframes.

integer: isub(maxfrm)

SEE ALSO: INQFRM ANFILI
DECLARATION: Entry INQTEN (teninq)

FUNCTION: Returns the instance tensions at the keyframes for animation.

PARAMETERS

out: teninq Array of tension for global.
real: teninq(maxfrm, maxprt)
DECLARATION: Entry INQTXT (mesage, xsize, ysize, twodim, xpos, ypos, zpos, xang, yang, zang, r, g, b, xslant, i, nsav)

FUNCTION: Inquires on the text string attributes.

PARAMETERS

in:
- **i** Index of text string to retrieve.

out:
- **nsav** Total number of stored messages.
- **mesage** The text string array.
- **xsize** X dimension factor.
- **ysize** Y dimension factor.
- **twodim** If .TRUE. message is 2-D. If .FALSE., strings are in 3-D text.
- **xpos** X position of text string in world coordinate.
- **ypos** Y position of text string in world coordinate.
- **zpos** Z position of text string in world coordinate.
- **xang** X directional vector.
- **yang** Y directional vector.
- **zang** Z directional vector. Angle of text string if 2-d.
- **r, g, b** Red, green and blue color values.
- **xslant** Rotation about x-axis for 3-d text string in degrees.

real:
- **xsize, ysize, twodim, xpos, ypos, xang, yang, zang, r, g, b, xslant**

integer:
- **i, nsav**

character:
- ***80 mesage**

SEE ALSO: SAVTXT
DECLARATION: Subroutine INQUIR (name)

FUNCTION: Inquires and prints attribute list for an item or group.

PARAMETERS

in: name Copy name.

character: name*(*)

Chapter Two TECHNICAL REFERENCES 2.86
DECLARATION: Entry INRATG (ratgin)

FUNCTION: Returns the array of rates for global animation parameters.

PARAMETERS

out: ratgin Array of rates for global values.
real: ratgin(maxfrm,ll+litnum)
DECLARATION: Entry INSPLG (onsgin)

FUNCTION: Inquire onspline flag array for the look-at and look-from locations for animation.

PARAMETERS

out: onsgin Array of onspline flags for instances.
real: onsgin(maxfrm,2)
DECLARATION: Subroutine INT4X4 (trnfm)

FUNCTION: Initializes a transformation matrix to the identity matrix.

PARAMETERS

out: trnfm Transformation matrix initialized to the identity matrix.

real: trnfm(4,4)
DECLARATION: Entry INTENG (tengin)

FUNCTION: Returns the tension for the look-at and look-from locations for animation.

PARAMETERS

out: tengin Tension array.

real: tengin(maxprt,2)
DECLARATION: Subroutine INTHD2

FUNCTION: Initializes portions of hidden surface processor.

INTHD2 should only be run before each hidden surface picture after the call to POLYS.

COMMON BLOCKS: /HIDSTF/

SEE ALSO: INTHID
DECLARATION: Subroutine INTHID

FUNCTION: Initializes portions of hidden surface processor.

This routine should be run once for each hidden surface picture, before the call to polys.

COMMON BLOCKS:
/CHFWAS/
/CMEMRY/
/HIDSTF/
/PIXSTF/
/KEEP/

SEE ALSO: INTHD2
DECLARATION: Subroutine INTHLR

FUNCTION: Initializes the hidden line removal process.

INTHLR must be called before any other hidden line removal routine.

COMMON BLOCKS: /HIDSTF/
/KEEP/
DECLARATION: Subroutine INTSHA (numlit, drknes)

FUNCTION: Stores light number and shadow darkness for a light source.

\textit{Shadow darkness is linear from 0 to 1.}

PARAMETERS

in: numlit Number of light sources being set.

drknes Shadow intensity between 0 and 1. A value of 0 is no shadows, a small value is a dark shadow, and a value close to 1.0 is a very light shadow.

real: drknes

integer: numlit

COMMON BLOCKS: /CHFWAS/
/CLIMIT/
/CHMRRY/
DECLARATION: Function ITABLE (r,g,b, errfac)

FUNCTION: Returns the look-up table location of the color nearest the specified color.

PARAMETERS

ian: r,g,b Component intensities of the color looked for (0.0 - 1.0).

errfac Equal to 0.0 for dithering; = 0.5 all other times.

out: itable The nearest location in the color look-up table.

real: r, g, b, errfac

integer: itable
DECLARATION: Subroutine LCUC (text, nchar)

FUNCTION: Converts a text string to be all upper case.

PARAMETERS

<table>
<thead>
<tr>
<th>Type</th>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>in</td>
<td>nchar</td>
<td>Number of characters in text.</td>
</tr>
<tr>
<td></td>
<td>text</td>
<td>Text string to be converted. The text string will be modified on return.</td>
</tr>
<tr>
<td>integer</td>
<td>nchar</td>
<td></td>
</tr>
<tr>
<td>character</td>
<td>text*73</td>
<td></td>
</tr>
</tbody>
</table>
DECLARATION: Function LENTXT (text, len)

FUNCTION: Determines the length of a text string.

PARAMETERS

in:
 text Text string.
 len The dimensioned length of the text string.

out:
 lentxt Location of the last non-blank character in the text string.

integer: len, lentxt

character: text*73
DECLARATION: Subroutine LITSRC (nlsrce, amount, jlocat, x, y, z)

FUNCTION: Sets light source parameters.

PARAMETERS

in:
nlsrce Light source number.

amount Light source intensity. If the amount is zero, the other parameters are ignored. Amount is a value between 0 and 1.0.

jlocat - 0 if light source is at the eye of the observer (x,y,z are ignored).
- 1 if one light source is at infinity (x,y,z are components of a vector pointing from the origin in the light source direction).
- 2 if the light source is at the user-defined position (x,y,z are the coordinates of the light source position).

x x coordinate of light source.

y y coordinate of light source.

z z coordinate of light source.

real: amount, x, y, z

integer: nlsrce, jlocat

COMMON BLOCKS: /CHFWAS/
/CLIMIT/
/CMEMRY/

SEE ALSO: INQLIT
DECLARATION: Subroutine LODCOL (ipart, prtcol, colors)

FUNCTION: Loads color information for part number being processed.

PARAMETERS

- **in:** ipart
 Part number currently being processed. This number should be equivalent to the number that is passed into subroutine PIPLIN. Displacement arrows are loaded with part numbers starting at 10001.

- **prtcol**
 Reference array of rgb colors for each part in the picture. This array should be equivalent to the array that is passed into subroutine HIDLIN.

- **colors**
 r,g,b color components of part ipart.

- **real:** prtcol(3,*), colors(3)

- **integer:** ipart

SEE ALSO: HIDLIN
DECLARATION: Subroutine MAPWV (sx, sy, wxmin, wymin, ivxmin, ivymin, x, y, iy)

FUNCTION: Transforms world coordinates into screen coordinates.

X and y coordinates should be clipped so they are visible on the screen.

PARAMETERS

in: sx Window to viewport scale factor in x.
sy Window to viewport scale factor in y.
wxmin Minimum x-coordinate for window in world.
wymin Minimum y-coordinate for window in world.
ivxmin Minimum x viewport boundary (0 to 1).
ivymin Minimum y viewport boundary (0 to 1).
x x world coordinates that is modified on return to x screen coordinate.
y y world coordinates.

out: iy y screen coordinate rounded to the nearest integer

real: sx, sy, wxmin, wymin, ivxmin, ivymin, x, y

integer: iy

SEE ALSO: INQSCL INQPRT GETWND
MAXMIN

DECLARATION: Entry MAXMIN (npart, limprt, tm, displc, warp)

FUNCTION: Finds and stores the maximum and minimum coordinates of a part.

Routine compares maximums and minimums to previous limits found from other parts processed by MAXMIN.

PARAMETERS

in: npart Part number to process.
 limprt Part limits array.
 tm Transformation matrix for part npart.
 displc Displacement factor (if used).
 warp Function warping value (if used).

real: tm(4,4), displc, warp(3)

integer: npart, limprt(2, maxitm)

COMMON BLOCKS: /CLIMIT/
 /MASTER/

SEE ALSO: GETLIM
DECLARATION: Subroutine MODIFY (cpynam, icode, value)

FUNCTION: Modifies transformation matrix or attribute list for copy cpynam.

PARAMETERS

in: cpynam Copy name of instance to transform or change attribute list.

 icode Modification flag.
 - 1 if initialize copy's transformation matrix.
 - 2 if reorient copy to local axis system.
 - 3 if scale copy.
 - 4 if rotate copy.
 - 5 if translate copy.
 - 6 if clearing attribute list for copy.
 - 7 if setting polygon order for copy.
 - 8 if setting copy color.
 - 9 if setting feature angle.
 - 10 if setting shrink factor.
 - 11 if setting shading type.
 - 12 if setting shadow casting.
 - 13 if setting transparency parameters.
 - 14 if setting contour flag.
 - 15 if setting fringe flag.
 - 16 if setting diffused light intensity.
 - 17 if setting displacement factor.
 - 18 if setting post flag.
 - 19 if setting light source parameters.
 - 20 if setting warp vector.
 - 21 if setting dotted hidden lines.
 - 22 if setting node numbers flag.
 - 23 if setting element numbering flag.
 - 24 if setting local origin.
 - 25 if setting poorman flag.
 - 26 if displaying coordinate triad.
 - 27 if setting displacement vector arrows scale factor.

 value Values for transformation or attribute modifications.

 real: value(*)

 integer: icode

 character: cpynam(*)(*)
COMMON BLOCKS:
/CHFWAS/
/CLIMIT/
/CMEMRY/
DECLARATION: Subroutine MOV4X4 (a, b)

FUNCTION: Copies the first matrix into the second matrix.

PARAMETERS

in: a First 4x4 matrix.
 b Second 4x4 matrix.

real: a(4,4), b(4,4)
DECLARATION: Subroutine MOVABS (ix, iy)

FUNCTION: Update the current point to the specified screen coordinates.

PARAMETERS

in: ix, iy Screen coordinates of the desired point. (0.0) is the lower left point of the screen.

integer: ix, iy
DECLARATION: Subroutine MUL4X4 (a, b, c)

FUNCTION: Performs the matrix multiply, $a \times b = c$.

PARAMETERS

in: a First 4x4 matrix.
 b Second 4x4 matrix.

out: c Resulting 4x4 matrix.

real: $a(4,4), b(4,4), c(4,4)$

SEE ALSO: INT4X4
 MOV4X4

Chapter Two TECHNICAL REFERENCES 2.106
DECLARATION: Entry NEWGRP (numgru)

FUNCTION: Sets up a new active group.

PARAMETERS

in: numgru Group number of new active group.
integer: numgru

SEE ALSO: GETAGR
NORMAL

DECLARATION: Subroutine NORMAL (nedges, coords, xcentr, xn, contst)

FUNCTION: Calculates normals at nodes of polygon.

WARNING: The coordinate array should close the polygon.

PARAMETERS

in: nedges Number of vertices in polygon.
 coords Coordinate array for polygon.
 xcentr Coordinate array of center point.

out: xn Normal array for polygon.
 contst .TRUE. if polygon is concave.

real: xn(3,*), coords(3,*), xcentr(3)

integer: nedges

logical: contst
DECLARATION: Subroutine NORMTM (tm, tmnorm)

FUNCTION: Normalize the columns of a transformation matrix.

