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A TAYLOR-GALERKIN FINITE ELEMENT ALGORITHM FOR TRANSIENT
NONLINEAR THERMAL-STRUCTURAL ANALYSIS
By

Earl A. Thorntonl‘and Pramote Dechaumphai?

INTRODUCTION

The determination of the structural response induced by thermal effects
is an important factor in many aerospace structural designs. Extreme aero-
dynamic heating on advanced aerospace vehicles may produce severe thermal
stresses that can reduce operational performance or even damage structures.
The performance of laser devices can be degraded by thermal distortions of
mirror surfaces. The thermal environment in space may cause orbiting struc-
tures to distort beyond operational tolerances. To predict the structural
response accurately, effective numerical techniques capable of both thermal
and structural analyses are required. One technique, the finite element
method, has been found to be particularly suited for such analyses due to
its capability to model complex geometry and to perform both thermal and
structural analyses.

In the most common approach to determining structural responses induced
by thermal effects, the thermal-structural analyses are assumed uncoupled,
and the structural analysis is assumed quasistatic. The uncoupled assump-
tion means that mechanical deformation terms in the heat transfer energy
equation are neglected. The quasistatic assumption means that inertia terms
in the structural equations of motion are neglected. The practical effect

of these assumptions is that the heat transfer analysis can be performed
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first, and the resulting temperatures can be used as input to a subsequent
stress analysis. This approach works well when temperatures change slowly
as occurs, for example, in an orbiting space structure subject to solar
heating. Under these circumstances, the uncoupled, quasistatic idealization
provides an effective approach for finite element thermal-structural analy-
sis. The principal difficulty encountered in uncoupled analyses is achiev-
ing compatability between different thermal and structural models. A hier-
archical finite element approach for integrating uncoupled thermal and
structural analyses is described in Ref. 1.

When changes in temperature occur rapidly, the assumptions that ju§tify
the uncoupled, quasistatic idealization are no longer justifiable. Temper-
ature changes can occur rapidly due to propagation of thermoelastic waves,
during vibrations induced by periodic variations of temperature fields, due
to thermal shocks and in similar circumstances. These types of problems may
involve resolving wave-like details of the time dependent response for com-
plex structures. Moreover, if the mechanical coupling terms are retained,
the equations are inherently nonlinear even in the material's elastic range.
The finite element method remains a logical solution approach because of its
capability to represent complex geometries. Tnere is a need, however, for
effective finite element solution algorithms that can solve large nonlinear
transient problems efficiently.

The purpose of this paper is to present a Taylor-Galerkin finite ele-
ment method for solving large, nonlinear transient thermal-structural prob-
lems. The method is a thermal-structural application of a Taylor-Galerkin
algorithm recently developed to solve the conservation equations of invis-
cid, compressible flow (Ref. 2). In the flow problem, the algorithm is used

to solve the highly nonlinear Euler equations that includes capturing shock



discontinuities in the flow field. Finite element models of flow problems
usually are quite large with the number of equations typically in the range
from 3,000 to 30,000 or more. Thus, the algorithm appears to have desirable
attributes that will make it effective for 1large nonlinear, transient
thermal-structural problems.

The formulation of a nonlinear thermal-structural problem will be pre-
sented first, then the Taylor-Galerkin algorithm will be described. Next,
an explicit evaluation of the finite element integrals is described. }ina1-
ly, a programming strategy for a vector computer implementation of the
algorithm is described.

This research project is supported by NASA/Langley Grant NSG-1321, and
monitored by Mr. Allan R. Weiting, LAD-Aerothermal Loads Branch.

THERMAL-STRUCTURAL FORMULATION
The nonlinear coupled thermal-structural equations for a two-dimension-

al continuum (ref. 3) are written in the form

oy, 2eb L 2FE L gy (1)
at Ix ay

where {U} is the vector of unknowns, {E} and {F} are vectors of stresses

and heat fluxes, and {H} is a "load" vector. These vectors are given by
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where u and v are the displacements, p 1is the density, U and v are
the velocities, <, is the specific heat and T 1is the temperature; Ty

O Txy are the stress components; 9., 9, are the heat fluxes; f

y y X’ fy
are body force components per unit volume; B;,, B12, Bop are coefficients
that depend on the coefficients of thermal expansion, and Q 1is the inter-
nal heat generation rate per unit volume. The first two equations in Eq.
(2) define the velocity components, the third and fourth equations are tne
equations of motion, and the fifth equation represents conservation of
energy. The term in the square brackets in the last line of {H} repre-
sents the thermal-structural coupling.

