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ABSTRACT:

The SAGA project is investigating the design and construction of practical

software engineering environments for developing and maintaining aerospace sys-

tems and applications software. The research includes the practical organization

of the software lifecycle, configuration management, software requirements

specification, executable specifications, design methodologies, programming,

verification, validation and testing, version control, maintenance, the reuse of

software, software libraries, documentation and automated management.
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1. Summary

This report describes the current work in progress for the SAGA project.

highlights of the research in the last six months are:

The

An Experimental Quality Software Development Environment

• Completion of the ENCOMPASS and PLEASE prototypes.

• PLEASE and ENCOMPASS use to develop small programs, including specification,

prototyping, and mechanical verification.

• Use of PLEASE and ENCOMPASS with experimental automatic code generation

techniques that produce implementation code from specifications.

• Completion of papers and a thesis describing ENCOMPASS, PLEASE and the

results from our research.

Configuration Management

• A configuration management and version control model has been developed and
refined.

• CLEM:MA, an initial prototype automated configuration librarian to support

configuration management in the SAGA environment has been completed.

• The Troll relational database manager has been integrated into the CLEMMA sys-

tem to support information retrieval.

• The functionality of CLEMMA has been extended.

Project Management

• A prototypical project management model is being developed.

• A prototype implementation of PROMAN, an automated project manager, is being

designed and built for the SAGA environment.

• A project task facility has been designed and is being coded.

• The TROLL data base support for management activities and states is complete.

• A primitive form compiler, FORMAN, has been built to support PROM.AN. Many

major user interfaces of the project management system use the completion of

management forms as a paradigm for interaction.

• A prototype multiple screen library_ WIN, has been built to support PROM.AN:

WIN allows forms to be displayed and completed in a screen-oriented mode on ter-

minals.

Survey of Management Approaches

• Publication of the survey of software management techniques in AT&T. (The

paper was reviewed by AT&T and is now used in their programmer training.)

Software Analysis Tools

Completion of an experimental attribute graph grammar kernel intended to support

continued investigation of appropriate methods to incorporate incremental semantic
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analysis into SAGA tools including EPOS and other language-oriented editors.

• Completion of a specification analyzer, used to compile semantic specifications into

tables to drive the attribute graph grammar kernel.

• Continuing use and modification of these prototypes to investigate usability of vari-

ous semantic implementation models.

Language-Oriented Editor

• The GNU Emacs user interface for the EPOS editor has been improved.

• EPOS is being rewritten in C to be more efficient and to use YACC and LEX.

• GNU Emacs Lisp has been extended with specific objected-oriented features to sup-

port the development of additional EPOS tools.

• A programmers manual for EPOS GNU Emacs is being written.

User interfaces Prototyping Tool

• KAOS, a prototype support library for user interface development, has been

designed and partially implemented.

Appendix A contains a list of twenty-nine theses and papers that document the

project. Nine of these were produced since the last mid-year report. Appendices B

through I contain reports, thesis proposals, papers, and other work produced as part of

the NASA project this Spring.

2. Overview

The SAGA (Software Automation, Generation and Administration) project has

been active at the University of Illinois at Urbana-Champaign since the early eighties

(see Appendix A). It is investigating both the formal and practical aspects of providing

automated support for the full range of software engineering activities. Early efforts in

SAGA were devoted to building software development tools such as Notesfiles, a distri-

buted information base which operates on networks of heterogeneous machines; a source

code control system for CDC machines; EPOS, a language-oriented editor based on an

"incremental LR(1) parser; and TED, a general purpose tree editor which is interfaced to

a number of theorem provers and can serve as a proof management system.

ENCOMPASS is the first complete environment to be constructed by the SAGA

project; it demonstrates the validity of many of the concepts on which SAGA is based.

Specifically, the configuration control and project management systems used in ENCOM-

PASS serve as prototypes for more comprehensive systems which will be used in future
SAGA environments.

In addition, ENCOMPASS demonstrates that environments can be built to

integrate rapid prototyping with rigorous incremental development methodologies such

as VDM. ENCOMPASS exploits the notion of an executable specification language as a

vehicle for validating requirements and testing designs. The same specification language

can be used in more formal verification methods including mechanical verification. By

integrating executable specifications with an incremental refinement methodology,
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ENCOMPASS introduces the possibility of reusable designs and more meaningful accep-

tance criteria for project milestones. Last, recent work has show the possibility of

automating some of the decision making process involved in coding an implementation

of a specification.

Guided by the results from ENCOMPASS, the SAGA Project is already developing

Clemma, a configuration librarian, and PROMAN, a second generation project manage-

ment system. These two new systems provide a more general purpose and more power-

ful implementation of the ideas in ENCOMPASS. Both systems use a data base and can

support the management of large software projects. In addition, both systems improve

upon the functionality available in the ENCOMPASS system. In future work, these sys-

tems will greatly enhance the capabilities of the next complete experimental environ-

ment, the successor to ENCOMPASS. Appendix C contains a paper reviewing the

current status of the project.

3. The ENCOMPASS Prototype Software Development Environment

The ENCOMPASS system was built to study the design issues involved in con-

structing a quality software development environment. The system formed the major

part of Bob Terwilliger's Ph.D. thesis. A draft of the thesis is contained in Appendix B

but the summary from the thesis is reproduced in this section to provide an overview for
the work.

In the thesis will be found a proposal to automate the rigorous development of a

software system using existing methods and tools. Although the system is primitive and

many of the methods and tools inadequate, the approach provides a foundation upon

which a quality software production facility could be built. The approach successfully

combines many themes from current research including prototyping, program testing

and verification, incremental development, and automatic code generation.

The prototype includes PLEASE, an Ada-based, wide-spectrum, executable

specification and design language; DEAL, an environment for programming-in-the-

small using PLEASE; and ENCOMPASS, a simple environment for programming-in-

the-large. Together, these form an integrated system to support incremental software

development in a manner similar to VDM. In ENCOMPASS, software is specified using

a combination of natural language and PLEASE. In PLEASE, software can be specified

using Horn clauses: a subset of first-order, predicate logic. In ENCOMPASS, PLEASE

specifications can be incrementally refined into Ada implementations. Each step is

verified before the next is applied; therefore, errors can be detected and corrected sooner

and at lower cost. In ENCOMPASS, a refinement can be verified using peer review,

testing, or proof techniques.

Executable prototypes can be automatically constructed from PLEASE

specifications by translating pre- and post-conditions into Prolog procedures. PLEASE

prototypes are based on existing Prolog technology, and their performance will improve

as the speed of Prolog implementations increases. As logic programming progresses, new

versions of PLEASE can be built based on more powerful logics.
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PLEASE prototypes can enhance the validation, design, and verification processes.

During the validation phase, these prototypes may be used in interactions with the cus-

tomers; they may be subjected to a series of tests, be delivered to the customers for

experimentation and evaluation, or be installed for production use on a trial basis.

PLEASE prototypes can also be used to verify the correctness of refinements; most sim-

ply, the prototype produced from a PLEASE specification can be used as a test oracle

against which implementations are Compared. In a more complex case, the prototypes

produced from the original and refined specifications can be run on the same data and

the results compared. PLEASE specifications also enhance the verification of system

components using proof techniques; for the purpose of formal verification, the refinement

process can be viewed as the construction of a proof in the Hoare calculus.

IDEAL is an environment concerned with the specification, prototyping, implemen-

tation and verification of single modules. IDEAL provides facilities to create PLEASE

specifications, construct prototypes from these specifications, validate the specifications

using the prototypes produced, refine the validated specifications into Ada implementa-
tions, and verify the correctness of the refinement process. IDEAL is an environment for

*_^_.._rigorous development of programs. Although detailed mechanical proofs are not

required at every step, the framework is present so that they can be constructed if neces-

sary. Proofs may range from a very detailed, completely formal proof using mechanical

theorem proving, to a development "annotated" with unproven verification conditions.

Parts of a project may use detailed mechanical verification while other, less critical parts

may be handled using less expensive techniques. Our experience so far leads us to

believe that the complete, mechanical verification of large programs will be prohibitively

expensive; however, inexpensive methods can eliminate a large percentage of the

verification conditions generated during a development. By eliminating these "trivial"

verification conditions, the total number is reduced so that the verification conditions

remaining can be more carefully considered by the development personnel.

ENCOMPASS provides facilities to store, track, manipulate and control all the

objects used in the software development process: documents, specifications, source

code, proofs, test data, and load modules are all supported. ENCOMPASS also provides

mechanisms to support the interactions among developers; the system allows the crea-

tion, decomposition, distribution, monitoring and completion of tasks. In ENCOM-

PASS, the configuration management system structures the software components

developed by a project, while the project management system uses facilities provided by

the configuration management system to control both access to data and interactions

between developers. ENCOMPASS is based on a traditional life-cycle, modified to sup-

port the use of executable specifications and VDM. In ENCOMPASS, some modules of a

system may be developed using PLEASE and IDEAL, while others are developed using

conventional techniques. This allows the practical power of Ada and the formal power

of PLEASE to be combined in a single project. ENCOMPASS can be extended with a

central repository to support software reuse; we have also constructed an automated

change control system based on ENCOMPASS.
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ENCOMPASS Status

The ENCOMPASS environment has been under development since 1984. A proto-

type implementation has been operational since 1986; it is written in a combination of C,

Csh (the Berkeley 4.3 UNIX _ command interpreter), Prolog and Ada. The prototype

implementation of IDEAL includes the tools necessary to support software development

using PLEASE: an initial version of ISLET, the language-oriented editor used to create

PLEASE specifications and refine them into Ada implementations; software which

automatically translates PLEASE specifications into Prolog procedures and generates the

support code necessary to call these procedures from Ada; the run-time support routines

and axiom sets for a number of pre-defined types; and interfaces to the ENCOMPASS

test harness and TED. PLEASE, IDEAL and ENCOMPASS have been used to develop

a number of programs, including specification, prototyping, and mechanical verification.

At present, all the programs developed have been less than one hundred lines in length,

but some have included more than one module, allowing demonstrations of the ENCOM-

PASS configuration control and project management systems.

The subset of PLEASE currently implemented includes the if, while, and assign-

ment statements, as well as procedure calls with in, out or in out parameters. The

language now supports a small, fixed set of types including natural numbers, lists, boole-

ans and characters. The current implementation of PLEASE is based on the UNSW

Prolog interpreter and the Verdix Ada Development System; it runs under Berkeley

Unix on a Sun 2//170. The Prolog interpreter and Ada program run as separate

processes and communicate through pipes (a UNIX interprocess communication mechan-

ism.) This implementation is somewhat expensive; for example, there is a five CPU

second overhead to start the Prolog interpreter, but this is incurred only once during

program execution. A procedure call from Ada to Prolog costs about forty milliseconds

excluding parameter conversion.

The combination of algebraic simplification and simple proof tactics implemented in

ISLET seems to work very well; in our experience, it can eliminate between fifty and

ninety per cent of the verification conditions generated during refinement. The simple

methods run very quickly: less than one second response time in all the cases examines

so far. The use of TED and theorem provers is very expensive.

Copies of demonstration scripts showing ADA software development in ENCOM-

PASS and a demonstration version of ENCOMPASS have been ported to NASA Langley

machines. Bob Terwilliger presented the ENCOMPASS work to the staff at NASA

Langley. Two papers (accepted for publication in the Journal of Software and Systems)

describing PLEASE and ENCOMPASS are included in Appendix G and H respectively.

Appendix F contains a preliminary report concerning the use of ENCOMPASS in the

automatic generation of implementation code from PLEASE specifications using

artificial intelligence techniques.

4. Configuration Management

An initial prototype of CLEMMA, an automated configuration librarian, has been

completed. The prototype operates using the Troll relational database manager and the
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UNIX _ file system. This initial prototype includes facilities for creating project

libraries, checking components in and out of libraries, !dentifying individual components,
and storing views of composite software objects.

In its current incarnation, CLEMMA provides the basic functions required of a

configuration management system. It allows the user to store and retrieve the com-

ponents of a software project, to record the relations between the components, and to

create attribute-based descriptions of the components in a relational database.

CLEMMA presents itself as a set of tools, usable by project managers and workers, for

manipulating project libraries. Assuming use in the context of a project management

system such as PROMAN, CLEMMA would control the access and modifications to the

components of a project. The system would provide identifying, tracking, and deriva-

tion information, aiding managers in coordinating the development and maintenance of

systems. The interface to the tools is a simple text one, thus facilitating the use of the

tools in command scripts in other systems, such as PROMAN.

The development of CLEMMA has uncovered several interesting questions in the

area of configuration management. For example, the problems of module description,

representation and compatibility of parallel revisions, and component evolution are

currently being explored. New, more detailed data models for configurations and ver-

sions are required for the system and are being formulated. More sophisticated inter-

faces to the system are also being considered, to enhance ease of use and applicability to

different operating environments. As they reach fruition, these new ideas will be refined

and incorporated into the configuration management system. A more detailed overview

of CLEMMA can be found in Appendix C. Hal Render, author of CLEM:MA, is spend-

ing this summer at NASA Langley where he will install the system on a NASA com-

puter. While at NASA, he will deliver a more detailed report on the system and its use.

6. Project Management

The design and development of a project management system for the SAGA

environment is now under way. This system, called PROMAN, emphasizes tracking,

control, and communication in the project development environment. To support these

aspects of project management, PROMAN models a development project as hierarchy of

tasks and uses techniques from programming languages, operating systems, and data-

bases in its implementation.

In the past year, we have arrived at PROMAN's basic task model and design. In

brief, PROMAN models a software project as a hierarchy of tasks. Each task has associ-

ated resources (input and output) and dependencies on other tasks. PROMAN's basic

design is as the top level of an integrated environment. Therefore, PROMAN's design

has facilities for interfacing to project resource managers such as configuration managers

(e.g. CLEMMA) and programming-in-the-small environments (e.g. C shell). It also

includes a project browser for viewing the task structure of the development and a

report generator for periodically summarizing project status. PROMAN's user interface

is based on a form-filling metaphor with a standardized command interface.
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Initial implementation has concentrated on support tools and task manipulation. In

the area of support tools we have constructed WIN and FORMAN. WIN is a simple

multiple screen library that supports building forms out of fields and interacting with

them using a standard command mechanism. FORMAN is a form compiler that accepts

as input a programming language specification for a form and generates C code that uses

WIN to build and manipulate the form. In the area of task manipulation, we have

developed the basic interface to the task model for access and work on projects and

tasks. Also primitive implementation for task creation and state transition has been

implemented. Appendix C contains an overview of PROMAN. Appendix D and E con-

tain draft documents for WIN and FORMAN. More complete documentation is in

preparation.

6. Incremental Semantic A_ualysis

The goal of this research is to find and implement an effective way to do incremen-

tal semantics. This will aid in providing user support for program development, and will

be used in conjunction with the EPOS language oriented editor. Applications include

building intelligent user interfaces for the configuration management and project

management systems that can exploit the knowledge stored in the data bases, incremen-

tally processing the contents of forms produced interactively by the FORMAN system

and building graphical design tools to support incremental analysis of control flow

organization, data flow organization, structural analysis, and coherence and coupling
between modules.

The underlying framework we are adapting is that of Graph Grammars, where

using graphs gives a useful generalization over trees, and using grammar structuring pro-

vides a mechanism to manage the complexity of graph formation and editing. Within

this framework, there is a wide variety of specific models. Most of the effort so far has

been to explore some of the options, working toward deciding which will be helpful in

this particular application. To do this the first step was to build a prototype system,

containing a grammar specification analyzer to compile user specified language semantics

into tables, and a table-driven graph editing kernel, which automatically computes

semantic values as the user edits the graph. Both prototype tools, the analyzer and the

kernel, have been completed.

Research is now focussing on using these tools to gain experience in specifying and

executing the semantic information propagation on several, all fairly simple, examples.

The examples include semantic analysis of data flow graphs, control flow graphs and

structure charts. Working with the examples has uncovered some weaknesses in the

model which need to be fixed, and has also suggested extensions which are being tried.

It is anticipated that the process will continue through several iterations, during which

increasingly significant examples can be handled, eventually converging to a model suit-

able for handling arbitrary programming language semantics.

Perhaps the biggest problem made apparent through experimentation with the pro-

totype is the difficulty of correctly specifying reasonably complex semantics. As we

develop experience by working with examples, we will discover common specification
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idioms, which may then be facilitated by special syntax and defaults. This considera-

tion, verifiably correct and managable specification of semantics, also provides an impor-

tant constraint in what models we may use to support the system. Concurrently with

exploring the utility of the various models, we are considering their theoretical proper-

ties. Appendix I contains a more detailed description of the approach.

7. Towards a General Interface for SAGA Editors and Other Tools

Current plans intend to use GNU Emacs as a uniform user interface to other SAGA

tools. The advantages of a uniform user interface are ease of learning, and ease of use.

GNU Emacs is a good choice for the user interface because it is widely available and

very flexible and powerful. The incremental parser, EPOS, was the first SAGA tool to
use Emacs as its user interface.

To support the development of interfaces between GNU Emacs and other SAGA

tools, time was spent creating a programmers' manual for GNU Emacs. The extension

language for GNU Emacs is a full Lisp augmented with several hundred editor-specific
functions and variables.

The Configuration Management system and the Project Management system will

interface to the user through GNU Emacs routines for data editing. To support this

project, an object-oriented extension to GNU Emacs Lisp was developed. A data

specification language will describe both data base aspects for use by the SAGA tool and

user interface aspects for use by the Emacs data editor.

8. Leif: EPOS Redesigned

Although Pete Kirslis, the original author of EPOS, is building a C++ "industrial"

version of EPOS for AT&T, Denver, the SAGA Project needs access to an efficient, pub-

lic domain, implementation of EPOS for experimentation. The EPOS language oriented

editor is being reimplemented in C. This will improve the portability of the editor and

make major improvements in performance and the quality of the design. The new ver-

sion of the editor, Leif, will use the public domain Bison parser generator and the inter-
nal structure will be enhanced.

9. User Interface Prototyping Tool

A support library for user interfaces is in the process of development. It provides a

structure for user interfaces that is consistent across all levels of the user's display and

provides an infrastructure on which to build both user interfaces and user interface

management systems. Further documentation is in preparation.

10. Conclusions

In the first six months of this year's research, we have completed ENCOMPASS, an

initial, comprehensive software development environment, used it experimentally to

build several small examples and begun to develop a "next generation" environment.

The configuration management and project management components of the new

environment are well-advanced. We are seeking more powerful executable specification
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and prototyping techniques. (The work of Michael Holloway could be of significance to

the approach adopted in the next environment.) In the new environment we will seek a

tighter coupling between the software methodology and the project management and

configuration management tools. We would also like to emphasize code and design

reuse, explore design aids, and expert system support for the development process.

ENCOMPASS is the first complete environment constructed by the SAGA Project.

ENCOMPASS supports a formal development method similar to VDM, as well as pro-

viding basic facilities for configuration control and project management. A VDM-like

methodology was chosen because it supports the specification, validation, design, imple-

mentation, and verification of software. It also provides completion criteria for the steps

in the production process and offers limited, but well-defined, project management goals.

The design, construction and use of ENCOMPASS revealed many shortcomings in its

project and configuration management systems.

SAGA is now creating new systems both to correct these deficiencies and support

more of the life-cycle. CLEMMA is a configuration librarian which maintains software

structures and provides views of a project's components. CLEMMA capitalizes on exist-

ing data base and file system technology to provide flexible support for abstraction and

manipulation of software components. It can be easily updated to provide new facilities

and abstractions without reorganizing the project data.

The project management system PROMAN supports the integration and control of

the software development and management processes. It implements management poli-

cies through the use of interaction protocols and project access permissions. It also sup-

ports repositories of project information and components. The management system is

based on a process/resource model in which the process hierarchy models the personnel

and work breakdown structures of the project. The project management system con-

trols project access, supports resource allocation and usage, and coordinates and syn-

chronizes task activities.

The improved configuration and project management systems are under implemen-

tation; many components are complete. The two systems are complementary: efficient

automation of the software development process depends on the effective integration of

project management and configuration control. The systems must combine to provide

users with consistent, task related, functional abstractions of activities and resources.

The configuration and project management models have application to existing software

development practices; however, the SAGA Project is seeking to apply them to an

improved, rigorous software development methodology.

Automating the entire software life-cycle will require continuing research; one rea-

son is the immaturity of the software engineering discipline. For example, future

development methodologies must incorporate more formal approaches to requirements

analysis, reuse and maintenance. Future environments should also have more advanced

system architectures which support knowledge-based tools.

We believe that the configuration and project management models and systems

currently proposed can significantly enhance many aspects of the software life-cycle.
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However, these models and systems must evolve as we strive for more effective develop-

ment methodologies; for example, improved implementation methods must be pursued

as usage data is gathered. Although life-cycle automation is a long term research prob-

lem, the current work in project and configuration management can do much to improve

software development as it is practiced today.
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The Vienna Development Method (VDM) supports the top-down development of software

specifiedin a notationsuitableforformal verification.VDM has been used in industrialapplica-

tionsto enhance the development process.In such environments VDM isappliedin an informal,

non-automated manner; verification conditions are generated _.d certified without the aid of

specialized tools_ and data types may not be formally axiomatized. This dissertation is based on

the thesis that the time is ripe for the construction of environments which partially automate

development methods similar to VDM, and that such environments will prove useful in industrial

settings. ENCOMPASS is an automated environment which supports a formal development

method similar to VDM; it supports rapid prototyping and program verification, as well as pro-

viding simple facilities for configuration control and project management. In ENCOMPASS,

components are specified using a combination of natural language and PLEASE, a wide-

spectrum executable specification and design language. PLEASE specifications may be used in

proofs of correctness; they may also be automatically transformed into prototypes which use Pro-

log to "execute _ pre- and post-conditions. In ENCOMPASS, PLEASE specifications are incre-

mentally refined into Ads I implementations. Each refinement is verified before another is

applied; therefore, the final components produced by the development satisfy the original

specifications. In ENCOMPASS, the correctness of a refinement step can be verified using either

IAd$ is_ trademark of the U.S. Government, Ad_ Joint Program Office.
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testing, proof or peer review techniques. ENCOMPASS is an environment for the rigorous

development of programs. Although detailed mechanical proofs are not required at every step,

the framework is present so that they can be constructed if necessary. Proof techniques may be

used which range from a very detailed, completely formal proof using mechanical theorem prov-

ing, to a development "annotated" with unproven verification conditions. Parts of a project may

use detailed mechanical verification while other, less critical parts may be handled using less

expensive techniques. We believe the use of future environments similar to ENCOMPASS will

enhance the software development process.
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DEDICATION

To Life- got something better to do?

Life a river with each man flowing; far downstream he hears the falls.

The wish to stop and ponder before falling through the mist.

But he cannot stop; there is no ground.

Just the river. Only water. Always flowing.

He grasps at twigs, leaves, whatever swirls near him in the flood.
A raft! With a raft he can reach the unseen shore!

But there is no shore.

Just the river. Only water. Always flowing.

Though Man has no shore, He will build his raft

and from there He will reach for higher ground.
This work is dedicated to the future.

Onwards.

Bob Terwilliger, 1977

Yet hath he not root in himself, but dureth for a while: for when

tribulation or persecution ariseth because of the Word, by and by
he is offended.

Mathew 13:21

Life is what you make it.

It's not much of a raft, but it beats treading water.

Anybody got some spare twigs?

Bob Terwilliger, 1987

Therefore, O Ar]una, surrendering all your works unto Me, with

full knowledge of Me, without desires for profit, with no claims to

proprietorship, and free from lethargy, fight.

Bhagavad-gita 3.30
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CHAPTER 1.

INTRODUCTION

The productionof software isboth difficultand expensive. The risingcostof softwarerela-

tiveto hardware in complex systems has led some to speak of the _softwarecrisis".The fieldof

software engineeringhas risen to meet this challenge[88,132,258].The problems involved in

software development are complicated and many differentsolutionshave been proposed; these

includemethods for designingand implementing software[129,134,252],as well as toolsto sup-

port the development process[177I. Common sense suggests that no toolor method alone will

solve the software development problem in the near future[43];thishas led some to propose

software engineering environments, which combine a number of tools, methods and data struc-

tures within a unified framework[119,219].

Beginning in the latesixties,softwaredevelopment methods with strong formal rootswere

devisedI76,98,104,120,134]. Later, attempts were made to construct automated toolsfor their

support[33,110,112,166,203].Unfortunately,these attempts did not produce immediately practi-

cal results. During the seventiesand eighties,attempts were made to use formally based

methods in industrialsettings[35,187,213].In general,high degrees of formalityand automation

were sacrificedto achieve usefulmethodologies. In these experiments, formal specifications

served mostly as a toolfor precisecommunication, and the major impact on methodology was

that more time was spent on specificationand design. However, the methods did prove usefulin

practice.This dissertationisbased on the thesisthat the time isripe for the constructionof

environments which partiallyautomate formal development methods, and that these environ-

ments willeventuallyprove usefulinindustrialsettings.
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In this dissertation we describe a preliminary version of ENCOMPASS[52,230,231], an

environment of this type which has been constructed by the SAGA group at the University of Illi-

nois. In ENCOMPASS, software can be specified using PLEASE[232-234], an Ada-based, wide-

spectrum, executable specification language. PLEASE specifications can be incrementally refined

into Ada implementations using IDEAL, an environment for programming-in-the-small which

supports verification using peer review, testing or proof techniques. ENCOMPASS provides sim-

ple support for programming-in-the-large, including configuration control[146] and project

management[47]. In ENCOMPASS, some modules of a system may be developed using PLEASE

and IDEAL, while others are developed using conventional techniques. This allows the practical

power of Ada and the formal power of PLEASE to be combined in a single project. Eventually,

we plan to extend ENCOMPASS to provide uniform support for the entire life-cycle; however, at

present it is primarily an environment for software development.

I.I. Software Development

Figure 1 shows an abstract model of the software development process; many specific para-

digms can be analyzed and compared within this framework. At first, a system exists only as an

idea in the minds of its users or purchasers. In our model, the first step in the development pro-

cess is the creation of a specification which precisely describes the properties and qualities of the

software to be constructed[88]. Unfortunately, with current methods there is no guarantee that

the specification correctly or completely describes the customers desires; a specification is vali-

dated when it is shown to correctly state the customers' requirements[88]. The specification need

not be executable; in general, it must be translated into an implementation, in other words a

description of the system which has the property of being efficiently executable. Depending on

the method used for translation, the exact relationship between the specification and
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Figure i. Software development model

implementation may be unknown. An implementation is verified when it is shown to satisfy its

specification[88].

Many methods for specifying soft, ware have been proposed[11,92]. Specifications can be for-

mal, in other words based on mathematics and/or logic, or they can incorporate graphics and

natural language. Creating a validspecificationis a difficulttask;the users of the system may

not reallyknow what they want, and they may be unable to communicate theirdesiresto the

development team. Formal specificationsmay be an ineffectivemedium for communication

between customers and developers,but naturallanguage specificationsare notoriouslyambiguous

and incomplete. It has been suggested that prototypinf and the use of ezecutable specification

languages can enhance the communication between customers and developers[I,140]; providing

prototypes for experimentation and evaluation should increase customer/developer communica-

tion and enhance the validation process.

The translation from specification to implementation can take many forms. If the

specificationisin a formal notation,itmay be possibleto interpretit directlyor mechanically

I
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translate it into an executable form. Unfortunately, current technology can not always produce

acceptable efficiency; therefore, in most cases a programmer will create the implementation.

Many different methods have been proposed to enhance this process; for example, it has been sug-

gested that modular programming[138,192,235,238] and top-down development

methods[76,104,134,178,248] can help reduce the difficulty of software design and implementa-

tion. By using step-wise refinement[248] to create a concrete implementation from an abstract

specification, we divide the necessary decisions into smaller, more comprehensible groups. By

encapsulating design and implementation decisions within module boundaries, the clarity and

modifiability of software is increased.

Many different techniques can be used to determine if an implementation satisfies a

specification. For example, testing can be used to check the operation of an implementation on a

representative set of input data[91,176]; however, in general, a program cannot be tested on all

possible inputs. In a technical review process, the specification and implementation are inspected,

discussed and compared by a group of knowledgeable personnel[87,242]; unfortunately, there is

no guarantee that they will come to the correct conclusions. If the specification is in a suitable

notation, formal methods can be used to verify the correctness of an implementa-

tion[3,26,110,112,120,121,134,163,250]; however, with the current state of verification technology,

many widely used languages are not completely verifiable. Many feel that no one technique alone

can ensure the production of correct software[71,75]; therefore, methods which combine a number

of techniques have been proposed[9,205].

l

I
I
l

l
I

l

I
l
l

I
l

l

l
l
l
I
I



r

L

I

I

I

i

I

I
I

1.1.1. The Vienna Development Method

The Vienna Development Method {VDM) supports the top-down development of software

specified in a notation suitable for formal verification[32,34,35,64,130,133-135,187,213]. In this

method, components are first written using a combination of conventional programming

languages and predicatelogic.These abstractcomponents are then incrementallyrefinedinto

components in an implementation language. The refinementsare performed one at a time, and

each is verifiedbefore another is applied;therefore,the finalcomponents produced by the

development satisfythe originalspecifications.Since each refinementstep issmall,designand

implementation errorscan be detectedand correctedsoonerand at lower cost.

VDM is based on a model-oriented or constructive approach to specification; components

are defined with respect to pre-existing types and operations. To increase the expressive power

of specifications, the high-level types set, list, and map are added to the language. In VDM, a

procedure or function may be specified using pre- and post-conditions written in first-order,

predicate logic. The pre-condition states the properties that the inputs must satisfy, while the

post-condition states the relationship of inputs to outputs. VDM may also be used to specify

abstract data types. A type has a state, or representation, which can only be modified by certain

operations; the operations are defined using pre- and post-conditions. The invariant must be

true both before and after the execution of each operation; it defines the acceptable states.

In VDM, the refinement processconsistsof a number of steps. Each step generates

verificationconditionswhich must always be true forthe refinementto he correct.Each step is

an instantiationof an abstractrefinement;the verificationconditionsfora stepare generatedby

substitutingpre- and post-conditionsintothe proof rulefor the abstraction.Refinement steps

can be eitherdecompositions,which add more detailabout the algorithmsinvolvedin the solu-



tion, or refinements,which add more informationabout the data structuresto be used. In the

simplest view, each decomposition changes an unknown program constructintoa known struc-

ture which may containother unknowns. Data refinementsare more complicated;each step

implements the stateand operationsof one type using the facilitiesof another.

VDM has been used in industrial environments to enhance the development pro-

cess[35,187,213]. In this type of environment, the method is not typically applied in all its for-

mality. Pre-- and post-conditions are written using operations and predicates which may not be

precisely defined. Verification conditions are generated without the aid of automated tools and

proved informally using a peer review system. Although this application of the method is useful,

a more formal approach could be superior; however, without considerable automated support, a

more formal use of VDM would be prohibitively expensive. Many feel the cost of developing

automated tools is justified, and environments to support VDM are being constructed[33]. At

present, it is unclear how well methods such as VDM can he automated. As the research

progresses, the theoretical and practical problems involved will surface.

1.1.2. SAGA

The SAGA (Software Automation, Generation and Administration) project has been active

at the University of Illinois at Urbana-Champalgn since the early

eighties[30,47,48,50,52,53,115,145,146,230-234]; it is investigating both the formal and practical

aspects of providing automated support for the full range of software engineering activities.

Early efforts in SAGA were devoted to building software development tools such as

Notesfiles[83,84], a distributed information base which operates on networks of heterogeneous

machines; Epos[145], a language-oriented editor based on an incremental LR(1) parser; and
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TED[ll5], a general purpose tree editor which is interfaced to a number of theorem provers[103]

and can serve as a proof management system. ENCOMPASS is the first complete environment

to be constructed by the SAGA project; it demonstrates the validity of many of the concepts on

which SAGA is based. Specifically, the configuration control and project management systems

used in ENCOMPASS serve as prototypes for more comprehensive systems which will be used in

future SAGA environments. At present, SAGA is constructing Clemma, a configuration

librarian, and PROMAN, a second generation project management system.

1.2. ENCOMPASS

ENCOMPASS (ENvironment for the COMposition of Programs And

SpecificationS)[52,230,231]isan integratedenvironment to support incrementalsoftwaredevelop-

ment in a manner similarto VDM. In ENCOMPASS, software isspecifiedusing a combination

of naturallanguage and PLEASE[232-2341, a wide-spectrum, executablespecificationand design

language. PLEASE specificationsmay be used in proofs of correctness;they also may be

transformed into prototypeswhich use Prolog[60,152]to "execute"pre- and post-conditions.In

ENCOMPASS, PLEASE specificationscan be incrementally refinedinto Ada implementations

using IDEAL, an environment for programming-in-the--small which supports verificationusing

peer review, testing, or proof techniques. ENCOMPASS provides simple support for

programming-in-the-large, including configoration control[146] and project management[47].

1.2.1. PLEASE

PLEASE (PredicateLogic based ExecutAble SpEcifications)isa wide-spectrum executable

specificationlanguage which supports incrementalsoftware development in a manner similarto

VDM. The designof PLEASE isa compromise between logicalpower, ease of use,applicability

I



and efficiency. PLEASE extends its underlying implementation, or base, language so that a pro-

cedure or function may be specified with pre- and post-conditions, a data type may have an

invariant, and an implementation may be completely annotated. At present, we are using

Ada[70,241] as the base language. PLEASE permits the development of Ada programs using

rapid prototyping and incremental verification techniques.

Executable prototypes can be automatically constructed from PLEASE specifications; these

prototypes can enhance both the validation and verification processes. During the validation

phase, prototypes produced from PLEASE specifications may be used in interactions with the

customers; they may be subjected to a series of tests, be delivered to the customers for experi-

mentation and evaluation, or be installed for production use on a trial basis. The use of proto-

types can increase cust0mer/developer communication and enhance the validation process.