PARAMETERS

in: tm A transformation matrix.
out: tmnorm A normalized transformation matrix.
real: tm(4,4), tmnorm(4,4)

SEE ALSO: PIPSRC
DECLARATION: Subroutine NORVEC (vector)

FUNCTION: Normalize a vector.

PARAMETERS

in: vector The vector to be normalized.

real: vector(3)
DECLARATION: Subroutine NRMAVE (nedges, polnor, avenor)

FUNCTION: Computes the average normal of all the normals of a polygon.

PARAMETERS

in: nedges Number of vertices of the polygon.
 polnor Unaveraged normal array for polygon nodes (assumed to be unit normals).

out: avenor Average unit normal of the polygon.

real: polnor(3,nedges), avenor(3)

integer: nedges
DECLARATION: Subroutine OPNFIL (prmpt, pstrng, fileid, stat, acc, frm, irec , iunit , ierror)

FUNCTION: Opens a disk file.

PARAMETERS

in:
 prmpt .TRUE. if filename should be prompted for.
 .FALSE. if fileid should be used as the filename.
 pstrng Character string containing prompt.
 fileid Character file id if prompt = .FALSE.
 stat Status of the file to be opened. Must be an
 allowable file status, such as 'old', 'new',
 'scratch' or any other allowable status.
 acc Access of the file to be opened. Must be
 'sequential', or 'direct'.
 frm Format of the file to be opened. Must be an
 allowable file format, such as 'formatted',
 'unformatted', or 'binary'.
 irec Record length for direct access files.

out:
 iunit Device logical number of file opened.
 ierror Error flag.
 -1 if OPNFIL was run successfully.
 -0 if OPNFIL was not run successfully.

integer:
 irec , iunit , ierror

logical:
 prmpt

character:
 fileid*(*), pstrng*(*), stat(*), frm(*), acc(*)
OUTBOX

DECLARATION: Subroutine OUTBOX (npart, tm, atribt)

FUNCTION: Displays a bounding box around part npart.

PARAMETERS

in: npart Part number to display bounding box around.
 tm Transformation matrix.
 atribt Part attribute list information for part npart.

real: tm(4,4), atribt(*)

integer: npart

COMMON BLOCKS: /CHFWAS/
 /CLIMIT/
 /CMEMRY/
 /MASTER/
 /CATTRI/
DECLARATION: Subroutine PCHECK (nedge, xx, nornew, jconn, jpoine, numply)

FUNCTION: Divides a concave polygon into numply convex polygons.
It is possible that warped concave polygons will not result in a division into convex polygons.

PARAMETERS

in:
- nedge: Number of sides in original polygon.
- nornew: Normals at the nodes of the original polygon.
- xx: Coordinate array of concave polygon.

out:
- jconn: Connectivity of convex polygons.
- jpoine: Array of number of edges in new convex polygons.
- numply: Number of polygons after subdivision.

real: xx(3,*)

integer: jconn(vertmx+1,*), jpoine(vertmx+1), nedge, numply, nornew
DECLARATION: Subroutine PERDST

FUNCTION: Sets window based on perspective angle and distance.

SHOULD ONLY BE CALLED IF AUTOCENTER IS NOT ON.

Should be called if in perspective mode, after you have modified either the distance or perspective angle.
Subroutine PIPLIN (sx, sy, ivxmin, ivymin, wxmin, wxmax, wymin, wymax, zmin, zmax, oldcor, polnor, oldfun, nodes, npolab, tm, atribt, nedges, ipart)

Transforms, clips, and maps polygons to screen coordinates, and outputs lines and polygons in line drawing mode. If hidden line is on, PIPLIN will store polygons and lines for further processing.

PARAMETERS

- *sx*: Window to viewport scale factor in x direction.
- *sy*: Window to viewport scale factor in y direction.
- *wxmin*: Minimum x window coordinate.
- *wxmax*: Maximum x window coordinate.
- *wymin*: Minimum y window coordinate.
- *wymax*: Maximum y window coordinate.
- *zmin*: Distance from eye to near clipping plane.
- *zmax*: Distance from eye to far clipping plane.
- *polcor*: The coordinates of the polygon/line.
- *tm*: Transformation matrix (This transformation matrix will also transform coordinates from world to eye system).
- *atribt*: Part attribute information for line or polygon.
- *nedges*: Number of vertices in current polygon or line.
- *nodes*: Array of node numbers for the polygon used for labeling.
- *npolab*: Polygon label number.
- *ipart*: Part number that line or polygon came from. Used for hidden line removal.
- *ivxmin*: Left viewport screen coordinate x.
- *ivymin*: Bottom viewport screen coordinate y.
- *oldcor*: The coordinates of the line or polygon.
- *polnor*: Normals of the polygon. Used with the feature option during hidden line.
- *oldfun*: Scalar function values at the vertices. Used for contours.
real: sx, sy, xmin, ymin, xmax, ymax, zmin, zmax,
polcor(3, vertmx+1), tm(4,4), atribt(*), ivxmin, ivymin,
oldcor(3, vertmx+1), polnor(3, vertmx+1), oldfun(vertmx+1)

integer: nedges, nodes, npolab, ipart

COMMON BLOCKS: /DEVI/
/CATTRI/
/CFLAGS/

SEE ALSO: PIPSRC
INQSCCL
INQPRT
GETWND
INQCNNT
GETCLP
NORMAL
DECLARATION: Subroutine PIPSRC (sx, sy, ivxmin, ivymin, wxmin, wxmax, wymin, wxmax, zmin, zmax, numvrt, polcor, polnor, polfun, tm, tmnorm, attribt, shdlen, shdmin, shdmax)

FUNCTION: Transforms, clips and maps to screen coordinates, and stores polygons for later processing by the hidden surface processor.

PARAMETERS

- **in:**
 - sx: Window to viewport scale factor in x direction.
 - sy: Window to viewport scale factor in y direction.
 - wxmin: Minimum x window coordinate.
 - wxmax: Maximum x window coordinate.
 - wymin: Minimum y window coordinate.
 - wymax: Maximum y window coordinate.
 - zmin: Distance from eye to near z clipping plane.
 - zmax: Distance from eye to far z clipping plane.
 - numvrt: Number of vertices in this polygon.
 - polcor: Coordinates of the polygon.
 - tm: Transformation matrix. (This transformation matrix will also transform coordinates from world to eye system.)
 - attribt: Attribute information for the polygon.
 - shdlen: Shadow length.
 - tmnorm: Normalized transformation array.
 - ivxmin: Left viewport screen coordinate x.
 - ivymin: Bottom viewport screen coordinate y.
 - polnor: Normals of the polygon.
 - warped: .TRUE. if checking for warped polygons on edge.
 - polfun: Polygon function values.

- **real:** tm(4,4), attribt(*), polcor(3,*), polnor(3,*), sx, sy, wxmin, wymin, wxmax, wymin, wxmax, wymax, zmin, zmax, tmnorm(4,4), ivxmin, ivymin, polfun(*), shdlen

- **integer:** numvrt

- **logical:** warped
COMMON BLOCKS: /DEVI/
/CATTRI/
/CFLAGS/

SEE ALSO: PIPLIN
INQSCL
INQPRT
GETWND
INQFRN
GETCLP
NORMAL
PCHECK
NORMTM
DECLARATION: Subroutine POLFIL (nedges, ix, iy, r, g, b)

FUNCTION: Draws a filled polygon.

PARAMETERS

in: nedges Number of edges in polygon to be output.
ix,iy Screen coordinate arrays of the polygon.
r,g,b Color components (0.0 - 1.0) of the polygon.

real: r, g, b

integer: nedges, ix, iy
DECLARATION: Subroutine POLSTA (nedges, coords, wxmin, wxmax, wymin, wymax, polxmx, polxmn, polymx, polymn, istat)

FUNCTION: Gets polygon maximums, minimums, and status (for x and y).

All coordinates are in the eye coordinate system.

PARAMETERS

in:
- nedges: Number of vertices in the polygon or line.
- coords: Coordinate array for vertices.
- wxmin: Minimum x window coordinate.
- wxmax: Maximum x window coordinate.
- wymin: Minimum y window coordinate.
- wymax: Maximum y window coordinate.

out:
- istat: Status of the polygon.
 - 1 if trivially accept.
 - 2 if trivially reject.
 - 3 if must clip the polygon.
- polxmx: Maximum polygon x coordinate.
- polxmn: Minimum polygon x coordinate.
- polymx: Maximum polygon y coordinate.
- polymn: Minimum polygon y coordinate.

real:
- wxmin, wxmax, wymin, wymax, polxmx, polxmn, polymx, polymn, coords (3, nedges)

integer:
- nedges, istat

SEE ALSO: CLPPZE
- CLPPOL
- CLPLIN
- ZPLSTA

Chapter Two TECHNICAL REFERENCES 2.121
DECLARATION: Subroutine POLYS (npart, limits, tm, atribt)

FUNCTION: Takes all polygons in part npart, does pre-processing (such as smooth shading and vector arrows) and dumps them into the appropriate pipeline.

PARAMETERS

- **in:**
 - npart: Part number to process.
 - limits: Part limits array.
 - tm: Transformation matrix.
 - atribt: Part attribute list for part npart.

- **real:** atribt(*), tm(*,*)

- **integer:** npart, limits

COMMON BLOCKS: /CATTRI/ /CLIMIT/ /CHFWAS/ /MASTER/ /MEMRY/

SEE ALSO: PIPLIN PIPSRC
DECLARATION: Subroutine PORMAN (nedges, coords, order, plot)

FUNCTION: Determines if polygons are front or back facing, then flags back facing polygons for elimination.

PARAMETERS

in: nedges Number of vertices for this polygon.
 coords Coordinate information for this polygon.
 order Polygon ordering flag.
 - 0. if poorman is not on for the polygon being processed.
 - 1. if clockwise element ordering.
 - 2. if counterclockwise element ordering.

out: plot If .TRUE., the polygon is front facing and therefore visible.

real: coords(3,nedges), order

integer: nedges

logical: plot
DECLARATION: Subroutine PROMPT (txt)

FUNCTION: Outputs a character string to the display device.

PARAMETERS

in: txt Character string that contains the required prompt.

character: txt*80
DECLARATION: Subroutine PRSPC (coord)

FUNCTION: Transforms point to perspective viewing.

PARAMETERS

 in: coord x,y,z coordinate of point to transform according to perspective. The coordinates of the point are modified on return.

 real: coord(3)

COMMON BLOCKS: /VEWSTF/

SEE ALSO: PRSSTF
DECLARATION: Subroutine PRSSTF

FUNCTION: Sets up perspective parameters according to the look-at and look-from point.

PRSSTF be called after the look-at and look-from point have been established, and before any calls to *PRSPC*, *PIPIN*, or *PIPSRC*.

COMMON BLOCKS: /VEWSTF/

SEE ALSO: *PRSPC*, *PIPIN*, *PIPSRC*
DECLARATION: Subroutine PURGE (cpynam)

FUNCTION: Removes a call to an instance wherever listed in the hierarchical data structure.

PARAMETERS

in: cpynam Instance name to be deleted.
character: cpynam(*)
DECLARATION: Subroutine PVEC (point, ctm, dis, sx, sy, ivxmin, ivymin,
wxmin, wymin, wxmax, wymax, zmin, zmax,
zrange, polfun, atribt, node, npart, ipc)

FUNCTION: Creates and outputs displacement arrows.