The structural and thermal equations are written in the form of Eq. (1)
to resemble the conservation equations of fluid flow. In the fluid context,
the components of {U} are called the conservation variables, and the com-
ponents of {E} and {F} are fluxes of mass, momentum and energy across
the faces of a control volume. In the thermal-structural context, the com-
ponents of {U} may also be regarded as conservation variables. The stress
components of {E} and {F} now represent tractions on surfaces of the

control volume; however, qy and q_ still represent heat fluxes across

Y
surfaces of the control volume.

In formulating the constitutive equations, highly nonlinear relations




between stresses, strains and temperatures are permitted as well as nonlin-
ear relations between heat fluxes, temperatures and temperature gradients.
Anisotropic materials can be accommodated as well. For simplicity, simple
constitutive relations for linear, elastic orthotropic materials will be
presented herein. The stress-strain relations for an orthotropic material

are expressed as
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where Cij are elastic constants, and To is the reference temperature for

zero stress. The heat fluxes are expressed by Fourier's law,

aT

q = -k —

X Xax
(3b)

aT

= - k —

q.Y .Yay

where kx’ and ky are the thermal conductivities.

Equation (1) is solved subject to appropriate initial and boundary
conditions. The initial conditions consist of specifying the distributions
of the conservation variables {U} at time zero. The structural boundary
conditions consist of specifying the displacements or surface tractions at

all points on the boundary. The thermal boundary conditions consist of




specifying temperatures or heat fluxes at all points on the boundary.

Convective and radiation boundary conditions are incorporated tnrough heat

fluxes.

TAYLOR-GALERKIN ALGORITHM
The solution domain D is divided into an arbitary number of elements
of r nodes each. Fig. 1 shows typical quadrilateral elements (r=4) used
in this paper. For simplicity, the finite element formulation will be given

for a single scalar equation.

at Ix ay

= H (4)

where the variables wu, E, F and H are analogous to the corresponding vec-
tor quantities in Eq. (1). Let {u}n denote the element nodal values of
the variable u(x,y,t) at time tn. The time step At spans two typical
times tn and tn+1 in the transient response. The computation proceeds
through two time levels,- tn+1/2 and tn+1‘ At time level tn+1/2’ values
for u that are constant within each element are computed explicitly. At

time level t the constant element values computed at the first time

n+l’

level are used to compute nodal values for u. In the time level t com-

n+l
putations, element contributions are assembled to yield the global equations
for nodal unknowns. The resulting equations are approximately diagonalized

to yield an explicit algorithm.

Time Level t..1/5

To advance the solution to time level tn+1/2’ a truncated Taylor

series yields
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_ 1 du
u(xs.ystn+l/2) = U(X,y,tn) + ‘é‘—Ata"t_" (X’Y9tn) . (5)

Then Eq. (4) is introduced on the right hand side of Eq. (5) so that

U Y5t ) = ulxyst )

- 2ot |22 (xy,t) + o (xyst) | £ S8t HOGY,E) (6)
3 2

At time level tn+1/2’ the dependent variable u(x,y,tn+l/2) is assumed
to have a constant value Up n+1/2 within an element.

At time level tn in the response u, E, F and H vary within an ele-
ment and are interpolated from nodal values. Thus, the following spatial

approximations are used within an element.

U3 Yst ) = U2 (7a)
u(x,y,t,) = [N(x,y) Hu}" (7b)
E(x,y,t,) = (N(x, ) J{E} (7¢)
F(x,y,t,) = (N(x,) I{F}" (74)
H(x,y,t.) = [N(x,y) 3K (7¢)

where [N(x,y)] denotes element interpolation functions and {u}n is a




vector of the element nodal quantities. For a typical quadrilateral element
the interpolation functions are bilinear, and in a local natural coordinate

system (see Ref. 4) have the form

Ni=l(1+%€)ﬂ+nﬂ) i=1,2, 3,4 (8)
4

where Ei and " denote the nodal coordinates (Ei,ni =* 1) of the

element in the &-n plane. The equations for an+1/2

for each element
are derived by the method of weighted residuals. The spatial approximations
given in Eq. (7) are introduced into Eq. (6) to give a residual; the result
is multiplied by a weighting function which in this case is unity. Finally,

the weighted residual is integrated over the area A of the element. The

result is,
n+l/2 N
A up = fA IN] dA {u} (9)
S0 N L [T S UL O L I
2 3xX 2 Ay
A n
+ 55 [, [N] dA {H}
. . n+1/2
With Eq. (9), the dependent variable Up for each element can be com-

puted explicitly using nodal values for u, E, F and H from the previous time

+ .
tn. The constant element variable an 1/2 may be interpreted as a

weighted average of an element's nodal values at time tn. A later section

will discuss the evaluation of the three integrals that appear on the right



hand side of Eq. (9).