PLEASE prototypes can also be used to verify the correctness of refinements; most simply,

the prototype produced from a PLEASE specification can be used as a test oracle against which

implementations are compared. In a more complex case, the prototypes produced from the origi-

nal and refined specifications can be run on the same data and the results compared; this method

gives significant assurance that a refinement is correct at low cost. PLEASE specifications also

enhance the verification of system components using proof techniques; for the purpose of formal

verification, the refinement process can be viewed as the construction of a proof in the Hoare cal-

culus[120,163].

We believe that languages similar to PLEASE can greatly enhance the software develop-

ment process; however to realize the full benefits of PLEASE an integrated support environment

is needed.
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1.2.2. IDEAL

IDEAL (IncrementalDevelopment Environment for Annotated Languages) is an environ-

ment for the specification,prototyping,implementation and verificationof singlemodules; itisa

programming-in-the-small environment fordevelopment using PLEASE. IDEAL providesfacili-

tiesto createPLEASE specifications,constructprototypes from thesespecifications,use the pro-

totypes to validatethe specifications,refinethe validatedspecificationsinto Ada implementa-

tions,and verifythe correctness_of the refinement process. !DE.A-T.contains four main com-

ponents: ISLET, a language-orientedprogram/proof editor;a proof management system;a pro-

totypingtooland a testharness.

The centraltoolin IDEAL isISLET (IncrediblySimple Language-oriented EditingTool);it

containsthree major sub-systems: an algebraicsimplifier,a set of simple proof procedures,and

an interfaceto the proofmanagement system. Using ISLET, verificationcondit,ionsare automat-

icallygenerated whenever PLEASE specificationsare refinedinto Ada implementations. These

verificationconditionsare firstsimplifiedalgebraicallyand then submitted to a number ofsimple

proof tactics.These inexpensivemethods can handle a largepercentageof the verificationcondi-

tionsgenerated;ifthey fail,the verificationconditionscan be proved usingmore expensivetech-

niques.

IDEAL is an environment for the rigorous[134]development of programs. Although

detailedmechanical proofsare not requiredat every step,the framework ispresentso that they

can be constructedifnecessary. Proof techniquesmay be used that range from a very detailed,

completely formal proof using mechanical theorem proving,to a development "annotated_ with

unproven verificationconditions.Parts of a project may use detailedmechanical verification

while other,lesscriticalparts may be handled usinglessexpensivetechniques.Our experienceso
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far leads us to believe that the complete, mechanical verification of large programs will be prohi-

bitively expensive; however, inexpensive methods can eliminate a large percentage of the

verification conditions generated during a development. By eliminating these "trivial"

verification conditions, the total number is reduced so that the verification conditions remaining

can be more carefully considered by the development personnel.

While the use ofPLEASE and IDEAL alone can enhance the development process,more can

be gained with the addition of an environment for programming-in-the-large[200,249].

!

ENCOMPASS issuch an environment; itprovidessupport for allaspectsof software develop-

ment using PLEASE. ENCOMPASS provides facilitiesto store,track,manipulate and control

allthe objectsused in the software development process: documents, specifications,sourcecode,

proofs,testdata, and load modules are allsupported. ENCOMPASS alsoprovides mechanisms

to support the interactionsamong developers;the system allowsthe creation,decomposition,dis-

tribution,monitoring and completion of tasks.

In ENCOMPASS, the user accesses and modifies components using a set of software

development tools.The configurationmanagement system structuresthe software components

developed by a project,while the projectmanagement system uses facilitiesprovided by the

configurationmanagement system to control both access to data and interactionsbetween

developers. The configurationcontrol system is based on a variant of the entity-relationship

model[57,58]. The project management system implements a management by objectives
\

approach[106];each phase in the life-cyclesatisfiesan objectiveby producing a milestonewhich

can be recognizedby the system. ENCOMPASS can be extended with a centralrepositoryto

support software reuse.We have alsoconstructedan automated change controlsystem based on

ENCOMPASS.
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ENCOMPASS isbased on a traditionallife-cycle,modified to support the use of executable.

specificationsand VDM. In ENCOMPASS, we extend the traditionallife-cycleto include a

separate phase foruservalidation;we alsocombine the designand implementation processesinto

a singlerefinementphase. In ENCOMPASS, some modules of a system may be developed using

PLEASE and IDEAL, while othersare developedusing conventionaltechniques.This allowsthe

practicalpower ofAda and the formal power of PLEASE to be combined in a singleproject.

1.3. Chapter Summary

The remainder of this dissertation describes PLEASE, IDEAL and ENCOMPASS in detail.

In Chapter 2, we present the theoretical foundations of this thesis; they are sound, but not per-

fect. First, we review the capabilities and limitations of the first--order predicate logic and

describe software specification using pre- and post-conditions. We then discuss program

verification and describe the Hoare calculus. Finally, we present the resolution principle and its

use in automatic theorem proving; this leads naturally into a discussion of logic programming

and Prolog.

Chapter 3 discusses previous work in software engineering that is relevant to this thesis.

First, we discuss specification methods; formal and informal, model-oriented and axiomatic

approaches are considered. We then present some proposed software development methods,

including the transformational and "proofs as programs" approaches. Finally, we discuss some

of the different tools which have been developed, including environments for programming-in-

the--small, program verification systems, and environments for programming-in-the-large.

In Chapter 4, we describe the PLEASE language in detail. First, we present the scfftware

development paradigm that PLEASE supports and discuss the tradeoffs present in the language

I
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design. Next, we present an example specification and program. We then present the Ho.are-

style proof rules for the basic constructs in PLEASE, as well as the pre-defined types and the

facilities provided for user type definition. Finally, we describe how PLEASE can be used to

specify objects using packages with local variables.

In Chapter 5, we describe the methods used to automatically produce executable prototypes

from PLEASE specifications. First, we describe the translation of PLEASE specifications into

Prolog procedures; the process is viewed as a sequence of transformations between logically

equivalent formulae. We then describe the interface between these prototypes and their environ-

ment and discuss their use in the validation process.

In Chapter 6, we present the methods used to refine PLEASE specifications into implemen-

tations and verify the correctness of the process. First, we present an example refinement; we

describe a single, design transformation, which can be decomposed into a number of atomic

transformations. Next, we present an abstract model of the incremental development process

and use it to define the correctness of a refinement step. Finally, we present the methods used to

formally verify the correctness of a refinement.

In Chapter 7 we describe IDEAL in detail and give an example of its use in software

development. First, we describe the architecture of the system. Next, we discuss the architec-

ture and operation of ISLET, a language--oriented program/proof editor which is the most

important component in IDEAL. Finally we discuss the development of a small program in

detail; refinement using ISLET is given the most attention.

In Chapter 8, we describe ENCOMPASS in detail and give examples of its use. First, we

describe the life-cycle model ENCOMPASS is designed to support and discuss the configuration

and project management systems. We then give an example of software development in
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ENCOMPASS; a multi-module system is followed from specification through delivery. Next, we

describe how ENCOMPASS can be used to support software reuse, and finally we present an

automated change control system based on ENCOMPASS.

Chapter 9 summarizes our experience to date, draws some conclusions, and presents some

suggestions for future research. Basically, we are optimistic; we feel the current system demon-

strates that a full-scale environment can be constructed. We believe that incremental automa-

tion of a proven methodology is a solid research strategy_ and we plan to experiment with the

addition of knowledge-based techniques. We feel that the use of future environments similar to

ENCOMPASS will enhance the software development process.
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CHAPTER 2.

FOUNDATIONS

In thischapter we presentthe theoreticalfoundationsof thisthesis;they are sound, but not

perfect. The basic limitationsand subtleinconsistenciesare presented and discussed.We feel

these foundations are suitablefor a next-generationsoftware development environment. First,

we willreview the first-orderpredicatelogic;itslimitationshave a major impact on the design

and capabilitiesof both PLEASE and ENCOMPASS. We then describesoftware specification

using pre- and post-conditionswrittenin predicatelogic;thisisthe method used in PLEASE.

We then discussprogram verificationand describeHoare calculus,the system used both to

specifythe semantics of PLEASE and prove that a program satisfiesitsspecification.We then

describethe resolutionprincipleand itsuse in automatic theorem proving. This leadsnaturally

into a discussionof logicprogramming and Prolog,the language used for prototypingPLEASE

specifications.

2.1. First-Order Predicate Logic

The study of logic,or the reasoningprocessitself,goes back at leastas far as Aristotle[82I.

Over the years,some philosophershave argued that it isthe most fundamental of substances.

Unfortunately,naturallanguage istypicallyambiguous; itdoes not provide a preciseframework

for study. During the lasthundred years or so,mathematicians have addressed thisproblem by

devising formal logics and investigating their properties[117].

Formal logics of the type used in this thesis are concerned with true or false statements,

called formulas, about a set of objects called the domain and functions on this set. A formal logic
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may contain predicates which describe atomic properties of the domain. The functions and

predicates together form the basis. Formal logics make a division between the symbols used in a

formula, the syntaz, and the meaning of the formula, the semantics. The basis consists of sym-

bols; it is given meaning by an interpretation. In this thesis, we will make use of a first-order,

predicate logic. The logic is first-order in that variables may only refer to objects in the domain;

no predicate or function variables are allowed.

In this section, we will first review the syntax, or structure, of formulas and then their

semantics, or meaning. We will then briefly discuss the basic limitations of the logic; these

involve the fact that the validity problem is only partially decidable and the fact that many use-

ful theories are not axiomatizable. This section is not meant for a reader completely unfamiliar

with formal logic. Introductory logic texts include[66,81,113]; briefer introductions are given

in[163,169]. As much as possible, our notation will be consistent with[163].

2.1.1. Syntax and Semantics

The symbols used to construct formulae in the first-order, predicate logic can be divided

into two classes: the logical symbols, which may be used in any formula and will have the same

meaning in all cases; and the eztra-logical symbols, which are specific to a particular application.

The logical symbols can be divided into: the truth symbols, the variables, the quantifiers, and

the connectives. In this thesis, the truth symbols are true and false and have their usual mean-

ings. Variables will, in general, be denoted by capital letters near the end of the alphabet (for

example, X, Y or Z), while formulae will he denoted by possibly subscripted capital letters (for

example, W1, P1, or Q). The quantifiers are: V, read for all, and 3, read there ezists. The con-

nectives are: -% read as not ; A, read as and ; V, read as or ; D, read as implies ; and ----,read as

if and only i[.
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The extra-logicalsymbols can be divided intothe functionsymbols and the predicatesym-

bols. The functionsymbols includethe constants,which are functionswith no arguments, and

can be composed intoterms. Predicatesrepresentfundamental properties;they can take terms,

but not other predicates,as arguments. In general,predicateswillbe denoted by small lettersin

the middle of the alphabet(forexample, p, q(X) or r(X,Y)),whilefunctionswillbe representedby

small lettersnear the beginningof the alphabet (forexample, c,f(X)or g(X,Y)). The meaning of

the extra-logicalsymbols is determined by an interpretation;there may be many possible

interpretationsfor a given basis.Each interpretationmaps terms to valuesfrom the domain, as

wellas determining thetruth or falsehoodof each predicateforallpossiblearguments.

A formula may consist of a single predicate; in this case, its meaning is simply the value of

the predicate. The connectives may be used to construct complex formulae from simpler ones. If

W 1 is a formula, then -_ W 1 is true if W 1 is false and false if W 1 is true. The formula W I A W 2 is

true if both W 1 and W2 are true and false otherwise. Similarly, W 1 V W_ is true if either W 1 or

W 2 is true; it is false if both W 1 and W2 are false. The formula W 1 D W 2 is equivalent to the for-

mula -- W 1 V W 2, and W 1 _= W 2 is true if both W 1 and W2 are true or both W I and W 2 are false.

The formula V (X) (W1) is true if W 1 is true for all possible values of X, otherwise it is false. The

formula 3 (X) (W1) is true if W 1 is true for some value in the domain, otherwise it is false.

To clarifytheseconceptsfurther,letus examine an example basisand some formulae refer-

ring to it.Consider thesystem of Peano arithmetic[163]:there are two binary functionsymbols,

+ and * ;two constants,0 and 1;and a singlepredicatesymbol, <_. The functionsymbols can be

composed to produce terms such as 0, 1+0, and 1+0.1. Terms, predicates,logicalconnectives

and quantifierscan be used to createformulae such as: 0<_1, 1+1<_0+1, 0_1 A 1+1_0+1, and

V (X) (0_X V 0_x+1). If we consider an interpretationover the natural numbers with the
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usual meanings for the function and predicate symbols, then the formula 0<1 evaluates to true
/

while the formula 1+1 <0 evaluates to false.

2.1.2. Limitations

While first-order, predicate logic is a powerful formalism, it has severe limitations. When

such logics were first devised, it was hoped they might provide a foundation for all of mathemat-

ics; unfortunately, this is not possibh[117]. Two major limitations will be discussed in this sec-

tion. First, it can be proved that no algorithm exists which is guaranteed to terminate and

correctlydetermine ifan arbitraryformula istrue or false.Second, formany interpretationsitis

not possibleto produce a finiteset of assumptions from which alltrueformulae can be deduced.

These propertieslimitboth the verificationofprograms and the automatic creationofprototypes

from specifications.

Computer scientistshave long been interestedin problems which can be answered with

eithera "yes" or a "no". Such a problem can alsobe seen as determining ifa particularobject

belongs to the setwhich yields"yes" answers. Itan algorithm existswhich willalways terminate

and correctlyanswer thisquestionin finitetime, then the problem (and the set)are saidto be

decidable[124,163,169]; if no such algorithm exists, then the problem (and the set) are _ndecid-

able. If an algorithm exists which will terminate with a "yes _ in finite time if such an answer is

correct, but may either terminate with a "no" or not terminate if a "no" is correct, then the

problem (and the set) are partially decidable.

The relationship between a problem's decidability and its prospects for practical solution is

complex. The question is not whether a solution can always be found, but whether on the aver-

age, solutions can be found in a reasonable time. An analogy can be made with combinatorial
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optimization andNP-completeness[141].Although at first NP-completeproblemswerethought

to havenopracticalsolutions,manyare routinelysolvedtoday. Thesolutionsusedhaveworst-

caseexponentialperformance,but on the averageyield solutionsin polynomialtime. The fact

that a problem is decidabledoesnot mean it can be solved with today's computers; it may

require more resources than are available in current systems. On the other hand, the fact that a

problem is not decidable presents fundamental barriers. No matter how technology improves,

there will always be cases which yield no solution. Roughly speaking, we can say a formula is

valid if it is always true 1. Unfortunately, it is known that the set of all valid formulae for the

first-order, predicate logic is only partially decidable.

In general, we are not interested in the formulae which are always true; we are interested in

the formula which are true for a particular interpretation. Informally, the set of all formulae

which are true for a given interpretation are called its theory 2. In other words, all the formula in

the theory are true in the interpretation, and all formula deducible from the formulae in the

theory are also contained in the theory. In order to prove the truth of formulae in the interpre-

tation, we must create a set of assumptions from which any formula in the theory can be

deduced. For example, if we are interested in the natural numbers, we would like a set of

assumptions from which we can deduce whether a given formulae about the natural numbers is

in its theory or not, in other words whether it is true or false.

A set of formulae from which a theory can be generated is called its axiom set. A theory is

aziomatizable if it can be generated from a decidable set of axioms[163]. Unfortunately, many

common theories are not axiomatizable; for example, Peano arithmetic (which is much simpler

IMore formally, a formula isvalid if it is true in all interpretations[163].

2More formally, a theory is a closed set of mutually consistent formulae[163}.
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than integer arithmetic) is not axiomatizable[93,163]. Even if a theory is axiomatizable, it may

not be axiomatizable in first--order logic; for example, the induction axiom, V (P) (P(0) A V (N)

(P(N) D P(N÷I)) D V (X) P(X)), is not first order. This complicates the construction of

automated deduction systems: the system must use techniques beyond the first-order logic

framework to deduce all true formulae. Despite its limitations, first-order, predicate logic is the

basis for much of the work in program specification and verification.

2.2. Specifying Software Using Pre- and Post-Conditions

To specify software using predicate logic, we must first describe the semantics of programs.

For example, consider a program P which manipulates a set of variables, the values of which are

called the state. The set of all possible states can be denoted by S. In general, execution of P will

change the state: for each state s1 E S, the execution of P will produce a unique state s2 E S.

Therefore, P can be described as a function, P : S --* S.

Formulae in first-order, predicate logic may be used to describe functions or relations on S.

For example, the formulae P and Q define a relation which includes all ordered pairs (Sl, s2) such

that both P(sl) and Q(s_) are true. P and Q do not necessarily define a function; there may be

more than one tuple with same first element. We may specify a program using formulae called

the pre-condition, denoted by P, and the post-condition, denoted by Q. In such a specification,

the pre-condition specifies the properties that must hold before P begins execution and the post-

condition specifies the properties that must be true when execution is complete.

To be more precise about the relationship between a program and its pre_ and post-

conditions, we must differentiate between the notions of partial and total correctness. We say a

program is partially correct with respect to P and Q if whenever execution begins in a state
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where P is true, then if execution terminates normally Q will be true in the state reached. In

other words, if P holds when execution begins, then Q will hold on termination. The program is

totally correct if it is both partially correct and guaranteed to terminate normally.

For example, consider the following program which calculates the value of Z _ in X.

X:=O:

Y:=O;

while Y < Z loop

Y:=Y+I

X:=X+Z

end loop :

In this example, the state is the values of the variables X, Y and Z. Assuming that all variables

range over the natural numbers, Nat, then the set of all states is Nat × Nat × Nat. The program

can be viewed as a function taking each state s 1 to a new state s_ where Z is unchanged, Y is

equal to Z, and X is equal to Z s. We can specify this program using pre-condition P - (Z--c1)

and post-condition Q -= (Z=c 1 A Y=Z A X=ZS). This specification states that if the program

begins execution in a state where Z is equal to the constant cl, then after execution is complete Z

will still be equal to cl, Y will be equal to Z and X will be equal to Z 2.

There are problems with using predicate logic pre- and post-conditions to specify software.

First, there is what might be termed incompleteness; in general, pre- and post-conditions define

relations while programs are functions. It is difficult to ensure that a pre- and post-condition

specification defines a unique output for each input, and at times, enforcing this property may

result in over-specification. For example, consider the following specification of the example pro-

gram: P -- (true), Q -= (X=Z2). In one sense, this specification contains the essence of the pro-

gram: the value of X should be equal to Z2; however, it says nothing about the value of Y and Z
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after execution is complete. A program which set both X and Z to 0 would satisfy the letter, but

not the intent of the specification.

As another example, take the specification P ---- (Z=cl) and Q - (Z=c 1 A X=Z2). This is the

specification a human would write for a program to compute the square of a number. The

specification states that the number to be squared will not be changed and that the calculated

quantity will be correct. This specification does not mention the variable Y; it is an implementa-

tion artifact.There are many valid implementations which do not use a variableY, or even a

while loop. In general, there will be many correctimplementations for any specification;a

specificationwhich has only one implementation containstoo much implementation detail.

Another problem would ariseifthereare programs which we cannot specify;inother words,

ifwe cannot expresswhat a program does using predicatelogic.Unfortunately,in the strictest

sense thisisthe case[163].Somewhat informally,we can say that forsome interpretationsitis

possibleto compute quantitieswhich cannot be describedusing the symbols provided. For exam-

ple,considerthe program given earlierinthissectionand Presburger arithmetic[163],which con-

tainsthe constants0 and 1,the function+ and the relation_. While thisbasiscontainsallthe

symbols necessaryto write the program, itdoes not containenough symbols to write a formula

statingthatX isequal to Zs. In practice,thisproblem does not arise;one simply defines(possi-

bly recursively)a new predicatewhich describesthe computed values.

Another problem would occur ifone could write a specificationwhich no program could

satisfy.In a partialcorrectnesssystem thisdoes not occur;a non-terminating program iscorrect

with respectto any specification.In a totalcorrectnesssystem thereare specificationswhich no

program satisfies;for example, P _-(true)and Q - (false),or P = (true)and Q -_ (X=f(y))where

f is an uncomputable function. These limitationsare not important in practice;in general,
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people do not wish to construct programs which terminate in non-existent states or evaluate

non-computable functions.

A final point concerns the notation used to reference values in the input state in the post-

condition; for example, to specify a program which increments a variable. In the example above,

we use the constant c1 to refer to the value of Z before execution begins; the pre-condition states

that Z is equal to c r While this offers no theoretical problems, it requires the creation of many

new constants and makes pre-conditions more complex than necessary. A similar problem

occurs with specifying that the value of a variable does not change. Some specification systems

offer notations to address these problems[15,134].

9-.3. Program Verification

At times we may wish to prove that a program is correct with respect to a pre- and post-

condition specification. To do this, we must understand how the state is changed and the rela-

tionship of these changes to the truth of formulae. In the programs we have been considering,

only the assignment statement can change the state. For a formula to be true after the assign-

ment of an expression to a variable has completed, the forxnula with the expression substituted

for the variable must be true before the assignment begins. We will denote the formula P, with e

substituted for all free occurrences of X, by P_.

With this understanding of the assignment statement we can verifythe correctnessof

implementations;some of the earliestwork used the method of inductiveassertions[89].In this

method, an implementation ismodeled as a flowchart with input and output formulae. Each arc

in the flow chart islabeledwith an assertion:a formula which must hold whenever the program

reachesthat point duringexecution. Using the input assertionas the basis,inductiontechniques
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are used to prove that the assertionshold for allpaths through the flowchart,and thereforefor

allpossibleexecutions.While thismethod works well,itrequiresthe constructionof flowcharts

and the explicituse of induction.Somewhat later,other methods overcame thesedifficulties.

2.3.1. The Hoare Calculus

One such system was presented by Hoare[14,120]. Hoare's method is based on axioms and

proof rules for common programming language constructs; these can be combined to form deduc-

tive proofs of correctness. The method has the advantage of being both easy to use and under-

o_._nd,flowchartsneed not be constructedand mauc_Ion isnot used- This method has _ used

to definethe semanticsof programming languages[122],and has formed the basisformuch of the

subsequent work inprogram verification[134,164,250I.

language constructand the post-condition.

is:

Hoare axioms and proof rules are presented as triples consisting of the pre-condition, the

For example, the axiom for assignment statements

{P}} X -= e {P}

for allformulaeP, variablesX and expressionse.

We can read thisas: ifthe formula P, with • substitutedfor X, istrue beforethe executionof

the assignment X := e,then P willbe trueon termination. The curly brackets,{ },denote par-

tialcorrectness;square brackets,[],would be used to denote totalcorrectness.As another exam-

ple,considerthe rulefor statementcomposition:

{P} S, {R}, {R} S_ {Q}

{P}sl;s_{Q}

forallformulaeP,Q,R and statements Sz,S2.

We can read thisas: ifSI ispartiallycorrectwith respectto P and R, and S2 ispartiallycorrect

I
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with respect to R and Q, then S 1 ; S 2 is partially correct with respect to P and Q. To construct

any non-trivial proofs in the system we also need the consequence rule:

P DQ, {q} sl {R},R Ds,
{P} S, {S}

for all formulae P,Q,R,S and statements S1.

This rule can be read as: if P implies Q, S1 is partially correct with respect to Q and R, and R

implies S, then SI is partially correct with respect to P and S.

Using these axioms and rules we can construct a simple proof of correctness. Consider the

initialization code from the square program presented earlier in this chapter:

X := 0 "

Y := 0 :

The program can be described with pre-condition true and post-condition X=O A Y=O. The first

step in the proof is to devise an assertion that holds between the two assignment statements; the

formula X=O will suffice. We can then use the rule for statement composition to perform the fol-

lowing deduction:

(true}X := 0 (X=O}, (X=O} Y := 0 {X=O A Y=O}

{true} X := 0 ; Y := 0 {X=0 A Y=0}

In other words, if X := 0 is partially correct with respect to true and X=0, and Y := '0 is partially

correct with respect to X=0 and X=0 A Y=0, then X:= 0 ; Y := 0 is partially correct with respect

to true and X=0 A Y=0. We now have two sub-proofs to construct: one for each assignment

statement.

Since the proofs are similar_ we will present only the first assignment. Using the assignment

axiom we can deduce:

{0=0}x := 0 (x=0}

I

I
I
I
I

I

I
I

I
I
I

I
I

I

I
I
I
I



I
I
I

I
I

I

I
l

I
I

I
I

I
I

I

I
l
i

25

While at this point it is obvious the proof is correct, to maintain formality we must perform a

final step using the consequence rule:

true Do-o, {9=o}x :=o {x=o},x=o _ x:o,
{true}x := 0 {x=0}

This step generates the verification conditions true _ 0=0 and X=0 D X=0; both are true in the

standard interpretation.

Although the Hoare logic has greatly influenced the field of program verification, there are a

number of problems with the systen-l[186]. One question is whether it is possible to create good

Hoare axioms for all language constructs; unfortunately, the answer to this question is no[59].

Another problem is the incompleteness of the Hoare calculus[163]: there are valid formulas in the

Hoare logic, in other words programs which are correct with respect to their specifications, for

which no proof exists. This is related to the expressiveness of interpretations described earlier in

this chapter; we do not feel it is a problem in practice.

A more fundamental problem lies with the notion of partial correctness itself. When a pro-

grammer defines and implements a function, it is equivalent to adding a new function to the basis

of the underlying first-order logic. If the function is proved only partially correct we can not

assume it is total. Most simple treatments of predicate logic assume that all functions are

total[163]; therefore, a subtle inconsistency exists and the proof rules are incorrect[186]. This

problem does not occur with total correctness.

During the construction of a proof in the Hoare calculus, verification conditions in the

underlying first-order logic are generated when the consequence rule is used. It would enhance

the construction of proofs if an automated tool could be used to certify the truth of these formu-

lae.

I



2S

2.4. Resolution Theorem Proving

Over the years this and similar problems have motivated the study of automatic theorem

proving[54]. Earlier in the chapter, it was stated that partial decision procedures for the validity

problem of first-order logic do exist; one particularly efficient procedure is called resolution[54].

Resolution is a refutation procedure" instead of proving a formula is true, it proves that the

negation of the formula can not be true. Usually, a theorem prover will be used with a set of

axioms that describe the interpretation of interest. If a formula is always false, or if it is incon-

sistent with the axioms being used, then assuming it is true will cause a contradiction. A

theorem prover first negates the formula in question and then adds the negated formula to its list

of assumptions. It then uses the resolution principle to generate all the logical consequences. If

the assumptions contain a contradiction, then false will be a logical consequence; this demon-

strates that the original formula is true.

Resolution operates on clauses, which are a standard form into which all formulae can be

transformed[54]. A clause is a disjunction of literals, each of which is a predicate or its negation.

For example, p, q(X), p V q, and --,p V q are all clauses. Briefly, the resolution principle states

that if one clause contains a literal, and another clause contains the literal's negation, then the

clause formed by combining both clauses, with the literal and its negation removed, is a logical

consequence of the original clauses. For example, the clauses p V q and r V "-q can be resolved to

yield the clausep V r; this is equivalent to saying that p V q A r V--q D p Vr. More pre-

cisely, in resolution the literal and its negation do not have to match exactly; there must exist a

substitution, or unifier, that makes the literals equal. This substitution is also applied to the new

clause generated. For example, the clauses p(X) V q(X) and r V --q(1) can be resolved to yield

the clause p(1) V r.
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From another perspective,the enumeration of logicalconsequences performed by the

theorem prover isa search for an interpretationin which allthe assumptions hold;ifno such

interpretationexiststhen a contradictionexists. The prover does not consider all possible

interpretations,only Herbrand interpretationsare examined [54].This isimportant because of

the notionof equalityitprovides,two terms are equalonly ifthey are identical;forexample, 1+1

does not equal 2. Improving the performance of the prover is a classicproblem in heuristic

search[185,247].Many search methods have been investigated[54];in general,some form of

breadth-firstsearchisused.

2.5. Logic Programming

Soon after the resolutionprinciplewas presented,itwas discoveredthat itcould alsobe

used both to executeand synthesizeprograms from logic-basedspecifications[101,1021.Although

these applicationsare interesting,with conventionaltheorem proversthey are too inefficientto

be of practicalimportance. There isa great appeal to the idea of programming in logic:after

writinga declarativespecification,nothingmore isnecessary. The promise of theseapproaches

led researchersto considermore efficientimplementations;thisresultedinthe fieldnow known as

logic programming[40,68,151]. By trading off logical power for efficiency, more practical imple-

mentations can be produced; the flagship logic programming language is Prolog[60-62,152].

In Prolog, execution can be viewed as proving a formula of the form 3 X p(X) by finding an

example _ such that p(_ is true. In order to dramatically increase Prolog's efficiency, several

concessions were made. First, Prolog is based on a resolution theorem prover for Horn

clauses[54,60]. A Horn clause may have at most one unnegated literal; for example, p, p V --q,

and p V -_q V -_r are all Horn clauses, while p V q is not. Horn clauses allow a much more

i
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efficient implementation, but represent only a subset of first-orde_ logic; for example, the formu-

lae p D q V r can not be written using Horn clauses.

Prolog is also implemented using a depth-first search strategy; this allows a very efficient

implementation and allows the programmer to control the search process in a simple manner.

However, it makes Prolog incomplete as a theorem prover; in some cases an existing interpreta-

tion under which all the assumptions hold will not be found. Another concession to efficiency

concerns the lack of an occurs check in the unification algorithm; this can result in invalid deduc-

tions[222]. Another limitation is that in Prolog there can be only one clause with no positive

literal, or head; this is called the goal. Therefore, there is no way to state that a predicate is not

true for a particular value; for example that _p(1) is true. The solution used is the closed world

assumption: if a goal is not provably true, then it is assumed to be false. While this is accept-

able for Horn clauses, it can cause inconsistencies for full first-order logic[202].

The clauses in a Prolog program can be divided into rules, which contain negated literals,

and facts, which do not. For example, consider the following Prolog program:

mother(bob,betty).

mother(sue,betty).

mother(betty,rose).

grandmother(N,M) _--

mother(N,O),

mother(O,M).

There are four clauses in the program. Mother(bob,betty), mother(sue,betty), and

mother(betty,rose) are all facts; they state that betty is the mother of bob, betty is the mother of

sue, and rose is the mother of betty respectively. The final clause is a rule; it states that for any

persons M and N, M is _he grandmother of N if there exists a person O such that O is the mother

of N and M is the mother of O. The rule is equivalent to the formula grandmother(N,M) V

-_mother(N,O) V --mother(O,M). A Protog implementation could be asked to find values of the
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mother or grandmother relation. For example, given the query mother(bob,M), it would return

with M equal to betty. Given the query grandmother(sue,G), it would return the with G equal to

rose.

In this chapter we have presented the theoretical foundations of this thesis. First-order,

predicate logic is a formalism for stating and proving statements about a set of objects; it is lim-

ited in that it is not possible to mechanically determine if a statement is true. Software can be

specified using pre- and post-conditions written in first-order, predicate logic. The pre-

condition states the properties that the inputs must satisfy, while the post-condition describes

the acceptableoutputs. A program can be proven correct with respectto a pre- and post-

conditionspecificationusingthe Hoare calculus;proofsin thismethod generateverificationcondi-

tionsin the underlyingfirst-orderlogic.These formulae can sometimes be certifiedusing resolu-

tion,a mechanical proofprocedure forfirst-orderlogic.Resolutioncan alsobe used to synthesize

programs and executespecifications;Prologisa language based on a resolutiontheorem prover.

Although these foundations are not perfect,we feelthey are suitablefor a next-generation

softwaredevelopment environment.
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CHAPTER 8.

RELATED WORK

In thischapter,we review some of the work performed by other researcherswhich isrelated

to thisdissertation.First,we present some of the specificationmethods which have been previ-

ously proposed, designed,or put into use;they can be formally-based or incorporatenatural

language and graphics. The formally-based methods may be roughly divided into model-

oriented and axiomatic approaches, although languages which combine the two methods have

also been proposed. PLEASE is a model-oriented approach; in other words, components are

describedin terms of pre-definedtypes and operations.As far as we know, itdiffersfrom other

work initscombination ofAda, Prolog,and an environment supportingboth model-oriented and

informalspecifications.

We then presentsome of the software development methodologies which have been pro-

posed. For example, in transformational programming a very-high level specificationis

translatedinto an eflicientimplementation by a seriesof correctnesspreservingmodifications.

Artificialintelligencetechniquescan be appliedto the transformationalapproach, or used with

program schemas or plans. A more radicalapproach is termed _proofsas programs"; in this

method, the development of a program isviewed as the creationof a proof in constructivelogic.

The work described in this dissertationis not based on a particularlyunique development

method; in fact it can be viewed as a transformationalapproach[23,24].However, it is an

attempt to integrateexecutablespecificationsand incrementalverificationinto the traditional

life-cycle.Work isnow underway to extend ENCOMPASS to incorporateartificialintelligence

techniques[2291.
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We then discusssome of the toolswhich have been developed to automate the software

development process. These includesystems for the verificationof programs, environments for

programming-in-the-small, environments forthe constructionof a program and itsproof simul-

taneously,and environments for programming-in-the--large.As far as we know, ENCOMPASS

isunique in itscombination of toolsand underlyingtechnology. The system combines an incre-

mental verificationsystem and executablespecificationsbased on resolutiontheorem proving

with a testharnessand an environment forprogramming-in-the--large.

3.1. Specification Methods

The specificationpreciselydescribesthe propertiesand qualitiesthat the softwareto be pro-

duced by a project must satisfy[aSI. Parnas gives a number of reasons for the use of

specificationsin software development[194].First,specificationsallow a programmer to imple-

ment a component without understanding how the entiresystem works; by clearlydefiningcom-

ponent boundaries, the intellectualeffortrequired for individual component constructionis

greatlyreduced. Second, specificationssupport the constructionof multi-versionsoftware;they

can record both the capabilitiesrequiredof allsystems and the differencesbetween versions.

Third, specificationsallowthe descriptionand verificationof intermediatedesigndecisions;many

times,a choiceof algorithmor data structurecannot be understood without the contextprovided

by precisespecifications.