PARAMETERS

in: point Coordinates at base of arrow.
dis Displacement array at point.
sx Window to viewport scale factor in x.
sy Window to viewport scale factor in y.
ivxmin Left viewport screen, x coordinate.
ivymin Bottom viewport screen, y coordinate.
wxmin Minimum x window coordinate.
wxmax Maximum x window coordinate.
ymin Minimum y window coordinate.
ymax Maximum y window coordinate.
zmin Distance from eye to near z clipping plane.
zmax Distance from eye to far z clipping plane.
zrange Distance between z clipping planes.
polfun Polygon function values.
atribt Attribute list of polygon containing point.
node Vertex number of point in polygon.
npart Part number of polygon containing point.
ipc Arrow part number.
ctm Transformation matrix for polygon containing point.

real: point(3), ctm(4,4), dis(3), sx, sy, ivxmin, ivymin, wxmin,
wymax, wymax, zmin, zmax, zrange, polfun(*), atribt(*)

integer: ipc, node, npart

COMMON BLOCKS: /CATTRI/
/CHFWAS/
/CMEMRY/
RDINIT

DECLARATION: Subroutine RDINIT

FUNCTION: Initializes the graphics device, and initializes the common block /RESOLT/.

COMMON BLOCKS: /RESOLT/
DECLARATION: Subroutine READMV (geofil, funfil, dspfil)

FUNCTION: Reads MOVIE.BYU files for database definition.
 READMV may be called many times.

PARAMETERS

 in: geofil Geometry file name.
 funfil Function file name.
 dspfil Displacement file name.

character: geofil(*), funfil(*), dspfil(*)

COMMON BLOCKS: /CHFWAS/
 /CLIMIT/
 /CMEMRY/
DECLARATION: Entry REDCHK (filnam)

FUNCTION: Reads a checkpoint file.

All database descriptions defined by you before a REDCHK call will be deleted, because the checkpoint file will overwrite the existing database.

PARAMETERS

in: filnam The name of the file to be read in for database definition.

character: filnam(*)

SEE ALSO: WRTCHK
DECLARATION: Subroutine RESET

FUNCTION: Initializes the global transformation matrix.

SEE ALSO: INQGLB
SETGLB
ROTATE
SCALE
DECLARATION: Subroutine ROTATE (rx, ry, rz)

FUNCTION: Performs global rotate about a right handed coordinate system.

PARAMETERS

in:
rx Rotation about the x-axis in degrees.
ry Rotation about the y-axis in degrees.
rz Rotation about the z-axis in degrees.

real: rx, ry, rz

SEE ALSO: RESET
SETGLB
SCALE
INQGLB

Chapter Two TECHNICAL REFERENCES 2.133
DECLARATION: Subroutine RPLCOP (sordex, ctm, atlist)

FUNCTION: Replaces transformation and attribute information for an instance.

PARAMETERS

in: sordex The instance sort number.
 ctm Transformation matrix for the instance.
 atlist Attribute list for the instance.

real: atlist(maxatt), ctm(4,4)

integer: sordex

COMMON BLOCKS: /CHFWAS/
 /CLIMIT/
 /CMEMRY/

SEE ALSO: EXTCOP
DECLARATION: Subroutine RPLGLB (glb4x4, glbatt)

FUNCTION: Sets global attributes to those in the list coming in.

PARAMETERS

in: glb4x4 Global transformation matrix.

glbatt Global attribute array, defined as follows:

<table>
<thead>
<tr>
<th>Index</th>
<th>Attribute Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Red background intensity (0-1).</td>
</tr>
<tr>
<td>2</td>
<td>Green background intensity (0-1).</td>
</tr>
<tr>
<td>3</td>
<td>Blue background intensity (0-1).</td>
</tr>
<tr>
<td>4</td>
<td>Window x minimum (world coordinate).</td>
</tr>
<tr>
<td>5</td>
<td>Window x maximum (world coordinate).</td>
</tr>
<tr>
<td>6</td>
<td>Window y center (world coordinate).</td>
</tr>
<tr>
<td>7</td>
<td>Perspective angle (degrees).</td>
</tr>
<tr>
<td>8</td>
<td>Distance.</td>
</tr>
<tr>
<td>9</td>
<td>X look-from point.</td>
</tr>
<tr>
<td>10</td>
<td>Y look-from point.</td>
</tr>
<tr>
<td>11</td>
<td>Z look-from point.</td>
</tr>
<tr>
<td>12</td>
<td>X look-at point.</td>
</tr>
<tr>
<td>13</td>
<td>Y look-at point.</td>
</tr>
<tr>
<td>14</td>
<td>Z look-at point.</td>
</tr>
<tr>
<td>15</td>
<td>Near z clipping plane.</td>
</tr>
<tr>
<td>16</td>
<td>Far z clipping plane.</td>
</tr>
<tr>
<td>17</td>
<td>X minimum viewport (0-1).</td>
</tr>
<tr>
<td>18</td>
<td>X maximum viewport (0-1).</td>
</tr>
<tr>
<td>19</td>
<td>Y center viewport (0-1).</td>
</tr>
<tr>
<td>20</td>
<td>Near fog plane.</td>
</tr>
<tr>
<td>21</td>
<td>Far fog plane.</td>
</tr>
<tr>
<td>22</td>
<td>Light number.</td>
</tr>
<tr>
<td>23</td>
<td>Light location flag.</td>
</tr>
<tr>
<td>24</td>
<td>Light intensity.</td>
</tr>
<tr>
<td>25</td>
<td>X position for light.</td>
</tr>
<tr>
<td>26</td>
<td>Y position for light.</td>
</tr>
<tr>
<td>27</td>
<td>Z position for light.</td>
</tr>
</tbody>
</table>

22 - 27 are repeated for each light source.

real: glb4x4(4,4), glbatt(*)

COMMON BLOCKS: /CHFWAS/
 /CMEMRY/
DECLARATION: Subroutine RUNANI (begfrm, endfrm, ierr)

FUNCTION: Runs the animation.

PARAMETERS

in: begfrm Beginning point to start animation (keyframe.subframe).
 endfrm Ending point to end animation (keyframe.subframe).

out: ierr Error flag.
 - 0 if the animation was run successfully.
 - 1 if the animation was not run successfully.

character: begfrm*10, endfrm*10

COMMON BLOCKS: /CMEMRY/
 /DEVI/
 /CLIMIT/
 /CHFWAS/

DECLARATION: Entry SAVTXT (mesage, xsize, ysize, twodim, xpos, ypos, zpos, xang, yang, zang, r, g, b, xslant, n, nsav)

FUNCTION: Saves text string attributes.

PARAMETERS

in:
 n Text string number.
 mesage The text string array.
 xsize X dimension factor.
 ysize Y dimension factor.
 twodim If .TRUE., message is 2-D. .False., 3-D text strings.
 xpos X position of text string in world coordinate.
 ypos Y position of text string in world coordinate.
 zpos Z position of text string in world coordinate.
 xang X directional vector.
 yang Y directional vector.
 zang Z directional vector or angle of text string if in 2-d mode.
 r,g,b Red, green and blue color values.
 xslant Rotation about x-axis for 3-d text string in degrees.

out:
 nsav Total number of stored messages.

real:
 xsize, ysize, twodim, xpos, ypos, xang, yang, zang, r, g, b, xslant

integer:
 n, nsav

character:
 mesage(80)

SEE ALSO: INQTXT
DECLARATION: Subroutine SCALE (sx, sy, sz)

FUNCTION: Performs global scale.

PARAMETERS

in: sx Scaling in the x direction.
 sy Scaling in the y direction.
 sz Scaling in the z direction.

real: sx, sy, sz

SEE ALSO:
RESET
ROTATE
SETGLB
INQGLB
DECLARATION: Entry SETBGC (red, green, blue)

FUNCTION: Set background color.

All values are from 0 to 1. Values are adjusted to those actually found in the color look-up table (if one is being used).

PARAMETERS

in: red Red intensity of background color.
green Green intensity of background color.
blue Blue intensity of background color.

SEE ALSO: SETLUT
 ITABLE
 INQBGCC
DECLARATION: Entry SETBOX (npart, cormax, cormin)

FUNCTION: Stores the x, y, z limits of a part.

PARAMETERS

in: npart Part number.
 cormax Maximum x, y, and z coordinates of box.
 cormin Minimum x, y, and z coordinates of box.

real: cormax(3), cormin(3)

integer: npart

SEE ALSO: INQBOX
DECLARATION: Entry SETCLP (znear, zfar)

FUNCTION: Sets z clip information.

PARAMETERS

in:
znear Distance from eye to nearest z clipping plane.
zfar Distance from eye to farthest z clipping plane.

real: znear, zfar

SEE ALSO: GETCLP
DECLARATION: Entry SETCNT (iflag)

FUNCTION: Sets number of contour levels.

PARAMETERS

 in: iflag Number of contour levels to be displayed.
 integer: iflag

SEE ALSO: INQCNT
DECLARATION: Subroutine SETCOL (r, g, b, errfac)

FUNCTION: Updates the current color to the specified color.

PARAMETERS

 in: r, g, b New color components (0.0 - 1.0).
 errfac Equal to 0.0 for dithering; = 0.5 all other times.

 real: r, g, b, errfac
DECLAREATION: Entry SETCON (key, sordex, thecnt)

FUNCTION: Sets instance continuity at a keyframe for animation.

PARAMETERS

in: key Key frame number.
 sordex Sort index number of the instance.
 thecnt The continuity value at keyframe key.

real: thecnt

integer: key, sordex

SEE ALSO: INQCON
DECLARATION: Entry SETDEF (numcol, red, grn, blu)

FUNCTION: Sets the red, green, and blue color components of color number numcol.

All color values are from 0 to 1.

PARAMETERS

in: numcol Color number (1 to 6).
 red Red intensity of default color number numcol.
 grn Green intensity of a default color number numcol.
 blu Blue intensity of a default color number numcol.

real: red, grn, blu

integer: numcol

SEE ALSO: GETDEF
DECLARATION: Entry SETDSP (xvec, yvec, zvec)

FUNCTION: Sets the displacement direction cosine components that will be used with displacement fringes or contours.

PARAMETERS

in: xvec X component of direction vector.
yvec Y component of direction vector.
zvec Z component of direction vector.

real: xvec, yvec, zvec

SEE ALSO: INQDSP

Chapter Two TECHNICAL REFERENCES 2.146
DECLARATION: Entry SETDST (dist)

FUNCTION: Sets the distance from the eye to the look at point. SETDST is only valid when software is in perspective angle mode, and when auto center is off. The function of this routine can also be obtained by adjusting the look-from point.

PARAMETERS

in: dist Distance from eye to look-at point.

real: dist

COMMON BLOCKS: /VEWSTF/

SEE ALSO: INQDST
ATFROM
INQFLG
SETFLG

DECLARATION: Entry SETFLG (cflag, lflag)

FUNCTION: Sets global flags.