In advancing the solution to the next time level, the values of the

. +

dependent variables on the surface may be required also. Let uSn 1/2
denote the surface value on a typical element edge IJ on the surface, S;
in Fig. 1. Following the approach used previously, u,snﬂ/2 is assumed

constant on edge IJ at time t but at time tn, u, E and F vary

n+l/2°
along the edge. Thus the following approximations are used on an element

edge on 33,

W66 Y5t gy ) = Ul 72 (10a)
u(x,y,t,) = [N(s) Jfu}" (100)
E(x,y,t,) = [N(s)){E}" (10c)
F(x,y,t,) = IN(s) I{F}" | (10d)
Hxy,t) = N M (100)

where [N(s)] denotes the interpolation functions along an element edge.
. + .
Using the method of weighted residuals, the values for usn 1/2 are derived

by integrating over the length L of an element edge. Hence

Lu M2 =00 ds{ul” - 2T [N s e
S

Aty 12N gs (A" +523fL (] s {H}" . (11)

10



Thus, Egs. (9) and (11) can be used to advance explicitly the element and
surface values of the dependent variables to tn+l/2' Beginning with nodal

values of {u}", {€}", {F}" and {H}", Eq. (9) is used to compute constant

values an+1/2 for each element. In a similar way, Eq. (11) is used to

+ .
compute constant surface values wu m1/2 for element edges on boundaries

3
n+1/2

s are required

that require these values at tn+1/2‘ For example, u
on element edges with specified stresses or heat fluxes. These values are
computed explicitly by looping through all elements and appropriate element

edges.

Time Level tn+1

To advance the solution to t forward and backward truncated

n+l?

Taylor series expansions at tn+1/2 are used to write the approximation

3
U(%5Ystpyq) = U (x,y,t,) +At 5-:- (Xs¥stpa1/p) - (12)

Then, following the approach used previously, Eq. (4) is introduced on the

right hand side to yield

u(x,y,t 1) = u(x,y,t )

oE of
- At [;)-(- (X9Y9tn+1/2) + 8—; (Xa.Ystn+1/2)] . (13)

+

At H(X,¥5t0q/0)

11



If the flux gradients 3E/3x and 3F/3y are evaluated using values from
the midstep, the gradients will be zero because E and F are constant
within the element at midstep. To avoid this undesirable situation, the

flux gradients are interpolated from their values at tn and tn+1' Thus

oE 9k JE

— (x,y,t ) =8 = (x,y,t ) + (1-8) — (x,y,t ;)

X n+l/2 3x n - n+l

3F 3F 3F

b (Xsy,t ) =8 — (X,y,t ) + (1‘6) - X’.y’t ) (14)
3y n+1/2 3y n 3y n+l

where the interpolation parameter 6 varies from zero to one. The equa-
+

tions for the nodal values of {u}" 1 Can next be derived by the method

of weighted residuals in the standard way (ref. 4) using tne interpolation

functions N, as weighting functions. 1In the process, Eq. (14) is substi-

‘tuted into Eq. (13), and the terms containing derivatives are integrated by

parts. These operations yield the equations for the nodal values of a

single element,
M1 {u}™h = (] {ul" + 8 {Ry)" 6 {Ry)"
b (1-0) [Ra}™L + (1-0) {R}™ + (Rg}™2 (15)

where [M] = fA {N} [N] dA (16a)

12



(Ra}" = 0t [ (2400 a 6"+ e ], {%} (] dA {F}" (16)
(R} = - at [ {N}IN] ds (2 {E}] + m [F}}) (16¢)
(R} ™ = at g (5 1) @ (€)™ at {%} N e (™ (Lea)
(R ™ = -t f o (N DN ds (2 {6)] + m (FID) (16e)
[Rg}™1/2 < [ (N} dA H*1/2 . (16f)

In Egs. (16c) and (16e) the coefficients £ and m are the components of a
unit vector normal to the boundary. Following usual finite element proce-
dures, the element matrices given in £q. (16) can be assembled to form sys-
tem (global) equations.

The matrix [M] defined by Eq. (l6a) is the element consistent mass
matrix. The term, consistent, is used to distinguish these matrices from
diagonal mass matrices that arise from other discretization methods. A
consistent mass matrix has off-diagonal terms that couple the element vari-
ables on the left hand side of Eq. (15). The algorithm with consistent mass
matrices and arbitrary © s an implicit scheme. If the mass matrices are
diagonalized and 6 is taken as 1, the algorithm becomes an explicit

scCheme.