One of the primary usesof a specificationisas a medium for communication between the

differentpeople involved in the software development process. Customers, analysts,managers

and programmers may have very differentbackgrounds and perspectives;this can make the

choiceof a communication medium difilcult.Many methods for specifyingsoftware have been

I
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proposed[ll,92]; for the purposes of this discussion, we will divide them into formal and informal

approaches. In our taxonomy, formal specifications are based on mathematics and/or logic, while

informal specifications are based on natural language. Informal specification methods have a

number of advantages. First, they are powerful in the sense that the full range of natural

language is available to describe the system to be built. Second, formal specifications may be an

ineffective medium for communication between customers and developers; with their combination

of natural language and graphics, informal specifications are less intimidating to personnel

without mathematical backgrounds. Formal specifications have the advantages associated with

precise semantics. Natural language specifications are notoriously ambiguous, incomplete, and

difficult to analyze automatically. Given a formal specification, it may be possible to automati-

cally check it for ambiguity and incompleteness, generate an executable prototype, or verify an

implementation.

3.1.1. Informal Specifications

Informal specifications rely mostly on natural language, but may be highly structured and

incorporate graphics. For example, Structured Analysis (SA)[206] combines a blueprint-like

notation with any other language to support top-down, hierarchical specification; these

specifications can be methodically constructed using the Structured Analysis and Design Tech-

nique (SADT){74,207]. In SA, specifications are divided into data and activities, which are decom-

posed independently. The basic unit of specification is the SA box, which can be decomposed to

show more detail. In SA, arrows represent input, output, control and mechanism, thereby show-

ing the relationship of boxes. In general, SA will be used with natural language.
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A specification method may combine informal and formal components; for example, the

Problem Statement Language (PSL)[226] combines a formal component similar to the entity-

relationship model[57,58] with natural language. Both PSL and the Problem Statement Analyzer

(PSA) are part of the ISDOS system. In PSL, systems consist of objects with properties; objects

may have relationships between them. System descriptions include system input/output flow, sys-

tem structure, data structure, data derivation, system size and volume, system dynamics, system

properties, and project management. PSL contains a number of pre-defined objects and relation-

ships geared towards description of these aspects. All the information from the specifications is

stored in a project data base; PSA can automatically generate data base modification reports,

reference reports, summary reports, and analysis reports.

PSL/PSA provides a good compromise between formal and informal specifications. PSL

obtains much of its descriptive power from natural language; much of the information in a

specification is stored in the names of objects and relations or in unprocessed text. However, PSL

specifications can be extensively processed by PSA. While it cannot understand the significance

of variable names or comments, it can perform simple analysis and check for some types of corn-

pleteness and consistency.

3.1.2. Formal Specifications

Formal specifications have precisely defined semantics and axe therefore more suitable for

machine processing; however, they may be intimidating to personnel without a strong mathemat-

ics background. For the purposes of our discussion, we will divide formal specifications into

model-oriented and axiomatic approaches. In a model-oriented, or constr_cti_e approach, a

specification is created using pre-defined objects and operations; for example, a stack with opera-

I
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tions push, pop and top might be defined in terms of a list with operations hd and tail. In an

axiomatic approach a specification defines the relationships of operations to each other, without

reference to pre-defined objects or operations; for example, an axiomatic specification of a stack

might specify that the result of applying a push and a pop to a stack is equivalent to the original

stack.

Many of the approaches to axiomatic specification are based on general alge-

bras[90,97,98,107,181]; for example, the OBJ languages are based on an initial algebra

approach[90,97,98]. In OBJ, new types or sorts may be added to a many-sorted equational logic;

the relationships between the operations on the new sort are defined by a set of equations. The

semantics are defined as the algebra that is initial in the category of all algebras for the logic.

Some feel that the initial algebra approach adds an unnecessary implementation bias to the

specification; therefore, approaches based on the final algebra in the category are also being inves-

tigated[139].

Languages such as OBJ have a number of strong points. For one, they are built on a very

solid theoretical foundation; the semantics of the language and the deduction methods for the

logic are well understood. Second, mechanical execution and proof procedures exist and are rea-

sonably efficient. Their draw backs are that they are (arguably) not well suited to specifying

some common programming constructs; for example, an algebraic approach is based on sets of

values while software systems normally contain objects with internal states. While OBJ can be

used to specify objects, much of the elegance and simplicity of the approach is lost.

In a model-oriented approach, components are specified in terms of pre-defined types and

operations[IS,26,29,105,118,162,193]; for example, ASLAN and RT-ASLAN are model-oriented

languages for sequential and real-time systems respectively[15]. In both these languages, systems
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are specifiedas statemachines using predicatelogicformulae; invariantsstatepropertiesthatall

statesmust satisfy,while constraintsdescriberequirements between consecutivestates.The sys-

tem generatesthe lemmas needed for an inductiveproof of correctness.A specificationconsists

of a sequence of levels;each levelisa view of the system being described.The top levelisa very

abstractmodel of the system components, transitions,and requirements. Lower levelsare more

detailed;the lowestlevelmight correspondto high-levelcode.

Languages such as ASLAN have a number ofadvantages. For one,they are (arguably)easy

to write and understand;almost any softwareconstructcan be describedusingthesemethods. It

isalsoreasonablyeasy to extend thesemethods with procedural and performance specifications,

and mechanical executionand proof proceduresdo exist.The disadvantage of these methods is

that they have unavoidableimplementation bias: a specificationisan implementation, although

possiblyin terms of very-highlevelprimitives.In lightof theseproblems,languageswhich com-

bine both model-orientedand axiomaticapproaches have been proposed[109,245].

The best specificationlanguage or method alone will not solve the problem of software

development. Constructinga specificationisjustthe firststep;an implementation must then be

created.

3.2. Development Methods

A number of methods for software development have been pro-

posed[16,76,104,129,134,143,179,199,243,252];many of these methods are explicitlyor implicitly

based on a particularmodel of the softwarelife-cycle.A life-cyclemodel describesthe sequence

of distinctstagesthrough which a softwareproduct passesduring itslifetime[88];thereisno sin-

gle,universallyacceptedmodel of the softwarelife-cycle[8,17,20,36,254].One pointof contention
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is how early in the development process an executable system should be produced. Creating a

valid specification is a difficult task; the users of the system may not really know they want, and

they may be unable to communicate their desires to the development team. It has been sug-

gested that prototyping and the use of ezecutable specification languages can enhance the com-

munication between customers and developers[I,22,95,108,118,140,144,153,198,237,255-257]; pro-

viding prototypes for experimentation and evaluation should increase customer/developer com-

munication and enhance the validation process. One technique is the use of a logic programming

language such as Prolog for specification and/or prototyping[67,79,149]; this approach combines

reasonably efficient prototypes with fairly declarative specifications.

Prototyping has been used on large projects; for example, the NYU Ada compiler was first

prototyped in SETL and then rewritten in C[209]. In experiments comparing specifying and pro-

totyping[38], it was found that prototyping required 45_ less effort to produce systems with

equivalent performance but 40_ less code. On the other hand, it was found that systems which

were specified rather than prototyped had more coherent designs and were easier to integrate. It

was also discovered that systems produced using prototyping rated lower on functionality and

robustness, but higher on ease of use and understanding.

Two widely used methods are modular programming[138,192,235,238] and top-down develop-

ment[76,104,134,178,248]. By using step-wise refinement[248] to create a concrete implementa-

tion from an abstract specification, we divide the necessary decisions into smaller, more

comprehensible groups. By encapsulating design and implementation decisions within module

boundaries, the clarity and modifiability of software is increased. A number of modern program-

ming languages support modular programming[70,157,161], and methods to support the top-

down development of programs have been both devised and put into
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useI13,35,41,42,64,134,159,179,206,213 ]. Environments to support such methods have also been

both proposed and constructed[46,220,223,253].

Others have proposed that software development be viewed as a sequence of transforma-
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tions between different, but somehow equivalent, specifications[17,18,45,56,158,184,195]. These

transformations can be between specifications written in the same language or between different

linguistic levels[158]. Systems can be based on on an extensible catalog of transformations, or on

a small set which can be used to generate more complex modifications[195]. For example, Bur-

stall and Darlington have developed a system in which first-order recursion equations are

modified into a more efficient form by the application of correctness preserving transforma-

tions[45]. The system generates all modifications from six primitive transformations: definition,

instantiation, unfolding, folding and laws (a set of data structure specific rules).

Other methods combine a knowledge-base and/or artificial intelligence techniques to sup-

port software engineering[16,19,100,165,212,215,240]. One such technique is deductive synthesis,

the use of theorem proving techniques to create verified code from

specifications[72,100,101,123,170]. As another example, IDEA[165] is an environment to support

a data flow design and refinement technique using knowledge--based tools. In IDEA, design infor-

mation is represented using reusable, domain-oriented schemas; the environment uses domain

knowledge and various rules to a_sist the designer in the construction of designs from

specifications.

The combination of artificial intelligence and transformational techniques can be termed

automatic programming. For example, researchers at ISI have been working on an extended

automatic programming paradigm for fifteen years[16]; this includes acquiring a high-level

specification, validating the specification, and an interactive means of translating the specification
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into an implementation. Their efforts use a specification language called GIST, which is based on

an extended entity-relationship model. In another long term effort, a system has been built at

the Kestrel Institute to support the transformational development of a predicate logic based

specification language called V[215]. The system includes an integrated environment based on

the language; the user can update or query a data base containing all the objects produced and

used in the development process

Another approach views the development process as the creation of a proof in a constructive

logic[21,63,172,221]; such a proof can be "executed" using an appropriate interpreter, or can be

used to create an executable program. For example, the PRL system[21] supports the construc-

tion of proofs in a logic of the same name. The system provides an integrated environment for

proof construction, including a "smart" editor and a hierarchical library of lemmas. The system

allows users to ask "experts" for advice during the proof construction process; experts may

implement guaranteed proof procedures, or be based on heuristic techniques.

Although many methods require no automated support, most can be enhanced by the use of

specialized tools.

3.3. Tools

A number of different tools have been proposed, constructed, or used to enhance the

software development process[55,77,110,114,137,177,210,215,218]. For example, the Cornell Pro-

gram Synthesizer[227] is an environment for programming-in-the-small based on a language-

oriented editor; it provides facilities to create, edit, execute and debug programs. The language-

oriented editor is based on a generator approach; programs are created top-down by chosing and

instantiating templates. Expressions are parsed as they are entered and structure-oriented corn-
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mands are supported. In more recentwork, the SynthesizerGenerator[204]allowsa editorof

this type to be generated from a language description.The editordesignerspecifiesthe con-

structsof the language,theirrelationships,how they are to be displayed,and the feedback to be

given when errorsare encountered;theSynthesizerGenerator then createsa full-screeneditorfor

manipulating programs in the language.

As another example, a number of different systems to support mechanical program

verification have been proposed{112,166,203,253!; in such systems, the program and its proof can

be created separatelyor simultaneously.For example, the Stanford Pascal Verifier[166]isan

interactivesystem forprogram verificationb_ed on the Hoare logic,in thissystem,verification

conditionsare firstgenerated from an annotated Pascalprogram and then submitted to algebraic

simplificationand proof methods. Verificationconditionswhich can not be proved are then

displayed for analysisby the programmer. Unproven conditionsmay indicatean error in the

program, or merely the absence of necessaryaxioms or [emmas. The programmer may then

modify the input to correctthese deficienciesand repeat the generate,prove and inspectcycle

untila complete proof isproduced.

Although the Pascal Verifier is interactive, the construction of the program and its proof

are really two separate processes. The synthesizergenerator has been used to create a

program/proof editorbased on the Hoare calculus[203].In thiseditor,a program and itspartial

correctnessproof are constructedsimultaneously;verificationconditionsare proved using the

sequent calculus.In the system, proofsare treatedas objectswith constraintson them; rulesof

inferenceare implemented as attributegrammars. The editorchecks the constraintson the

proof aftereach editingcommand and keepsthe userinformed of errorsand inconsistencies.
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It may be difficult to integrate and coordinate the different tools used in a software

engineering process; a number of tools can be integrated into a software engineering environ-

ment[6,33,37,50,56,69,73,78,99,111,127,148,180,228,239]. The integration provided by an

environment can create a synergistic effect between the environment's components; the support

provided by the environment is greater than the sum of that provided by its individual parts. A

high degree of integration can be achieved by basing an environment on a particular development

paradigm; since the methods to be employed are known, more support can be provided for a

larger part of the development process.

An environment can be tightly integrated, or based on a number of small, composible tool

fragments. An example of the latter approach is Toolpack[65,189], an environment to support

the production, testing, transportation and analysis of mathematical software written in Fortran.

Toolpack contains a number of tools including a compiling/loading system, an intelligent editor ,

a formatter, a structurer, a dynamic testing and validation aid, a dynamic debugging aid, a

static error detection and validation aid, a static portability checking aid, a document generation

aid, and a program transformer. The tools are integrated using a common file system and com-

mand interpreter.

An example of a tightly integrated environment is Cedar [224,225], which incorporates high

quality graphics, a sophisticated editor and document preparation facilities, and a number of

other tools such as an interpreter and debugger. The Cedar environment supports development

using the Cedar language, a strongly typed, compiler oriented language of the Pascal family.

The project may be seen as an attempt to bring features found in environments for dynamically

typed languages such as Smalltalk or Lisp into an environment for languages such as Pascal.
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The growing interest in Ada has prompted a number of projects to investigate environ-

ments to support the language[46,220,249 I. For example, Arcturus[220] is an environment com-

bining tools for template assisted editing, performance measurement, and automatic formating.

The system supports an Ada-based Program Design Language (PDL) and automated refinement

from PDL into executable code. Another example is PIC[249], an environment for

programming-in-the-large using Ada. It provides tools to specify the structure of large systems

using either graphical or textual representations. The environment allows easy movement

between these forms and provides an integrated set of tools for analyzing and managing the

interface control aspects of large systems.

In this chapter, we have reviewed some of the work performed by other researchers which is

related to this dissertation. PLEASE is a formal, model-oriented specification language; in other

words, components are described in terms of pre-defined types and operations with precise

semantics. As far as we know, it differs from other work in its combination of Ada, Prolog, and

an environment supporting both model-oriented and informal specifications. Many different

software development methodologies have also been proposed. The work described in this disser-

tation is not based on a particularly unique development method; in fact it can be viewed as a

transformational approach. However, it is an attempt to integrate executable specifications and

incremental verification into the traditional life-cycle. Work is now underway to extend

ENCOMPASS to incorporate artificial intelligence techniques. Many different tools have been

developed to automate the software development process. As far as we know, ENCOMPASS is

unique in its combination of tools and underlying technology. The system combines an incremen-

tal verification system and executable specifications based on resolution theorem proving with a

test harness and an environment for programming-in-the-large.
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CHAPTER 4.

THE PLEASE LANGUAGE

The firststep in the program of researchdescribedin thisthesisisthe design of a wide-

spectrum, executablespecificationlanguage to support incrementalsoftware development. This

language iscalledPLEASE (PredicateLogic based ExecutAble SpEcifications).PLEASE permits

the constructionof programs ina conventionallanguage usingrapid prototypingand incremental

verificationtechniques. In PLEASE, software components are specifiedusing pre- and post-

conditionswritten in a subset of firstorder,predicatelogic.Prototypes can be automatically

constructedfrom thesespecifications,and the specificationscan be incrementallyrefinedintocon-

ventionalimplementations. Each refinementcan be verifiedbeforeanother isapplied;therefore,

errorscan be detectedsoonerand correctedat lower cost.

In this chapter, we describe PLEASE in some detail.First,we present the software

development paradigm PLEASE is designed to support; itisbasicallythe traditionallife-cycle

extended to support the use of executablespecificationsand VDM. Next we discussthe tradeoffs

presentin the designofPLEASE: logicalpower, ease of use,applicabilityand efficiencywere all

considered.We then presentand discussan example specificationand program; thisallowsus to

describethe main featuresof our approach. Next, we presentthe Hoare-styleproof rulesfor the

basic constructs in PLEASE including assignment and if-then-else statements, while loops, pro-

cedure calls and user-defined functions. These rules assume variables of a single type; we then

describe the pre-defined types in PLEASE and the facilities provided for user type definition.

Finally, we describe how PLEASE can be used to specify objects, in other words encapsulated

types with an internal state.
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4.1. Development Paradigm

Figure 2 shows the software development paradigm PLEASE was designed to support; a

differentperspectiveispresentedin Chapter 8. In thismodel, a customer requeststhat a system

be constructedby the development team. In the requirementsdefinitionphase,the functionsand

propertiesof the software to be produced by the development are determined[88].A systems

analystproduces a softwarerequirementspecification[88],which preciselydescribesthe attributes

of the software to be produced. In our model, software requirementsspecificationsincludecom-

ponents specifiedin PLEASE. PLEASE specificationsdescribeonly the functionof a component,

not itsperformance, robustness or reliability.These other qualitiesare specifiedusing natural

language or other formalisms.

Although a software system may be shown to meet itsspecification,thisdoes not neces-

sarilyimply that the system satisfiesthecustomers'requirements. The validationphase attempts

to show that any system which satisfiesthe specificationwillalsosatisfythe customers' require-

ments, that is, that the requirements specificationis valid. If not, then the requirements

specificationshould be correctedbeforethe development proceeds any further.In thisphase the

systems analyst interactswith the usersto produce the system validationsummary[230], which

describesthe customers'evaluationof thesoftware requirementspecification.

To aid in the validationprocess,the PLEASE components in the specificationmay be

transformed intoexecutableprototypesthat satisfythe specification.These prototypes may be

used in interactionswith the customers;they may be subjectedto a seriesoftests,be deliveredto

the customers for experimentation and evaluation,or be installedfor production use on a trial

basis. The use of prototypes can improve customer/developer communication and enhance the

validation process. If it is found that the specification does not satisfy the customers, then it is
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revised, new prototypes are produced, and the validation process is reinitiated; this cycle is

repeated until a validated specification is produced.

In general, this process does not guarantee that the specification is valid. The fact that the

prototype does satisfy the customers means only that at least one implementation which satisfies

the specification is acceptable. For example, the post-condition for a procedure may hold true

for an infinite number of values while the prototype will only return one. We say the

specification of a component is complete if, for any input state, it is satisfied by only one output

state. Although in some cases it is possible to require and verify that the specification of a com-

ponent is complete, this is di_c,alt in practice. We believe that while prototypes enh_ce the

validation process, they do not replace communication with the customers and review of the

specification.

When the validation phase is complete, the Specification undergoes a refinement, or design

transformation, in which more of the structure of the system is defined and implemented. This

phase produces a software design specification[88], which provides a record of the design decisions

made during the transformation. During the transformation, prototypes produced from

PLEASE specifications may be used in experiments performed to guide the design process. The

design transformation may produce annotated components in the base language as well as an

updated requirements specification. Components which have been implemented need not be

refined further, but components which are only specified will undergo further refinements until a

complete implementation is produced.

Although a new specification has been created, its relationship to the original is unknown.

Before further refinements are performed, a verification phase must show that any implementa-

tion which satisfies the lower level specification will also satisfy the upper level one. In our
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model, this is accomplished using a combination of testing, technical review, and formal

verification. PLEASE specifications enhance the verification of system components using either

testing or proof techniques. The specification of a component can be transformed into a proto-

type; this prototype may be used as a test oracle against which the implementation can be com-

pared. Since the specification is formal, proof techniques may be used which range from a very

detailed, completely formal proof using mechanical theorem proving, to a development "anno-

tated" with unproven verification conditions. PLEASE provides a framework for the

rigorous[134] development of programs. Although detailed mechanical proofs are not required at

every step, the framework is present so that they can be constructed if necessary. Parts of a pro-

ject may use detailed mechanical verification while other, less critical parts may be handled using

less expensive techniques.

The life-cycle supported by PLEASE can be viewed as a sequence of transformations

between different specification levels. On level one, the requirements definition phase transforms

the customers desires into an initial, abstract specification. Also on level one, the correctness of

this transformation is determined by the validation phase. On level two, the specification pro-

duced on level one undergoes a design transformation, the correctness of which is determined by

a verification phase. All the remaining levels take the specification produced by the next higher

level as input, and transform it into a more concrete form. The most concrete components are

the annotated implementations, which are produced on the lowest level.

A somewhat more complex model might view the refinement process as a search through a

space of possible implementations. A given specification can have a large number of correct

implementations; these can be structured as a tree. In this tree, each interior node represents a

specification and each leaf node represents a correct implementation. At any time, the develop-
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ment is located at a given node. A design decision chooses an arc from a specification to a new

specificationor implementation. The goalof the refinementprocessisto searchthistreeforan

acceptableimplementation. An acceptableimplementation would not only be correct,hut would

have performance and other characteristicsthat satisfythe users.In an actualrefinement,some

paths from a given specificationwillnot lead to acceptable implementations; therefore,the

refinementprocessmay have to backtrsckto finda solution.Ifan implementation isfound inade-

quate, design decisionsmust be undone untilthe decisionthat caused the problem has been

reversed. At thispoint a correctdesigndecisioncan be made and, if possible,the restof the

development can be "replayed" [244].

In our model, each design transformation can be decomposed into a number of atomic

transformations;, if each atomic transformation is correct then so is the design transformation.

Each design transformation is verified before another is applied; this allows errors in the

specification and design processes to he detected and corrected sooner and at lower cost. How-

ever, a number of atomic transformations may be performed before any axe verified; verifying

each atomic transformationbeforethe nextisappliedwould be prohibitivelyexpensive. Instead,

the information necessary to verifyeach atomic transformation is recorded for use in the

correspondingverificationphase;at thattime,they areverifiedusing an appropriatemethod.

Now that we have seen the development paradigm PLEASE isdesignedto support,we can

betterunderstand the tradeoifsinvolvedinitsdesign.

4.2. Design Considerations

The design of PLEASE is a compromise between a number of conflicting goals. First, the

language must allow the implementation of software using a conventional programming
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language. Early experimentswere performed using Path Pascal[511,a variantof Pascal inwhich

the interactionsbetween concurrent processesare specifiedusing path expressions[49].Although

thislanguage provided valuableinsights,ithad a number of drawbacks. Pascal itselfdoes not

provide support for modular programming; Path Pascal provides objectswhich were designed

with concurrent programming rather than modularity in mind. Although a reasonableimple-

mentation isavailableon Berkeley Unix@,the language isnot widely implemented or used.

The examples givenin thisthesisuse Ada [70,241]as the implementation language;itseems

a good choicefor a number of reasons. Ada is(arguably)a well designed,modern language. It

contains more than enough features,includingsupport for modular programming. Others are

researchingAds-based specificationlanguages[167];much of theirwork can be reused. Ada is

enthusiasticallysupported by the Department of Defense. Commercial compilers have already

been produced and itseems likelythat more willbe developed for many differentarchitectures.

Ada is currentlyin industrialuse and promises to become widely used in the near future[182];

thisdecreasesthe distancebetween the somewhat academic work describedin thisthesisand the

realworld ofsoftwaredevelopment.

The second designrequirement is that PLEASE must allow the specificationof software

using pre- and post-conditionswritten in predicatelogic;the more powerful the specification

method, the better.Third,the language must allow the rapid,automatic constructionof execut-

ableprototypesfrom thesespecifications;the prototypesshould be as ei_cientas possible.Unfor-

tunately,there isa conflictbetween the second and thirdgoals. A fairlypowerful specification

method would use pre-and post-conditionswrittenin the fullfirst-order,predicatelogic.These

specificationswould use a number of very high-leveldata types such as sets. Unfortunately,the

Unix® isatrademarkofAT_T.
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validityproblem for first-orderlogicisundecidable. Therefore,ifwe allow fullfirst--orderlogic

to be used for the specifications,we willbe unable to constructtotallycorrectprototypesin all

cases.

A resolution theorem prover for first-order logic could be used to construct partially correct

prototypes; huwever, the performance of these prototypes would be very poor. The axiom sets

for types such as sets would result in a further decrease in performance. The emergence of logic

programming as a technology, most notably Prolog[60], suggests that Horn clauses may provide

a good compromise. Although not as powerful as full first-order logic, Horn clauses allow much

more efficientimplementation techniquesto be used. Commerci_i Prolog implementations are

availablewhich provide support formachine typessuch as integersand floatingpoint numbers[5].

By restrictingthe types used to those with efficientProlog implementations, reasonable

specificationpower iscombined with implementation efficiency.

The fourth design goal is that PLEASE specificationscan be incrementallyrefinedinto

verifiedimplementations. Given Ada as the base language, problems arise. Ada was not

designed with program verificationas a goal;therefore,itcontainsconstructsforwhich no for-

mal semantics have been developed. For example, the Ada Language Reference Manual

(ALRM)[70] states that in out parameters may be implemented using either a copy/restore or

pointer strategy. Most of the work on Hoare axioms for procedure call assumes one implementa-

tion or the other.

Although the examples in thisthesisuse Ada syntax,the constructsdo not necessarilyhave

the Ada semantics; the semantics of PLEASE are definedusing Hoare calculusproof rules.

PLEASE isdesigned for use only withinan encapsulatedenvironment; specialtoolsmanipulate

and displaythe abstractsyntax in a format suitableforhumans. In the currentimplementation,
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Ada programs with behavior matching the semantics defined by the proof rules are created

automatically from the PLEASE abstract syntax trees. This approach allows programs in

different languages to be created from the same abstract syntax, and constructs to be provided

which are implementable, but not supported, in the implementation language.

In order to further clarify the concepts, design and implementation of PLEASE, we will

present and discuss an example specification and program.

4.3..An Example

Figure 3 shows the PLEASE specification of a component to compute the factorial of a

given number. In Ada, packages are used to group logically related components[70,241]. The
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package factorial_pkg is

--: predicate is_fact( X,Y : in out natural )

--: T1 : natural :

--" begin

--: X = 0 and Y = 1

--: or

--: is_fact(X-i,Tl) and Y = T1 * X

--" end is_fact :

is true if

procedure factorial( X : in natural : Y

--I where in( true ),

--I out(is_fact(X,Y) ) ;

: out natural ) :

end factorial_pkg :

Figure 3. Specification of procedure factorial

I
I

I
I
I
I
I

i
I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

51

specification defines a package factorial_pk9, which provides a procedure factorial. To increase

readability and understandability, the syntax of PLEASE is similar to Anna[167,168]. Like

Anna, a concrete PLEASE program is an Ada program with formal comments, which are ignored

by Ada compilers but are meaningful to other tools in the IDEAL environment. Formal com-

ments are divided into virtual program text, each line of which begins with the symbol "- - ' ",

and annotations, each line of which begins with _- - I". In PLEASE, annotations contain predi-

cate logic formulas which should be true at various points in the program's execution; for exam-

ple, annotations are used to write pre- and post-conditions. In PLEASE, virtual program text

defines constructs that are used only in assertions, not in the actual program being constructed;

for example, virtual program text is used to define predicates needed to write assertions.

The specification in Figure 3 has two parts: the definition of the predicate is.fact and the

specification of the factorial procedure. In PLEASE, a predicate syntactically resembles a pro-

cedure and may contain local type, variable, function or predicate definitions. The declaration of

a new predicate is equivalent to extending the basis of the underlying first-order logic; the predi-

cate definition is translated into axioms which are added to the set defining the theory for the

basis. For example, the definition of isdact states that X factorial is equal to Y if X equals zero

and Y equals one, or if X minus one factorial is equal to T1 and Y equals T1 times X (in other

words, i_iact(X, Y) is true if (X=O ^ Y=I) V ((X-1)_= 2'/^ r= TI*X)).

Predicates are specified using Horn clauses; this approach allows a simple translation from

predicate definitions into Prolog procedures. A major drawback is that pure Horn clause pro-

gramming has no way to specify the falsehood of formulae; for example, the fact that is_.fact(2,1)

can never be true. The solution used in Prolog is the closed world assumption: if a fact is not

provably true then it is assumed to he false. Unfortunately, the closed world assumption may

I
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cause inconsistencies for full first-order logic[202]; therefore, there is no way to specify negative

information in PLEASE. At present, the best solution using PLEASE is to define a new predi-

cate that is understood to be the negation of the predicate in question. Unfortunately, this rela-

tionship can not be recorded in a formal manner. We feel that pure Horn clauses are inadequate

as the basis for a practical specification language; therefore, we plan to extend PLEASE to sup-

port a more powerful logic.

The second part of the specification states that factorial is a procedure with an input

parameter X and an output parameter Y, both of type natural. In PLEASE, the state before exe-

cution begins is designated by in[...), while the state after execution is complete is designated by

out(...). Procedures are defined using pre- and post-conditions; the pre-condition for a pro-

cedure specifies the conditions the input data must satisfy before procedure execution begins,
6

while the post-condition for a procedure states the conditions the output data must satisfy after

procedure execution has completed. The pre- and post-conditions can be expressed as formulae

surrounded by in[...) and out(...) respectively. For example, the pre-condition for factorial is

true; the type declarations for the parameters give all the requirements for the input. The post-

condition for factorial is is_fact(X, YJ; the predicate is,fact must be true of the parameters to fac-

torial after execution is complete. This could be written in Hoare style notation as:

[true] S 1 [is_fact(X,Y)]

where S1 is the body of factorial.

The PLEASE specification of factorial can serve many purposes during the development of

the procedure. In the validation phase, the specification can serve as the basis for precise discus-

sions between customers and developers. The specification can be used to produce an executable

prototype, which can be delivered to the customers for experimentation and evaluation, or
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possiblyeven installedfor use on a trailbasis. The specificationenhances the verificationof

refinements using either testing or proof techniques. The prototype produced from the

specificationcan be used as a testoracleagainstwhich an implementation can be compared; since

the specificationisformM, prooftechniquescan alsobe used to verifyimplementations.

For example, Figure 4 shows a complete implementation of the factorialprocedure. The

implementation firstchecks for the specialcase of zero,and then uses a while loop to calculate

the factorialof X in Y. The loop has invariantis.fact(I,Y) and terminateswhen I isequal to X.

The body of factorialiscompletely annotated;in other words, there isan assertionboth before

and aftereach executablestatement. Each assertionstatesthe conditionsthat must be satisfied

whenever executionreachesthat pointinthe procedure. For example, when executionentersthe

thenbranch of the if-then-elsethe assertiontrueA X=O must hold. The assertionsplus the exe-

cutablestatements form a proof in the Hoare calculus[120,163,169];thisapproach allowsa proof

of correctnessto be constructedwhen a specificationisrefinedinto an implementation.

Now that the basic concepts and philosophy of PLEASE have been presented,we can

describethe language ina more formalmanner.

4.4. Proof Rules

We describethe semantics of PLEASE using Hoare calculusproof rules. There are two

thingsto noticeabout our generalapproach. First,the rulesare statedin terms of totalcorrect-

ness;thisavoidsthe problems inherentin the partialcorrectnessof user-definedfunctionsI186].

Second, PLEASE does not allowfunctionswith sideeffects.
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package body factorial_pkg is

procedure factorial( X : in natural : Y : out natural ) is

--I where in( true ),

--I out(is_fact(X,Y) ) :

I : natural :

begin

-- I true :

if X = 0 then

--i true and X = 0 ;

Y := 1 :

-- I is_fact (X,Y) •

else

--I true and not X = 0 :

I := 1 :

--l I = 1 :

Y := 1 :

--l is_fact(I,Y) :

while I /= X loop

--i is_fact(I,Y) and I /= X and X-I = cl :

I := I + 1 •

--I is_fact (I -1, Y) and X-I+1 = cl :

Y := Y* I :

--I is_fact(I,Y) and X-I < cl :

end loop :

-- I is_fact (X.Y) :

end if •

--I is_fact (X, Y) ;

end factorial :

end factorial_pkg ;

Figure 4. Annotated implementation of factorial
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One of the most basicconstructsinPLEASE isthe assignment statement;,itssemantics are

definedby the axiom schema:

[P£x :=e[P]

where P isa formula,X isa variable,and e isan expression.

In other words, for the formula P to be true afterexecutionof the statement assigninge to X,

the formula P with e substitutedfor X must be truebeforeexecutionbegins.

PLEASE alsoincludesthe if-then-elsestatement;,itssemanticsare definedby the rule:

[P A E] Sl [Q],[P A --E]S, [Q]

[P] irE thenS 1 else S2 end if[q]

where P and Q are formulae, E is a quantifier free formula, and S1,S 2 are statements.

In other words, for an if-then-else statement with branch condition E to be correct with respect

to pre-condition P and post-condition Q, the then branch must be correct with respect to PAE,

Q and the else branch must be correct with respect to PA-_E, Q.

PLEASE also includes a while loop construct; its proof rule is more complicated because

non-termination is possible. Ignoring the. problem of non-termination, the semantics of the while

loop are defined by the following rule:

{P A E} SI {P}

{P} while E loop Sx end loop {P A _E}

where P is a formula, E is a quantifier free formula, and St is a statement.

In other words, for a while loop with condition E to be partially correct with respect to pre-
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condition P and post-condition PA-_E, the body of the loop must be partially correct with

respect to PAE and P.

We can extend the rule to total correctness:

PAEDW_, [PAEAe=c]St[PAe<c]

[P] while E loop S_ end loop [P A --,E]

where P and W are formulae, E is a quantifier free formulae, e is an expression,

c is a constant not used elsewhere, and S1 is a statement.

The rule is fully explained in[163]. Briefly, it relys on a well founded set defined by the formula

W; if W_ is true, then e is a member of the set. Since there are no infinite decreasing sequences

in a well founded set, the fact; that e equals c before the body of the loop begins and e is less than

c after the body completes implies that the loop will terminate.

Statements can also be sequentially composed in PLEASE; the semantics are defined by the

usual Hoare rule:

[P] S1 [R], [R] S2 [QI

[P] S1 ;$2 [Q]

where P,Q,R are formulae and S1,S z are statements.

In other words, for thesequence of two statements SI and S2 to be correctwith respectto pre-

conditionP and post-conditionQ, there must exista formula R such that SI is correctwith

respectto P, R and S2iscorrectwith respectto R, Q.
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PLEASE also includes procedure calls; the semantics can be defined with the rule:

/c_z,z ], [pj Si [Qj[Ẑ (Q,)xA= t_2Js,c

v ,A,m p(A,B,C)[Q2][(I A "lyx,YJ

where P,Q,I are formulae, X,Y,Z are variables, A,B,C are expressions,

and p is a procedure with statement SI as its body.