PARAMETERS

in: cflag Key to what is being set, which is one of the following:

'ALIA' Anti-aliasing flag.
'SHDO' Shadow Flag.
'AXLS' Axis are to be drawn.
'BOUN' Draw bounding box instead of model.
'BORD' Draw border.
'CENT' Auto center flag.
'COLO' Draw colored lines.
'DISP' Displacements are performed.
'DITH' Dithering status.
'ELEM' Element labeling status.
'FOUR' Four view status.
'GLAS' Transparency status.
'HAEF' Haze/fog option.
'HIDD' Hidden line status.
'LABEL' Label contours flag.
'LEGEND' Display contour legend.
'NODE' Node labeling status.
'ONED' Warped polygons on edge status.
'OVER' Overlay status.
'PERA' Perspective or windowing toggle status.
'PERS' Perspective/orthographic status.
'POLY' Polygon clipping performed.
'POOR' Poorman status.
'SHAD' Shaded images status.
'SYMM' Symmetric contours or fringes status.
'VECT' Vector arrows status.
'WARP' Function warping status.
'TEXT' Text display status.
'TK41' Tektronix 4129 hardware status.
'LABV' Label for views status.
'PLYF' Polygon fill shaded images status.

iflag .TRUE. or .FALSE. status of cflag.

out: lflag .TRUE. or .FALSE. status of cflag.

logical: iflag

ccharacter: cflag(*)

COMMON BLOCKS: /CFLAGS/

SEE ALSO: INQFLG
DECLARATION: Entry SETFNC (nlevel, valmin, valmax)

FUNCTION: Sets the number of color fringes to be used, and the minimum and maximum range for fringes.

PARAMETERS

- **in:**
 - nlevel: Number of function levels to be used.
 - valmin: Minimum value of color fringe.
 - valmax: Maximum value of color fringe.

- **real:**
 - valmin, valmax

- **integer:**
 - nlevel

SEE ALSO: INQFNC
DECLARATION: Entry SETFOG (dist1, dist2)

FUNCTION: Sets the distance to the nearest and farthest fog planes.

PARAMETERS

in: dist1 Distance from eye to nearest fog plane.
dist2 Distance from eye to farthest fog plane.

real: dist1, dist2

SEE ALSO: INQFOG
DECLARATION: Entry SETFRN (iflag)

FUNCTION: Sets number of fringe levels to be displayed.

PARAMETERS

- **in:** iflag Number of fringe levels to be displayed.
- **integer:** iflag

SEE ALSO: INQFRN
DECLARATION: Entry SETGLB (tm)

FUNCTION: Saves the transformation matrix that is to be used as the global matrix.

PARAMETERS

 in: tm Transformation matrix.
 real: tm(4,4)

SEE ALSO: INQGLB
 ROTATE
 SCALE
 RESET
DECLARATION: Subroutine SETLIN (cstyle)

FUNCTION: Updates the current linestyle to solid or dashed.

PARAMETERS

in: cstyle Desired linestyle:
 = 'd' for dashed.
 = 's' for solid.

character: cstyle*(*)
DECLARATION: Subroutine SETLUT (table).

FUNCTION: Loads the color look-up table.

PARAMETERS

in: table The desired look-up table. The default is 'c', which is for a full color-ramped look-up table.

character: table*(*)
DECLARATION: Subroutine SETMOD (mode)

FUNCTION: Sets the display device to either graphics or alpha mode.

PARAMETERS

in: mode The specified mode:
 - 'graphics' to put device in graphics mode.
 - 'alpha' to put device in alpha mode.

character: mode(*)(*)
DECLARATION: Entry SETPER (setang)

FUNCTION: Sets the perspective angle to the value specified.

SETPER can only be called if the software is in the perspective angle mode.

PARAMETERS

in: setang Perspective angle to be set in degrees.
real: setang

SEE ALSO: INQPER
 INQFLG
DECLARATION: Entry SETPRT (xmin, xmax, ycen)

FUNCTION: Sets viewport boundaries.

SETPRT calculates minimum and maximum y values enforcing a one-to-one aspect ratio. All coordinates are normalized from 0 to 1. SETPRT checks for illegal input, and will set the viewport to the entire screen if illegal input is detected.

PARAMETERS

in: xmin Minimum x coordinate for viewport.
 xmax Maximum x coordinate for viewport.
 ycen Center y coordinate for viewport.

real: xmin, xmax, ycen

COMMON BLOCKS: /RESOLT/

SEE ALSO: INQPRRT

SAMPLE CALL: Call SETPRT (0,-5,-75)
Call sets up a viewport in the upper quarter of the screen.
DECLARATION: Entry SETRAT (key, sordex, therat)

FUNCTION: Sets instance rate at a keyframe for animation.

PARAMETERS
in:
key Frame number.
sordex Sort index number of instance.
therat The rate value at keyframe key.

real: therat

integer: key, sordex

SEE ALSO: INQRAT
DECLARATION: Entry SETREF (ncolor, colfnc)

FUNCTION: Sets function value reference colors.

PARAMETERS

in: ncolor Number of reference colors to be used.
colfnc Array of colors at each function level.

real: colfnc (3,maxlev)

integer: ncolor

SEE ALSO: INQREF
DECLARATION: Entry SETSCL

FUNCTION: Sets window to viewport scale factors.

SETSCL must be called before a call to INQSCL.

COMMON BLOCKS: /RESOLT/

SEE ALSO: SETPRT INQPRT GETWND SETWND INQSCL
Subroutine SETSCN (iy, ixbeg, ixend, r, g, b, errfac)

Sends a segment of a scanline to the graphics screen.

The graphics device must be in graphics mode before this routine can be called.

PARAMETERS

in: iy Y value of scanline.
ixbeg Beginning x value of segment.
ixend Ending x value of segment.
r,g,b Color arrays for scanline segment.
errfac Equal to 0.0 for dithering; - 0.5 all other times

real: r(0:ixres), g(0:ixres), b(0:ixres), errfac

integer: iy, ixbeg, ixend

COMMON BLOCKS: /RESOLT/
DECLAURATION: Entry SETSPL (key, sordex, thespl)

FUNCTION: Sets instance on spline flags for animation.

PARAMETERS

in:

key Key frame number.
sordex Sort index number of the instance.
thespl The spline flag:
- 0 for no spline.
- 1 for spline.

real: thespl

integer: key, sordex

SEE ALSO: INQSPL
DECLARATION: Entry SETSTD

FUNCTION: Sets standard function reference colors.
DECLARATION: Entry SETSUB (keyfrm, number)

FUNCTION: Sets number of subframes between keyframes.

PARAMETERS

in: keyfrm Beginning keyframe number.
 number Number of subframes.

integer: keyfrm, number

SEE ALSO: INQSUB
DECLARATION: Entry SETTEN (key, sordex, theten)

FUNCTION: Sets instance tension at a keyframe for animation.

PARAMETERS

in: key Key frame number.
sordex Sort index number of the instance.
theten Tension value at keyframe key.

real: theten

integer: key, sordex

SEE ALSO: INQTNEN
DECLARATION: Entry SETWND (xmin, xmax, ycen)

FUNCTION: Sets window bounds.

SETWND calculates minimum and maximum y values enforcing a one-to-one aspect ratio.

PARAMETERS

in: xmin Minimum x world coordinate for window.
 xmax Maximum x world coordinate for window.
 ycen Center y world coordinate for window.

real: xmin, xmax, ycen

COMMON BLOCKS: /RESOLT/

SEE ALSO: GETWND
DECLARATION: Subroutine SHRINK (shrk, nedges, polcor, xcentr)

FUNCTION: Moves the nodes of a polygon toward the polygon center.

The coordinate array should close the polygon.

PARAMETERS

- **in:**
 - shrk: Shrink factor:
 - 0 = no shrink.
 - 1 = full shrink.
 - nedges: Number of polygon vertices.
 - polcor: Coordinate array for polygon.
 - xcentr: Coordinate array of polygon's center point.

- **real:** shrk, polcor(3,nedges), xcentr(3)

- **integer:** nedges
DECLARATION: Entry SMOCLR (nodbeg, nodend)

FUNCTION: Clears the smooth shading routine.

SMOCLR should be called for each part that is smooth shaded.

PARAMETERS

in: nodbeg Node to begin smooth shading.
nodend Node to end smooth shading.

integer: nodbeg, nodend

SEE ALSO: SMOSTR

SMOGET
DECLARATION: Entry SMOGET (nedges, nodes, polnor)

FUNCTION: Retrieves the smooth normals for a polygon.

Use SMOGET after all of the polygons in a part have been processed with SMOSTR.

PARAMETERS

- **in:**
 - nedges: Number of edges in the polygon.
 - nodes: Array of node numbers for the polygon.

- **out:**
 - polnor: Smooth normal of each polygon vertex.

- **real:**
 - polnor(3,nedges)

- **integer:**
 - nodes(nedges), nedges

SEE ALSO: SMOSTR, SMOCLR
ENTRY: Entry SMOSTR (nedges, nodes, polnor)

FUNCTION: Averages normals for smooth shading.

Call SMOCLR before making any calls to SMOSTR.
You should call SMOSTR for each polygon in a part.

PARAMETERS

- **in:** nedges Number of edges in the polygon being smoothed.
- nodes Array of node numbers for the polygon.
- polnor Normal of each polygon vertex.

- **real:** polnor(3, nedges)

- **integer:** nodes(nedges), nedges

SEE ALSO: SMOCLR SMOGET
DECLARATION: Entry STCONG (key, icode, thecnt)

FUNCTION: Sets continuity value for spline animation of look-at or look-from point.

PARAMETERS

in:
 key Keyframe number.
 icode 1 - look at point, 2 - look from point.
 thecnt The continuity value at keyframe key (-1 to 1).

real: thecnt

integer: key, icode
DECLARATION: Subroutine STOREL (ipart, nedges, polcor, polnor, polfun, nodes, npolab, atribt)

FUNCTION: Loads a polygon for hidden line removal.

INTHLR must be called previous to calling STOREL. HIDLIN should be called after all polygons have been processed with STOREL.

PARAMETERS

in: ipart Part number this polygon comes from.
nedges Number of edges in the polygon.
numpol Polygon number currently being processed.
polcor Screen coordinates of the polygon.
polnor Polygon normals at the vertices.
polfun Polygon scalar values at the vertices.
nodes Node number array for the vertices.
npolab Polygon label number.
atribt Part attribute list information for the polygon.

real: polcor(3,*), polnor(3,*), polfun(*), atribt(*)

integer: numpol, nedges, nodes(*)

COMMON BLOCKS: /CATTRI/
/CFLAGS/
/HIDSTF/
/KEEP/

SEE ALSO: INTHLR
HIDLIN
DECLARATION: Entry STRATG (key, icode, therat)

FUNCTION: Sets rate for global animation at keyframes.

PARAMETERS:
in: key Keyframe number.
 icode Key to which global animation parameter is being set:
 1 = Global scales.
 2 = Global rotates.
 3 = Background color.
 4 = Window.
 5 = Perspective angle.
 6 = Distance.
 7 = Look-from point.
 8 = Look-at point.
 9 = Z clipping planes.
 10 = Viewport.
 11 = Fog planes.
 12 = Light #1.
 13 = Light #2.
 Continued for each light source.
 therat The rate value at keyframe key (0 to 1).

real: thespl
integer: key, icode
DECLARATION: Entry STSPLG (key, icode, thespl)

FUNCTION: Sets onspline flag for look-at or look-from point spline animation.

PARAMETERS

in: key Keyframe number.
 icode 1 - look-at point, 2 - look-from point.
 thespl The spline value at keyframe key (0 or 1).

real: thespl

integer: key, icode
DECLARATION: Entry STTENG (key, icode, theten)

FUNCTION: Sets tension values for spline animation for look-at or look-from point.

PARAMETERS

in: key Key frame number.
 icode 1 = look-at point, 2 = look-from point.
 theten The tension value at keyframe key (-1 to 1).

real: theten

integer: key, icode

SEE ALSO: INTENG
DECLARATION: Subroutine SUMMRY

FUNCTION: Displays the global attributes set.