EXPLICIT EVALUATION OF ELEMENT INTEGRALS
Element integrals for the Taylor-Galerkin algorithm shown in Egqs. (9),

(11), and (16) were evaluated in closed form in Ref. 2 to avoid expensive

13



numerical integrations that are customary for quadrilateral elements. For
two dimensional problems, these element integrals are either in the form of
integration over the element area or along an element edge. As an example,

the element mass matrix for a quadrilateral element, Eq. (15), is given by
M) = f_ll Ill {N} [N] |0]dE dn (17)

where [N} s the vector of the element interpolation functions in terms of
the element natural coordinates & and n. The determinant of the Jacobian
|3] that appears in the above equation represents the transformation froﬁ
the element global coordinates x-y to natural coordinates £-n, The
transformation permits the e1eﬁent integration to be evaluated over a
square.

The approach developed in Ref. 2 was also used for the evaluation of
three dimensional hexahedral element integrals. Typical element integrals
derived using the Taylor-Galerkin algorithm are in the same form as obtained
for the quadrilateral element where the element integrations are either
performed over the element volume or the element surface areas. As an exam-

ple, the mass matrix for a hexahedral element is given by
[M] = [, (N} [N] Qv
=[2L LT (NN fo) &8 dn e (18)

where £, n, ¢ are the element natural coordinates.

The CPU time used by the closed form solution of the mass matrix has

14



been investigated and compared with CPU times required for different orders
of Gauss numerical integration for quadrilateral and hexahedral elements.
Although CPU time savings for quadrilateral elements are large (a factor of
50 for all integrals), the CPU time savings for hexahedral elements is even
more significant. Typical CPU times for evaluation of a hexahedral element
mass matrix are compared in Fig. 2. The figure shows that the closed form
solution reduces CPU time significantly for an element mass matrix. Time
savings in excess of an order of magnitude are obtained from the closed form
solution in comparison with the popular 8 points Gauss integration method.
Computational savings from explicit evaluation of other hexahedral element
matrices are shown in Fig. 3.

The time savings gained by explicit evaluation of the finite element
integrals is an important step toward developing efficient finite element

computations for large three-dimensional problems.

VECTOR PROGRAMMING STRATEGIES
The Taylor-Galerkin algorithm used in Ref. 2 was implemented with vec-
torization strategies specifically for the Langley VPS 32 (a Cyber 205 with
16 million words of central memory). This computer achieves high computa-
tional speed when performing operations on long vectors. Vector lengths of

at least 60 are required to justify vectorization efforts with maximum pay-
off achieved for vector lengths of 1000 or more. The predominant vector
lengths in the vectorization scheme are the number of elements in the finite
element model with occasional operations using vector lengths equal to the
nunber of nodes.

The critical vectorization tasks are for those operations that are

repetitive and performed at every time step. For finite element algorithms,

15
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these operations are: (1) assembly of element contributions into the global
system of equations, (2) solution of the global system of equations, and (3)
application of boundary conditions. .

The assembly of element contributions into the global system of equa-
tions is the process in finite elements which differs most from other num-
erical techniques and requires special routines for vectorization. Nodal
unknowns are stored in one dimensional arrays from 1 to the number of nodes
in the model, and in general, node numbering may be arbitary throughout the
mesh, Assembly of element contributions is performed using the VPS 32
FORTRAN-supplied scatter routine which places an element contribution into
the proper location in the system of equations based on the element connect-
ivity. Every element that contains a particular node in its connectivity
provides its own contribution to the system equations, therefore, the assem-
bly is an additive operation. "Scattering" alone would merely overwrite a
previous element contribution. The special vector routine, then does an
"additive scatter."

For an exp]icit.scheme, §o1utions are obtained directly, so that opera-
tion (2) vectorizes naturally. Operation (3), the application of boundary
conditions, is an intrinsically scalar operation and difficult to vectorize.
However, use of bit vectors to flag boundary nodes and use of VPS 32 FORTRAN
supplied routines enables full vectorization of this operation.

A program flow chart for the Taylor-Galerkin algorithm is shown in Fig.

CONCLUDING REMARKS
A Taylor-Galerkin finite element solution algorithm for transient non-

1inear thermal-structural analyses of large, complex structural problems

18
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subjected to rapidly applied thermal-structural loads is described. The
two-step Taylor-Galerkin algorithm is an application of an algorithm re-
cently developed for problems in compressible fluid dynamics. The element
integrals that appear in the algorithm can be evaluated in closed form for
two and three dimensional elements. Numerical calculations show that compu-
tational times are reduced significantly by the closed form integral evalua-
tion. The algorithm has been implemented on the NASA Langley VPS 32 vector
computer with special programming strategies to yield very high computa-
tional speeds for the solution of large problems. The many desirable attri-
butes of the algorithm indicate that it will be quite effective for the

solution of large, nonlinear, transient thermal-structural problems.
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