Note that A, B and C are disjoint, I does not depend on B or C, and that the rule must be

extended for recursive Drocedures: for a more cnmpl_t.p Hi_e,,_ion _flTl]

This rule requires considerable explanation. First, we must differentiate between the

different types of formal parameters. In PLEASE, formal parameters may be of type in, in

which case their value may be referenced but not set in the procedure; type out, in which case

their value is copied to the actual parameter when the procedure returns; or type in out, in which

case the value of the actual parameter is copied to the formal parameter when the procedure is

called, and the value of the formal parameter is copied back to the actual when the procedure

returns. In other words, PLEASE has copy-restore or value-result semantics for parameter pass-

ing.

In the ruleabove, X representsthe in formal parameters,Y representsthe in out formal

parameters and Z representsthe outformal parameters. Similarly,A, B and C are the in,in out

and out actualparameters respectively.SI isthe body of the procedure p and iscorrectwith

respectto pre-conditionPI and post-conditionQr The proof of the procedure callruleisbased

on the equivalencebetween the callp(A,B,C) and the statement sequence:

X :=A ;

Y := B ;

S_ :

B :=Y ;

C := Z "

I
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The formula I is called the invariant;, it must be true both before and after the procedure is

called. The invariant states properties which may be necessary to prove other parts of the pro-

gram, but are not necessary for the correct execution of the procedure call. The rule states that

if the procedure body is correct with respect to P1,Q1 and the invarlant and Q1, both with the in

actuals substituted for the formals, imply the post-condition for the call with the out formals

substituted for the actuals, then if the invariant and P1, both with the in actuals substituted for

the formals, are true before the call begins, then the call will terminate so that the post-

condition will be true.

For example, consider the factorial procedure specified earlier in this chapter; its body has

pre-condition true and post-condition is_fact(X,Y). A proof of the correctness of a call

factorial(I,J) with respect to invariant is_fact(K,L), and post-condition is_fact(K,L) A is_fact(I,J)

would reduce to the following:

[is_fact(K,L) A is_fact(I,Y) D is_faet(K,L) A is_fact(I,Y)], [true] S1 [is_i'act(X,Y)]

[is_fact(K,L) A true] faetorial(I,J)[is_fact(K,L) A is_faet(I,J)]

where S1 is the body of factorial

PLEASE also supports user-defined functions; the semantics of which can be explained with

the following rule:

[P] S1 [Q]

P DQ_X)

where P,Q are formulae and f is a function with body S1 and return variable F.

In other words, if the function f has body S 1 which is correct with respect to pre-condition P and
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post-condition Q, then for any X, P implies Q with f(X) substituted for the return variable. For

example, the body of the factorial procedure could also be used as the body of a function. Since

the pre-condition is true and the post-condition is is_fact{X,Y), we can deduce that true D

is_fact(X,f(X)); this can be used as an axiom with which to reason about the function.

The proof rules presented in this section assume that variables are of a single type; while

this is sufficient for many purposes, PLEASE currently provides significantly more power.

4.5. Data Types

,,e current version of PLEASE provides a number of pre-defined types which may be com-

posed to form larger constructs: characters, naturals and lists are supported. In PLEASE, as in

Ada, the type natural implements a finite subset of the natural numbers; the operations addition,

subtraction, multiplication and division are pre-defined. The PLEASE type character imple-

ments the ASCII character set and has no pre-defined operations except equality, which is defined

on all types. In PLEASE, list is a generic; an instantiation of list will have elements of a particu-

lar type. Lists have pre-defined operations cons, hd, tail, append, extract, and length.

For example, Figure 5 shows the please specification of a component to sort a list of natural

numbers; the specification defines a package sort_sky which provides a procedure called sort. The

procedure takes two arguments: the first is a possibly unsorted input list, the second is a sorted

list produced as output. The specification uses the pre-defined package natural_list_pkg, which

uses the PLEASE type list to define the type natural..list as list of natural In PLEASE, as in Lisp

or Prolog, lists may have varying lengths and there is no explicit allocation or release of storage;

however, in PLEASE the strong typing of Ada is retained and all the elements of a list must have

the same type. In PLEASE, as in Prolog, the empty list is denoted by C], and a list literal is

I
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with natural_list_pkg : use natural_list_pkg :

package sort_pkg is

--: predicate permutation( LI, L2 : in out natural_list )

--: Front, Back : natural_list :

--: begin

--: L1 = [3 and L2 = []

--: or

--: L1 = Front II cons(hd(L2),Back) and

--: permutation(Eront II Back, tl(L2))

--. end :

is true if

--: predicate sorted( L

--: begin

: in out natural_list )

--: L = C]
-- : or

-: tl(L) = []
-- : or

--: hd(L) <= hd(tl(L))

--" end :

and sorted (tl (L))

is true if

procedure sort ( Input : in natural_list : Output : out natural_list )

--I where in( true ),

-- I out ( permutation (Input, Output) and sorted (Output) ) :

end sort_pkg :

Figure 5. Specification of sort procedure
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denoted by [/], where l is a comma separated list of elements. The functions hd, tl, and cons

have their usual meanings and L l I J L_ denotes the concatenation of the elements of L I and L_.

The specification defines the predicates permutation and sorted, as well as giving pre- and

post-conditions for the procedure. The definition of the predicate permutation states that two

lists are permutations of each other if both of the lists are empty, or if the first element in the

second list is in the first list and the remainder of the two lists are permutations of each other.
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The definition of the predicate sorted states that a list is sorted if the list is empty, or if the list

has one element, or if the first element in the list is less than or equal to the second element and

the tail of the list is sorted. The pre-condition for sort is simply true; the type declarations for

the parameters give all the requirements for the input. The post-condition for sort states that

the output is a permutation of the input and the output is sorted.

While the pre-defined types in PLEASE provide reasonable expressive power, even more

can be obtained with the addition of a user type definition facility.

4.5.1. User-Defined Types

It has been proposed that the use of abstract data types can enhance software specification,

validation and verification[98,107,139,162,181]. In PLEASE a _new type can be defined with

another type as its representation; for example, Figure 6 shows the PLEASE specification of an

Ada package defining the type natural_stack with representation natural_list. Natural_stack

implements a stack of natural numbers using a list of natural numbers; each object of type

natural_stack is represented by an object of type natural_list. In PLEASE, as in VDM[134], a

type has an invariant which restricts the set of legal representations; the invariant must be true

of any values input to, or output from, functions on the type. For example, the type

natural_stack has the invariant true meaning that all values of type natural..list can be interpreted

as values of natural_stack.

In PLEASE, the functions on a type are specified with pre- and post-conditions in a manner

similar to procedures. For example, the function top has S/I-- empty_.stack as a pre-condition;

the function is only defined on stacks with at least one element I. The post-condition for top

1This makes top a partial function, creating a subtle inconsistency.
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with natural_list_pkg : use natural_list_pkg :

package natural_stack_pkg is

type natural stack is new natural_list :

--i where S:natural_stack =_ true :

function empty_stack return natural_stack :

"-I where return S:natural stack =_ S = [] :

function push( E : natural : S : natural_stack )

return natural_stack :

--I where return Ns:natural_stack z_ Ns = cons(E,S)

function pop( S : natural_stack ) return natural_stack :

"-I where in( S /= empty_stack ),

"-I return Ns:natural_stack =, Ns = tl(S) :

function top( S : natural_stack ) return natural

--I where in( S /= empty_stack ),

--I return E : natural =_ E = hd(S) :

end natural_stack_pkg :

Figure 6. Natural_stack in terms of natural_list
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states that the value returned by the function is the head of the list given as an argument. As

mentioned in the previous section, the pre- post-conditions for a function are used to generate

axioms which characterize its behavior; these axioms are used in both the Prolog prototypes pro-

duced from specifications and in the proof of theorems concerning the type.

Natural__stack_.pkg defines four functions on the type natural_stack. The function

empty_stack returns an empty list to be interpreted as an empty stack, while the function push

takes a natural number and a stack as input, and returns a new stack which is equal to the old

stack with the natural number on top. The function pop returns a stack with the top element

I

I
I
I
I
I



63

I

I

I

I

I

I

I
I

I
I

I
I

I

I
I
I

removed, while the functiontop returnsthe element at the top of the stack. Natural_tack can be

used in other components to provide a stack of naturalnumbers; itcan be used in parameter or

variabledeclarations,as the basisfor new type definitions,or inthe specificationofnew software

components.

In PLEASE, both pro- and user-definedtypes are types in the mathematical sense: setsof

valueswith functions.Although thisgivesreasonableexpressivepower and good formal proper-

ties,encapsulated components with internalstate are necessary for the specificationof large

softwaresystems.

4.6. Objects

Many feel that object-oriented techniques can greatly enhance the specification, design and

implementation of software[7,39,175]. The definition of "object-oriented" is somewhat vague;

however, it usually contains the notions of state, encapsulation, inheritance, and specialization.

An object has a state which is internal, changeable and retained between operations on the

object; this differentiates it from a value which is not changeable. An object is encapsulated if its

state can only be modified by certain operations; in other words if the representation is hidden.

In a system with inheritance, objects can inherit operations or values from (possibly multiple)

parents. This is subtly different from specialization, in which an object can override as well as

inherit the properties of its parent. PLEASE provides support for state, encapsulation and inher-

itance, but not specialization.

[n PLEASE, objectsare specifiedusing Ada packages; the localvariablesform the state

which can be modified only by procedures definedin the package. A package may use other

packages to implement a simple type ofinheritance.To betterunderstand the specificationof

I
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objects in PLEASE, we will consider an example[144], a small library data base which supports

the following transactions:

1 - Check out or return a book.

2 - Add or remove a book from the library.

3 - Get all the books by a particular author.
4 - Get the books checked out to a borrower.

5 - Find out who has a book checked out.

Users of the system are divided into staff and non-staff categories. Only staff users can perform

transactions one, two, four or five, except that any one can perform transaction four to find the

books they currently have checked out. The data base must satisfy the following integrity con-

straints:

1 - All books must be available or checked out.

2 - No book may be both available and checked out.

3 - No user may have more than a set number of

books checked out at any time.

The PLEASE specification of the library data base is a single package including both the

data structures and operations. Figure 7 shows the PLEASE specification of the data structures

for the library data base. The specification of the library data base uses the PLEASE type list to

define the type book_list as list of book. The type book defines a record including fields for unique

identifier, title and author. The type borrower defines a record including name and number of

books checked out. The type cheek_out_tee defines a record that relates a borrower and a book.

The data base consists of four data structures. Shelf..Iist is a list of all the books owned by the

library, while Available is a list of all the books currently available for check out. Checked_out

contains a record of each book currently checked out, while Borrowers records the number of

books currently checked out by each borrower.
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type book is record

id : book_id

title : strng :

author : strng :

end record :

type borrower is record

name

num_checked_out

end record :

: user :

: natural

type check_out_rec is record

u : user :

bk : book :

end record :

type book_list is list of book :

type borrower_list is list of borrower :

type check_out_list is list of check_out_rec

Shelf_list : book_list :

Available : b0ok_list :

Checked_out : check_out_list :

Borrowers : borrower_list :

Figure 7. Specification of the library data base

The integrity constraints on the data base are expressed as an invariant;, the invariant must

be true both before and after any transaction is performed. Figure 8 shows the PLEASE

specification of the invariant for the library data base. Figure 8 contains an assertion that

specifies the invariant for the data base, as well as virtual program text which defines a number

of predicates used in the invariant. The function books_checked_out returns a llst of all the books

currently out to any borrower; its specification uses the predicate is_books_checked_out, which is

true only if the list L contains all the books currently on Checked_out. The predicate

all_available_or_checked_out is true if all books on the shelf list are either _vailable or checked
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--" predicate is_books checked_out(

--: L : in out book_list :

--: Checked out : in out check_out_list

--" ) is true if

--" begin

--: Checked_out = [] and L = []
-- : or

--: hd(L) = hd(Checked out) .bk and

--: is_books_checked out(tl (L) ,tl (Checked_out))

--" end -

function books_checked_out return book_list :

--I where return L : book list => is_books_checked_out(L,Checked_out) :

--: predicate all_available_or_checked_out is true if

--" begin permutation(Shelf_list, Available [] books_checked out) end :

--" predicate none_available_and_checked_out is true if

--. begin member_both(Available,books_checked_out) = [] end :

--" predicate under limit( Borrower : in out borrower ) is true if

--. begin Borrower.hum_checked_out <= borrow_limit end :

--. predicate all_under_limit( Borrowers : in out borrower_list ) is true if

--" begin

--: Borrowers = []

--: or

--: under_limit(hd(Borrowers)) and all_under_limit(tl(Borrowers))

--" end :

--I where all_available_or_checked_out,

--] none_available_and_checked_out,

--I all_under_limit(Borrowers) :

Figure 8. Invariant for the library data base
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out, while the predicate none_available_and_checked_out is true if no book is both available and

checked out. The predicate all_under_limit is true is all borrowers currently have less than the

maximum number of borrowed books. The invariant for the library data base states that the

predicates all_available_or_checked_out, none_available_and_checked_out, and

all_under_limit(Borrowers) must be true both before and after the execution of each operation.

The is equivalent to having the conjunction of these predicates in both the pre- and post-

condition of each operation.

Figure 9 shows the specification of procedures to perform the check in and check out tran-

sactions. The procedure check_out ;...,i .... _ *_ _'_'_ ^"" " " --"-J with the iden--_-v .......... ,,e _,,_,, ._,_ operation; it xs _,_u

tity of the user performing the operation, as well as the identity of the borrower and book in

question. The pro-condition for check_out states that the user performing the transaction must

be a staff member and that the book to be checked out must be available. The post-condition

I
I
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procedure check_out( U : in user - B : in borrower ; Bk : in book ) -

--I where in(is_staff(U) and is_available(Bk) ).

-- I out ( book_is_checked_out (B.name. Bk. in (Checked_out)) and

--I Available = extract (in(Available).Bk) and

-- I borrower_is_updated (B. i, in (BOrrowers) ) and

-- I under_limit (Borrower) ) -

procedure check_in( U : in user - B : in borrower - Bk : in book ) -

-- i where in ( is_staff (U) and is_checked_out (Bk) ) .

--I out( Available = cons(Bk, in (Available) ) and

-- I book_is_not_checked_out (B. name, Bk. in (Checked_out))

-- I borrower_is_updated (B. -i. in (Borrowers)) ) -

and

Figure 9. Proceduresto check books inand out
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for check_out states that the book must be checked out to the borrower, that the book must not

be on the available list 2, that the borrower's record is updated to reflect the new book checked

out, and that the borrower is still under the limit for number of books checked out. The pro-

cedure check_in is similar. The pre-condition for check_in states that the user performing the

transaction must be a staff member and that the book in question must be checked out, while the

post-condition for check_in states that the book must be on the available list, that the book is

not checked out to the borrower, and that the borrower's record is updated to reflect the check

in.

When a book is checked out of the library, the state of the library data base is changed; the

specification of check_out refers to the state of the data base both before and after the operation

is performed. A predicate is evaluated in a single state; therefore, in order to refer to both the

initial and final states, the value of one of the states must be passed as a parameter. For exam-

ple, in the post-condition for check_out the initial value of Checked_out, denoted by

in(Checked_out), is used as an argument to the predicate book_is_checked_out. This allows the

predicate to reference both the initial and final values of the list.

Figure 10 shows a number of user-defined predicates which are used in the specification of

check_out. All the predicates take the initial value of a variable as one of their parameters; they

are true if the current value reflects correct modifications of the original. For example, the predi-

cate book_ia_checked_out takes the initial value of Checked_out as a parameter, called

Checked_out_O, and is true if the current value of Checked_out is the initial value plus the new

check out record. The predicate book_is..not_checked_out is similar, but is true if the check out

record has been removed. The predicate borrower_is_updated is true if the number of books out

to the borrower has been updated correctly.

2In PLEASE, the function eztract(list, rnember) returns a list with all instances of member removed.
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--: predicate book_is_checked_out(

--: B : in out user

--: Bk : in out book :

--: Checked_out_O : in out check_out_list

--. ) is true if

--: New_record : check_out_rec :

--: begin

--: New_record.u = B and New_record.bk = Bk and

--: Checked_out = cons(New_record, Checked_out_O)

--: end :

--: predicate book_is_not_checked_out(

--: B : in out user :

--: Bk : in out book :

--: Checked_out_O : in out check_out_list

--- ) is true if

--: New_record : check_out rec :

--: begin

--: New_record.u = B and New_record.bk = Bk and

--: Checked_out = extract(Checked_out_O,New_record)

--: end :

--: predicate borrower_is_updated(

--: B : in out borrower :

--: Inc : in out integer

--: Borrowers_O : in out borrower_list

--" ) is true if

--: New_b : borrower :

--: Borrowers_tail : borrower_list :

--: begin

--: Borrowers_tall = extrac_(Borrowers_O,B) and

--: New_b.name = B.name and

--: New_b.num_checked_out = B.num_checked_out + Inc and

--: Borrowers = cons(New_b,Borrowers_tail)

--" end :

Figure 10. Predicates to support check in operation
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Figure 11 shows the specification of procedures that add books to or remove books from the

library. The procedure add_book adds a new book to both Available and Shelf_list, while

remove_book removes a book from them. Figure 12 shows the PLEASE specification of a func-

tion that returns a list of all the books by a particular author. There is no pre-condition

specified for this function; the type declarations for the parameters and the invariant for the data

base give all the requirements for the input. The post-condition for the function specifies that

any list returned must satisfy the predicate all_by_author, which defines the relationship between

Shelf_list and the list to be produced. If Shelf_list is empty, then List is also; otherwise, if the

author of a book on Shelf_list is the author in question then the book is on List.

Figure 13 shows the specification of functions that return the borrower to whom a book is

checked out, as well as the list of all books checked out to a borrower. The function

what_checked_out takes a borrower as input and returns the list of all books checked out to him;

its specification uses the predicate out._to_borrower, which is true if List contains all the books
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procedure add_book( U : in user : Bk : in book ) :

--i where An(is_staff(U) ),

--I out( Available = cons(Bk,in(Available)) and

--I Shelf_list = cons(Bk, in(Shelf_list)) )

procedure remove_book( U : in user - Bk : in book ) :

--I where An(is_staff(U) and is_available(Bk) ) ,

--I oct( Available = extract (in(Available) ,Bk) and

--I Shelf_list = extract(in(Shelf_list) ,Bk) )

Figure 11. Procedures to add and remove books
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checked out to a borrower B and no others. The function who_has returns the borrower to whom

a particular book is checked out; its specification uses the predicate has_book which is true if book

Bk is indeed checked out to borrower B.

In this chapter, we have described PLEASE in some detail. PLEASE is designed to support

a software development paradigm which is basically the traditional life-cycle, extended to sup-

port the use of executable specifications and VDM. The design of PLEASE is a tradeoff between

logical power, ease of use, applicability and efficiency. PLEASE allows the specification of

software using Horn clauses, an efficiently implementable subset of first-order logic. The

i
I

I
I

I
i

I

I

--: predicate all_by_author(

-- Shelf_list : in out book_list :

--" Author : in out strng :

--" List : in out book_list

--" ) iS true if

--" Tail : book_list :

--- begin

--" Shelf list = [] and List = []

--- or

--: hal(Shelf_list) .author = Author and

-- : all_by_author (tl (Shel f_list) ,Author,Tail)

--: List = cons(hd(Shelf_list),Tail)

-- : or

-- : all_by_author (tl (Shel f_list) ,List)

-- : end :

and

function books_by_author( U : user : Author : strng ) return book_list :

--I where return List : book_list =>

--i all_by_author(Shelf_list,Author,List) :

Figure 12. Function to return all books by an Author
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--" predicate out_to_borrower(

--: Checked_out : in out check_out_list •

--: B : in out user •

--: LAst : in out book_lAst

--. ) is true if

--: Tail : book_lAst :

--. begin

--: Checked_out = [] and List = []

-- : or

--: hd(Checked_out) .u = B and

-- : out_to_borrower (tl (Checked_out) , B,Tail) and

--: LAst = cons (hal(Checked_out) .bk,Tail)

-- : or

- - : out_to_borrower (tl (Checked_out) ,List)

--" end :

function what checked_out( U : user : B : user ) return book_lAst :

--I where in(is_staff(U) or U = B ),

--I return List : book_lAst =- out_to_borrower(Checked_out,B,List) :

--: predicate has_book( B : in out user : Bk : in out book ) is true if

--: Temp : check_out_rec :

--: begin

--: member(Checked_out,Temp) and Temp.bk = Bk and Temp.u = B

--" end :

function who_has( U : user : Bk : book : B : user ) return user :

--I where in(is_staff(U) ) ,

--i return B : user --- has book(B, Bk) or B = none ;

Figure 13. Functions to examine check out status

language includes the assignment and if-then-elsestatements, while loops, procedure calls and

user-defined functions. The semantics are defined by Hoare-style proof rules. Although the

proof rules assume variables of a single type, PLEASE contains a number pre-defined types and

a facility for user type definition. PLEASE can also be used to specify objects, in other words

encapsulated types with an internal state, using packages with local variables.
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CHAPTER 5.

PRODUCING PROTOTYPES FROM PLEASE SPECIFICATIONS

The PLEASE language provides facilities for the specification of procedures, functions,

types and objects; the use of PLEASE aids in problem understanding and enhances communica-

tion between the different members of a project. PLEASE specifications can be even more useful

if they can be used to automatically create executable prototypes. The prototypes should have a

clearly defined relationship to the specification. The programmer should be able to produce the

prototypes with little effort, but should be able to optimize them if higher performance is

required. The prototypes should be fully compatible with components written in the implemen-

tation language; this allows them to be used in the development of embedded systems. Such

methbds have been devised for PLEASE and implemented in the IDEAL environment; they are

based on the translation of PLEASE into Prolog.

In this chapter we describe these methods in detail, give examples of their application, and

discuss the use of the prototypes produced in the validation of PLEASE specifications. First, we

describe the translation of PLEASE specifications into Prolog procedures. The process can be

viewed as a sequence of transformations between logically equivalent formulae; the implementa-

tion of equality creates complications. The Prolog procedures produced by this process are only

partially correct with respect to the PLEASE specifications; next, we describe some optimizations

performed on the procedures to increase the chance of termination. We then describe the inter-

face between these prototypes and their environment; in IDEAL, they are externally indistin-

guishable from conventional Ada components. We then discuss the use of these prototypes in the

validation of PLEASE specifications; problems occur because of incomplete specifications and the

implementation of equality.

(-2
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5.1. Translation to Prolog

[n our system, prototypes are produced from PLEASE specifications by translating predi-

cates and pre- and post-conditions into Prolog procedures; tools in the IDEAL environment per-

form the translation and generate code to handle I/O and other implementation level details.

Although many implementations show significant deviations[2221, a _pure" Prolog interpreter

can be viewed as a resolution theorem prover for Horn clauses[54,60]. For example, a Prolog pro-

cedure q(X) can be viewed as a set of Horn clause axioms for the relation q; a Prolog implementa-

tion trys to find values for X such that q(X) is provable from the axioms. The procedure may

terminate with some of the variables only partially instantiated; this corresponds to a set of solu-

tions. In this case, any instantiation of the variables will be acceptable.

Using this model, the translation process becomes a sequence of transformations between

logically equivalent formulae; it consists of three steps. First, the predicates are syntactically

converted to the logical formulae they represent. Both the parameters to a predicate and its

local variables represent universally quantified logical variables. For example, the predicate

definition

predicate gr( X, Y : in out natural )

T1 : natural ;

begin

X = Y + T1 and T1 /= 0
end

isconverted to the logicalformula

V (X,Y,TI) (

X=Y+TI A TI/=0

gr(X,V))

is true if

lions; this is necessary because Prolog does not have a good notion of equality. For example, the

Next, the terms on the right hand side of the implication are unraveled into conjunctions of rein-
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formula given above is unraveled into

V (X,Y,T1,Temp1) (

plus(X,Y,Templ) A

eq(X,Templ) A

not_eq(T1,0)

Dgr(X,Y))

Finally, the standard transformations to clause form are used to convert the resultant formulae

to Prolog procedures. For example, the definition of gr given above would produce the following

Prolog code

gr(X,Y) *-

plus(X,Y, Templ),

eq(X,Temp_),

not_eq(Tl,O)

The Prolog procedures produced by this process are partially correct[163,169] with respect

to the formulae; although they have the proper logical properties, there is no guarantee that they

will terminate. In practice, this is not always a problem; for example, all the specifications in

this thesis produce prototypes which terminate in normal use. The set of all logically valid for-

mulae of predicate logic is not decidable[163,169]; therefore, in general it is not possible to extend

our approach to total correctness.

To see why, assume that such prototypescan be constructed. We can then determine the

validityof an arbitraryformula W in thefollowingmanner. First,we specifya procedure having

true as the pre-conditionand _W as the post-condition.We then constructa prototype from

thisspecificationand execute it. Since the prototype istotallycorrect,itwillfindvaluesof the

output variablesthat make _W true,or ifthereare no such valuesitwillreturnan errorindica-

tion. Ifthe prototype findsa model of-_W then we know that W isnot valid;ifitreturnsthe

error indlcation,then we know that W isvalid.Therefore,we have a decisionprocedurefor the
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validity problem of the first-order predicate logic. But the validity problem is known to be

undecidable; therefore, totally correct prototypes cannot always be constructed.

This problem can be addressed in a number of ways. First, one can say there is a problem

with the logic itself; what does it mean to say that something is true, but that a proof cannot be

found by mechanical means? In fact, the situation is somewhat worse: the type of logic we use

allows the existence of statements which can not be proven either true or false. Problems such as

these have led some to propose the use of constructive logics[21,63,221], in which a formula is not

considered true unless a proof can be constructed. Unfortunately, this does not solve the problem

of a mechanical proof procedure.

5.1.1. An Example

To further clarify the translation process we will consider an example; Figure 14 shows a

simplified version of the Prolog code produced from the factorial specification presented in

Chapter 41. There is a Prolog procedure for the predicate is..fact as well as the pre- and post-

conditions. The Prolog procedure for factorial simply "executes" the pre- and post-conditions.

The notion of execution is quite different for pre- and post-conditions. Executing a pre-

condition involves checking that given values satisfy a formula, while executing a post-condition

means finding values such that a formula is true. The pre--condition can only reference the input

parameters to the procedure, while the post-condition specifies a relation between the inputs and

outputs. For example, the pre_condition procedure in Figure 14 checks that the variable X

satisfies the formula true, while post_condition must find a value for Y such that is_fact(X, Y) is

true.

1 Figure 3 shows the specification of factorial.
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is_fact (X,Y) _--

eq(X,O), eq(Y,l) .

is_fact (X,Y) 4--

minus (Y, i, Templ ) ,

is_fact (Templ, TI) ,

times (TI, Y, Temp2 ) ,

eq (Y, Temp2 ) .

pre condition(X) 4-- true.

post_condition (X, Y) *-- is_fact (X, Y) .

factorial (X,Y) _-

pre_condition (X) ,

post condition (X, Y) .

Figure 14. Prolog code for the factorial procedure

Let us consider the translation of the is_fact predicate.

equivalent to the formula:

V (X,Y,TI) (

X=0 A Y=I

V

is_fact(X-I,Tl)A Y=TI*X

D is_fact(X,Y))

The definitiol, of is_fact is

This is unraveled into the formula:

V (X,Y,TI) (

X=0 A Y=I

V

minus(X,T1,Templ) A is_fact(Tempx,T1) A

times(Tl,X,Temp_) A eq(Y,Temp2)

D is./act(X,Y))

The standard transformations to clause form produce the Prolog procedure in Figure 14. In the
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formula above, the functions - and * have been unraveled into the re!ations minus and times

respectively, while the constants 0 and 1 have not been modified; this is due to our implementa-

tion of equality.

5.1.2. Equality

The relation of equality is fundamental in mathematics; to qualify as equality, a relation

must satisfy certain properties[113]:

i) X=X

ii) t 1 = t_ _ f(..tl.. ) = f(..t_..}

iii) t 1 = t_ _ p(..tl.. ) _ p(..t2.. )

for all variables X, terms t 1 and t_., and predicate p.

Property i states that the relation is reflexive; in other words every element is equal to itself.

Property ii states that if two terms are equal_ then when they are substituted for each other in

any other term the resultant terms will be equal. Property iii states that if two terms are equal,

then when one is substituted for the other as an argument to a predicate the resultant predicate

is implied by the original. We can summarize properties ii and iii as: substitution of equals for

equals does not change meaning. The symmetry and transitivity of equality follow from the

above.

For the sake of efficiency, Prolog is based on a resolution theorem prover without equality;

therefore, Prolog considers all terms to be distinct. For example, it does not consider 1÷1 and 2

to be equivalent z. We solve this problem by dividing the functions into _constructors" and

"non-constructors"; the constructors define the space of all possible terms while the non-

ZPractically, Prolog solves this problem with the i_ operator, which implements equality for a restricted set of terms.
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constructors are implemented as relations (for other solutions to this problem see[96,150] ). More

precisely, we assume that for each non-constructor function f(X), there exists a relation f_(X,Y)

such that f(X)=Y -_I_(X,Y).Axioms which characterizethe relationf(X,Y) are part of the Pro-

log run-time library. We unravel the formula p(..f(X')..)into the equivalent formula

_1" (ff(X,T) A p(..T..)}.

For example, Figure 15 shows the Prolog procedures implementing the type natural. The

type has constructors 0 and suet; relations eq, not_eq and Is; and non-constructors plus, minus,

times, and divide. The eq relation is equality; it obviously satisfies property i given above. For

._,._,erelation eq(T1, T2) to be true, in wner words for the procedure eq(T,, i'2) to succeed, T_ and

T 2 must be unified. The implementation of Prolog is such that if two terms are unified then they

are for all purposes identical; therefore, properties ii and iii are also satisfied. The procedure

not_eq implements the negation of the equality relation while Is implements <.

The procedures may at first seem unnecessarily complex; for example, it would seem that

the following is sufficient to implement times:

times (N,O, O) .

times (O,N, O) .

plus (succ (N),succ (M) ,O) _-

times (N,succ (M) ,P) ,

plus (succ (M) ,P, O) .

While this is a correct implementation, the procedure does not perform as well during the back-

tracking process. For example, it responds to the query "times(X,Y,0)" with the solutions (0,N)

and (N,0}; in other words, X=0, Y=N and X=N, Y=0. The procedure in Figure 15 responds to the

same query with the solutions (0,0}, (succ(N),0}, and (0,succ(N)). While in one sense both solu-

tions are equivalent, the variables are "more instantisted" in the second solution; in other words

they contain more information. When the output from times is used as input for other
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eq (N, N) .

not_eq (0, succ (N)) .

not_eq (succ (N) ,O) .

not_eq (succ (N) ,succ (M)) +--

not_eq (N, M) .

is (N, succ (N)) .

plus (0,0,0) .

plus (0, succ (N) ,succ (N)) .

plus (succ (N) ,O, succ (N)) .

plus (succ (N) ,succ (M) ,succ (succ (L)) )

plus (N, M, L) .

minus (0, O, O) .

minus (succ (N) ,O, succ (N)) .

minus (succ (N) ,succ (M) ,L) +-

minus (N,M, L) .

times

times

times

times

(o, o, o).
(0,suca (N),O) .

(suet (N),o, o)
(succ (N) .succ (M) . L)

times (N, succ (M) ,P) ,

plus (succ (M) ,P, L) .

4-=-

divide (0, succ (N) ,O) .

divide (succ (N) ,succ (M) ,succ (L)) _-

minus (succ (N) ,succ (M) ,P) ,

divide (P, succ (M) ,L) .

divide(succ(N),succ(M),O) 4-- Is(N,M) .

4---

Figure 15. Prolog procedures for type natural

procedures, this can result in success where failure would occur if less information were present.

As described in Chapter 4, PLEASE provides facilities for user type definition. All the func-

tions on user-defined types are implemented as relations; the Prolog code created is similar to

that for procedures. For example, Figure 16 shows the Prolog implementation of the type
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empty_stack_pre *- true.

empty_stack_post (S) 4-- eq (S, [] ) .

empty_stack (S) _-

empty_st ack_pre,

empty_stack_post (S) .

push_pre (E, S) 4-- true.

push_post(E, S,Ns) _- cons (E,S,Ns) .

push(E, S,Ns) _-

push_pre (E, S) ,

push_post (E, S, Ns) .

pop_pre (S) _-

empty_stack (Templ) ,

not_eq (S, Templ ) .

pop_post (S, Ns) *-- ti (S, Ns) .

pop(S.Ns) _-

pop_pre (S) ,

pop_post (S, Ns) .

top_pre (S) _-

empty_stack (Templ) ,

not_eq (S, Templ ) .

top_post (S, E) _- hd (S, E) .

top (S.E) --

top_pre (S) .

top_post (S.E).

Figure 16. Prolog code for type natural_stack

I
i
I

I

natural_._tack 3, which is based on the procedures co_, hd, tl, eq and not_eq implemented for type

natural.list. The procedure for each function on natural.stack simply "executes" the pre- and

post conditions; this is equivalent to stating that the relation corresponding to the function is

a Figure 8, in Chapter 4, shows the specification of naturaljtack.

I



82

implied by the conjunction of the pre- and post-conditions. This follows from the Hoare axiom

for user-defined functions under the assumption that the pre- and post-conditions specify a func-

tion and not a relation. For example, when the procedure for top is invoked, it first calls the

pre-condition to ensure that the input list contains at least one element. It then invokes the

post-condition to instantiate the result variable to the head of the list.

The translation process described in this section produces procedures that are only partially

correct; there is no guarantee they will terminate. Although no translation can guarantee termi-

nation, the process previously described produces programs that are too inefficient to be practi-

cal; therefore, a number of heuristics are applied to the Prolog procedures to improve their

efficiency and increase their chances of termination.