COMMON BLOCKS: /CLIMIT/
/DEVI/
/VEWSTF/
/RESOLT/
COMMON BLOCKS: /CATTRI/
/CFLAGS/
/CLIMIT/
/VEWSTF/

(cont.) TEXT
DECLARATION: Subroutine TEXT (mesage, xsize, ysize, twodim, xpos, ypos,
 zpos, xang, yang, zang, r, g, b, atribt,
xslant, glbflg, ierr)

FUNCTION: Generates and displays alphanumeric text.

PARAMETERS

in: mesage The text string to be displayed.
 xsize X dimension factor.
 ysize Y dimension factor.
 twodim If .TRUE., 2-D text strings are generated.
 If .FALSE., 3-D text strings are generated.
 xpos X position of text string in model coordinates.
 ypos Y position of text string in model coordinates.
 zpos Z position of text string in model coordinates.
 xang X directional vector coordinate.
 yang Y directional vector coordinate.
 zang Z directional vector coordinate (if 3-d).
 Angle of text string (if 2-d).
 r, g, b Red, green, and blue color values for text string.
 atribt Attribute list.
 xslant Rotation about x-axis for 3-d text string in
 degrees.
 glbflg If .TRUE., xpos and ypos come in as screen
 coordinates.
 ierr If ierr = 1, then a character not defined in the
 character font has been entered.

real: xsize, ysize, xpos, ypos, zpos, xang, yzng, zang, atribt(*),
xslant, r, g, b

integer: ierr

logical: twodim, glbflg

character: mesage*80
TMPTS

DECLARATION: Subroutine TMPTS (tm, coord)

FUNCTION: Transforms an x,y,z point according to a transformation matrix.

PARAMETERS

in: tm Transformation matrix.
 coord Coordinate to be transformed. The coordinate is modified on return.

real: tm(4,4), coord(3)
DECLARATION: Subroutine TMPTSN (tm,coord)

FUNCTION: Transforms a normal vector by a transformation matrix.

PARAMETERS

in: tm Transformation matrix.
 coord Normal to be transformed.

real: tm(4,4), coord(3)
DECLARATION: Subroutine TRAVRS (root, itask, sgorit, grsort, trndex, sgrcnt, sitcnt, gstart, matrix, sgrind, grp.ptr, sortdx, grprec, stkfms, atlist, stkiaa)

FUNCTION: Traverses the groups and items structure for picture processing.

PARAMETERS

in: root Root group to be displayed.
 itask Task flag:
 0 = auto-center.
 1 = process part for display.
 2 = write out geometry file.
 sgorit Subgroup or subitem flag array.
 grsort Group sort array.
 sgrcnt Subgroup counter array.
 sitcnt Subitem counter array.
 gstart Group start array.
 matrix Instance transformation (4x4) matrixes.
 sgrind Subgroups that have been processed array.
 grp.ptr Group pointer at recursive level array.
 sortdx Sort index array.
 grprec Group recursion counter array.
 stkfms Stack of ctm’s array.
 stkiaa Attribute stack.
 atlist Attribute list transformation index array.

real: matrix(4,4,maxins), stkfms(4,4,maxrec),
 atlist(maxiaa,maxins), stkiaa(maxiaa,0:maxrec)

integer: sgorit(maxins), grsort(maxins), trndex(maxins),
 sgrcnt(maxgrp), sitcnt(maxgrp), gstart(maxgrp),
 sgrind(maxrec), grp.ptr(maxrec), sortdx(maxrec),
 grprec(maxgrp), itask, root
COMMON BLOCKS: /CATTRI/
/CHFWAS/
/CHEMRY/
/DEVI/
/VEWSTF/
DECLARATION: Entry TXTDIS

FUNCTION: Displays existing text strings.

SEE ALSO: GENTXT
 TXTINT
DECLARATION: Entry TXTINT

FUNCTION: Initializes the text string routines.

SEE ALSO: TXTDIS
 GENTXT
DECLARATION: Subroutine WARPOL (nedges, tmpcor, tmpnor, iconn, ipoin, numpol)

FUNCTION: Subdivides warped polygons that are partly front and partly back facing to the observer.

PARAMETERS

- **in:**
 - nedges: Number of vertices in the polygon.
 - tmpcor: Coordinate array of warped polygon.
 - tmpnor: Normals array of warped polygon.

- **out:**
 - iconn: Connectivity array after subdivision of warped polygon.
 - ipoin: Number of vertices in each subdivided polygon.
 - numpol: Number of polygons that the warped polygon was divided into.

- **real:**
 - tmpcor(3,*), tmpnor(3,*)

- **integer:**
 - nedges, iconn(vertmx+1,*), ipoin(*), numpol
DECLARATION: Subroutine WRITMV (npart, limits, tm)

FUNCTION: Stores geometry information for writing a geometry file.

PARAMETERS

- **in:**
 - npart: Number of parts to be written to the geometry file.
 - limits: Part limits array.
 - tm: Transformation matrix for npart.

- **real:** limits(2,*), tm(4,4)

- **integer:** npart

COMMON BLOCKS: /MASTER/

SEE ALSO: WRTDRV WRTGEO
DECLARATION: Entry WRTCHK (filnam)

FUNCTION: Writes a checkpoint file.

PARAMETERS

- **in:** filnam The name of the file to be used as the checkpoint file.

- **character:** filnam(*)

SEE ALSO: REDCHK
DECLARATION: Entry WRTDRV (geonam)

FUNCTION: Opens file and initializes variables for a geometry file write.

PARAMETERS

in: geonam Name of the geometry file to be written.

character: geonam(*)

SEE ALSO: WRTGEO
DECLARATION: Entry WRTGEO

FUNCTION: Writes out the geometry file after a tree traversal.

SEE ALSO: WRTDRV
ZPLSTA

DECLARATION: Subroutine ZPLSTA (nedges, coords, zmin, zmax, polzmx, polzmn, istat)

FUNCTION: Gets polygon maximums, minimums, and status for z-clipping.

All coordinates are in the eye coordinate system.

PARAMETERS

in: nedges Number of vertices in the polygon or line.
 coords Coordinate array for vertices.
 zmin Distance to nearest clipping plane.
 zmax Distance to farthest clipping plane.

out: istat Status of the polygon:
 - 1 if trivially accept.
 - 2 if trivially reject.
 - 3 if must clip the polygon.
 polzmx Maximum polygon z coordinate.
 polzmn Minimum polygon z coordinate.

real: coords, zmin, zmax, polzmx, polzmn, coords (3, nedges)

integer: nedges, istat

SEE ALSO: CLPPZE
 CLPPOL
 CLPLIN
 POLSTA
Chapter 3
COMMON BLOCKS

This chapter describes all of the common blocks used in the Raster Graphics Subroutine Package. They are listed in alphabetical order. For each common block, each variable is defined, and the routines accessing the common block are listed.

Information about common blocks is included so you will be aware of common coupled routines. For some applications, you will need to set up the common blocks before an application can call the subroutines that use them.

Common Blocks for Internal Use ONLY

Three common blocks are strictly for internal use. For these common blocks, we have only given the declaration. These common blocks are:

/HIDSTF/
/PIXSTF/
/ZBUFFER/

Make sure you don't use these common block names in subroutines you supply yourself.

If you want more information about these common blocks, contact the Engineering Computer Graphic Lab at Brigham Young University. The address is in Appendix C.
COMMON BLOCK: /CATTRI/ (IORDER, IDFFUS, ICOLOR, INNODE, INPOLY, IFEATR, ISHRNK, IWARP, ICONTR, IDASHL, ISHADE, ISHADE, IGLASS, IFRNGE, ILIGHT, IDSPLC, IPOST, IFAST, IDRWAX, IAXORG, IROTAX, IVECTR)

FUNCTION: Contains pointers into the instance attribute array. /CATTRI/ is set up in the subroutine GRAINT.

PARAMETERS:

integer:

IORDER Polygon ordering information.
IDFFUS Diffused light.
ICOLOR Color information.
INNODE Node numbering flag.
INPOLY Polygon numbering flag.
IFEATR Feature angle.
ISHRNK Shrink factor.
IWARP Warp vector.
ICONTR Contour information.
IDASHL Dashed line flag.
ISHADE Shading type flag.
ISHADO Shadow flag.
IGLASS Transparency information.
IFRNGE Fringe flag.
ILIGHT Light information.
IDSPLC Displacement factor.
IPOST Post flag.
IFAST Poorman flag.
IDRWAX Draw local axis flag.
IAXORG Local axis origin.
IROTAX Local axis rotation angles.
IVECTR Displacement vector arrows Scale factor.
<table>
<thead>
<tr>
<th>ROUTINES THAT CONTAIN /CATTRI/</th>
</tr>
</thead>
<tbody>
<tr>
<td>COLORS</td>
</tr>
<tr>
<td>DEFALT</td>
</tr>
<tr>
<td>DEFPRT</td>
</tr>
<tr>
<td>DSPTXT</td>
</tr>
<tr>
<td>GLBAKS</td>
</tr>
<tr>
<td>GRAINT</td>
</tr>
<tr>
<td>LIGHTS</td>
</tr>
<tr>
<td>LOCAXS</td>
</tr>
<tr>
<td>MODATT</td>
</tr>
<tr>
<td>MODFRM</td>
</tr>
</tbody>
</table>
COMMON BLOCK: /CFLAGS/ (POLYGN, POORMN, HIDDEN, IALIAS, DITHER, LCOLOR, FOG, LCONTR, LFRING, LGlass, LS, SHADW, PERSPC, WARPED, LABNOD, Labele, FSTHID)

FUNCTION: Contains system global flags.

PARAMETERS

.TRUE. if doing:

logical:

POLYGN Polygons data.
POORMN Poorman.
HIDDEN Hidden line removal.
IALIAS Anti-aliasing.
DITHER Dithering.
LCOLOR Colored lines.
FOG Fog/haze.
LCONTR Contours.
FRINGING Fringes.
LGlass Transparency.
LSHADW Shadows.
PERSPC Perspective.
WARPED .TRUE. if checking for warps on edge polygons.
LABNOD Node labeling.
Labele Element labeling.
FSTHID Polygon fill.

ROUTINES THAT CONTAIN /CFLAGS/

CHKPNT EDGSHD PAINT
COLORS FLAGIT PIPLIN
DEBSOR FOURVW PIPSRC
DISALL GLBAXS POLOTTL
DSPTXT INTSEC POLOUT
EDGMAK LOCAXS PREALI
EDGMKP MAKSHA SEGGEN
COMMON BLOCK: /CHFWAS/ (ILSINT, ILSLOC, ILSXYZ, ILSNEW, ISHDIN, IPRCOL, ICOPIN, ITRNDE, ISGORI, IGRPDE, ISGITO, IGRSOR, IGRUPA, ICHIDA, IORGPA, ISORDX, INCOPY, INPL, IALIST, IMATRI, ISGRCN, ISITCN, IGSSTAR, IGRSGT, IGSRPT, IGSRCN, IGRNAM, ITMNAM, ICPNAM, IPSTFL, IFWANI, IANIGL)

FUNCTION: Contains pointers into memory.

PARAMETERS

Points to the:

integer:
ILSINT Light source intensities.
ILSLOC Light source location flags.
ILSXYZ Light source coordinates.
ILSNEW Modified light source coordinates.
ISHDIN Shadow intensities.
IPRCOL Part color array used in the hidden line removal algorithm.
ICOPIN Instance copies.
ITRNDE Transformation index.
ISGORI Child numbers.
IGRPDE Parent group.
ISGITO Child flag array.
IGRSOR Group sort array.
IGRUPA Root group array.
ICHIDA Child array.
IORGPA Item or group flag array.
ISORDX Sort array.
INCOPY Copy number.
INPL Part limit array.
IALIST Instance attribute lists.
IMATRI Instance transformation matrices.
ISGRCN Subgroup counter array.
ISITCN Subitem counter array.
IGSSTAR Group start array.
ITSGIC Child test array.
ISGRIN Subgroup counter array.
IGRPPT Group pointer array.
ISORTD Recursion sort index array.
IGRPRE Group recursion test array.
ISTUFM Transformation stack array.
IAASTU Attribute stack array.
IGRNAM Group names array.
ITMNAM Item names array.
ICPNAM Instance names array.
IPSTFL Instance post flag array.
IFWANI Starting unit number for instance animation.
IANIGL Unit number for global animation.

ROUTINES THAT CONTAIN /CHFWAS/

<table>
<thead>
<tr>
<th>ADDCOL</th>
<th>GETITM</th>
<th>INTHDP</th>
<th>PURGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDFRM</td>
<td>GLBACT</td>
<td>INTHID</td>
<td>PVEC</td>
</tr>
<tr>
<td>ANIDRV</td>
<td>GRAINT</td>
<td>INTSHA</td>
<td>READMV</td>
</tr>
<tr>
<td>BEGANI</td>
<td>HIDSUR</td>
<td>LITSRC</td>
<td>REDGLB</td>
</tr>
<tr>
<td>CLRANI</td>
<td>HUDGRP</td>
<td>MAKSHA</td>
<td>RPLCOP</td>
</tr>
<tr>
<td>COLORs</td>
<td>HUDITM</td>
<td>MODIFY</td>
<td>RPLCOR</td>
</tr>
<tr>
<td>COPNUM</td>
<td>HUGCOP</td>
<td>NEWANI</td>
<td>RPLGLB</td>
</tr>
<tr>
<td>DISALL</td>
<td>HUGSOR</td>
<td>OPNANI</td>
<td>RUNANI</td>
</tr>
<tr>
<td>FRMONE</td>
<td>HUSORT</td>
<td>OUTBOX</td>
<td>SHOATR</td>
</tr>
<tr>
<td>GETATT</td>
<td>HUSSTA</td>
<td>POLYS</td>
<td>TRAVIN</td>
</tr>
<tr>
<td>GETCOP</td>
<td>INQLIT</td>
<td>POSFRM</td>
<td>TRAVRS</td>
</tr>
<tr>
<td>GETGRU</td>
<td>INQUIR</td>
<td>PRGRUN</td>
<td>WRTGLB</td>
</tr>
</tbody>
</table>
COMMON BLOCK: /CLIMIT/ (MAXITM, MAXINS, MAXGRP, MAXMEM, MAXNOD, MAXPOL, MAXVER, MAXREC, MAXUSE, MAXCAL, MAXCHR, MAXIAA, MAXLIT, NP, NJ, NPT, NCON, NPNEW)

FUNCTION: Contains system limits.

PARAMETERS

integer: MAXITM Maximum number of items allowed.
 MAXINS Maximum number of instances allowed.
 MAXGRP Maximum number of groups allowed.
 MAXMEM Maximum amount of memory allocated.
 MAXNOD Maximum number of nodes allowed.
 MAXPOL Maximum number of polygons allowed.
 MAXVER Maximum number of vertices allowed.
 MAXREC Maximum number of recursion levels allowed.
 MAXUSE Maximum amount of memory in use.
 MAXCAL Maximum number of links in tree structure.
 MAXCHR Maximum number of characters in a name.
 MAXIAA Maximum number of words in an attribute list.
 MAXLIT Maximum number of lights.
 NP Number of parts read in.
 NT Number of nodes read in.
 NPT Number of polygons read in.
 NCON Number of nodes in connectivity list.
 NPNEW New number of parts found following tree traversal.
| ROUTINES THAT CONTAIN /CLIMIT/ |
|-------------------------------|-------------------|-----------------|------------------|-------------------|
| ACTIVE | DISALL | HUPITM | MAKSHA | RPLCOR |
| ADDCAL | DSPTXT | HUSOR | MODATT | RPLCOP |
| ANILIT | EXTCOP | INILIT | MODIFY | RUNANI |
| BEGANI | FRMONE | INITGI | MODTFM | SHDHEX |
| CATIAA | GEOMOV | INTCAL | OUTBOX | SHOATR |
| CHKPTNT | GLBAXS | INTSHA | POLYS | SUMMRY |
| DEFAULT | GRAINT | LIGHTS | PRCRUN | TRAVIN |
| DEFINE | HUACAL | LIMITS | PURGE | TRAVRS |
| DEFPRT | HUDCAL | LITSRC | READMV | TRVCOP |
| DELETE | HUPGRP | LOCAXS | REDLIT | WRTLIT |
COMMON BLOCK: /CMEMRY/ (MEMORY(MXMEM))

FUNCTION: Contains the data base for the program.

You should use /CHFWAS/ as pointers into memory to extract information.

PARAMETERS

integer/real: MEMORY The data base.

ROUTINES THAT CONTAIN /CMEMRY/

<table>
<thead>
<tr>
<th>ADDCAL</th>
<th>GETGRU</th>
<th>INQUIR</th>
<th>PURGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDFRM</td>
<td>GETITM</td>
<td>INTHDP</td>
<td>PVEC</td>
</tr>
<tr>
<td>ANIDRV</td>
<td>GLBACT</td>
<td>INTHID</td>
<td>READMV</td>
</tr>
<tr>
<td>BEGANI</td>
<td>GRAINT</td>
<td>INTSHA</td>
<td>REDGLB</td>
</tr>
<tr>
<td>CHKPTN</td>
<td>HIDSUR</td>
<td>LITSRC</td>
<td>RPLCOB</td>
</tr>
<tr>
<td>CLRANI</td>
<td>HUDGRP</td>
<td>MASHA</td>
<td>RPLCOR</td>
</tr>
<tr>
<td>COLORS</td>
<td>HUDITM</td>
<td>MODIFY</td>
<td>RPLGLOB</td>
</tr>
<tr>
<td>COPNUM</td>
<td>HUGCOP</td>
<td>NEWANI</td>
<td>RUNANI</td>
</tr>
<tr>
<td>DISALL</td>
<td>HUGSOR</td>
<td>OPNANI</td>
<td>SHOATR</td>
</tr>
<tr>
<td>EXTCOP</td>
<td>HUSORT</td>
<td>OUTBOX</td>
<td>TRAVIN</td>
</tr>
<tr>
<td>FRMONE</td>
<td>HUSSTA</td>
<td>POLYS</td>
<td>TRAVRS</td>
</tr>
<tr>
<td>GETATT</td>
<td>INQLIT</td>
<td>POSFRM</td>
<td>WRTGLB</td>
</tr>
<tr>
<td>GETCOP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
In the hidden algorithm:

COMMON BLOCK: /HIDSTF/

(EDGPNT, IOFFST, IBUCKY, IFREE, SHDPNT, IOFSHD, ISHADO, ISHADY, IAVAIL)

In the hidden line algorithm:

COMMON /HIDSTF/

&

IPOLST(MAXPOL+1),
&

XHOLD(MAXEDG),
&

YHOLD(MAXEDG),
&

ZHOLD(MAXEDG),
&

CCONT(MAXEDG),
&

NODNUM(MAXEDG),
&

SURF(11,MAXPOL),
&

PGRID(3,MAXCOR),
&

JNUMBR(MAXCOR),
&

JVECLS(2,MAXVEC),
&

JVECVP(MAXVEC),
&

JVTYPE(MAXVEC),
&

VECTOR(9,MAXVEC),
&

JVP(4,MAXVEC),
&

JXYS(MXGRID,MXGRID,MXBSUR),
&

JXYV(MXGRID,MXGRID,MXVEC),
&

XLINE(4,MAXSEG)

FUNCTION:

For internal use for the hidden line and hidden surface algorithms.

If you want more information on this common block should contact The Engineering Computer Graphics Lab. Brigham Young University.

ROUTINES THAT CONTAIN HIDSTF:

<table>
<thead>
<tr>
<th>ROUTINE</th>
<th>ROUTINE</th>
<th>ROUTINE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLENUP</td>
<td>HIDSUR</td>
<td>LBLNOD</td>
</tr>
<tr>
<td>DEBSOR</td>
<td>HSHEDG</td>
<td>LODCNT</td>
</tr>
<tr>
<td>DMPVEC</td>
<td>HSHNOD</td>
<td>LODINA</td>
</tr>
<tr>
<td>EDGMKP</td>
<td>INTHD2</td>
<td>LODSHD</td>
</tr>
<tr>
<td>GENCNT</td>
<td>INTHDP</td>
<td>PREALI</td>
</tr>
<tr>
<td>GLSSRT</td>
<td>INTHID</td>
<td>SEGGEN</td>
</tr>
<tr>
<td>HIDLIN</td>
<td>INTHLR</td>
<td>UPDATE</td>
</tr>
<tr>
<td>HIDSRP</td>
<td>LBLELE</td>
<td></td>
</tr>
</tbody>
</table>
COMMON BLOCK: /KEEP/ (NUMPOL, NUMPLS)

FUNCTION: Contains the internal polygon numbers for opaque and shadow polygons used for hidden surface and line removal.

PARAMETERS

integer:

NUMPOL Internal opaque polygon number.
NUMPLS Internal shadow polygon number.

ROUTINES THAT CONTAIN /KEEP/

HIDLIN
INTHLR
INTHDP
INTHID
POLOUT
SHDOUT
COMMON BLOCK: /MASTER/ (COORDS, ICONEC, NUMVRT, FUNVAL, DSPVAL)

FUNCTION: Contains geometric information.

PARAMETERS

real: COORDS Coordinate Array.
integer: ICONEC Connectivity Array.
NUMVRT Number of vertices in each polygon array.
real: FUNVAL Function values at the nodes.
DSPVAL Displacement values at the nodes.

ROUTINES THAT CONTAIN /MASTER/

CHKPNT
GEOMOV
LIMITS
OUTBOX
POLYS
SUMMARY
WRITMV
COMMON BLOCKS: /PIXSTF/ (IBUCKX, IFREEX)

FUNCTION: For internal use in the hidden surface removal algorithm during anti-aliasing.

If you want more information on this common block, contact Engineering Computer Graphics Lab, Brigham Young University.

ROUTINES THAT CONTAIN /PIXSTF/

ALIGLS
DEBSOR
INTHID
STRPIX
COMMON BLOCK: /RESOLT/ (IXRES, IYRES)

FUNCTION: Contains the x and y resolution of the display device.

/RESOLT/ is set up in RDINIT.

PARAMETERS

integer: IXRES The x resolution of the display device. Resolution starts at zero, so a device with 1024 pixels should have IXRES = 1023.

IYRES The y resolution of the display device.

ROUTINES THAT CONTAIN /RESOLT/

CENTER HIDSUR SUMMRY
CHKPNT LODINA VEWPRT
FOURVW LODSHD WINDOW
GLBAXS PAINT WRTGLB
COMMON BLOCK: /VEWSTF/ (AT, FROM, ZO, VIEWMT)

FUNCTION: Contains the viewing parameters.

PARAMETERS

real: AT The look-at point.
 FROM The look-from point.
 ZO The distance to the perspective projection plane.
 VIEWMT The viewing transformation matrix.