5.2. Code Optimization

For example, Figure 17 shows a simplified version of the Prolog code that is produced from

the sort specification in Chapter 4 4. The Prolog procedure for the post-condition must find a

value for the output list such that the input and output are permutations of each other and the

output is sorted. It accomplishes this by performing a naive sort; the procedure permutation

functions as a =generator" and the procedure sorted as a "selector". When sort_post is invoked,

permutation is called to generate a permutation of the input list and then sorted is called to

determine if the permutation is sorted. If sorted fails, then execution backtracks and permutation

generates the next permutation to be evaluated. This continues until a sorted permutation is

generated. The performance of this algorithm is quite poor; however, it can be improved by

transformation techniques applied to the logical formulae involved[l16,123].

Figure 5 contains the specification of sort.
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permutation (LI,L2) _-

eq(L_. []),eq(L2, [])"

permutation (LI,L2) _-

eq (L l, Temps) ,

ha (L 2 .Templ) •

cons (Temp_, Back, Temp2) ,

append (_ront, Temp2, Temps) ,

append (_ront, Back, Temp4) ,

tl (L 2 ,TemPs) ,

permutationTemP4, Temp s) •

sorted(L) -- eq(L, []) •

sorted (L) --

tl (L. Tempz).

eq(Templ, []) •

sorted(L) --

hd (L, Temp_),

tl (L,Temp 2) •

hd (Temp2, Temps) •

iseq (Templ, Temps) •

tl (L, TemP4) •

sorted (TemP4) •

sor t_pre(Input) _- true,

sort_post (Input, Output) _-

permutation (Input, Output) ,

sorted (Output) •

sort (Input, Output) _-

sort_pr_ (Input),

sort_post (Input, Output) ,

Figure 17. Pro|o8 code for sort procedure

I
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The translation process described in the previous section produces the following procedure

for permutation:

permutation (LI,L2) *-

eq(L l, []) , eq(5 2, []) .

permutation (Ll, L2) _-

hd (L2,TemPl) ,

cons (Templ, Back, Temp2 ) ,

append (Front, TemP2, Temp3 ) ,

eq (LI,Temp3 ) ,

append (Front, Back, Temp4 ) ,

tl (L2,Temps ) ,

permutation (Temp4, Temps ) .

Unfortunately, it will not function as a generator. The problem lies with the procedure call

append{Front, Temp2 , Temps), which is the third call in the second clause of the permutation pro-

cedure. Consider a typical invocation. Permutation is called with L 1 instantiated and L_ unin-

stantiated; in other words, we know everything about L 1 but nothing about L 2. If L 1 is the

empty list then L 2 is instantiated to the empty list and the procedure returns. If L 1 is not empty

then the second clause is used. After the call to hd we know that L 2 has at least one element,

and after the call to cons we know that Temp_ has at least one element. Append is then called

with Front and Temps still uninstantiated; as we will see, it can not function correctly in this

situation and goes into an infinite loop.

We can understand why by examining Figure 18 which shows the Prolog implementation of

the type list s. The procedure for append is normally called with two of its arguments instan-

tinted. When append is called with its first and third arguments uninstantiated it can return an

infinite number of solutions; for example, append{X,{1/, Y) has solutions X = [], Y = [1]; X = [_4,

_L;Jt has constructors [] and eeo._; relations eq _nd noi_ez and non-constructors empty_list, :o.a, hal, U, and appe,d.

I

I
I
t
I
I
!

i
I
I

I
I

I

I
i
I

I



I
I
I

85

eq (L.L).

not_eq ( [] ,cc0ns (E, L) ) .

not_eq (ccons (E, L) , [] ) .

not_eq (ccons (El, 51) ,ccons (E2, L2) , [] ) )

not-eq(E I, E 2) •

not_eq (ccons (El, L1) ,ccons (E 2, 52) , [] ) )

not_eq(L1,52) .

4".-

4---

empty_list ( []) .

cons (E, L, ccons (E, L) ) .

hd (ccons (E, L) ,E) .

tl (ccons (E, L), L) .

append ( [] ,L, L) .

append (ccons (E, La) ,Lb, ccons (E, Lc) )

append(La, Lb, Lc) .

Figure 18. Prolog procedures for type list
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Y =/..,l/S; X =/._,.4, Y =/__,1/; and so on. In some cases this is acceptable; however, permuta-

tion calls itself recursively. When permutation is called with the first solution from append, it

calls append, which generates an infinite number of solutions. Since the second call to append

never terminates, the second solution to the first call to append is never generated.

To be more specific, when called from permutation each solution to append has Temps

instantiated to a "template" with the first element of L 2 equal to a different element of L,. Suc-

cessive calls to append return solutions with the first element in L 2 occurring later and later in

L 1. For example, the first solution has the first element in L_ equal to the the first element in

'In Prolog, "_" refers to a variable which cannot be referenced by name elsewhere.
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Lt, while the second solution has the first element in L 2 equal to the the second element in L I.

All permutations can be generated by using each" succeeding element in L t as the first ele-

ment in L 2. However, append continues to generate longer and longer templates, even though it

has tried all the elements in Lt; therefore, when permutation is called recursively, an infinite loop

can result before all permutations are generated. For example, all permutations with the first

element of L 2 equal to the first element of L 1 must be explored before generating any others.

This produces a recursive call to permutation which produces a call to append. The call to

append produces an infinite number of solutions so the call to permutation never terminates.

Therefore, permutations with the first element of L_ equal to the second element of L t are never

created.

As a more detailed example, consider the call permutation([],L2). The solution L 2 = [] is

found using the first clause of the permutation procedure. When the second clause of the pro-

cedure is invoked, the call hd(L2, Templ ) instantiates L 2 to ccons{Tempt,. _ and the call

cons(Temp1,Back, Ternp2 ) instantiates Temps to ccons(Temp1,Back ). Therefore, the call

append(Front, Temp2, Temp3 ) reduces to append(Front, ccons(Tempt,Back),Temp3 ). The first

solution to this call has Front instantiated to [] and Temp3 instantiated to ccons(Tempx,Back);

in other words, Temp3 can be any list with Tempt as the first element. Therefore, the call

eq[L 1, Temp3} reduces to eq([], ccons(Templ,Back), which cannot succeed.

The second solution to append(Front, ccons(Templ,Back),Temp3 ) has Front instantiated to

ccons{E, La) and Ternp3 instantiated to ccons{E, Lc); it also generates a recursive call:

append(La, ccons( Templ,Back, Lc ).

[] and Lc instantiated to

The first solution to the recursive call has La instantiated to

ccons(Templ,Back); therefore Temp3 is equal to

ccons(E, ccons(Templ,Back)). In other words, Temp3 can be any list with at least two elements,
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the second of which isequal to the firstelement inL_. In thiscasethe calleq/L1,Temp3 )reduces

to eq(//,ccons(E, ccons(Templ,Pack)) , which alsocannot succeed.

Similarly,the thirdsolutionto the callof append allowsTemp3 to be any listwith at least

three elements,the thirdof which isequalto the firstelement in L 2. This solutionalsowillnot

produce a successfulcallto eq. Although thereare no more solutionsto the originalcallto per-

mutation, append willkeep returninglongerand longer "templates"untilsome implementation

bound isreached. In our example, allthe validpermutations were generated beforethe _nfinite

loop was encountered;however, permutationis calledrecursively.Therefore,in some cases all

the validpermutations willnot be generatedby the procedure.

This problem can be solvedby the applicationof a simple heuristic.Moving procedure calls

within the body of a clausedoes not change the logicalmeaning; therefore,we can reorder the

callsto increasethe informationavailableto proceduresand increasethe chances of termination.

In other words, we can improve the chancesof terminationby sortingthe callswithina clauseby

"chance of termination";the procedureswhich are more likelyto terminate should be invoked

first.For example, in our currentimplementation, the eq predicatealways terminates and can

instantiateone of itsarguments, therebyincreasing the amount of informationavailableto sub-

sequent procedures. By moving allcallsto eq to the "front"of the clausewe do not change the

logicalmeaning, but we do increasethe chances of termination.When thisheuristicisappliedto

the above procedure,the permutationprocedureshown in Figure 17 results.

The translationof logicspecificationsintoProlog proceduresaloneisnot sufficientto create

usefulprototypes;an interfaceto the outsideworld isalsonecessary.
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5.3. System Interface

The first thing to notice is that the specifications in this thesis contain no explicit I/O state-

ments; at present all I/O is handled implicitly by the system. In IDEAL, a program can be

automatically generated which reads the in parameters to a procedure from input, executes the

procedure, and writes the out parameters to output. Although this approach limits PLEASE to

the specification of programs with very simple I/O, it has several advantages: specifications

without explicit I/O are smaller and simpler to write; omitting the sometimes messy, implemen-

tation specific details of I/O allows specifications to be more abstract; and the interaction of the

specification, rapid prototyping and test harness capabilities of IDEAL is greatly simplified.

Although PLEASE cannot formally specifysystems with complex I/O, it can be used in

theirdevelopment. Modules implementing user or system interfacescan be directlyimplemented

in Ada, while other modules are firstspecifiedand prototyped inPLEASE. This allowsthe prac-

ticalpower ofAda and the formal power of PLEASE to be combined in the development of com-

plex,embedded systems. It is alsopossibleto use PLEASE with other systems which provide

support for I/O specificationand prototyping. The ENCOMPASS environment allowssystems

to be decomposed intomodules which are developedusing differentlanguages,methods or tools.

The simple I/O facilities provided by IDEAL are still not enough to turn Prolog procedures

into practical prototypes; an interface between Prolog and the implementation language is also

needed. The present implementation provides an Ada to Prolog interface which allows pro-

cedures to be called transparently. The UNSW Prolog interpreter[208] and the Ada program run

as separate processes and communicate through pipes 7. When a procedure or function is called,

_Pipes axe a buffering mechanism implemented in Unix.
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the in parameters are converted to their Prolog representations and the call is passed to the

interpreter. When the corresponding Prolog procedure completes, the out parameters are con-

verted to the Ada representation and the original call returns. Because the Prolog axiom sets are

not complete, it is possible that a prototype will not find existing values which satisfy the

specification; in this case the current implementation will terminate with an error indication.

For example, Figure 19 shows a simplified version of the code produced for the factorial

with ada_to_prolog :

with types :

package factorial_pkg is

procedure factorial(

private

Input buf :

Output_buf. :

end factorial_pkg :

use ada_to_prolog :

use types ;

X : in natural ; Y : out natural ) :

atp_ptr := atp_new :

atp_ptr := atp_new :

with ada_to_prolog :

with types :

with factorial_pkg ;

use ada_to_prolog :

use types ;

use factorial_pkg :

procedure factorial_prog is

X : natural :

Y : natural :

begin

get (X) :

factorial (X, Y)

put (Y) :
end factorial_prog :

Figure 19. Ada code for factorial prototype
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prototype. The figure shows two compilation units: factorial..pk9, which implements the fac-

torial procedure; and factorial__pro9, which provides a stand-alone program based on factorial.

The prototype uses the packages ada_to..prolog, which implements the Ada to Prolog interface,

and types, which provides the types pre-defined in PLEASE. Factorial_.pkg contains the private

variables Input_bur and Output_bufwhich serve as buffers for the interface.

Figure 20 shows the body of factorial_pkg which contains both initialization code and the

implementation of the factorial procedure. The initialization code loads the Prolog procedure for

factorial into the interpreter; clauses for both the pre- and post-conditions and the is_fact predi-

cate are asserted at start up time. The body of factorial calls Prolog twice: once to execute the

pre-condition and once to execute the post-condition. When factorial is called, it first clears the

input buffer by calling atp_reset. It then loads the call "factorial..pre(X)" into the input buffer

using atp..pu_ the value of X is converted to the Prolog representation when it is placed in the

buffer. The Prolog procedure is invoked using atp_caU. When the call returns , the procedure

atp_chkpre determines if the call was successful; if not, then the procedure terminates with an

exception. The post-condition is executed in a similar manner; if the call is successful then the

value of Yis read from the buffer into the output parameter.

More machinery is necessary if the Prolog procedure is to modify non-local variables; for

example, Figure 21 shows the Prolog code for the add_book procedure specified in Chapter 48;

The procedure adds a book to a library data base by modifying the global variables Available and

Shelf_list. The Prolog procedure for add_book has parameters for the initial and final values of all

the global variables; this allows the pre- and post-conditions to check that the invariant for the

data base holds. The pre-condition for add_book simply checks that the procedure is being

s Figure 11 shows the specification of add_baok.
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package body factorial_pkg is

procedure factorial( X : in natural - Y : out natural ) is

begin

atp_reset (Input_buf I •

atp_put(Input_buf,"atp_call(factorial_pre(") "

atp_put(Input_buf,X) : atp_put(Input_buf,"1) !") "

atp_call (Input_bur, Output_bur) :

atp_chkpre (Output_bur, "factorial") :

atp_reset (Input_bur) :

atp_put(Input_buf,"atp_call ( factorial_post("1 "

atp_put(Input bur,x) • atp_put(T_nput_buf,",") •

atp_put (Input_buf, "Y") - atp_put (Input_buf, ") ) ! ") :

atp_call (Input_buf, Output_buf) :

atp_chkpost (0utput_buf, "factorial"1 :

atp_get (Output_bur,Y) ;

end factorial •

begin

atp_reset (Input_buf) :

atp_put(Input_buf,"is_fact(X,Y) :- ") :

atp_put (Input_buf, " eq(X,O) , ") ;

atp_put (Input_bur, " eq (Y, i) • ") ,

atp_call (Input_bur, 0utput_buf) • atp_reset (Input_buf I

atp_put(Input buf,"is_fact(X, Y) .... ) :

atp_put (Input_bur, " minus (X, l,Templ) , ") :

atp_put(Input bur," is_fact(Templ,Tl) ,") :

atp_put (Input_bur, " times (TI, X, Temp2) , ") :

atp_pu_ (Input_buf, " eq (Y, Temp2) . "1 "

atp_call (Input_buf,0utput_buf) :

atp reset (Input_buf) :

atp_put(Input_buf,"factorial_pre(X) :- true.") :

atp_call (Input_buf,0utput_buf) :

atp_reset (Input_bur) :

end

atp_put (Input_bur, "factorial_post (X, Y)

atp_call (Input_buf,0utput_buf) :

factorial_pkg :

:- is_fact (X, Y) • ") :

Figure 20. Body of prototype factorial procedure
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add_book_pre(

User, Book,

Shelf_list, Available. Checked_out, Borrowers

) --

is_staff(User),

invariant(Shelf_list,Available,Checked_out,Borrowers) .

add_book_post (

User, Book,

Shelf_list o, Shelf_list,

Available o, Available,

Checked_out o , Checked_out.

Borrowers o, Borrowers

) --

cons (Book. Available o,Templ ) ,

eq (Available. Tempi ) ,

cons (Book, Shel f_list o. Temp2 ) ,

eq (Shel f_list, Temp_) ,

invari ant (She i f_ 1 ist. Avai i ab I e, Checked_out, Borrowers) .

add_book(

UMer, Book.

Shelf_list o, Shelf_list,

Available o, Available,

Checked_out o , Checked_out,

Borrowers o. Borrowers

) --

add_book_pre(User. Book,

Shelf_listo.Available o,

Checked_outo,Borrowerso),

add_book_post(User,Book, Shelf_listo, Shelf_list ,

Availableo,Availabl_,Checked_outo,Checked_out ,

Borrowerso,Borrowers ) .

Figure 21. Prolog code for add_book procedure

invoked by a staff user and that the invariant is satisfied. The post-condition for add_book

updates the data base by adding the new book to both the available and shelf lists before check-

ing the invariant.

I
I
i
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The prototypes produced using these methods are useful in the development process; except

for lower performance, they are indistinguishable from Ada implementations. The prototype

programs can be invoked from a terminal or used with the IDEAL test harness; these facilities

provide significant support for the validation process.

5.4. Software Validation

To aid in the validation process, the prototypes produced from PLEASE specifications can

be submitted to a series of tests, delivered to the customers for experimentation and evaluation,

or possibly even installed for production use on a trial basis, if the software development effort is

part of the construction of a large embedded system, PLEASE prototypes can allow the

hardware-software interfaces to be debugged earlier and more thoroughly. Unfortunately, the

use of prototypes for the validation of PLEASE specifications is complicated due to incomplete

specifications and the implementation of equality.

We say that the specification of a procedure or function is complete if it specifies a unique

output for each input. In general, PLEASE specifications will define relations; there may be more

than one output for a particular input. A number of behaviors are possible for the Prolog pro-

cedure constructed from such a specification. One option would be to have the procedure return

a list of all possible outputs, or to have it return each allowable output on demand (as do many

Prolog interpreters). These approaches are useful for single procedures, but do not work well for

large systems containing many interacting Prolog prototypes. First, there is the problem of

maintaining the "back track context" when control is passing back and forth between the imple-

mentation language and Prolog. While thisdoes not seem impossible,itwould be very difficult

to extend our currentimplementation to support it. Second, thereisa "combinatoricexplosion"
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problem. If the output of one prototype serves as input for another, the second prototype can

produce an output list for each member of its input list; if results flow through among many pro-

cedures, the number of outputs generated will quickly become unwieldy

In the current implementation, the prototypes produced will return only one of the outputs

allowed for each input. It is possible that this particular output will satisfy the customers, but

that other outputs allowed by the specification will not; therefore, the satisfactory performance

of a prototype does not guarantee that any implementation which satisfies the specification will

produce similar results. For example, assume the customers and analyst create a set of accep-

tance tests which are correctly executed by the prototype produced from the PLEASE

specification. It is possible for an implementation to be constructed which satisfies the

specification, but does not execute the test cases correctly.

Another set of problems arise if the implementation of equality is expensive. In the simple

scheme now in use, when we say that a prototype correctly executes a test case, we mean that it

produces output which has either been inspected for correctness, or is equivalent to output which

has. In the current implementation, there are three representations for any value: the "text"

representation displayed on a terminal or stored in the test harness; the representation used by

Ada procedures; and the representation used by the Prolog prototypes. There is only one way to

represent each value in a representation (in other words, we can implement equality using simple

comparison) and each value in any representation corresponds to one and only one value in any

other. Therefore, no matter how may times we convert a set of values between representations,

equality is still inexpensive.

More complex types and representations may require the use of more expensive implementa-

tions of equality. For example, consider sets of natural numbers implemented as lists. The com-
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parison of two sets for equality can be very expensive; for example, there are six lists which are

valid representations of the set containing three distinct elements. The cost will be even higher if

the set consists of elements for which equality is also expensive. The use of representations in

which distinct values are equivalent will increase the cost of parameter conversion in the Ada to

Prolog interface as well as the cost of equality comparison in the test harness.

In thischapter we have describedthe methods used to constructprototypes from PLEASE

specifications,given examples of theirapplication:and discussedthe use of the prntotypes prc>-

duced in the validationprocess. The translationof PLEASE into Prolog isviewed as a sequence

of transformationsbetween logicallyequivalentformulae;the implementation of equalitycreates

complications. The Prolog proceduresproduced by thisprocessare only partiallycorrectwith

respectto the PLEASE specifications;optimizationsare performed on the procedures to increase

the chance of termination. The prototypescan interactwith other components in the develop-

ment environment; in IDEAL, they are externMly indistinguishablefrom conventionalAda com-

ponents. The prototypescan be used inthe validationof PLEASE specifications;problems occur

because ofincompletespecificationsand the implementation ofequality.
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CHAPTER 6.

THE INCREMENTAL REFINEMENT PROCESS

We have seen that PLEASE can be used to formally specify software, that prototypes can

be automatically produced from PLEASE specifications, and that these prototypes can be used in

the validation process. While the prototypes produced from PLEASE specifications ocasionally

provide high enough performance; in most cases a conventional implementation will be required.

PLEASE will be more useful if implementations with a well understood relationship to the

specification can be constructed in an orderly manner. The process should be decomposable into

small steps which can be independently checked for correctness; this allows each step to be

verified before the next is begun, so that errors can be detected as soon as possible and corrected

at the lowest possible cost. Such methods have been developed for PLEASE that are similar to

VDM and support the verification of refinements using peer review, testing or proof techniques.

In this chapter, we present the methods used to refine PLEASE specifications into imple-

mentations and verify the correctness of the process. First, we present an example refinement;

we describe a single design transformation, which can be decomposed into a number of atomic

transformations. The design transformation involves the choice of algorithm with which to

implement a specification; each atomic transformation might be implemented as a single com-

mand in a language oriented editor. Next, we present an abstract model of the incremental

development process; it is based on viewing a specification as the set of programs which satisfy it.

Using this model we can define a refinement step as correct if the set it produces is a subset of the

original. Finally, we present the methods used to formally verify the correctness of a refinement;

they are based on viewing the process as the construction of a proof in the Hoare calculus.
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6.1. An Example

The refinement process can best be explained with an example; consider the sort

specification given in Chapter 41. Assume that a decision is made to implement the sort pro-

cedure using the quicksort algorithm. Figure 22 shows the body of sort after the refinement is

complete. Sort..pkg contains three procedures which are called by sort:, select_elmt, partition, and

combine; sort has the same specification as before, but now implements an abstraction of the

quicksort algorithm. To sort the input list, select_elmt is called to select an element from the

input list and then partition is called to divide the list into two sublists, Low and High, so that all

the members of Low are less than the selected element and all the members of High are greater.

The lists Low and High are then sorted recursively and combine is called to form a sorted permu-

tation of the input from the sorted sub-lists. Figure 23 shows the definitions of the new pro-

cedures.

Although thisrefinement has narrowed the possibleimplementations to those using the

quicksortalgorithm, there are stillmany designdecisionsleftunmade. The new specification

may be refined into a family of quicksort programs; these programs might differ in many charac-

teristics, but all would satisfy the specification. For example, the specification for select_elmt

only requires that Elmt be a member of List;, the algorithm used to select a particular element is

not specified at this level of abstraction. Similarly, the specification for partition only states that

all the elements in Low are less than or equal to Elmt and all the elements in High are greater

than or equal to Elmt; it says nothing about the algorithm used to produce these lists. As the

specification is refined further these algorithms will be defined, thereby narrowing the acceptable

implementations. However, before the new specification is refined further, it must be shown that

t Figure 5 shows the specification of sort.

I



98

procedure sort( Input : in natural_list : Output : out natural_list )

--I where in( true ),

--I out(permutation(Input,0utput) and sorted(0utput) ) ;

Low, High, Sorted_l, Sorted_h : natural_list : Elmt : natural :

begin -- sort

--I true :

if Input = [] then

--I true and Input = [] ;

Output :ffi [] :

-- permutation(Input,0utput) and sorted(Output) :

else

-- true and Input /= [] :

select_Elmt (Input, Elmt) :

-- member (Elmt, Input) :

partition (Input, Elmt, Low, High) :

-- is_partition(Input,Elmt,Low,High) :

sort(Low, Sorted_l) :

-- is_partition(Input,Elmt,Low,High) and

-- permutation(Low, Sorted_l) and sorted(Sorted_l) :

sort(High, Sorted_h) :

--I is_partition(Input,Elmt,Low,High) and

--I permutation(Low,Sorted_l) and sorted(Sorted_l) and

--I permutation(High, Sorted_h) and sorted(Sorted_h) :

combine(Sorted_l,Elmt,Sorted_h,0utput) :

--I permutation(Input,Output) and sorted(Output) :

end if :

--I permutation(Input,Output) and sorted(Output) :

end SORT :

Figure 22. Initial refinement of sort specification

is

any implementation which satisfies the new specification will also satisfy the original.

A number of different methods may be used to show that the refined specification satisfies

the original. In the most informal case, inspection of the original and refined specifications by a

senior designer, or a peer review process might be used. A more rigorous approach might run

prototypes produced from the original and refined specifications on the same test data and

I

I
I
I
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procedure select_elmt(

List : in natural_list •

Elmt : out natural

) is separate :

--I where in( List /= [] ),

-- I out ( member (Elmt, List) ) :

--" predicate is_partition(

--: List : in out natural_list •

--" Elmt : in out natural ,

- - • Low u.. __ • -• ,_ : _ Out natural_list

--" ) is true if

--. begin

--" permutation (List, Low I I [Elmt] I I High) and

--" iseqal! (Low, Elm_) 2-d greqall (High,Elmt)

--. end -

procedure partition(

List : in natural_list :

Elmt : in natural :

Low, High : out natural_list

) is separate :

--I where in(member(Eimt,List) ),

--I out(is_partition(List,Elmt,Low,High)

procedure combine(

Sorted_l : in natural_list :

Elmt : in natural :

Sorted_h : in natural_list :

List : out natural_list

) is separate ;

--[ where out( LAst = Sorted_l J E [Elmt]

) -

f [ Sorted_h ) :

Figure 23. Definitions to support refinement of sort specification

compare the results;thismethod givessignificantassuranceat low cost. However, in the words

of E. W. Dijkstra,"Program testingcan be used to show the presence of bugs, never to show

theirabsence."In the most rigorous case,mathematicM reasoningwould be used. We can best

understand the methods used to formallyverifya refinementstep in the contextof an abstract

model of the refinement process.
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6.2. Refinement Model

We will use a simplification of the model presented in [23,24]. In our model, a development

begins with a specification and incrementally refines it into an implementation; the process con-

sists of a number of steps, each of which further constrains the allowable implementations. At

each stage in the process we have an abstract program: a specification that can be satisfied by a

number of different implementations. The final step in the process produces a concrete program:

a specification that has only one implementation.

For the purposes of this thesis, an abstract program is a PLEASE specification; for exam-

ple, both the original specification of sort and the refinement presented in the last section are

abstract programs. Similarly, a concrete program is an Ada implementation; for example, the

implementation of factorial given in Chapter 42 is a concrete program. The distinction between

abstract and concrete programs is in one sense a matter of viewpoint. For example, the refined

sort specification given in Figure 22 is an annotated Ada implementation; in other words a con-

crete program. However, it depends on a number of external procedures whose implementations

have not been defined; in other words, the combination of Figure 22 and Figure 23 is an abstract

program.

We can say that an abstract program represents the set of implementations that are correct

with respect to it; from this viewpoint, a concrete program is simply an abstract program with

only one implementation. We can view each step in the refinement process as taking a set of pro-

grams as input and producing a new set as output; we say that a step is correct if its output is a

proper subset of its input. A development is correct if each of its steps is correct.

2Figure4showsthefactorialimplementation.
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Depending on the methods to be employed, itis usefulto view the refinement processin

more or lessdetail;for thisthesis,two perspectivesare interesting.We can profitablyview a

development as a sequence of design trar_sformations.For example, the refinement of sort

presented in the previous sectionis a design trar_/ormation:itimplements a major choiceof

algorithm or data structure.In our model, each designtransformationcan be decomposed intoa

number of atomic transformations.Atomic transformationsrepresentthe smallest significant

changes to an abstract program; for example, in IDEAL each editor command is an atomic

transformation. A design transformation is correct ifeach of its atomic transformations is

correctjustas a development iscorrectifeach of itsdesigntransformationsiscorrect.

The differencein "size"causes these transformationsto be treateddifferentlyin IDEAL.

Each design transformation is verifiedbefore another is applied; this allows errors in the

specificationand designprocessesto be detected and correctedsooner and at lower cost. How-

ever,a number of atomic transformationsmay be performed beforeany are verified;verifying

each atomic transformationbeforethe next isappliedwould be prohibitivelyexpensive. Instead,

the information necessary to verifyeach atomic transformation is recorded for use in the

correspondingverificationphase.

Many differentmethods can be used to verifythe correctnessof a refinement. For example,

in a technicalreview processthe specificationand implementation are inspected,discussedand

compared by a group of knowledgeable personnel[87,242].These methods would typicallybe

appliedto a designtransformationor an even largerrefinementunit;the use of peer review on

each atomic transformationwould be extraordinarilyexpensive.

Testingcan also be used to check the correctnessof a refinement[91,176];prototypespro-

duced from the abstractprograms input and output by a stepcan be run on a representativeset
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of input data and the resultscompared. This method can givesignificantassurance at low cost;

however, ingenerala program cannot be testedon allpossibleinputs. Further complicationsare

caused by the incompletenessof specifications.In general,an abstractprogram representsa rela-

tionbetween inputsand outputs,while the prototypeproduced from an abstractprogram imple-

ments a function.Therefore,it ispossiblethat the abstractprograms for a correctrefinement

step can produce prototypeswhich perform differentlyon the testdata. Ifwe requirethat the

prototypesperforms identicallywe may eliminatecorrectrefinements.

SincePLEASE specificationsare mathematically based,formal methods can alsobe used to

verify the correctnessof a refinementI26,110,112,120,121,134,163,2501;unfortunately,formal

methods are devisedby humans and are oftenfound to be in errorI186I. This has ledsome to feel

that no one techniquealonecan ensure the production of correctsoftware[71,75]and to propose

methods which combine a number ofdifferenttechniques[9,205].Despite theirlimitations,formal

methods have a number of advantages: first,they can symbolicallydetermine that a program

willperform correctlyforallpossibleinputs;second,although they can be tediousto use,many

of the processesinvolvedcan be automated. The formal methods used with PLEASE are based

on viewing the refinementprocessas the constructionofa proof in the Hoare calculus.

6.2.1. Formal Verification

For example, consider the refined sort specification given in Figure 22 The body of sort is

completely annotated; in other words, there is an assertion both before and after each executable

statement. Each assertion states the conditions which must be satisfied whenever execution

reaches that point in the procedure. The assertions plus the executable statements form a proof

in the Hoare calculus[120,163,169];thisproof was incrementallycreated as the design transfor-

mation was performed. Each atomic transformationcorrespondsto at most two proof steps;the

transformationbetween Figure5 and Figure 22 correspondsto a proof with a number of steps.
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Each transformation can be seen from either the program view or proof view. For example,

Figure 24 shows the firststep in the refinement of the sort procedure from both the procedure

Program View
Proof View

begin -- sort

-- I true •

<Statement (i) >

-- I permutation (Input, Output)

-- I and sorted (Output) :

end sort :

I

[PI Sl [Q]

Where P m true,S1 --Statement(I),

Q - permutation(Input,Output)

A sorted(Output)

RefineStatement(1) into an if-the.-eise

and generate appropriateassertions

Instantiate S 1 to an if-then-el, e and

apply proof rule for conditional statements

p- ..........................

begin -- sort

-- i true :

if Input = [] then

--i true and Input = [] :

< Statement (2) >

-- [ permutation (Input, Output)

-" i and sorted (Output) • -----

else

--I true and Input /= [] •

<Statement (3) >

-- I permutation (Input, Output)

-- i and sorted (Output) :

end if •

-- I permutation (Input, Output)

-- I and sorted (Output) •

end sort :

.........................

[PAE] S 2 [Q],[PA--E] S3 [Q]

[P]ifz eh.nS2 el..S, ..dif[Q]'

WhereP = true,

Q m permutation(Input,Output)

A sorted(Output)

E --Input = [],

Si- Statement(i).

...................................... .J

Figure 24. Refinement as proof construction

I

I
i
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and proof views. From the program view, an atomic transformation takes an incomplete pro-

gram and produces a more concrete one; from the proof view, an atomic transformation adds

steps to an incomplete proof. From the program view, defining a predicate adds a new construct

to the program; from the proof view, defining a predicate adds new axioms to the first-order

theory on which the proof is based. For more discussion on the relationship of proofs and pro-

grams see[21].

From this perspective, each abstract program corresponds to a Hoare calculus proof tree.

Given an expressive interpretation 3, each implementation which satisfies a specification

corresponds to a tree with Hoare axioms or provable first-order logic formulae at all of its leaves;

we will call such trees complete. An atomic transformation is correct if it results in a legal tree;

in other words if it consists of correct applications of Hoare rules or axioms. Since each step

forms a legal tree, the tree produced by the development will be legal; unfortunately, there is no

guarantee that a complete tree can be produced. Our notion of correctness does not insure that a

satisfactory program can be produced; however, it does prevent a program which does not satisfy

the specification from being constructed.

In IDEAL, this view of the refinement process is supported by ISLET, a language oriented

editor similar to[203]. ISLET provides commands to add, delete and refine constructs; as the

specification is transformed into an implementation (and the proof is constructed) the syntax and

semantics are constantly checked. Many atomic transformations will generate verification condi-

tions in the underlying first-order logic. These are algebraically simplified and then subjected to

a number of simple proof tactics. If these fail, input is generated for TED, a proof management

system that is interfaced to a number of theorem provers[115].

_For a full explanation see[1631
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The use of general purpose theorem provers is quite expensive[4]; therefore, proofs using

TED will usually not be performed during a design transformation. Simple methods are used to

eliminate trivial verification conditions as they are generated; verification conditions which can

not be eliminated by these methods are recorded by IDEAL for use during the corresponding

verification phase. For example, Figure 25 shows the verification conditions for the transforma-

tion from Figure 5 to Figure 22 which can not be proven by algebraic simplification and simple

proof tactics alone; out of twenty six atomic transformations, only two generated non-trivial

verification conditions. During the verification phase, these non-trivial formulae can be sub-

jected to peer review, informal proof, or mechanical certification.

In this chapter, we have presented the methods used to refine PLEASE specifications into

implementations and to verify the correctness of the process. The refinement process can be

viewed as a sequence of design transformations, each of which implements a major choice of data

structure or algorithm. Design transformations can be decomposed into atomic transformations,

which might be implemented as a single command in a language oriented editor. The correctness

Input = [] D

permutation(Input, [] ) A sorted( [] )

is-4}art(Input _lm t,Low,High) A

permutation(Low,Sorted_l) A sorted(Sorted_l) A

permutation(High,Sorted_h) A sorted(Sorted_.h) A

List = Sortedl I I [Elmt] I I Sorted_h

permutation(Input,List) A sorted(List)

Figure 25. Verification conditions for refinement



106

of a refinement step can be understood in the context of an abstract model of the incremental

development process; it is based on viewing a specification as the set of programs which satisfy it.

Using this model we can define a refinement step as correct if the set it produces is a subset of the

original. The methods used to formally verify the correctness of a refinement are based on view-

ing the refinement process as the construction of a proof in the Hoare calculus.
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CHAPTER 7.