ROUTINES THAT CONTAIN /VEWSTF/

ATFROM INTLIT
CENTER PRSPC
CHKPNT PRSSTF
DSPTXT SHDCTR
GLBAXS SHDHEX
GRAINT TRAVRS
INQLAF
COMMON BLOCK: /ZBUFER/ IBUF

FUNCTION: For internal use in the hidden surface algorithm.

If you want more information on this common block, contact Engineering Computer Graphics Lab, Brigham Young University.

ROUTINES THAT CONTAIN /ZBUFER/

ALIGLS
CLRBUF
DEBSOR
INSEG
PAINT
SHADOW
Chapter Four

INCLUDE FILES

This chapter explains the content of each of the include files needed for the Raster Graphics Display Library. The include files contain parameters controlling site and global control, which you should edit to fit your needs.

The subroutine package performs error checking on all arrays that are dimensioned by the parameters in the include files. Error messages will refer you to specific parameters in an include file.
INCLUDE BLOCK: ANIM.INC (MAXFRM, ISTART, ISTGLB, MAXCOM)

FUNCTION: Contains the variables that define parameters for animation.

PARAMETERS

MAXFRM The maximum number of key frames that can be defined.

ISTART Starting logical unit number for disk access for instance animation.

ISTGLB Logical unit number for disk access for global animation.

MAXCOM The maximum number of commands defining a key frame.

ROUTINES THAT USE ANIM.INC.

ANIDRV
CHKPNT
CTRLGL
DOSPLN
GETATT
MODGLB
MOVMNT
OPNANI
POSFRM
RUNANI
SPIGLN
INCLUDE BLOCK: CVER.INC (VERTMX)

FUNCTION: Contains the variable that defines the maximum number of vertices in a polygon.

PARAMETERS

| VERTMX | The maximum number of vertices in a polygon. |

ROUTINES THAT CONTAIN CVER.INC.

<table>
<thead>
<tr>
<th>CHECK</th>
<th>GLBAXS</th>
<th>PIPLIN</th>
<th>SHDHEX</th>
</tr>
</thead>
<tbody>
<tr>
<td>CLPLZE</td>
<td>HIDSUR</td>
<td>PIPSRC</td>
<td>SHDOUT</td>
</tr>
<tr>
<td>CLPPOL</td>
<td>LINSEC</td>
<td>POLYS</td>
<td>SHDTRN</td>
</tr>
<tr>
<td>CLPPZE</td>
<td>LOCAXS</td>
<td>PRESUR</td>
<td>SPLITP</td>
</tr>
<tr>
<td>DSPTXT</td>
<td>MAKSHA</td>
<td>PROCHL</td>
<td>STACK</td>
</tr>
<tr>
<td>GRAINT</td>
<td>OUTBOX</td>
<td>ROLL</td>
<td>TESTP</td>
</tr>
<tr>
<td>GENCNT</td>
<td>PCHECK</td>
<td>SEND</td>
<td>WARPOL</td>
</tr>
</tbody>
</table>
INCLUDE BLOCK: FNCT.INC (MAXLEV, MXCLEV, MXCSEG)

FUNCTION: Contains variables that control fringes and contours.

The software will print error messages if these parameters are exceeded.

PARAMETERS

MAXLEV Maximum number of function levels that can be defined for fringes and contours.

MXCLEV Maximum number of separate contour strings at the same contour level.

MXCSEG Maximum number of contour vectors in a contour level.

ROUTINES THAT CONTAIN FNCT.INC:

AFNCTN DRVTXT LODCNT
CHKPNT FRNBAR ORDCNT
CNTBAR FUNCTN PRGRUN
COLORS GENCNT PROCHL
DMPVEC HIDLIN PVEC
INCLUDE BLOCK: HIDN.INC (IAVVRT, MAXPOL, MAXEDG, MAXCOR, MAXVEC, MXGRID, MXBSUR, NTABLE, MXRESX, MXRESY, MAXFRC, MAXFIL, LITCST, NUMSHD)

FUNCTION: Contains the variables defining maximums for picture processing.

PARAMETERS

IAVVRT Average number of vertices in a polygon (approximate).

MAXPOL Maximum number of polygons in the scene. MAXPOL is used in the visible line and surface algorithms. Regular line drawings are not affected.

MAXEDG Maximum number of edges in the scene. MAXEDG is defined to be MAXPOL*IAVVRT.

MAXCOR Maximum number of vertices (nodes) in the scene.

MAXVEC Maximum number of line segments in the scene. MAXVEC is used for hidden line removal.

MXGRID Maximum number of grid cells in X and Y. MXGRID is used for hidden line removal.

MXBSUR Maximum number of polygons in a bucket. MXBSUR is used for hidden line removal.

MTABLE Maximum length of the hashing table. MTABLE is used for hidden line removal.

MXRESX Maximum resolution of the display device in the x direction.

MXRESY Maximum resolution of the display device in the y direction.

MAXFRC Maximum number of pixel fractions on a scan line for anti-aliasing. MAXFRC is used by the hidden surface algorithm.

MAXFIL Length of the array used for the painters hidden surface algorithm.

LITCST Maximum number of lights casting shadows.

NUMSHD Maximum number of shadow polygons that must be stored in the shadow edge list array.
ROUNIES THAT CONTAIN HIDN.INC.

ANTALI DMPVEC
CLENUP EDGMKP
CLRBUF FRNBAR
DEBSOR
INCLUDE BLOCK: MOVL.INC (IOUT, IIN, LUN, LUN1)

FUNCTION: Contains logical unit numbers for file access.

PARAMETERS

IOUT Logical unit numbers for writing to the terminal.
IIN Logical unit number for reading from the terminal.
LUN Logical unit number for disk file access.
LUN1 Another logical unit number for disk file access.

ROUTINES THAT CONTAIN MOVL.INC.

GETXT
OPNFIL
PROMPT
MSTR.INC

INCLUDE BLOCK:
MSTR.INC (MXNODE, MAXCON, MXPOLY, LITNUM, ITMNUM, INSNUM, IGRPNM, IRECNM, MAXPRT, MAXATT, MXMEM, CONST)

FUNCTION: Contains the variables that define system wide parameters.

PARAMETERS
MXNODE Maximum number of coordinates that can be read into the data base.
MAXCON Maximum number of nodes in the connectivity list that can be read into the data base.
MXPOLY Maximum number of polygons that can be read into the data base.
LITNUM Maximum number of light sources that can be defined.
ITMNUM Maximum number of items that can be defined. This corresponds to the maximum number of parts that can be defined.
INSNUM Maximum number of instances that can be defined.
IGRPNM Maximum number of groups that can be defined.
IRECNM Maximum number of levels in the hierarchical tree structure.
MAXPRT Maximum number of parts in the scene.
MAXATT Length of the attribute list for an instance.
MXMEM Length of the array containing the data base.
CONST A constant to generate standard ASCII numbers for characters.
<table>
<thead>
<tr>
<th>ROUTINES THAT CONTAIN MSTR.INC.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADDCAL</td>
</tr>
<tr>
<td>ADDFRM</td>
</tr>
<tr>
<td>ANIDRV</td>
</tr>
<tr>
<td>BEGANI</td>
</tr>
<tr>
<td>BNDBOX</td>
</tr>
<tr>
<td>CKKPNT</td>
</tr>
<tr>
<td>CLRANI</td>
</tr>
<tr>
<td>CNTBAR</td>
</tr>
<tr>
<td>COLORS</td>
</tr>
<tr>
<td>COPNUM</td>
</tr>
<tr>
<td>DISALL</td>
</tr>
<tr>
<td>DMPVEC</td>
</tr>
<tr>
<td>DOSPLN</td>
</tr>
</tbody>
</table>

Chapter Four INCLUDE FILES 4.9
FUNCTION: Contains the variables defining the length of character strings for user responses and database names.

PARAMETERS
- LNSIZE: The maximum length of an input character string.
- MXCHAR: The maximum length of a database name.

ROUTINES THAT CONTAIN USER.INC.
- GRAINT
- SHOATR
Appendix A

LINK MAP

This chapter contains the link map for MOVIE.BYU version 6. MOVIE.BYU is a general purpose computer graphics display system that uses RGDL software. The purpose of this chapter is to aid users that do not have library utilities on their computers.

The link map shows which routines call other routines, and is in the following form:

```
ROUTINE1
   ROUTINE2
      ROUTINE3
      ROUTINE4
   ROUTINE2*
   ROUTINE3
```

Here, the program flows in the following way:

1. ROUTINE1 calls ROUTINE2.
2. ROUTINE2 calls ROUTINE3.
3. ROUTINE3 does not call anything, and returns to ROUTINE2 when finished.
4. ROUTINE2 calls ROUTINE4.
5. ROUTINE4 does not call anything, and returns to ROUTINE2 when finished.
6. ROUTINE2 when finished returns to ROUTINE1.
7. ROUTINE1 calls ROUTINE2 again. The calls that ROUTINE2 makes have already been defined, so the line is tagged with a *.
8. ROUTINE2 when finished returns to ROUTINE1.
9. ROUTINE1 calls ROUTINE3. ROUTINE3 has been defined previously, but does not call any other routines; therefore, ROUTINE3 is shown without the *.
10. ROUTINE3 when finished returns to ROUTINE1, which when finished terminates the program.

MOVIE.BYU contains several routines that are not part of the subroutine library. Be aware that this link map is not for you to actually use—it is just for looking.
INQBGC
PIPLIN
 TMPTS
 CLPPZE
 ZPLSTA
 CLPMAX
 STFITP
 NORVEC
 CLPMIN
 STFITP
 NORVEC
CLPLZE
 ZPLSTA
 CLPCOR
PRSPC
PORMAN
CLPPOL
 POLSTA
 CLPMIN *
 CLPMAX *
POLOTL
 MAPPTS
 ZSTRMM
 STOREL
 NRMAVE
SETCOL
CNTRPT
MAPWVT
MOVABS
DRWABS
CHRNUM
DISTXT
SETCOL
CLPLIN
 POLSTA
 CLPCOR
MAPWVT
MOVABS
DRWABS
PIPLIN *
MUL4X4
CATIAA
MOV4X4
GTUTRN
LOCAXS
GETWND
INQSCL
INQPRT
INT4X4
GTUROX *
GTUROY *
GTUROZ
 INT4X4
 MUL4X4
 MOV4X4