THE IDEAL ENVIRONMENT
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We believe that languages similar to PLEASE can greatly enhance the software develop-

ment process; we also believe that to realize the full benefits of PLEASE an integrated support

environment is needed. The environment must provide facilities to create PLEASE

specifications, construct prototypes from these specifications, validate the specifications using the

prototypes produced, refine the validated specifications into Ada implementations, and verify the

correctness of the refinement process. IDEAL (Incremental Development Environment for Anno-

tated Languages) is an environment concerned with the specification, prototyping, implementa-

tion and verification of single modules; it is a programming-in-the-small environment for

development using PLEASE. In this chapter we describe IDEAL in detail and give an example of

its use in software development. First we describe the architecture of the system; it contains

four main components: ISLET, a language-oriented program/proof editor; a proof management

system; a prototyping tool; and a test harness. We then discuss the operation of ISLET; it allows

the construction of PLEASE specifications and their incremental refinement into Ada implemen-

tations. It contains three major sub-systems: an algebraic simplifier, a set of simple proof pro-

cedures, and an interface to the proof management system. Finally we discuss the development

of a small program in detail; refinement using ISLET is given the most attention.

7.1. Architecture

Figure 26 shows the top-level architecture of IDEAL, which contains four tools: TED[llS],

a proof management system that is interfaced to a number of theorem provers; ISLET (Incredi-
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r
IDEAL

Screen

TED ISLET Prototyping Test

I Tool Harness

Module Data Base

Figure 26. Architecture of IDEAL

I
I

I
I

I

I

I
I
I

I

I

bly Simple Language-oriented Editing Tool), a prototype program/proof editor; a tool to sup-

port the construction of executable prototypes from PLEASE specifications; and a test harness.

The user interacts with these tools through a common interface. The tools in IDEAL operate on

components that are stored in a module data base. When IDEAL is used with ENCOMPASS, the

module data base is stored as part of a project data base by the ENCOMPASS configuration
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control system; IDEAL receives a capability to the module data base from the ENCOMPASS

project management system. The module data base contains five types of components: symbol

tables, proofs, source code, load modules and test cases.

A set of symbol tables represent the PLEASE specifications and Ada implementations being

developed. These symbol tables are displayed and manipulated by ISLET, which can be used to

create PLEASE specifications and incrementally refine them into Ada implementations. This

process can also be viewed as the construction of a proaf in th_ l-l-_re r_lr,,1,,_[19n 1631 Some

steps in the proof may generate verification conditions in the underlying first-order logic; these

r_n.... be reformated as proofs which serve as input for _'_'-r_. Using TED, the user can structure

the proof into a number of lemmas and bring in pre-existing theories.

The symbol tables also serve as input for the prototyping tool, which uses them to produce

executable prototypes from PLEASE specifications. The source code for the prototypes is writ-

ten in a combination of Prolog and Ada and utilizes a number of run-time support routines in

both languages. The load modules produced from both prototypes and final implementations are

used by the test harness. From the test harness, the user can invoke commands to manipulate

test cases. Commands are available to: edit or browse the input for a test case; generate output

for a test case; or run a program and compare the results with output that has been previously

checked for correctness.

The central tool in IDEAL is ISLET. It not only manipulates the symbol tables represent-

ing specifications and implementations, but provides a user interface and, in a sense, controls the

entire development process.

I
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7.2. ISLET

ISLET supports both the creation of PLEASE specifications and their incremental

refinement into annotated Ada implementations. This process can be viewed in two ways: as the

development of a program, or as the construction of a proof in the Hoare calculus[120,163]. The

refinement process is a sequence of atomic transformations, which can be grouped into design

transformations. An atomic transformation cannot be decomposed. From the program view, an

atomic transformation changes an unknown statement into a particular language construct; from

the proof view, an atomic transformation adds more steps to an incomplete proof. From the pro-

gram view, defining a predicate adds a new construct to the program; from the proof view,

defining a predicate adds new axioms to the first-order theory on which the proof is based.

Figure 27 shows the architecture of ISLET. The user interacts with ISLET through a sim-

ple language-oriented editor similar to[203]. The editor provides commands to add, delete, and

refine constructs; as the program/proof is incrementally constructed, the syntax and semantics

are constantly checked. The editor also controls the other components: an algebraic simplifier, a

number of simple proof procedures, and an interface to TED. Many steps in the refinement pro-

cess generate verification conditions in the underlying first-order logic. These verification condi-

tions are first simplified algebraically and then subjected to a number of simple proof tactics.

These methods can handle a large percentage of the verification conditions generated. If a set of

verification conditions can not be proved using these methods alone, the TED interface is invoked

to create a proof in the proper format.

TED can then be invoked in an attempt to prove the verification conditions. Using TED is

very expensive, both in system resources and user time; however, many complex theorems can be

proved with its aid. The algebraic simplification and simple proof tactics used in ISLET are very
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ISLET

I Editing

Tool

I TEDInterfaceSimplifier Procedures
, !

Module Data Base

t_ ..J

Figure 27. Architecture of ISLET

inexpensive; however, they are not very powerful. The combined use of these two methods sup-

ports the rigorous[134] development of programs. Most of the verification conditions will be pro-

ven using inexpensive methods; those that are expensive to verify may be proven immediately, or

deferred until a later time. Parts of a system may be developed using completely mechanical

methods, while other, less critical parts may use less expensive techniques.

The algebraic simplifier is implemented as a term rewriting system[147,181]; it contains a

knowledge-base of ruleswhich are assumed to be convergent. The simpleproof procedures rely
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on a knowledge base containing information such as: if the formulae F 1 and F_ are equivalent

under renaming of variables, then the formula F 1 D F2 is always true. Other rules implement

simple knowledge of equality; for example, if F(X) and X=c are both true then so is F(c). At

present, it is difficult to examine, analyze or change the contents of these knowledge bases; for

example, algorithms exist to determine if a set of rewrite rules are convergent, but they are not

implemented in ISLET. In the future, we plan to develop tools to correct these deficiencies.

To further clarify both the principles behind IDEAL and the limitations of the current

implementation, we will consider an example of software development. We will follow the

development of a procedure.through the specification, refinement and verification processes.

7.3. An Example

Assume that a programmer must implement a procedure that takes a natural number as

input and produces its factorial as output I. The programmer first creates an empty module and

then invokes IDEAL, which produces a display showing an empty package. The programmer

then invokes ISLET to specify the procedure. Figure 28 shows the completed specification, which

includes both the pre- and post-conditions for the procedure and the definition of the is]act

predicate. This figure, and the others in this section, show the actual output from the current

implementation; therefore, they do not alway follow the syntax conventions used elsewhere in

this thesis.

The top lineof thedisplaygivesa menu of ISLET commands. ISLET has a focus of atten-

tionwhich isalways on a particularsymbol tablescope;for example, in Figure 28 ISLET's focus

_ThespecificationofsuchaprocedurewasgiveninChapter4.
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MENU: Clos, DEcl, DIsp, Get, Help, List, Open, Put, Quit. Refine, Undo, USe

package factorial is

--: predicate is_fact( x : inout natural : y : inout natural )

--: tl : natural :

-- : begin

--: x = 0 and y = 1

-- : Or

--: is_fact (× - !. t!) and y = tl * x :

--: end is_fact :

is true if

procedure factorial( x : in natural : y

-- f where in( true _ and

-- i out( is_fact(x, y) ) :

: out natural ) :

end factorial :

Figure 28. ISLET display showing factorial specification

I

I
I
I
I

of attention is on the factorial package. The visible objects are the factorial procedure and the

is.fact predicate. The open command changes the focus of attention to an inner scope; for exam-

ple, the command "open! procedure factorial." would shift the focus of attention to the body of

the factorial procedure 2. The clos command shifts the focus to the containing scope, while the

IThe "!" _fterthecomm_nd nzme is_n _rtif_ctofISLET'sProIog-b_sedimplementation.
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display command presents the focus of attention on the screen. The decl command allows

declarations, and the put and get commands support the saving and restoring of the editor's

state. The help command provides on-line assistance, while the quit command exits ISLET. The

refine command allows more design or implementation detail to be added to a specification, while

the undo command reverses the last refinement step. The use command allows separately

developed modules to be used in a specification or implementation, and the llst command displays

all the verification conditions which have not been certified.

As the programmer enters the specification, the syntax and static semantics are checked for

correctness; unfortunately, at present the granularity is somewhat coarse. For example, the pro-

grammer must enter the definition of is_.fact as a unit; if a mistake is made the entire definition

must be re-entered. Also, the definition of is_fact must be entered before the pre- and post-

conditions for/actorial. This is because isjact is referenced in the post-condition; an undeclared

identifier error would result if the order of entry were reversed. The utility of ISLET would be

dramatically increased by a finer grained implementation; for example, one based on an editor,

such as Epos[145], that allows an arbitrary number of text-oriented commands to be performed

before the syntax and semantics are checked.

Figure 29 shows the ISLET display as the programmer opens the factorial procedure to

begin the refinement process. At this point, the procedure consists of an unknown statement

sequence, denoted by unknown_0, surrounded by assertions true and is._fact(z,y). The goal of the

refinement process is to produce an implementation of unknown_O which is correct with respect

to pre-condition true and post-condition is_,fact(z,y). This problem is simplified by the fact that

the factorial calculation can be divided into two cases: if the input is 0 then the result is 1, oth-

erwise more computation is needed.
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MENU: Clos. DEcl, DIsp. Get. Help. List. Open. Put. Quit. Refine. Undo. USe

procedure factorial ( x : in natural : y : out natural ) is

begin

--I true ;

<unknown 0> :

-- I is_fact (x, y) :

end factorial :

Figure 29. ISLET display at beginning of refinement process
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With this in mind, the programmer refines the unknown statement sequence into an if-

_hen-else;he types the command "refine!0 ifx=O.",which can be read as: refineunknown zero

intoan if-then-elseon conditionz equalto zero. In ISLET, each refinementstepcorrespondsto

at most two proof stepsin the Hoare calculus:a stepusingthe ruleforthe appropriatelanguage

construct,and possiblya step using the consequence rule. For example, the current refinement

uses the rulefor the if-then-elseconstruct,but doesnot make use of the consequencerule;there-

fore,no verificationconditionsare generated.
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Figure 30 shows the ISLET display after the refinement is compete; unknown_O has been

transformed into an if-then-else with an unknown at each branch. The refinement process now

has two sub-goals. An implementation of unknown_t must be found which is correct with

respect to pre-conditi0n true and z = 0 and post-condition is.jact(x,y). Similarly, unknown_.2

must be refined into a statement sequence which is correct with respect to true and not z = 0 and

I
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MENU: Clos. DEcl. DIsp. Get. Help, List, Open, Put, Quit, Refine, Undo, USe

procedure factorial( x : in natural : y : out natural ) is

begin

-- I true :

if x = 0 then

--I true and x = 0 :

<unknown_l> :

--I is_fact(x, y) :

else

--i true and not x = 0 :

<unknown_2> :

-- I is_fact (x, y) :

end if :

--I is_fact(x, y) :

end factorial :

Figure 30. ISLET display after initial refinement of factorial
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is_/act(z,y). These goals can be pursued in any order: the programmer can perform a number of

refinements on unknown_j, switch his attention to unknown..£, and then return to finish unk-

nown..1. Fortunately, this is not necessary: unknown_I has a simple implementation.

Knowing that the factorial of zero is one, the programmer refines unknown...1 into a state-

ment assigning one to y; Figure 31 is produced by ISLET after the command "refine! 1 y := 1.".

The proof of this refinement step makes use of both the Hoare axiom for assignment statements

and the consequence rule; therefore, verification conditions are genera_ted. The algebraic

i
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MENU: Clos, DEal, DIsp, Get, Help, List, Open, Put, Quit, Refine, Undo, USe

Verification conditions are:

true and x = 0 =>

isLfact (x, i)

Simplified verification conditions are:

x=O=>

is fact(x, i)

Trying simple proof procedure ...

Simple proof procedure failed - generating ted file ...

Should I invoke TED (y/n) ? n

Type ".<cr>" to continue .

Figure 31. ISLET display showing verification conditions for first assignment
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simplifier is able to reduce the verification conditions by realizing that for any formula F, true

and F is equivalent to F. Although the verification conditions are true, the simple proof pro-

cedures are net able to certify this. The problem is that the current implementation does not

add user definitions to the rule base; the proof methods have no knowledge of is]act. We plan to

correct this problem in the future.

At this point the programmer examines the verification conditions; ISLET has created input

for TED, which can be invoked if the programmer desires. In this case the programmer is con-

vinced that the verification conditions are correct; he decides to wait until after the refinement

process is complete to formally certify them. ISLET displays the completed refinement and the

development process continues. The programmer decides to implement the else branch using a

sequence consisting of a while loop and its initialization. He realizes he needs a loop counter and

declares a variable £

In ISLET, a loop has both an invariant, which is maintained by the body, and a condition,

which controls termination. If the invariant is true before the loop begins execution, then both

the invariant and the negation of the condition will be true when the loop terminates. The

programmer's strategy involves the invariant isjact(i,y); he must initialize i and y to make this

true. He decides that the loop initialization will consist of two statements: one to initialize i,

and one to initialize y.

Figure 32 shows the display after all these refinements, none of which generate verification

conditions, have been performed. To achieve the invariant is_]actCi, y), the programmer reiines

unknown_.5 into a statement assigning one to i and unknown_6 into a statement assigning one to
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MENU: Clos, DEcl, DIsp, Get, Help, List, Open, Put, Quit, Refine, Undo, USe

procedure factorial( x : in natural : y : out natural ) is

i : natural :

begin

-- I true •
if x = 0 then

-- true and × = O •

y = 1 :

-- is_fact (x, y) :

else

-- true and not x = 0 :

<unknown_5> :

-- i = 1 :

<unknown_6> :

-- is_fact (i, y) :

<unknown_4> :

-- is_fact (x, y) :

end i f

-- I is_fact (x, y) :

end factorial :

Figure 32. ISLET display after sequence of refinement_
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y. The verification conditions for the first assignment can be certified using simple methods; the

second assignment generates verification conditions:

i = 1 => is_fact (i, l)

These conditions can not be certified using the simple methods in ISLET alone; TED must be

invoked. As with the previous conditions, this is due to lack of knowledge of the is,fact predi-

cate.
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The programmer must now implement the while loop. He types the command "refine! 4

while i /= x.', to refine unknown_.g into a while loop with condition i not equal to z;, Figure 33

shows the ISLET display. ISLET generates verification conditions for this refinement based on

both the rule for while loops and the consequence rule; the current ISLET implementation only

verifies partial correctness. The verification conditions can be algebraically simplified, and the

result can be proved using basic knowledge of equality: if two terms are equal, then we can sub-

stitute one for the other in any formula without changing its meaning.

The programmer realizes that the body of the loop must both increment the loop counter

and update the calculated quantity. Figure 34 shows the ISLET display after he refines the body
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MENU: Clos, DEcl. DIsp, Get, Help, List, Open, Put, Quit, Refine. Undo, USe

Verification conditions are:

is_fact(i, y) and not i /= x =>

is_fact (x. y)

Simplified verification conditions are:

is_facE (i, y) and _ = x =>

is_fact (x, y)

Trying simple proof procedure ...

Simple proof procedure successful

.............................................................................

Figure 33. ISLET display showing verification conditions for loop creation
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MENU: Clos. DEcl. Dlsp, Get, Help, List, Open, Put, Quit, Refine, Undo, USe

procedure factorial( x : in natural : y : out natural ) is

i : natural :

begin

-- [ true :

if x = 0 then

-- true and x = 0 •

y = 1 :

-- is_fact (x, y) •

else

--! true and not _x = 0 •

i := 1 :

--I i = I "

y := 1 :

-- I is_fact (i, y) :

while i /= x loop

--I is_fact(i, y) and i /= x :

<unknown_8> :

--[ is_fact(i- i, y) :

<unknown_9> :

--I is_fact(i, y) : "

end loop :

-- I is_fact (x. y) :

end if •

-- I is_fact (x, y) :

end factorial :

Figure 34. ISLET display showing decomposition of loop body

I
I
I

into a statement sequence. The programmer then refines unknown_.8 into an assignment which

increments i and produces verification conditions:

is_fact (i, y) and i /= x =>

is_fac_(i + i - i, y)
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These can be solved using the simple proof methods. Unknown_9 is more difficult. The program-

mer refines it into a statment assigning y the value of y * i; this refinement produces the

verification conditions:

is_fact(i - i. y) =>

is_fact(i, y * i)

These verification conditions can not be solved by the simple methods alone; their proof requires

a reasonably deep knowledge of both the is_fact predicate and the natural numbers.

The implementation of factorial is now complete; Figure 35 shows the completed procedure.

The body of factorial is completely annotated; in other words, there is an assertion both before

and after each executable statement. The assertions plus the executable statements form a proof

in the Hoare calculus. Before the proof is really complete, the programmer must certify the

verification conditions which did not yield to the simple methods implemented in ISLET; these

are:

X = 0 =>

is_fact (x. I)

i = 1 =>

is_fact (i, i)

is_fact(i - i, y) =>

is_fact (i, y * i)

The first two conditions could be proved in a more advanced implementation of ISLET: one

which added user defined predicates to the appropriate rule bases. The third condition will prob-

ably always require a general purpose theorem prover.

I

I
I
I
I

I

I
I

I
I
I

I
I

I
I

I
I

I



I

I

I

123

I

I
I

I

I
I
I
I

I
I

I
I

MENU: Clos, DEcl, Dlsp, Get, Help, List, Open, Put, Quit, Refine, Undo, USe

procedure factorial ( x : in natural : y : out natural ) is

i : natural :

begin

--I true :

if x = 0 then

-- true and x = 0 •

y = 1 :

-- is_fact (x, y) •

else

-- true aD.d not x = O •

i = 1 :

-- i = 1 :

y = 1 :

-- is_fact (i, y) :

while i /= x loop

--I is_fact(i, y) and i /= x :

i := i + 1 :

--I is_fact(i- l, y) "

y := y * i :

-- I is_fact (i, y) :

end loop -

--I is_fact(x, y) :

end if ,

"-I is_fact(x, y) :

end factorial :

Figure 35. ISLET display showing completed implementation of factorial
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I
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To certify the verification conditions, the programmer first exits ISLET; Figure 36 shows

the IDEAL display at this point in the development. The top line of the display gives a list of

IDEAL commands. The dn and up commands scroll the screen down or up respectively. The set

and unset commands alter internal flags. The ted command causes TED to be invoked on a set of

I
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MENU: dn. Help. List. Open. Make. set. Ted. unset, up

This module contains:

symtab_O symtab_ll symtab_2 symtab_5 symtab_8

symtab_l symtab_12 symtab_3 symtab_6 symtab_9

symtab_lO symtab_13 symtab_4 symtab_7

ted_0 ted_13 ted_4 ted_9

test_cases

Figure 36. IDEAL display after completion of factorial refinement

I

I
I

I
I

I
I

verification conditions. The help command provides on-line assistance, while the list command

displays the contents of the module. The make command constructs a load module from either a

specification or an implementation, while the open command can be used to invoke either ISLET

or the test harness.

The module contains a number of symbol tables: one to record each significant point in the

development process. These symbol tables provide a simple implementation of the undo com-

mand, as well as allowing the examination of the entire refinement process during peer review.

The module also contains a number of TED files: one for each step in the refinement process

which produced verification conditions not proven by the simple methods. These files are com-

plete with axiom sets including user defined predicates. The programmer invokes TED on these

files and certifies the verification conditions. At this point, the development is complete.
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In this chapter we have described IDEAL, an environment concerned with the specification,

prototyping, implementation and verification of single modules using PLEASE. We have also

given an example of software development using the system. IDEAL contains four main com-

ponents: ISLET, a language-oriented program/proof editor; a proof management system; a pro-

totyping tool; and a test harness. ISLET is the central tool in IDEAL; it allow the construction

of PLEASE specifications and their incremental refinement into Ada implementations. It con-

tains three major sub-systems: an algebraic simplifier, a set of simple proof procedures, and an

interface to the proof management system. Although the current implementation of IDEAL is

quite limited, it demonstrates much of the potential of such environments. We feel the use of

future environments similar to IDEAL will enhance the software development process.
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CHAPTER 8.

THE ENCOMPASS ENVIRONMENT

IDEAL provides an integrated environment for programming-in-the-small using the

PLEASE executable specification language; while this alone can enhance the development process,

more can be gained with the addition of an environment for programming-in-the-large[200,249].

The environment should support all the objects produced and used in software development; it

should save, record and update their versions and relationships. The environment should also

support the interactions necessary for the development of multi module systems by multiple pro-

grammers. The environment should support the rigorous [134] development of programs: it

should be possible to develop parts of a project using an environment such as IDEAL, while

other, less critical parts are developed using less expensive methods.

ENCOMPASS is such an environment; it provides support for all aspects of software

development using PLEASE. In ENCOMPASS, software is decomposed into modules which can

be developed using either IDEAL or more conventional tools. ENCOMPASS provides facilities to

store, track, manipulate and control all the objects used in the software development process:

documents, specifications, source code, proofs, test data_ and load modules are all supported.

ENCOMPASS alsoprovidesmechanisms to support the interactionsamong developers;the sys-

tem allowsthe creation,decomposition,distribution,monitoring and completion of tasks.Figure

37 shows the top-levelarchitectureof the system. In ENCOMPASS, the user accessesand

modifiescomponents using a setof software development tools.The configurationmanagement

system structuresthe softwarecomponents developed by a projectand storesthem in a project

data base. The project management system uses facilities provided by the configuration
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I _-;;co .........
Software Development Tools [I

I

I
I
I

Project Management System

Confi_,._-ation Management System

_roject Data Base_

LQ._ _

Figure 37. Architecture of ENCOMPASS
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management system to control both access to the data base and interactions between developers.

In this chapter, we describe ENCOMPASS in detail and give examples of its use. First, we

describe the life-cycle model ENCOMPASS is designed to support; this is Fairley's traditional or

waterfall life-cycle[88], extended to support the use of executable specifications and VDM. In

ENCOMPASS, we extend the traditional life-cycle to include a separate phase for user valida-

tion; we also combine the design and implementation processes into a single refinement phase.

Next, we describe the ENCOMPASS configuration and project management systems. In the

configuration management system, software is modeled as entities which have relationships
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between them. These entities can be structured into complex hierarchies which may be accessed

through different views. The project management system implements a management by objec-

tives[106] approach to software development; each phase in the life-cycle satisfies an objective by

producing a milestone which can be recognized by the system. We then give an example of

software development in ENCOMPASS; the construction of a multi-module system is followed

from specification through the delivery of a validated and verified implementation. Next, we

describe how ENCOMPASS can be used with a central repository to support software reuse, and

finally we present an automated change control system which incorporates ENCOMPASS, a cen-

tral repository, and Notesfiles.

8.1. Development Model

Figure 38 shows the software development model that ENCOMPASS is designed to support.

In this model, a development passes through the phases: planning, requirements definition, vali-

dation, refinement, and system integration. The refinement phase may be decomposed into a

number of steps, each consisting of a design transformation and its verification. This model can

be profitably viewed from two perspectives. On one hand, it is Fairley's traditional, or phased

life-cycle[88t, extended to support the Vienna Development Method and the use of an executable

specification language. On the other hand, it is the IDEAL life-cycle, extended to support multi-

ple modules and programmers.

In the ENCOMPASS development model, the planning phase defines the problem to be

solved and determines if a computer solution is feasible and cost effective[88]. Alternative solu-

tions to the problem are considered and compared for cost effectiveness, and preliminary plans

and schedules for the project are created. In the requirements definition phase, the functions and
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Figure 38. ENCOMPASS software development model

qualities of the software to be produced by the development are precisely described[88]. Require-

ments definitionproduces a high-level specification,which concentrates on the needs and desires



130

of the customers as they affect the external system interface rather than the internal structure of

the software to be produced. In ENCOMPASS, software requirements specifications are a combi-

nation of natural language documents and components specified in PLEASE. Although the

requirements specification describes a software system, it is not known if any system which

satisfies the specification will satisfy the customers. In ENCOMPASS, we extend Fairley's

phased life-cycle model to include a separate phase for customer validation.

The validation phase attempts to show that any system that satisfies the software require-

ments specification will also satisfy the customers, in other words, that the requirements

specification is valid. If not, it should be corrected before the development proceeds to the costly

phases of refinement and system integration. During the validation phase, prototypes produced

from PLEASE specifications may be used by the systems analyst in his interactions with the cus-

tomers; they may be subjected to a series of tests, be delivered to the customers for experimenta-

tion and evaluation, or be installed for production use on a trial basis. We believe the early pro-

duction of executable prototypes enhances the validation process.

In the refinement phase, the Vienna Development Method[134] is used to incrementally

transform the abstract specification into a concrete implementation. The refinement phase can

be decomposed into a number of steps, each of which consists of a design transformation and its

verification. If a design transformation is especially complex, it may be decomposed into a design

phase, in which more of the structure of the system is described, and an implementation phase, in

which components of the system are constructed.

In ENCOMPASS, a design transformation may be verified using any combination of

mathematical reasoning[l10,168,250], testing[91,131,176], technical review [87,242], and inspec-

tion. The use of PLEASE specifications enhances the verification of system components using

I

I
I
I

I
I
I

I

I
I
I

I
I

I
I
I
I
I



I

I

I

I

I

I

i

I

I
l

l
I
I
I
I

I
I
I

131

either testing or proof techniques. A prototype produced from the specification for a component

can be used as a test oracle against which the implementation can be compared. Since the

specification is formal, proof techniques may be used which range from a very detailed, com-

pletely formal proof using mechanical theorem proving to a formal argument presented as in a

mathematics text. ENCOMPASS supports the rigorous[134] development of programs.

Although detailed formal proofs are not required at every step, the framework is present so that

they can be constructed if necessary. Parts of a project may use detailed formal verification

while other, less critical parts may be handled using less expensive techniques.

The planning,requirements definition,and validationphases are sequentialin nature,but

during the refinementphase, some tasksmay be performed in parallel.For example, suppose a

specificationis refinedto produce a more detailedspecificationwhich contains a number of

independent components. These components may be refinedconcurrently to produce more

detailedspecificationsand finallyimplementations. These independently developed implementa-

tionsmust then be integratedintoa complete system.

In the system integration phase, separately implemented modules are integrated into larger

and larger units, each of which is shown to satisfy the specifications[88]. If errors are found and

corrected in a low level module, the correctness of any previously verified modules which use the

low levelmodule may have to be redetermined. ENCOMPASS provides tools to aid in the

hierarchicalintegrationand testingof programs. These toolsensure that before a module is

tested, all modules that it uses are tested before tests of that module are begun. When the final

integration has been performed, the acceptance tests are performed, the product is delivered and

the development is complete.

I



132

In ENCOMPASS, a phase may contain a sub-development just as a development contains a

number of phases. "For example, if a system is very large and complex, the production of a proto-

type in the validation phase may in itself be a complete development. If the system is composed

of several major components, the production of each component from its specification during the

refinement phase might also be be considered a complete development. By dividing the develop-

ment process into small steps using hierarchical composition, ENCOMPASS allows each step to

be smaller and more comprehensible and thereby increases management's ability to trace and

control the project. The tracking and control of a project is further enhanced by the use of

configuration and project management systems.

8.2. Configuration and Project Management

A project management system must identify, control, and monitor the tasks that comprise

the software development and maintenance processes. Different models of these processes lead to

different approaches to project management[211]. For example, Osterweil uses a "process pro-

gram" approach[190]; he feels the tasks involved can be described using a notation similar to pro-

gramming languages.

The ENCOMPASS project management system is based on a management by objectives

approach[106]: each step in the development process satisfies an objective by producing a mile-

stone. The objectives for each activity must define the pre-conditions under which the activity

may occur, acceptance criteria for the products produced by the activity, and a procedure for

evaluating whether the acceptance criteria have been met. These objectives provide a framework

around which the management of the software project can be automated. For example, the

objective of the requirements definition phase is to describe the properties that the software sys-
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tern to be constructed must satisfy; the milestone for this phase is a specification which lists these

properties. In ENCOMPASS, the PLEASE[232-234] executable specification language provides

many machine-recognizable milestones; for example, the existence of a PLEASE specification, the

production of a verified implementation, and the correct execution of a set of test cases by a pro-

totype can all be recognized by the system.

Configuration management is concerned with the identification, control, auditing, and

accounting of the components produced and used in software development and mainte-

nance[2,27,28,44]. A number of different configuration management systems have been proposed,

developed and/or ,l_e " - 1_ 1R, I_ - • _ _n _, _, • _,.-.._ ...."' us dt85,S6,..6,.v0,.v3,197,214,.36,_o,,4v,,59 j. In E_vlvlP_S, the

configuration management system is responsible for maintaining the consistency of, integrity of,

and relationships between the products of software development. Many models of software

configurations have been proposed[12,94,128,154,155,173,188,196,251]. A configuration model

which is understood and accepted by everyone involved can enhance communication, aid project

management and increase product quality.

In ENCOMPASS, software configurations are modeled using a variant of the entity-

relationship mode_57,58,191] which incorporates the concept of aggregation[216,217]. At present,

most databases do not provide the features necessary to support integrated software development

environments[25]; our model provides us with a natural way to describe software and also has a

convenient implementation on conventional computer systems.

$.2.1. Configuration Management in ENCOMPASS

In ENCOMPASS, an entity is a distinct, named component; not all components are named.

In one sense, an entity is any component important enough to be recognized by the configuration

!
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management system. An example of an entity is a file, which could contain the source code for a

program, some test data, or an executable program. Entitles may belong to different entity sets;

in other words, there may be different types of entities. For example, the current implementa-

tion supports entities of type "program", which may be decomposed into modules manipulated

by IDEAL, and entities of type "document", which consist of sections and are manipulated by the

ENCOMPASS document tool. An entity may have attributes which describe its properties or

qualities. For example, a file could have attributes such as "size", "ownern, Upermissions", and

"modify time". An entity may be decomposed into smaller components, which may or may not

be entities themselves. For example, a file might be composed of paragraphs of text or state-

ments in a programming language.

Two or more entities may have a relationship between them. For example, the entities con-

taining the source and object code for a routine might have the relationship "compiled-from"

between them. A relationship may also have attributes, for example the time the compile took

place. A group of entities with a relationship between them may be abstracted into an aggregate

entity; this entity would have entities as the values of some or all of its attributes. For example,

the symbol tables, proofs, source code, load modules and test cases used by IDEAL are all

grouped together into a single entity known as a "module". An entity which does not have enti-

ties as the values of any of its attributes is known as a simple entity. An example of a simple

entity is a file containing the source code for a routine, which has the attributes "language",

"modify time", and "size".

A view is a mapping from names to components. A project under development has a unique

base view or project library which describes the components of the system being developed and

the primitive relationships between them. Other views can include images of entities in this base
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view. In ENCOMPASS, access to components is controlled through the use of views. For exam-

ple, different views of the software system being developed may be used by the development and

quality assurance teams. The development team may use a view which includes all the

specifications and software being developed. However, the quality assurance team may use a

different view which contains only the specifications, executable code and, in addition, the test

cases. Different views may be used during different phases of a development project; views may

also be used to restrict the activities of a programmer to a particular group of modules.

In general, a version is the state of an entity at a particular point in time; more precisely, a

d;.stinction can be drawn between linear revisions and parallel versional52]. The current imple-

mentation of ENCOMPASS allows a sequential revision of any object to be saved or restored at

any time, but does not provide support for parallel versions. When saving or restoring revisions

of aggregate objects, a _dangling pointer" problem arises; for example, consider a view of an

aggregate object A which contains an image of an object S. When a revision of the view is

stored, should a reference to, or copy of S be stored? If a reference to S is stored, should it refer

to a particular revision or the latest copy?

The current implementation of ENCOMPASS does not address these problems in a deep

way; images are implemented as symbolic links 1 to the latest copy of an object. In the example

above, the version of the view contains a symbolic link which will point to the latest copy of S

when the version is restored. The SAGA project is developing a configuration librarian called

Clemma to address these and other issues[52]. The combination of Clemma and the ENCOM-

PASS project management system should provide significant support for software development.

1 A symbolic link contains the name of the file to which it is linked. Symbolic links may span file systems and may
refer to directories. The file to which the link refers need not exist at the time the link is created.

!
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8.2.2. Project Management in ENCOMPASS

The ENCOMPASS projectmanagement system isbased on a hierarchicalprojectorganiza-

tion: each member ofthe team has at leastone immediate supervisorand may have a number of

subordinates. The system is organized around work trays[47],which provide a mechanism to

manage and record the allocation,progress,'and completion of work within a software develop-

ment project.Each member of the projecthas a workspace containinga number of trays. Each

tray holds taskscontainingthe productsproduced and used during software development; these

products are storedasentitieswithinthe ENCOMPASS configurationmanagement system.

There are four types of trays: input trays,output trays,in-progresstrays,and filetrays.

Each user receivestasksin one or more input trays;he may then transferthese tasks to an in-

progresstray where he willperform the actionsrequiredof him and produce new products. An

output traycan be used to return a task to itsoriginator.A user may createa new task in an

in-progresstray that he owns and transferit to other user'sinput tray;for example, a team

leadercan decompose a task intosub-tasks and send the sub-tasks to his subordinates. A task

that has been transferredback into the in-progresstray of itscreatormay be marked as com-

pleteand transferredto a filetrayforlong term storage.

To furtherclarifythe operationof the configurationand projectmanagement systems, we

willpresent an example of software development. We willfollowthe constructionof a small,

multi-module system by a team of programmers; the example willincludespecification,valida-

tion,refinmentand verification.
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8.3. An Example

For our example, we will consider a programming team consisting of a leader and two pro-

grammers; there is a workspace for each member of the team. The team leader's workspace con-

tains output trays to send assignments to each of the programmers as well as an input tray in

o

which he receives completed tasks. Each programmer's workspace contains an input tray in

which he receives assignments from the leader and an output tray to facilitate the return of

assignments to their originator. Assume that the team is assigned the task of developing a set of

procedures to compute simple combinatoric quantities. The system is to be both validated by

prototyping and formally verified. It will contain a procedure to calculate the factorial of a

number as well as a procedure to compute the number of unique k-combinations of n items 2.

When the team leader receives the assignment by electronic mall, he creates a project

library called eombinatorics in his in-progress tray. In the planning phase, the team leader con-

sults with the customers and creates preliminary copies of two documents: the system definition

and project plan. At this point, it is decided that the system will consist of two modules: one

called k_comb and one called factorial The team leader creates a program object containing two

modules with these names; each module contains an empty symbol table and set of test cases.

The team leader then opens the factorial module and uses ISLET to specify the procedure fac-

torial.

Figure 39 shows the team leader's screen after completing the specification of factorial The

large window on the left of the screen gives the team leader access to his workspace, which con-

tains the trays in, in_progress, out, to_programmer_I, and to_programraerJ. The small window

ZThe number of k-combinations of n items is equal t,o n!/(k!(n-k)!)
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on the leftof the screenisto trap consolemessages thatwould disruptthe display.The windows

on the right of the screen show the hierarchy of components through which the team leader

accessedthe factorialmodule. Firstthe _eam leaderopened the tray in._progresswhich contains

the projectlibraryfor the combinatoricstask; this created the window on the bottom of the

stack which is labeled TRA YTOOL. Next, he opened the project library, creating the window
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labeled TASK_TOOL. He then opened the program object to create the window labeled

PROG_TOOL, and finally he invoked IDEAL on the factorial module to create the top window

on the stack.

After factorial is specified, it is prototyped. From IDEAL, the team leader issues a com-

mand that automatically creates an executable protot);pe from the PLEASE specification. This

prototype is compatible with the IDEAL test harness; the program produced reads z from input,

c_lls factorial, and then writes y to eutput. From the test harness, input data can be edited, the

prototype can be used to generate output, and the output can be manually checked for correct-

ness. The team leader uses these tools to check that the factorial prototype performs correctly

on simple test data. After factorial has been prototyped, the specification and prototyping

processes are repeated for k_comb, which uses factorial.

After both modules are specified and prototyped, the validation phase begins. The proto-

type system is delivered to the customers for evaluation; it is subjected to a series of tests, and

possibly installed for production use on a trail basis. The team leader consults with the custo-

mers to produce an updated set of documents, as well as a set of acceptance tests[88] which will

be used to evaluate the final implementation. These tests are stored in a form compatible with

the IDEAL test harness; the implementation can be run on pre-existing input and the results

compared with those produced by the prototype. After the validation phase is complete, the

refinement phase begins. The production of a verified implementation which passes the accep-

tance tests is the milestone for completion of this phase.

First, the implementation task is decomposed into sub-tasks that can be performed in

parallel. It is decided that the implementation of factorial will be performed by the first pro-

grammer, while k_comb will be implemented by the second. The team leader creates two views

!



140

of the project library; both provide access to all the documents produced in the development, but

one provides access to factorial while the other provides access to k_comb. The team leader then

transfers the first view to the tray labeled to_.programmer..1 in his workspace; this causes the view

to appear in the first programmer's input tray. Similarly, the second view is sent to the second

programmer.

Figure 40 shows the team leader's and programmer's workspaces after the transfers are

complete. The team leader's workspace contains the project library, which contains two docu-

ments, the system definition and the project plan, as well as a program object containing the

modules factorial and k_comb. The first programmer's workspace contains the first view, which

contains an image of the system definition, the project plan and factorial; it does not provide

access to k_comb. The view in the second programmer's workspace is similar, but gives access to

k_comb and not factorial.

When the first programmer checks his input tray, he discovers the view of the project

library; he can receive more information by electronic mail or in an auxiliary document. He then

opens the view, the program object, and the factorial module. Using ISLET, the programmer

then refines the specification of factorial into an implementation. As the refinement is performed,

verification conditions are generated automatically. As the project plan calls for a formally

verified implementation, the verification conditions are mechanically certified as the refinement is

performed.

After the implementation is produced, the programmer uses the test harness to run the

implementation on the acceptance testsproduced in the validationphase. The milestone for

completion of his assignment is the production of a formally verifiedimplementation which

passesthe acceptance tests.When the milestonehas been reached,the programmer transfersthe
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view of the project library to his output tray; this causes the view to appear in the team leader's

input tray. The second programmer follows s similar implement and verify, test, and transfer

scenario with the Lcomb module.

When the team leader discovers that both views are in his input tray, he knows the project

should be complete. He checks to be sure that the milestone for the refinement phase has been

I
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reached; using tools in ENCOMPASS, he certifies that the implementations are formally verified

and pass the acceptance tests. When the milestone has been verified, the project is delivered to

the customers. At this point the project is complete, and can be transferred to a file tray for long

term storage.

At present, ENCOMPASS is primarily an environment for software development; however,

it can easily be combined with other tools produced by the SAGA project to provide support for

a larger portion of the life-cycle. For example, the addition of a global repository allows

ENCOMPASS to provide support for software reuse.

8.4. Software Reuse

It has been suggested that the reuse of software can significantly reduce the cost of program

development[31,125], and systems which contain libraries of previously coded modules and/or a

number of standard designs or program schemas have been proposed[80,142,156,165,174]. Some

have suggested that the combination of reuse with object oriented design is particularly

effective[175]. When ENCOMPASS is used with a global repository, any software component or

group of components can be saved for later reuse. In addition to source and object code, docu-

mentation, formal specifications, proofs of correctness, test data and test results can all be stored

in the global repository and later retrieved. The repository can support a number of projects,

both accepting and supplying components for reuse in all phases of development.

Figure 41 shows the flows of control and data among the global repository and a number of

projects using ENCOMPASS. As is usual in ENCOMPASS, there is a workspace for each pro-

grammer and a project library for each project; the global repository is common to all projects.

Each programmer controls his own workspace, while the project leader controls the library for
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his project and the librarian controls the repository. All components which are accessed by more

than one programmer reside in either the project libraries or global repository where they are
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controlledby eithertheprojectleadersor the librarian.A programmer accessesthe components

he is working with through his workspace. The workspace may actuallycontain these com-

ponents, or it may referencecomponents in the project librarythrough s view. The project

librarycontainsallthe components associatedwith a particularproject;the projectleadercon-

trolsaccessto components by controllingthe views of the library.

The globalrepositorycontainscomponents availablefor reuse on allprojectsand isread-

only to allbut the librarian.The librariancontrolswhich components willbe saved for reuse

and how they willbe available.When a projectleaderfeelsthat a component may be usefulfor

reuse on other projects he submits it to the librarian who performs a component review to deter-

mine if the component meets the minimum standards for correctness, reliability, documentation,

and generality. If the component meets these standards then the librarian must decide how to

index the component for later retrieval.

Each component available for reuse is associated with a number of key words which describe

its structure, function and quality 3. To search the library for components that may be useful, a

programmer uses simple retrieval tools, specifying the key words in which he is interested using a

regular expression. The tool returns a list of components, each'of which is associated with the

key words he specified. The programmer may then create an image or copy of any components

which are of interest in his workspace and examine them in more detail.

For example, suppose s programmer needs a verified module which implements a stack of

strings. By searching the library on the key words "stack" and "verified" he might discover that

a verified module implementing a stack of integers existed in the global library. Assuming he

z For example a module might have met technical review stsndaxds, be well tested, be proven by a period of use, or
possibly even be formally verifiedwith respect to its specification.
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had the proper access permissions, he could then make a copy of this module in his workspace

and modify it to implement a stack of strings. The programmer may be able to reuse more than

just the source code for the module. Associated documentation, test cases, and proof of correct-

ness would also be retrieved, and could be possibly be modified and reused in the new develop-

ment.

With the addition of a global repository, ENCOMPASS can provide support for a much

wider range of software engineering _ctivitieso As __nother example, by combining ENCOM-

PASS, the global repository, and Notesfiles, a system to provide basic support for software

maintenance can be constructed.

8.5. Change Control

Software typically remains in use long after it is developed; as operating environment and

user needs change, the system must be modified to meet new demands. To ensure system relia-

bility, integrity and availability, these modifications must be performed in a controlled manner.

A change control system provides methods and tools to record, effect, and monitor changes to an

installed software system. For example, assume analysts and programmers are responsible to a

Change Control Board for their contributions to the maintenance activity; bugs and requests for

modifications are received by the Board, which decides whether requests should be satisfied or

ignored and manages the necessary resources.

Figure 42 shows a simplified diagram of the flow of information that occurs within the

maintenance group. Customers submit user change requests, which may be either bug reports or

proposals for enhancements to the software; the Change Control Board assigns these requests to

an analyst for further examination. The analyst reviews the requests and produces program
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modification plans for those that are valid; these plans are forwarded to the Board for approval

and scheduling. The Board may either assign a programmer to work on a job specification based
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on the plan,or itmay rejectthe plan;a rejectedplan willbe reconsideredby the analyst. The

programmer performs the appropriate software modifications and submits a software

modificationsummary to the Change Control Board. The Board examines the summary and

may either produce a new software releaseor generate a new job specificationfor further

modifications.

A more detailed flow diagram for the change requests would include additional feedback

stages to allow analysts and programmers to negotiate their objectives with the Change Control

Board; for example, the programmer may wish to question the time allotted to accomplish the

analyst's plan. While a manual system can prove valuable in controlling the software mainte-

nance process, it can be further enhanced by the addition of automated tools.

8.5.1. Automating Change Control

The Notesfiles system is a distributed project information base which operates on networks

of heterogeneous machines under the Unix operating system [83,84]. Within the SAGA project,

we have used the Notesfile system to organize technical discussions and product reviews, track

problems and grievances, keep agendas and minutes, and maintain documentation. A notesfile is

a sequence of notes, each of which may have a sequence of responses; each note or response has a

title, author, and creation time. To maintain consistency, updates to notesfiles are transmitted

among networked systems using the standard electronicmail facility.A libraryand standard

interfacepermits userprograms to submit notes and responses.This libraryhas been used in the

construction of automatic logging and error reporting facilitiesin both software and test

harnesses. Notesfilesare used with ENCOMPASS to automate the change controlsystem.
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Figure 42 also shows the basic implementation of the ENCOMPASS change control system.

User change requests enter the system by electronic mail and are stored in the User Change

Requests notesfile. In the automated system, a change request is a form that can be filled in

manually or can be generated by software error reporting tools; using the notesfile/mail inter-

face, change requests can be generated from either local or remote sources. Program

modification requests and program modification plans are tasks, which are passed between the

Change Control Board and the analysts via work trays of the same names. The Board and the

programmers also use work trays to exchange job specifications and software modification sum-

maries. The notesfile Software Releases allows new versions of controlled software to be distri-

buted to both local and remote sites.

To explain the operation of the change control system in more detail, we will look at an

example of its use. We will follow a change request from its entry into the system through per-

formance of the required modifications and installation of a new system.

8.5.2. An Example of Change Control

Assume that the combinatorics project described earlier in this chapter has been completed;

versions of factorial and k_comb are stored in the global repository. Figure 43 shows that concep-

tually these versions appear in the repository as independent entities. Actually, they are inter-

dependent; a storage management system can make use of this fact to optimize disk usage.

Assume that a user is dissatisfied with the performance of the factorial procedure; he enters

a request for enhancement into the change control system by placing a note in User Change

Requests. When the Change Control Board manager inspects the notesfile, he finds the request

and creates a task called modify.factorial in his workspace. This task contains not only a
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Figure 43. Global repository containing versions of k_combinatio_s base view

description of the problem, but a view of the combinatorics project_library which is stored in the

global repository; Figure 44 shows that the components of combinatoric8 can be accessed read-

only using this view. After the task is created, the manager transfers it to the Program

Modification Request tray for examination by an analyst; the analyst transfers the task to an in-

progress tray in order to process it. The analyst examines the user's request and uses the view of

combinatorics to inspect the current implementation. When his study is complete, the analyst

creates a document describing the steps necessary to effect the desired changes and transfers the

task to the Change Control Board through the Program Modification Plan tray.

When the Change Control Board manager receives the program modification plan, he

transfers the task to his in-progress tray and convenes the Change Control Board. The Board

discusses the plan and accepts the proposed modifications; the manager must then produce a job
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Figure 44. Workspace containing view of combinatorics

specification for the programmer. In order to effect the changes, the necessary components are

checked out of the global repository into the task. This involves both replacing the images by

actual objects and locking the modules in the repository to prevent conflicting modifications by

other programmers. If desired, the next version number for the objects to be modified can also
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he assigned at thistime. When check out iscompleted, the task istransferredto a programmer

using the Job Specificationtray.

When the programmer receivesthe task he transfersit into an in-progresstray in his

workspace and performs the requiredchanges. The programmer not only modifiesthe source

code forfactorial,but checks that the documentation, testcases and proof of correctnessare all

up to date. Figure 45 shows the new version of combinatoricsdeveloped by the programmer;

only the factorialmodule is modified.When the modificationsare complete,the programmer

createsa document summarizing the modificationsand transfersthe task to the Change Control

Board using the Software Modification Summary tray.

When the software modificationsummary is received,the manager again convenes the

Change Control Board. The Board evaluatesthe modificationsand makes a recommendation as

to whether the work constitutesa validversion4. In our example, the modificationspass the

review, and the manager checks the new version of combinatorics into the globalrepository.

Check in involvesboth storingthe modifiedsoftware and releasingthe lockson the modifiedcom-

ponents. Figure 46 shows the globalrepositoryaftercheck in iscomplete. The manager then

announces a new release of combinatorics through the Software Release notesfile; if desired, the

source code could also be distributed automatically.

ENCOMPASS is an environment for programming-in-the-large using the PLEASE execut-

able specification language. It supports the use of IDEAL as an environment for programming-

in-the-small. In this chapter, we have described ENCOMPASS in detail and given examples of

its use. ENCOMPASS is based on Fairley's traditional or waterfall life-cycle[88], extended to

4 In a more complex change control system, the evaluation of the new software might be performed by ffiquality as-
surance group;ourmodeland imp|ement_tionareeasilyextendedtosupportthis.



152

I

i

!

.°oo°°°. Io°.°°o°°o°°°°oo°.o°° °°J°.o°°l °O°°OO°OO°QO°O,t'°°Q°°°'°'°'..°O°°° °°°

Global Repository

Project Library

I

• ,......e............o.,.........,.....o.e...f. lee...*.,.*..• .*............. • •
I

t

I

• .......I.*... ,.°°.***loo°e***°.e;e..o**oo...t°l*°.°.°l*oe*.°.°°oo.*°.°°°oo*o-

I

Frogrammer's Workspace

Legend: O entity ___,-image ->- projects onto

Figure 45. Workspace containing modified view of contbin_torics project

I
I

1

t

I

I

I

q

t

I

1

J



i
i
I

153

Global Repository

.............o....o..°........ooooo._...o..o...t....o...o.........o..o.. ........ *_°_o*_°_-_._._o6o._._°°_°_°°_°_O_o_°_°_°_

Figure 46. New version of eombinatorics installed in global repository

support the use of executable specifications and VDM. In ENCOMPASS, the traditional life-

cycle is extended to include a separate phase for user validation; the design and implementation

steps are also combined into a single refinement phase. In ENCOMPASS, the user accesses and

modifies components using a set of software development tools. The configuration management

system structures the software components developed by a project and stores them in a project

data base. The project management system uses facilities provided by the configuration manage-

ment system to control both access to the data base and interactions between developers.

In ENCOMPASS, software is modeled as entitle8 which have relationships between them.

These entities can be structured into complex hierarchies which may be accessed through

different ,,Jews. The project management system implements a management by objectives[106]

approach to software development; each phase in the life-cycle satisfies an objective by producing
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a milestone which can be recognized by the system. ENCOMPASS can be used with a central

repository to support software reuse; specifications, source and object code, documentation, test

cases, and proofs of correctness can all be stored and retrieved. An automated change control

scheme can be implemented using ENCOMPASS, the global repository and Notesfiles.

At present, the implementation of ENCOMPASS is skeletal; the major components have all

been implemented, but are not particularly robust or user-friendly. Even with this limitation,

we feel the work is promising; we believe that the use of future environments similar to ENCOM-

PASS will enhance the development, reuse, and maintenance of software.
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CHAPTER 9.

SUMMARY AND CONCLUSIONS

In this dissertation we have described PLEASE[232-234], an Ada-based, wide-spectrum,

executable specification and design language; IDEAL[231], an environment for programming-in-

the-small using PLEASE; and ENCOMPASS[52,230,231], a simple environment for

programming-in-the-large. Together, these form an integrated system to support incremental

software development in a manner similar to VDM. In ENCOMPASS, software is specified using

a combination of natural language and PLEASE. In PLEASE, software can be specified using

Horn clauses: a subset of first-order, predicate logic. In ENCOMPASS, PLEASE specifications

can be incrementallyrefinedintoAda implementations. Each step isverifiedbeforethe next is

applied;therefore,errorscan be detectedand correctedsooner and at lower cost. In ENCOM-

PASS, refinementstepscan be verifiedusingpeerreview,testing,or prooftechniques.

Executable prototypes can be automaticallyconstructed from PLEASE specificationsby

translatingpre- and post--conditionsintoProlog procedures. PLEASE prototypes are based on

existingProlog technology,and theirperformance willimprove as the speed ofProlog implemen-

tationsincreases(commercial Prolog compilerswhich produce nativecode compatible with con-

ventionallanguages are alreadyavailable[5]).As logicprogramming progresses,new versionsof

PLEASE can be builtbased on more powerfullogics.

PLEASE prototypes can enhance thevalidation,design,and verificationprocesses.During

the validationphase,theseprototypesmay be used in interactionswith the customers;they may

be subjectedto a seriesof tests,be deliveredto the customers for experimentationand evalua-

tion,or be installedforproductionuse on a trialbasis.PLEASE prototypes can alsobe used to

!
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verify the correctness of refinements. Most simply, the prototype produced from a PLEASE

specification can be used as a test oracle against which implementations are compared. In a more

complex case, the prototypes produced from the original and refined specifications can be run on

the same data and the results compared. PLEASE specifications also enhance the verification of

system components using proof techniques; for the purpose of formal verification, the refinement

process can be viewed as the construction of a proof in the Hoare calculus[120,163].

IDEAL is an environment concerned with the specification, prototyping, implementation

and verification of single modules. IDEAL provides facilities to create PLEASE specifications,

construct prototypes from these specifications, validate the specifications using the prototypes

produced, refine the validated specifications into Ada implementations, and verify the correctness

of the refinement process. IDEAL is an environment for the rigorous[134] development of pro-

grams. Although detailed mechanical proofs are not required at every step, the framework is

present so that they can be constructed if necessary. Proofs may range from a very detailed,

completely formal proof using mechanical theorem proving, to a development "annotated" with

unproven verification conditions. Parts of a project may use detailed mechanical verification

while other, less critical parts may be handled using less expensive techniques. Our experience so

far leads us to believe that the complete, mechanical verification of large programs will be prohi-

bitively expensive; however, inexpensive methods can eliminate a large percentage of the

verification conditions generated during a development. By eliminating these "trivial"

verification conditions, the total number is reduced so that the verification conditions remaining

can be more carefully considered by the development personnel.

ENCOMPASS provides facilities to store, track, manipulate and control all the objects used

in the software development process: documents, specifications, source code, proofs, test data,
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and load modules are all supported. ENCOMPASS also provides mechanisms to support the

interactions among developers; the system allows the creation, decomposition, distribution, moni-

toring and completion of tasks. In ENCOMPASS, the configuration management system struc-

tures the software components developed by a project, while the project management system uses

facilities provided by the configuration management system to control both access to data and

interactions between developers. ENCOMPASS is based on a traditional life-cycle, modified to

support the use of executable specifications and VDM. In ENCOMPASS, some modules of a sys-

tem may be developed using PLEASE and IDEAL, while others are developed using conventional

t.echniques.This allowsthe practicalpower ._._.^rAds and the formal power ._..-rPLEASE to be com-

bined in a singleproject. ENCOMPASS can be extended with a centralrepositoryto support

software reuse;we have alsoconstructedan automated change controlsystem based on ENCOM-

PASS.

9.1. System Status

The ENCOMPASS environment has been under development since 1984. A prototype

implementation has been operationalsince1986;itiswrittenin a combination of C, Csh I,Prolog

and Ada. The prototype implementation of IDEAL includesthe tools necessary to support

software development using PLEASE: an initialversionof ISLET, the language-orientededitor

used to createPLEASE specificationsand refinethem intoAda implementations;software which

automaticallytranslatesPLEASE specificationsintoProlog proceduresand generatesthe support

code necessaryto callthese proceduresfrom Ada; the run-time support routinesand axiom sets

for a number of pre-definedtypes;and interfacesto the ENCOMPASS testharness and TED.

Csh is a command interpreteron Unix which supports many of the features found in modern programming

languages. A sequence of shellcommands may be saved and run as a program.

a



158

PLEASE, IDEAL and ENCOMPASS have been used to develop a number of programs, including

specification, prototyping, and mechanical verification. At present, all the programs developed

have been less than one hundred lines in length, but some have included more than one module,

allowing demonstrations of the ENCOMPASS configuration control and project management sys-

tems.

The subset of PLEASE currently implemented includes the if, while, and assignment state-

ments, as well as procedure calls with in, out or in out parameters. The language now supports a

small, fixed set of types including natural numbers, lists and characters. The current implemen-

tation of PLEASE is based on the UNSW Prolog interpreter[208] and the Verdix Ads Develop-

ment System[10]; it runs under Berkeley Unix on a Sun 2/170. The Prolog interpreter and Ada

program run as separate processes and communicate through pipes 2. This implementation is

somewhat expensive; for example, there is a five CPU second overhead to start the Prolog inter-

preter, but this is incurred only once during program execution. A procedure call from Ada to

Prolog costs about forty milliseconds excluding parameter conversion. As an example of actual

performance, the sort prototype produced from the specification given in Chapter 4 can process a

list of length four in an average of .9 seconds and a list of length five in an average of 4.7 seconds.

The combination of algebraic simplification and simple proof tactics implemented in ISLET

seems to work very well; in our experience, it can eliminate between fifty and ninety per cent of

the verification conditions generated during refinement. For example, the design transformation

presented in Chapter 6 consists of twenty-six steps, only two of which generated verification con-

ditions that could not be certified by these methods. The example presented in Chapter 7 also

consists of twenty six steps, only four of which generated verification conditions that did not

ZPipes axe a buffering mechanism implemented in Unix.
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yield to the simple approach. The simple methods run very quickly: less than one second

response time in all the cases examines so far. The use of TED is very expensive; for example,

the first verification condition in Figure 25 can be certified in about five CPU seconds simply by

invoking the theorem prover on the file produced by ISLET. The second verification condition in

Figure 25 can not be proved in this manner; it requires a considerable investment of user time to

decompose it into a number of lemmas.

9.2. Future Research

The research described in this dissertation is presently at the _proof of concept" stage: we

have demonstrated that an integrated environment to partially automate a development method

similar to VDM can be constructed, and it seems likely our implementation can scale up. We see

the project developing in five main directions. For one, the current implementation is primitive

at best and skeletal at worst. We plan to continue a straight forward expansion of the func-

tionality of ENCOMPASS, as well as constructing a more realistic implementation of the system.

For example, the current configuration and project management systems are rudimentary in

both concept and implementation; the SAGA group is constructing second generation systems

with enhanced functionality and performance[52].

As another example, although commercial Prolog compilers are available, the current

implementation of PLEASE is interpreter-based; we plan to experiment with a Prolog compiler

based implementation of PLEASE. This system will allow us to evaluate a number of technical

problems in a state-of-the-art environment. For example, how easy will it be to freely mix Ada

and Prolog modules? In the current implementation, Ada procedures can not be called during

the execution of a Prolog prototype; there is an Ada to Prolog, but not a Prolog to Ada interface.
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This means that even if an Ada implementation is available, a Prolog implementation must

sometimes be used. Second, it is unclear how easily machine-level data structures can be shared

between Prolog and Ada code. In the current Ada to Prolog interface, all the parameters to a

procedure are converted on both call and return; this is a major barrier to scaling up the imple-

mentation.

A second major direction for future research is the extension of PLEASE itself. For exam-

ple, at present PLEASE supports a small set of pre-defined types; these types were chosen to

expedite the implementation of the translator and proof procedures for the language. We plan to

experiment with extensions to PLEASE that incorporate more complex and difficult to imple-

ment types; we hope to create a new version of the language which strikes a balance between sim-

plicity, expressiveness and efficiency. We also plan to expand the facilities for user type definition

in PLEASE; at present, some type of algebraic approach seems the most promising. We also

plan to experiment with derivatives of PLEASE based on different deduction engines or more

powerful logics; for example, an extension of Prolog for full first-order 1ogic[222] or some form of

narrowing[136,201].

The third major direction is the extension of ENCOMPASS to support artificial intelligence

techniques and knowledge--based tools. In the present implementation, the algebraic simplifier

and simple proof procedures in ISLET incorporate knowledge-bases, but they are difficult to

examine, debug, or extend. We plan to upgrade these implementations as well as investigating

the use of knowledge-based techniques for program synthesis and configuration control. For

example, in a current experiment[229] we are extending ISLET with a knowledge-based assistant

I
I
I
1

which uses deductive synthesis[72,100-102,123,170] techniques. During the refinement process,

the assistant can give advice on routine design and implementation decisions. The assistant also

contains a library of program schemas which can be instantiated during development.
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The fourthmajor area isacquiringexperiencewith the system and collectingexperimental

data on itsperformance. For example, our experienceso far leadsus to believethat the simple

methods in ISLET can certifyfiftyto ninetyper cent of the verificationconditionsgenerateddur-

ing development; however, much more data is needed to substantiatethisclaim. Our plans in

thisarea involvethreephases. In the firstphase,a slightlymodified versionof the currentsys-

tem willbe used ina classroom environment to generate data on the suitabilityof data types and

proof procedures using small testprograms. When thisphase iscompleted, the resultswillbe

used in the designand constructionof a new set of toolswhich can be used in the constructionof

medium sized components. In the third phase, these tools will be put into use.

The fifth major thrust will be the extension of PLEASE, IDEAL and ENCOMPASS to sup-

port more of the software life-cycle; although software development is important, the mainte-

nance phase is currently more costly. At first our work will be mostly conjecture, but much of

the material developed during experimental evaluation of the system can be used in the creation

of a maintenance test bed. Although the work described in this dissertation is preliminary, we

feel it is promising; it will continue at both the University of Illinois and the University of

Colorado. We feel that the use of future environments similar to ENCOMPASS will enhance the

specification, design, implementation and maintenance of software.



162

REFERENCES

I. Special Issue on Rapid Prototyping: Working Papers from the ACM SIGSOFT Rapid Proto-

typing Workshop. Software Engineering Notes (December 1982) vol. 7, no. 5.

2. "Software Configuration Management", Standard 828-1983, IEEE Computer Society, Los
Angeles, California, 1983.

3. Special Issue: Proceedings of VERkshop II[ -- A Formal Verification Workshop. Software
Engineering Notes (February 1984) vol. 10, no. 4.

4. "Peer Review of a Formal Verification / Design Proof Methodology", NASA Conference
Publication 2377, 1985.

5. "Quintus Prolog Users Guide and Reference Manual (Version 3)", Quintus Computer Sys-
tems, Pals Alto, California, 1985.

6. Special Issue on the Gandalf Environment. Journal of Systems and Software (May,
1985) vol. 5, no. 2.

7. Proceedings of the Conference on Object-Oriented Programming Systems,

Languages and Applications. ACM, Baltimore, MD, 1986.

8. Proceedings of the International Workshop on the Software Process and Software Environ-

. merits. Software Engineering Notes (August 1986) vol. 11, no. 4.

9. Proceedings of the NRL Invitational Workshop on Testing and Proving: Two Approaches to

Assurance. ACM Software Engineering Notes (October 1986) vol. 11, no. 5, pp. 63-85.

10. "VADS Reference Manual", Verdix Corporation, Chantilly, Virginia, 1986.

11. Proceedings of the 4th International Workshop on Software Specification and
Design (April 1987).

12. Agnarsson, Snorri and M. S. Krishnamoorthy. Towards a Theory of Packages. Proceedings

of the ACM SIGPLA_N 85 Symposium on Language Issues in Programming
Environments (June, 1985) pp. 117-130.

13. Alagic, Suad and Michael A. Arbib. The Design of Weil-Structurecl and Correct Pro-
grams. Springer-Verlag, New York, 1978.

14. Apt, Krzysztof R. Ten Years of Hoare's Logic: A Survey - Part L ACM Transactions on

Programming Languages and Systems (October 1981) vol. 3, no. 4, pp. 431-483.

15. Auernheimer, Brent and Richard A. Kemmerer. R T-ASLAN: A Specification Language for

Real-Time Systems. LEEE Transactions on Software Engineering (September 1986)
vol. SE-12, no. 9, pp. 879-889.

16. Balzer, Robert. A 15 Year Perspective on Automatic Programming. IEEE Transactions

on Software Engineering (November 1985) vol. SE-11, no. 11, pp. 1257-1268.

17. Balzer, Robert, Thomas E. Cheatham and Cordell Green. Software Technology in the

1990's: Using a New Paradigm. IEEE Computer (November 1983) vol. 16, no. 11, pp. 39-
45.

!

I

!

I

1

I



I

I
I

I
i

I

I
I

I
I
I
I

I

i

I
I
I

I

163

18. Barstow, David R. On Convergence Toward a Database of Program Transformations. ACM

Transactions on Programming Languages and Systems (January 1985) vol. 7, no. 1,

pp. 1-9.

19. --. Artificial Intelligence and Software Engineering. Proceedings of the 9th Interna-

tional Conference on Software Engineering (1987) pp. 200-211.

20. Baskette, Jerry. Life Cycle Analysis of art Ads Project. IEEE Software (January 1987) vol.

4, no. 1, pp. 40-47.

21. Bates, Joseph L. and Robert L. Constable. Proofs as Programs. ACM Transactions on

Programming Languages and Systems (January 1985) vol. 7, no. 1, pp. 113-136.

22. Belkhouche, Boumediene and Joseph E. Urban. Direct Implementation of Abstract Data

Types from Abstract Specifications. IEEE Transactions on Software Engineering (May
1986) vo!. SE-12, no. 5, pp. 649-661.

23. Benzinger, Lee A. "An Abstract Model for the Stepwise Development of Programs", Report

No. UIUCDCS-R-87-1335, Dept. of Computer Science, University of Illinois at Urbana-

Champaign, 1987.

24. --. "A Model and a Method for the Stepwise Development of Verified Programs", Report

No. UIUCDCS-R-87-1339, Dept. of Computer Science, University of Illinois at Urbana-

Champaign, 1987.

25. Bernstein, Philip A. Database System Support for Software Engineering. Proceedings of

the 9th International Conference on Software Engineering (1987) pp. 166-178.

26. Berry, Daniel M. Towards a Formal Basis for the Formal Development Method and the Ina

Jo Specification Language. IEEE Transactions on Software Engineering (February

1987) vol. SE-13, no. 2, pp. 184-201.

27. Bersoff, Edward H. Elements of Software Configuration Management. IEEE Transactions

on Software Engineering (January 1984) vol. SE-10, no. 1, pp. 79-87.

28. Bersoff, E. H. Software Configuration Management: A Tutorial. IEEE Computer (January,

1979).

29. Berzins, Valdis and Michael Gray. Analysis and Design in MSG.&[: Formalizing Functional

Specifications. [EEE Trtmsaations on Software Engineering (August 1985) vol. SE-11,

no. 8, pp. 657-670.

30. Beshers, George M. and Roy H. Campbell. Maintained and Constructor Attributes.

Proceedings of the ACM SIGPLAN 85 Symposium on Language Issues in Pro-

cramming Environments (June 1985) pp. 34-42.

31. Biggerstaff, Ted and Charles Richter. Reusability Frame_oork, Assessment, and Directions.

IEEE Software (March 1987) vol. 4, no. 2, pp. 41-49.

32. Bjorner, Dines. On The Use of Formal Methods in Software Development. Proceedings of

the 9th International Conference on Software Engineering (1987) pp. 17-29.

33. Bjorner, D., T. Denvir, E. Meiling and J. S. Pedersen. "The RAISE Project - Fundamental

Issues and Requirements", RAISE/DDC/EM/1, Dansk Datamatik Center, 1985.



164

34. Bjorner, D. and Cliff B. Jones. Formal Specification and Software Development.

Prentice-Hall, Englewood Cliffs, N.J., 1982.

35. Bloomfield, Robin E. and Peter K. D. Froome. The Application of Formal Methods to the

Assessment of High Integrity Software. IEEE Transactions on Software Engineering
(September 1986)vol. SE-12, no. 9, pp. 988-993.

36. Blum, Bruce I. The Life-Cycle - A Debate Over Alternative Models. Software Engineer-

ing Notes (October 1982) vol. 7, pp. 18-20.

37. The Tedium Development Environment for Information Systems. IEEE Software
(March 1987) vol. 4, no. 2, pp. 25-34.

38. Boehm, Barry W., Terence E. Gray and Thomas Seewaldt. Prototyping Vs. Specifying: a
Multi-Project Ezperiment. Proceedings of the 7th International Conference on

Software Engineering (1984) pp. 473-484.

39. Booth, Grady. Object-Oriented Development. IEEE Transactions on Software

Engineering (February 1986) vol. SE-12, no. 2, pp. 211-221.

40. Bowen, Kenneth A. New Directions in Logic Programming. Proceedings of the ACM

Computer Science Conference (February 1986) pp. 19-27.

41. Britcher, Robert N. and James J. Craig. Using Modern Design Practices to Upgrade Aging

Software Systems. IEEE Software (May 1986) vol. 3, no. 3, pp. 16-24.

42. Britcher, Robert N. and Allan R. Moore. Increased Productivity Through the Use of

Software Engineering in an Industrial Environment. Proceedings of the IEEE Computer

Software and Applications Conference (1981) pp. I99-205.

43. Brooks, Frederick P., Jr. No Silver Bullet. IEEE Computer (April 1987) vol. 20, no. 4, pp.
10-19.

44. Buckle, J. K. Software Configuration Management. Scholium International Inc., Great
Neck, N.Y., 1982.

45. Burstall, R. M. and John Darlington. A Transformation System for Developing Rccursive

Programs. Journal of the ACM (January 1977) vol. 24, no. 1, pp. 44-67.