Appendix A LINK MAP A.4
STRPIX
CODPS1
STRPIX
CODNG1
STRPIX
CODPS2
STRPIX
PREALI *
ALIGLS
STRPIX
SETONE
GLASS
INSSEG
GETONE
INSSEG
SETONE
INTSEC
STRPIX
SHADOW
ANTALI
GLASS
INSSEG
PAINT
DRWABS
MOVABS
HAZE
DODITH
SETSCN
SETCOL
UPDATE
CLRBUF
CLRNXT
FRNBAR
INQPRT
INQLEV
DODITH
SETSCN
SETCOL
MOVABS
DRWABS
INQBGC
DSPTXT
GETWND
INQPRT
INT4X4
GTUROZ *
MOV4X4
INQSCL
GTUTRN
INQGLB
MOV4X4
GTUTRN
MUL4X4
PAUSE *
PIPLIN *
CNTBAR
INQPRT
GETWND
INQLEV
INQBGC
DSPTXT *
SETCOL
MOVABS
DRWABS
INQCNT
HRDWAR
TXTDIS
INQTXT
DSPTXT *
SETPRT
INQPRT
SETMOD
INQTXT
DSPTXT *
SETMOD
SETMod
DSPTXT *
SETPRT
ATFROM *
DISALL *
INQPRT
DISALL *
GETTXT *
GETCOM
LCUC
READMV
GEOMOV
OPNFILE *
BNDBOX
SETFNC
SETSTD
ASTSTD
ASTFNC
SETPNC
GETAGR
CHRNUM
GETITEM *
ADDCAL
GETITEM *
GETGRU *
GETAGR
HUACAL
HUGCOP
HUGC01
HUSORT
HUSOR1
HUSSTA
HUSST1
HUGSOR
HUGS01
GETCOP *
INTCAL
INT4X4
GETTXT *
SETPER
ATFROM *
PERDST
INQLAF
INQPER
SETWND
SETWND
INQDST
INQLAF
SETPRT
SETBGC
SETCLP
SETFOG
REDLIT
COMGLB
COPNUM
COPNUM
FRMONE
REDONE
RPLCOP
COPNUM *
HUGSOR *
RPLCPI
MOV4X4
REDGLB *
COMGLB
MODGLB
GTUSCL
INT4X4
MUL4X4
MOV4X4
GTUROX *
GTUROY *
GTUROZ *
ANICOM
MODFRM
GTUTRN
GTUROZ *
GTUROY *
GTUROX *
GTUSCL *
GTUTRN
MOV4X4
RPLGLB
SETGLB
SETBGC
ATFROM *
SETWND
PERDST *
SETPER
SETCLP
SETPRT
SETFOG
ANILIT
MOV4X4
RPLCOP *
SPLNGL
 INQFRM
SPLINE
 MODGLB *
COMGLB
CTRLGL
 GLBCNM
MODFRC
MODGLB *
RPLGLB *
MODFRC
DOSPLN
 INQFRM
SPLINE
 MODFRM *
ANICOM
MODFRM *
RPLCOP *
FOURVW *
DISALL *
CAMERA
MOV4X4
SPLNGL *
CTRLGL *
MODFRC
MODGLB *
COMGLB
RPLGLB *
DOSPLN *
MODFRM *
DOSPLN *
MODFRM *
ANICOM
RPLCOP *
FOURVW *
DISALL *
CAMERA
MOV4X4
GETXT *
WRTCHK
 OPNFL *
GETAGR
INQGLB
INQTXT
INQPER
GETWND
INQFRT
INQBTC
GETCLP
GETDEF
INQBOX
INQFNC
ANQFNC
ANQREF
INQREF
INQFOC
ANFILI
INQFRM
INQSUB
INQRAT
INQCON
INQTEN
INQSPL
INTENG
INCONG
INSPLG
INRATG
IOPNAN
ANIDRV
INQFRM
GETXT *
BEGANI
ANFILI
CLRANI *
CNUMOP
ANFILS
OPNANI
GETCOP *
ANFILI
SETFRM
WRTGLB
INQGLB
INQLAF
INQPER
GETWND
INQFRT
INQBGC
GETCLP
INQFOG
WRTLIT
ANFILS
INQFRM
INQSUB
GETXT *
GETNUM
SETSUB
COPNUM *
GETCOP *
INQRAT
INQTEN
INQCON
INQSPL
GETNUM
SETRAT
SETTEN
SETCON
SETSPL
INRATG
STRAIG
INTENG
INSPLG
INCONG
STRATG
STTENG
STCONG
STSPLG
INRATG
STRATG
RUNANI *
SETFRM
ANIDRV *
GETXT *
ACTGRP *
DEFINE *
ADDCAL *
CHKNAM
GETXT *
GETCOP *
DELETE
GETCOP *
HUDITM
HUGSOR *
HUDCAL
HUSORT *
HUSSTA *
HUDGRP
HUGSOR *
HUDCAL *
PURGE
GETAGR
GETITM *
GETGRU *
GETCOP *
HUPITM
HUDITM *
HUDITM *
HUPGRP
HUDITM *
CHKNAM *
MODIFY
GETCOP *
HUGSOR *
ANFILI
NEWANI
OPNANI *
EXTCOP
GETCOP *
HUGSOR *
EXTCP1
GETCOP *
GETAGR
TRAVIN *
WRTONE
MODTFM
INT4X4
GLTRN
GTUROZ *
GTUROY *
GTUROX *
GTUSCL *
ADDFRM
INQFRM
MODATT
ADDFRM *
CHKNAM *
GETXT *
GETNUM
MODIFY *
GETATT *
SQUISH
GETCOM *
INQLIT
INQUIR

GETCOP *
GETAGR
TRAVIN *
SHOATR

GETTXT *
INQLIT

GETGRU *
GETITM *
GETCOP *
HUCSOR *
GETDEF
SETDEF
SUMMARY

INQLIT
INQFRN
INQCNT
GETTXT *
GETWND
GETCLP
INQLAF
INQPRT
INQBGC

GETLIM
ANQFNC
SQUISH
GETTXT *
GETNUM
SQUISH
ANQDSD
SQUISH
ASTDSP
GETTXT *
GETCOM *
ASTSTD
ANQREF
ASTREF

Appendix A LINK MAP A.17
Appendix B

AN INTRODUCTION TO HIERARCHAL DATA STRUCTURES

In Chapter One, Example Problems, the fifth and sixth examples refer to this chapter, "An Introduction to Hierarchal Data Structures." We have included this section because reading through it will help you understand the hierarchial data structures used in RGDL.
AN INTRODUCTION TO HIERARCHAL DATA STRUCTURES

If you read in a geometry file into RGDH using READMV, the program will print a message similar to the following message:

A COPY OF 1 HAS BEEN ADDED

This line with a different number will be repeated for each part the applications program reads from the given geometry file. The message indicates that the hierarchical data structure is doing some default work for you.

You may choose to ignore the hierarchical data structure, but we strongly recommend you learn how to manipulate and use this powerful tool.

This appendix defines three terms you need to know and explains the hierarchical data structure, but does not give examples. You should see Chapter One, especially Examples Five and Six, for examples of how hierarchical data structures are used within RGDH.

Hierarchical Data Structure Terms

Item:
An item is a collection of polygons that all behave in the same way. In other words, the polygons share the same attributes and are transformed together.

An item cannot be deleted from the database and cannot carry attributes or transformations.

Instance:
(or copy)
An instance is a copy of an item or a group and can be deleted. It carries attributes as well as transformations.

At display time, the instances show up on the screen.

Group:
A group is a collection of instances. A group, like an item, cannot be deleted from the database, and it cannot carry attributes or transformations.

What Are Groups And Items?

Groups and items are part of a powerful hierarchical data structure that allows you to create and manipulate parts that may be related to one another.

A simple example of how parts can be created and manipulated is the creation of a car model. The wheels and the car body can be defined as separate items, while the wheels and car body together are a group.

Half of the car body can be modeled. This half can then be copied and mirrored to create an entire car body. A wheel can be created and replicated four times, then placed at the correct locations.
The body and wheels can then be manipulated together as an entire car. All four wheels can be rotated while the car is moving by simply rotating the instance containing the four wheels.

Upon initialization, RGDLE creates a default group called ROOT (Capital letters are different from lower case letters. Thus, a group with the name 'ROOT' will be different than another group with the name 'root'). When a geometry file is read in, a copy of each of the parts are placed under the current active group (default ROOT).

Thus, if a three part geometry file were read in, the structure would look like Figure 1.

Figure 1.

Because the numbers 1, 2, and 3 are not very descriptive of the geometry, we can change the names to improve the description. For example, we can rename items 1, 2, and 3 to part1, part2, and part3, and change the instance names to copy1, copy2, and copy3. The structure will then look like Figure 2.
Because the numbers 1, 2, and 3 are not very descriptive of the geometry, we can change the names to improve the description. For example, we can rename items 1, 2, and 3 to part1, part2, and part3, and change the instance names to copy1, copy2, and copy3. The structure will then look like Figure 2.

As mentioned earlier, only instances can be deleted from the data structure. For example, we can delete copy1 and add another instance of part3. The resulting structure is shown in Figure 3.
As seen in Figure 3, item part1 has simply been unlinked from the data structure. It may be linked up at a later time under any group, or ignored.

Another group called 'NEW GROUP' can be created. Under this group, copies of other groups or items can be added.

The only limit is that the links can not be recursive. For example, a copy of 'ROOT' cannot be added under the group 'ROOT' because a circular list would be created. RGDL checks for recursive links and tells you about them.

A new structure might look like Figure 4.

![Diagram](image)

Figure 4

The term definitions explain that only instances carry transformations and attributes. Transformations concatenate up the tree; thus a rotate of copy2 and a translate of ROOT COPY 1 would result in a scene that has two rotated copy2's, but only one translated copy2 (the rotate would occur before the translate).

In fact, such a scene would contain seven parts: two each of copy2, copy3, and copy4, and one part representing copy1. The one group of copy2, copy3, and copy4 would be translated.

Appendix B HIERARCHICAL DATA STRUCTURES B.5
Attributes such as color, shading type, and highlights are not concatenated. Instead they are inherited from "parent" to "child" for attributes not set for the child.

For example, if the color of copy2 was set to red, and the color of ROOT COPY 1 was set to green, the color of copy2 will remain red. If the color of copy3 was not set, it would be green under ROOT COPY 1 because copy3 inherited this color from its "parent".

However, copy3 under ROOT COPY 2 will not inherit color on the way up the tree, but will remain with its default color. An instance that has no attribute after traversing the tree from bottom to top will be assigned a default attribute.

To better understand hierarchical data structures, study the examples shown in Chapter One, especially Examples Five and Six.
Appendix C

SOFTWARE Installation

The magnetic tape supplied with this document is in a PRIME Magsav format for easy installation on other PRIME systems. The magnetic tape contains the following files:

- HIDDEN.F77: RGDL hidden surface routines.
- ANIMATE.F77: RGDL animation routines.
- GRUPIT.F77: RGDL groups and items routines.
- JONESD.F77: RGDL hidden line routines.
- MAIN.F77: RGDL common use routines.
- MOVLIB.F77: RGDL input/output library routines.

RGDL device driver routines

The C routines are for UNIX installations. Only one driver should be linked with an application.

- AED.F77
- AED.C
- RAS110.F77
- RAS120.F77
- RASOUT.C
- T4010.F77
- T4109.F77
- T4111.F77
- T4115.F77
- T4129.F77

RGDL include files

- ANIM.INC
- CVER.INC
- FNCT.INC
- HIDN.INC
- MOVL.INC
- MSTR.INC
- USER.INC

Example problems

- RSP EX1.F77
- RSP EX2.F77
- RSP EX3.F77
- RSP EX4.F77
- RSP EX5.F77
- RSP EX6.F77

Example problem geometry file

- EXP9.GEO
INSTALLATION

RGDL software is for installation on a PRIME computer. Even though the code is generic FORTRAN, it contains include file statements that are system dependent. The device drivers contain code that dumps buffers; this code is also system dependent.

To install RGDL on different operating systems, the include file statements in the source code must be modified to be compatible with your system's requirements. The code to perform system dependent buffer dumping in the device driver should also be changed.

BUGS, PROBLEMS, and COMMENTS

We have done our best to make RGDL and its documentation accurate and clear. However, you may find things that need to be clarified or changed. If you find bugs or problems in the software or the documentation, please contact us. Any positive comments would also be appreciated.

Software Manager
Engineering Computer Graphics Lab
Civil Engineering Department
368 Clyde Building
Brigham Young University
Provo, UT 84602
(801) 378-2812