46. Buxton, J. N. and V. Stenning. "Requirements for ADA Programming Support Environ-
ments, Stoneman", U.S. Dept. Defense, 1980.

47. Campbell, Roy H. and Robert B. Terwilliger,. The SAGA Approach to Automated Project

Management. In: International Workshop on Advanced Programming 'Environ-

ments, Lynn R. Carter, ed. Springer-Verlag Lecture Notes in Computer Science, New
York, 1986, pp. 145-159.

48. Campbell, Roy H. SAGA: A Project to Automate the Management of Software Production

Systems. In: Software Engineering Environments, Ian Sommerville, ed. Peter Peri-
grinus Ltd, 1986.

49. Campbell, R. H. and A. N. Habermann. The Specification of Process Synchronization by

Path Ezpressions. In: Lecture Notes in Computer Science, Vol. 16, G. Goos J. Hart-
manis, ed. Springer-Verlag, 1974, pp. 89-102.

l

l
l
I
!

I
l

I

I
l

l
I

I

I
I
l
i
l



165

50. Campbell, Roy H. and PeterA. Kirslis.The SAGA Project:A System for SoftwareDevelop-

ment. Proceedings of the ACM SIGSOFT/SIGPLA_N Software Engineering Sym-

posium on Practical Software Development Environments (April1984)pp. 73-80.

51. Campbell, Roy H. and Robert B. Kolstad.Path EzpressionsinPascal.Proceedings of the

Fourth International Conference on Software Engineering (September 1979).

52. Campbell, R. H., H. Render, R. N. Sum, Jr. and R. B. Terwilliger."Automating the

Software Development Process",Report No. UIUCDCS-R-87-1333, Dept. of Computer Sci-

ence,Universityof Illinoisat Urbana-Champaign, 1987.

53. Campbell, Roy H. and Paul G. Richards. SAGA: A system to automate the management of

software production. Proceedings of the National Computer Conference (May 1981)

pp. 231-234.

54. Chang, Chin-Liang and Richard Ch_-Tung Lee. Symbolic Logic and Mechanical

Theorem Proving. Academic Press, New York, 1973.

55. Cheatham, Thomas E., Jr. Reusability Through Program Transformations. IEEE Transac-

tions on Software Engineering tc_.wemuer 19o4) vol. SE-10, no. =7 pp. 589-594°

56. Cheatham, Thomas E., Glenn H. Holloway and Judy A. Townley. Program Refinement By

Transformation. Proceedings of the 5th International Conference on Software

Engineering (1981) pp. 430-437.

57. Chen, Peter Pin-Shan. The Entity-Relationship Model - Toward a Unified View of Data.

ACM Transactions on Database Systems (March 1971}) vol. 1, no. 1, pp. 9-36.

58. _. ER - A Historical Perspective and Future Directions. In: The Entity-Relationship

Approach to Software Engineering, S. Jajodia C. G. Davis P. A. big and R. T. Yeh, ed.

Elsevier Science, 1983, pp. 71-77.

59. Clarke, Edmund Melson, Jr. Programming Language Constructs for Which It Is Impossible

To Obtain Good Hoare Style A=iom Systems. Journal of the ACM (January 1979) vol. 26,

no. 1, pp. 129-147.

60. Clocksin, W. F. and C. S. Mellish. Programming in Prolog. Springer-Verlag, New York,
1981.

61. Cohen, Jacques. Describing Prolog by Its Interpretation and Compilation. Communica-

tions of the ACM (December 1985) vol. 28, no. 12, pp. 1311-1324.

62. Colmerauer, Alain. Prolog in 10 Figures. Communicationa of the ACM (December 1985)

vol. 28, no. 12, pp. 1296-1310.

63. Constable, Robert L. and Michael J. O'Donnell. A Programming Logic. Winthrop Pub-

lishers, Cambridge, Massachusetts, 1978.

64. Cottam, I. D. The Rigorous Development of a System Version Control Program. IEEE

Transactions on Software Engineering (March 1984) vol. SE-10, no. 3, pp. 143-154.

65. Cowell, Wayne R. and Leon J. Osterweil. The Toolpack/IST Programming Environment.

Proceedings IEEE Softfalr (1983) pp. 326-333.



166

66. Dalen, Dirk van. Logic and Structure. Springer-Verlag, New York, 1983.

67. Davis, Ruth E. Runnable Specification as a Design Tool. In: Logic Programming, K. L.

Clark and S. A. Tarnlund, ed. Academic Press, London, 1982, pp. 141-149.

68. . Logic Programming and Prolog: A Tutorial IEEE Software (September 1985) vol. 2,
no. 5, pp. 53-62.

69. Davis, Carl G. and Charles R. Vick. The Software Development System. In: Tutorial:

Automated Tools for Software Engineering, Edward Miller, ed. IEEE Computer

Society, New York, 1979, pp. 138-153.

70. Defense, U. S. Dept. Reference Manual for the ADA Programming Language

A2qSI/MIL-STD-1815A-1983. Springer-Verlag, New York, 1983.

71. DeMillo, R. A., R. J. Lipton and A. J. Perlis. Social Processes and Proofs of Theorems.

Communications of the ACM (May, 1979) vol. 22, no. 5, pp. 271-280.

72. Dershowitz, Nachum. Synthetic Programming. Artificial Intelligence (1985) vol. 25, pp.
323-373.

73. Diaz-Gonzalez, Jose P. and Joseph E. Urban. ENVISAGER: A Visual, Object-Oriented

Specification Environment for Real-Time Systems. Proceedings of the 4th Interna-

tional Workshop on Software Specification and Design (April 1987) pp. 13-20.

74. Dickover, Melvin E., Clement L. McGowan and Douglas T. Ross. Software Design Using

SAD T. Proceedings of the ACM National Conference (October 1977) pp. 125-133.

75. Dijkstra, E. W. Structured Programming. In: Software Engineering Principles, J. N.

Buxton and B. Randall, ed. NATO Science Committee, Brussels, Belgium, 1970.

76. . A Discipline of Programming. Prentice Hall, Englewood Cliffs, New Jersey, 1976.

77. Dolotta, T. A. and J. R. Mashey. An Introduction to the Programmer's Workbench. In:

Tutorial: Automated Tools for Software Engineering, Edward Miller, ed. IEEE Com-

puter Society, New York, 1979, pp. 154-158.

78. Dowson, Mark. ISTAR - An Integrated Project Support Environment. Proceedings of the

Second ACM SIGSOFT/SIGPLAN Software Engineering Symposium on Practi-

cal Software Development Environments (December 1986) pp. 27-33.

79. Dwiggins, Don. Prolog as a System Design Tool. Proceedings of the 18th Annual

Hawaii International Conference on System Sciences (1983) pp. 14-23.

80. Embley, David W. and Scott N. Woodfield. A Knowledge Structure for Reusing Abstract
Data Types. Proceedings of the 9th International Conference on Software

Engineering (1987) pp. 360-368.

81. Enderton, Herbert B. A Mathematical Introduction to Logic. Academic Press, New
York, 1972.

82.

83.

Engel, S. Morris. The Study of Philosophy. Holt, Rinehart and Winston, New York,
1981.

Essick, Raymond B., IV. "Notesfiles: A Unix Communication Tool", M.S. Thesis, Dept. of

Computer Science, University of Illinois at Urbana-Champaign, 1984.

l

I
I

I
l
I
l

I
I

I
I
l

I

i
I
I
I
I



167

84. Essick, Raymond B., IV and Robert B. Kolstad. "Notesfile Reference Manual", Report No.

UIUCDCS-R1081, Dept. of Computer Science, University of Illinois at Urbana-Champaign,
1982.

85. Estublier, J. Ezperience with a Data Base of Programs. Proceedings of the Second ACM

SIGSOFT/SIGPLAN Software Engineering Symposium on Practical Software

Development Environments (December 1986) pp. 27-33.

86. Estublier, J., S. Ghoul and S. Krakowiak. Preliminary Ezperience with a Configuration Con-

trol System for Modular Programs. Proceedings of the ACM SIGSOFT/SIGPLA_

Software Engineering Symposium on Practical Software Development Environ-

ments (April 1984) pp. 149-156.

87. Fagan, Michael E. Advances in Software Inspections. IEEE Transactions on Software

Engineering (July 1986) vol. SE-12, no. 7, pp. 744-751.

88. Fairley, Richard. Software Engineering Concepts. McGraw-Hill, New York, 1985.

89. Floyd, R. W. Assigning Meanings to Programs. Proceedings of the AMS Symposium

on Applied .Mathematics (1967) volo i9, pp. 19-32.

90. Futatsugi, Kokichi, Joseph Goguen, Jose Meseguer and Koji Okada. Parameterized Pro-

gramming in OBJ,,. Proceedings of the 9th International Conference on Software

Engineering (1987) pp. 51-60.

91. Gannon,-John, Paul McMullin and Richard Hamlet. Data-Abstraction Implementation,

Specification, and Testing. ACM Transactions on Programming Languages and Sys-

terrm (July 1981) vol. 3, no. 3, pp. 211-223.

92. Gehani, Narain and Andrew D. McGettrick (eds.). Software Specification Techniques.

Addison Wesley, Reading, Massachusetts, 1986.

93. Godel, Kurt. Uber Formal Unentscheidbare Satze der Principia Mathematics und

V'erwandter Systeme/. In: From Frege to Godel, J. van Heijenoort, ed. Harvard Univer-

sity Press, Cambridge, Mass., 1967.

94. Goguen, Joseph A. Reusing and Interconnecting Software Components. Computer (Febru-

ary 1986) vol. 19, no. 2, pp. 16-28.

95. Goguen, Joseph A. and Jose Meseguer. Rapid Prototyping in the OB] Ezeeecutable

Specification Laguage. Software Engineering Notes (December 1982) vol. 7, no. 5, pp.
75-84.

96. . Equality, Types, Modules and (why notf) Generics for Logic Programming. Logic

Programming (1984) vol. 1, no. 2, pp. 179-210.

97. _. Remarks on Remarks on Many-Sorted Equational Logic. SIGPLA2N Notices (April

1987) vol. 22, no. 4, pp. 41-48.

98. Goguen, Joseph, James Thatcher and Eric Wagner. An Initial Algebra Approach to the

Specification, Correctness and Implementation of Abstract Data Types.. In: Current

Trends in Programming Methodology, IV, Raymond Yeh, ed. Prentice-Hall, London,

1978, pp. 80-149.



168

109.

99. Goldberg, Adele. Smalltalk-80: The Interactive Programming Environment.

Addison-Wesley, Reading, MA, 1984.

100. Goldberg, Allen T. Knowledge-Based Programming: A Survey of Program Design and Con-

struction Techniques. IEEE Transactions on Software Engineering (July, 1986) vol.
SE-12, no. 7, pp. 752-768.

101. Green, Cordell. Application of Theorem Proving to Problem Solving. Proceedings of the

First IJCAI (1969) pp. 219-239.

102. _. Theorem-Proving by Resolution as a Basis for Question-Answering Systems. In:

Machine Intelligence 4, B. Meltzer and D. Michie, ed. American Elsevier, New York,

1969, pp. 183-205.

103. Greenbaum, Steven. "Input Transformations and Resolution Implementation Techniques for

Theorem Proving In First-Order Logic", Ph. D. Dissertation, Dept. of Computer Science,

University of Illinois at Urbana-Champsign, 1986.

104. Gries, David. The Science of Programming. Springer-Verlag, New York, 1981.

105. Gries, David and Jan Prins. A New Notion of Encapsulation. Proceedings of the ACM

SIGPLA.N 85 Symposium on Language T_sues in Programming Environments
(June, 1985) pp. 131-139.

106. Gunther, R. Management Methodology for Software Product Engineering. Wiley
Interscience, New York, 1978.

107. Guttsg, J. V. and J. J. Homing. The Algebraic Specification of Abstract Data Types. Acta
Informatica (1978) vol. 10, pp. 27-52.

108. --. Formal Specification as a Design Tool. Proceedings of the 7th ACM Symposium

on the Principles of Programming Languages (1980) pp. 251-261.

Guttag, John V., James J. Homing and Jeannette M. Wing. The Larch Family of

Specification Languages. IEEE Software (September 1985) vol. 2, no. 5, pp. 24-36.

110. Guttag, John V., Ellis Horowitz and David R. Musser. Abstract Data Types and Software

Validation. Communications of the ACM (December 1978) vol. 21, no. 12, pp. 1048-
1063.

111.

112.

113.

114.

Habermann, A. Nico and David Notkin. Gandalf: Software Development Environments.

IEEE Transactions on Software Engineering (December 1986) vol. SE-12, no. 12, pp.
1117-1127.

Halpern, J. Daniel,Sam Owre, Norman Proctor and William F. Wilson. Muse - A Com-

puter Assisted Verification System. IEEE Transactions on Software Engineering
(February 1987) vol. SE-13, no. 2, pp. 151-156.

Hamilton, A. G. Logic for Mathematicians. Cambridge University Press, Cambridge,
1978.

Hamilton, Margaret and Saydean Zeldin. Higher Order Software - A Methodology for

Defining Software. In: Tutorial: Automated Tools for Software Engineering, Edward

Miller, ed. IEEE Computer Society, New York, 1979, pp. 72-95.

l

I

I

i

I

I

I

I

I

I

I

I

I

I

I

I

I

I



I

I

I

I
I

I

I

I
I
I
I
I

I

I

I
l
I
I

169

115. Hammerslag, David H., Samuel N. Kamin and Roy H. Campbell. Tree-Oriented Interactive

Processing with an Application to Theorem-Proving. Proceedings of the Second
ACM/IEEE Conference on Software Development Tools, Techniques, and Alter-

natives (December, 1985).

116. Hansson, Ake and Sten-Ake Tarnlund. Program Transformation by Data Structure Map-

ping. In: Logic Programming, K. L. Clark and S. A. Tarnlund, ed. Academic Press, Lon-

don, 1982, pp. 117-122.

117. Hatcher, William S. Foundations of Mathematics. W. B. Sounders, Philadelphia, 1968.

118. Henderson, Peter. Functional Programming, Formal Specification, and Rapid Prototyping.

IEEE Transactions on Software Engineering (February, 1986) col. SE-12, no. 2, pp.
241-250.

119. Henderson, Peter B. (ed.). Proceedings of the ACM SIGSOFT/SIGPL.4-N Software

Engineering Symposium on Practical Software Development Environments.,
1986.

120. Hoare, C. A. R. An Axiomatic Basis for Computer Programming. Communications of the

ACM (October 1969) col. 12, no. 10, pp. 576-580.

121. _. Proof of Correctness of Data Representations. Acta Informatica (1972) col. 1, pp.
271-281.

122. Hoare, C. A. R. and N. Wirth. An Axiomatic Definition of the Programming Language PAS-

CAL. Acta In formatiea (1973) v0l. 2, pp. 335-355.

123. Hogger, C. J. Derivation of Logic Programs. Journal of the Anociation for Computing

Machinery (April 1981) col. 28, no. 2, pp. 372-392.

124. Hopcroft, John E. and Jeffrey D. Ullman. Introduction to Automata Theory,

Languages and Computation. Addison-Wesley, Reading, MA, 1979.

125. Horowitz, Ellis and John B. Munson. An Expansive View of Reusable Software. IEEE

Transactions on Software Engineering (September 1984) col. SE-10, no. 5, pp. 477-
487.

126. Horowitz, Ellis and Ronald C. Williamson. SODOS: A Software Documentation Support

Environment - Its Definition. IEEE Transactions on Software Engineering (August

1986) col. SE-12, no. 8, pp. 849-859.

127. Howden, William E. Contemporary Software Development Environments. Communica-

tions of the ACM (May 1982) col. 25, no. 5, pp. 318-329.

128. Huff, Karen E. A Database Model for Effective Configuration Management in the Program-

ming Environment. Proceedings IEEE 5th International Conference on Software

Engineering, San Diego, CA (March 1981) pp. 54-61.

129. Jackson, M. System Development. Prentice-Hall, Englewood Cliffs, N.J., 1983.

130. Jackson, M. L Developing Ada Programs Using the Vienna Development Method (VDM).

Software - Practice and Experience (March 1985) col. 15, no. 3, pp. 305-318.

131. Jalote, Pankaj. Specification and Testing of Abstract Data Types. Proceedings of the

IEEE Computer Software and Applications Conference (November 1983) pp. 508-
511.

I



170

132. Jensen, Randall W. and Charles C. Tonics. Software Engineering. Prentice-Hall, Engle-
wood Cliffs, New Jersey, 1979.

133. Jones, Cliff B. Constructing a Theory o/ a Data Structure as an Aid to Program Develop-
ment. Acts Information (1979) vol. 11, pp. 119-137.

134. _. Software Development: A Rigorous Approach. Prentice-Hall International,
Engelwood Cliffs, N.J., 1980.

135. Tentative Steps Toward a Development Method for Interfering Programs. ACM

Transactions on Programming Languages and Systems (October 1983) vol. 5, no. 4,
pp. 596-619.

136. Josephson, Alan and Nachum Dershowitz. An Implementation of Narrowing: The RITE

Way. Proceedings of the Symposium on Logic Programming (1986).

137. Kaiser, Gall E. and Peter H. FeUer. An Architecture for Intelligent Assistance in Software
Development. Proceedings of the 9th International Conference on Software

Engineering (1987) pp. 180-188.

138. Kamel, Ragui F. Effect o/Modularity on System Evolution. IEEE Software (January 1987)
vol. 4, no. 1, pp. 48-55.

139. Kamin, Samuel. Final Data Types and Their Specification. ACM Transactions on Pro-

gramming Languages and Systems (January 1983) vol. 5, no. 1, pp. 97-121.

140. Kamin, S. N., S. Jefferson and M. Archer. The Role of Ezecutable Specifications: The FASE

System. l_roceedings of the IEEE Symposium on Application and Assessment of

Automated Tools for Software Development (November 1983).

141. Karp, Richard M. Combinatorics, Complezity, and Randomness (1985 Turing Award Lec-

ture). Communications of the ACM (February 1986) vol. 29, no. 2, pp. 98-109.

142. Katz, Shmuel, Charles A. Richter and K_he-Sing The. PARIS: A System for Reusing Par-

tially Interpreted Schemas. Proceedings of the 9th International Conference on

Software Engineering (1987) pp. 377-385.

143. Kelly, John C. A Comparison o/four Design Methods for Real-Time Systems. Proceedings

of the 9th International Conference on Software Engineering (1987) pp. 238-252.

144. Kemmerer, Richard A. Testing Formal Specifications to Detect Design Errors. IEEE Tran-

sactions on Software Engineering (January 1985) vol. SE-11, no. 1, pp. 32-43.

145. Kirslis, Peter A. "The SAGA Editor: A Language-Oriented Editor Based on an Incremental

LR(1) Parser (Ph.D. Dissertation)", Report No. UIUCDCS-R-85-1236, Dept. of Computer

Science, University of Illinois at Urbana-Champaign, 1985.

146. Kirslis, Peter A., Robert B. Terwilliger and Roy H. Campbell. The SAGA Approach to

Large Program Development in as Integrated Modular Environment. Proceedings of the

GTE Workshop on Software Engineering Environments for Programming-in-

the-Large (June 1985) pp. 44-53.

147. Knuth, D. E. and P. E. Bendix. Simple Word Problems in Universal Algebra. In: Computa-

tional Problems in Abstract Algebra, J. Leech, ed. Pergamon, New York, 1970, pp.
263-297.

l
I
l

l
I

l
I

I

I
i
I

l
I

l
I

l
I
l



I

I

I

i

I

I

I

I

I

I

i

I

I

I
I

I
I

I

171

148. Komorowski, Henryk Jan. "A Declarative Logic Programming Environment", Report TR-

06-86, Center for Research in Computing Technology, Harvard University (also to appear

in the Journal of Systems and Software), Cambridge, MA, 1986.

149. Komorowski, Henryk Jan and Jan Maluszynski. "Logic Programming and Rapid Prototyp-

ing", Report TR-01-86, Center for Research in Computing Technology, Harvard University

(also to appear in the Science of Computer Programming), Cambridge, MA, 1986.

150. Kornfeld, William A. Equality for Prolog. Proceedings of the International Joint

Conference on A2tifieial Intelligence (1983).

151. Kowalski, Robert. Predicate Logic as a Programming Language. IFIP Proceedings (1974)

pp. 569-574.

152. --. Logic as a Computer Language. In: Logie Programming, K. L. Clark and S. A.

Tarn!und, ed. Academic Press, London, 1982, pp. 3-16.

153. Kruchten, Philippe, Edmond Schonberg and Jacob Schwartz. Software Prototyping Using

the SETL Programming Language. IEEE Software (October 1984) vol. 1, no. 4, pp. 66-75.

154. Lampson, Butler W. and Eric E. Schmidt. Organizing Software in a Distributed Environ-

ment. SIGPLA_N Notices (June 1983) vol. 18, no. 6, pp. 1-13.

155. _. Practical Use of a Polymorphic Applicative Language. Proceedings of the 10th

ACM Symposium on Principles of Programming Languages (January 1983) pp.
237-255.

156. Lanergan, Robert G. and Charles A. Grasso. Software Engineering with Reuseable Designs

and Code. IEEE Transactions on Software Engineering (September 1984) vol. SE-10,

no. 5, pp. 498-501.

157. Lauer, H. C. and E. H. Satterthwaite. The Impact of Mesa on System Design. Proceedings

of the 4th IEEE International Conference on Software Engineering (September

1979) pp. 174-182.

158. Lehman, M. M., V. Stunning and W. M. Turski. Another Look at Software Design Methodol-

ogy. Software Engineering Notes (April 1984) vol. 9, no. 2, pp. 38-53.

159. Levitt, Karl, Larry Robinson and Brad Silverberg. "The HDM Handbook", Computer Sci-

ence Lab, SRI International, Menlo Park, CA, 1979.

160. Lewis, Brian T. Ezperience with a System for Controlling Software Versions in a Distributed
Environment. Symposium on .Application and Assessment of .Automated Tools for

Software Development (November 1983) pp. 210-219.

161. Liskov, Barbara, Alan Snyder, Russll Atkinson and Craig Schatfert. Abstraction Mechan-

isms in CLU. Communications of the A.CM (August 1977) vo|. 20, no. 8, pp. 564-576.

162. Liskov, Barbara H. and Stephen N. ZUles. Specification Techniques for Data Abstractions.

IEEE Transactions on Software Engineering (March 1975) vol. SE-1, no. 1, pp. 7-18.

163. Loeckx, Jacques and Kurt Sieber. The Foundations of Program Verification. John

Wiley & Sons, New York, 1984.

164. London, R. L., J. V. Guttag, J. J. Horning, B. W. Lampson, J. G. Mitchell and G. J. Popek.

Proof Rules for the Programming Language Euclid. Acts Informatiea (1978) vol. 10, pp.
1-26.



172

165. Lubars, Mitchell D. and Mehdi T. Harandi. Knowledge-Based Software Design Using Design

Schemas. Proceedings of the 9th International Conference on Software Engineer-
ing (1987) pp. 253-262.

166. Luckham, David C., S. M. German, F. W. von Henke, R. A. Karp, P. W. Milne, D. C.

Oppen, W. Polak and W. L Sherlis. "Stanford Pascal Verifier User Manual", Report No.

STAN-CS-79-731, Computer Science Department, Stanford University, Stanford, CA,
1979.

167.

168.

169.

170.

Luckham, David C. and Friedrich W. yon Henke. An Overview of Anna, a Specification

Language for Ads. EEEE Software (March, 1985) vol. 2, no. 2, pp. 9-22.

Luckham, David C., Friedrich W. von Henke, Bernd Krieg-Brueckner and Olaf Owe.

"Anna, a Language for Annotating Ada Programs (Preliminary Reference Manual)", Techni-

cal Report CSL-84-261, Computer Systems Laboratory, Stanford University, Stanford, CA,
1984.

Manna, Zohar. Mathematical Theory of Computation. McGraw-Hill, New York, 1974.

Manna, Zohar and Richard Waldinger. A Deductive Approach to Program Synthesis. ACM

Transactions on Programming Languages and Systems (January 1980) vol. 2, no. 1,
pp. 90-121.

171. Martin, Alain J. A General Proof Rule for Procedures in Predicate Transformer Semantics.

Acta Informatica (1983) vol. 20, pp. 301-313.

172. Martin-Lof, P. Constructive Mathematics and Computer Programming. Proceedings of

the 6th International Congress for Logic, Method, and Philosophy of Science

(1982) pp. 153-175.

173. Marzullo, Keith. Jasmine: A Software System Modelling Facility. Proceedings of the

Second ACM SIGSOFT/SIGPLA2q Software Engineering Symposium on Practi-

cal Software Development Environments (December 1986) pp. 27-33.

174. Matsumoto, Yoshihiro. Some Experiences in Promoting Reusable Software: Presentation in

Higher Abstract Levels. IEEE Transactions on Software Engineering (September 1984)
vol. SE-10, no. 5, pp. 502-512.

175. Meyer, Bertrand. Reusability: The Case for Object-Oriented Design. IEEE Software

(March 1987) vol. 4, no. 2, pp. 50-64.

176. Meyers, G. J. The Art of Software Testing. John Wiley & Sons, New York, 1979.

177. Miller, Edward (ed.). Tutorial: Automated Tool* for Software Engineering. IEEE
Computer Society, New York, 1979.

178. Mills, Harlan D. Structured Programming: Retrospect and Prospect. IEEE Software
(November 1986)vol. 3, no. 6, pp. 58-66.

179. Mills, Harlan D. and Richard C. Linger. Data Structured Programming: Program Design

without Arrays and Pointers. IEEE Transactions on Software Engineering (February
1986) vol. SE-12, no. 2, pp. 192-197.

180. Muller, Carlo. Modula--Prolog: A Software Development Tool. YEEE Software (November
1986) vol. 3, no. 6, pp. 39-45.

I

I

I

I

I

I

I

I

I
I
i

I

I

I

I

I

I

I



I
I
I

I
i

I
I

I

I
I
I

I
l

i
I

I
I
I

173

181. Musser, David 1_. Abstract Data Type Specification in the AFFIRM System. IEEE Tran-

sactions on Software Engineering (January 1980) vol. SE-6, no. 1, pp. 24-32.

182. Myers, Ware. Ado: First users - pleased; prospective users - still hesitant. IEEE Com-

puter (March 1987) vol. 20, no. 3, pp. 68-73.

183. Narayanaswamy, K. and Walt Sacchi. Maintaining Configurations of Evolving Software Sys-

tents.IEEE Transactions on Software Engineering (March 1987) vol.SE-13, no. 3,

pp. 324-334.

184. Neighbors; James M. The Draco Approach to Constructing Software from Reusable Com-

ponents. IEEE Transactions on Software Engineering (September 1984) vol.SE-10,

no. 5,pp. 564-574.

185. Nilsson,NilsJ.Principles of ArtificialIntelligence.Tioga, Palo Alto,CA, 1980.

186. O'Donnell, Michael J. A Critique of the Foundations of Hoare Style Programming Logics.

Communications of the AOM (December 1982) vol.25, no. 12,pp. 927-935.

187. Oest, Ole N. VDM From Research to Practice.Information Processing (1986)pp. 527-
533.

188. Ossher, Harold L. A New Program Structuring Mechanism Based on Layered Graphs.

Proceedings of the llth ACM Symposium on the Principles of Programming

Languages (January 1984) pp. 11-22.

189. Osterweil, Leon J. Toolpack -An Experimental Software Development Environment

Research Proj¢ct. IEEE Transactions on Software Engineering (November 1983) voi.

SE-9, no. 6, pp. 673-685.

190. _. Software Processes Are SoftwareToo. Proceedings of the 9th International

Conference on Software Engineering (1987) pp. 2-13.

191. Parent, Christine and Stefano Spaccapietra. An Algebra for a General Entity-Relationship

Model IEEE Transactions on Software Engineering (July 1985) vol. SE-11, no. 7, pp.
634-643.

192. Parnas, D. L. On the Criteria To Be Used in Decomposing Systems into Modules. Com-

munications of the .&CM (December 1972) vol. 15, no. 12, pp. 1053-1058.

193. _. A Technique for Software Module Specification with Ezamples. Communications of

the ACM (May 1972) vol. 15, no. 5, pp. 330-336.

194. _. The Use of Precise Specifications in the Development of Software. IFIP Congress

Proeeedings (1977) pp. 861-867.

195. Partsch, H. and R. Steinbruggen. Program Transformation Systems. Computing Surveys

(September 1983) vol. 15, no. 3, pp. 199-236.

196. Perry, Dewayne E. Software Interconnection Models. Proceedings of the 9th Interna-

tional Conference on Software Engineering (1987) pp. 61-69.

197. _. Version Control in the Inscape Environment. Proceedings of the 9th Interna-

tional Conference on Software Engineering (1987) pp. 142-149.

198. Prywes, Noah, Yuan Shi, Boleslaw Szymanski and Jine Tseng. Supersystem Programming

with Model. Computer (February 1986) vol. 19, no. 2, pp. 50-60.

I



199.

212.

213.

214.

174

Rajlich, Vaclav. Refinement Methodology for Ads. IEEE Transactions on Software

Engineering (April 1987) vol. SE-13, no. 4, pp. 472-478.

200. Ramamoorthy, C. V., Vijay Garg and Atull Prakash. Programming in the Large. IEEE

Transactions on Software Engineering (July 1986) vol. SE-12, no. 7, pp. 769-783.

201. Reddy, Uday S. Narrowing as the Operational Semantics of Functional Languages.

Proceedings of the Symposium on Logic Programming (1985) pp. 138-151.

202. Reiter, Raymond. On Closed World Data Bases. In: Logic and Data Bases, H. Gallaire

and J: Minker, ed. Plenum Press, 1978.

203. Reps, Thomas and Bowen Alpern. Interactive Proof Checking. Proceedings of the llth

ACM Symposium on the Principles of Programming Languages (January 1984) pp.
36-45.

204. Reps, Thomas and Tim Teitelbaum. The Synthesizer Generator. Proceedings of the

ACM SIGSOFT/SIGPLAN Symposium on Practical Software Development

Environments (1984) pp. 42-48.

205. Richardson, Debra J. and Lori A. Clarke. Partition Analysis: A Method Combining Testing

and Verification. IEEE Transactions on Software Engineering (December, 1985) vol.

SE-11, no. 12, pp. 1477-1490.

206. Ross, Douglas T. Structured Analysis (SA): A Language for Communicating Ideas. IEEE

Transactions on Software Engineering (January 1977) vol. SE-3, no. 1, pp. 16-34.

207. Ross, Douglas T. and Kenneth E. Schoman, Jr. Structured Analysis /or Requirements

Definition. IEEE Transactions on Software Engineering (January 1977) vol. SE-3, no.

1, pp. 6-15.

208. Sammut, C. A. and R. A. Sammut. The Implementation of UNSW-Prolog. The .&ustralian

Computer Journal (May 1983} vol. 15, no. 2, pp. 58-64.

209. Schonberg, Edmond and David Shields. From Prototype to E_cient Implementation: a Case

Study using SETL and C. Proceedings of the 19th Hawaii International Conference

on System Sciences (1986) pp. 75-88.

210. Schwan, K., R Ramnath, S. Vasudevan and D. Ogle. A System for Parallel Programming.

Proceedings of the 9th International Conference on Software Engineering (1987)

pp. 270-282.

211. Schwartz, David P. Software Evolution Mangement: An Integrated Discipline for Managing

Software. Proceedings of the 9th International Conference on Software Engineer-

ing (1987) pp. 388-397.

Seviora, Rudolf E. Knowledge-Based Program Debugging Systems. IEEE Software (May

1987) vol. 4, no. 3, pp. 20-32.

Shaw, R. C., P. N. Hudson and N. W. Davis. Introduction of A Formal Technique into a

Software Development Environment (Early Observations). Software Engineering Notes

(April 1984) vol. 9, no. 2, pp. 54-79.

Shigo, Osamu, Yoshio Wada, Yuichi Terashima, Kanji Iwamoto and Takashi Nishlmura.

Configuration Control for Evolutional Software Products. Proceedings of the 6th IEEE

International Conference on Software Engineering (September 1982) pp. 68-75.

I

I
i
I

I
I
I

I

I
I

l

l
I

I
I
I
I

I
I



I

I

I

I

I

I

I

I

I

I

I

I

I

i

l

l
I
I

215.

216.

217.

218.

219.

220.

221.

222.

223.

224.

225.

226.

227.

228.

229.

175

Smith, Douglas R., Gordon B. Kotik and Stephen J. Westfold. Research on Knowledge-

Based Software Environments at Kestrel Institute. IEEE Transactions on Software

Engineering (November 1985) v01. SE-11, no. 11, pp. 1278-1295.

Smith, John M. and Diane C. P. Smith. Database Abstractions: Aggregation. Communica-

tions of the ACM (June, 1977) vol. 20, no. 6, pp. 405-413.

_. Database Abstractions: Aggregation and Generalization. ACM Transactions on

Database Systems (June 1977) vol. 2, no. 2, pp. 105-133.

Sneed, Harry M. and Andras Merey. Automated Software O,uality Assurance. IEEE Tran-

sactions on Software Engineering (September 1985) vol. SE-11, no. 9, pp. 909-916.

Sommerville, Ian (ed.). Software Engineering Environments. Peter Perigrinus Ltd.,
1986.

Standish, Thomas A. and Richard N. Taylor. Arcturus: A Prototype Advanced ADA Pro-

gramming Environment. Proceedings of the ACM SIGSOFT/SIGPLA_ Software

Engineering Symposium on Practical Software Development Environments (April

1984) pp. 57-64.

Stansifer, Ryan. "Representing Constructive Theories in High-Level Programming

Languages (Ph.D. Thesis)", TR 85-664, Department of Computer Science, Cornell Univer-

sity, Ithaca, New York, 1985.

Stickel, Mark E. A Prolog Technology Theorem Prover. Proceedings of the Interna-

tional Symposium on Logic Programming (February 1984) pp. 211-217.

Sweet, Richard E. The Mesa Programming Environment. /kCM SIGPLAN 85 Sympo-

sium on Language Issues in Programming Environments (June 1985) pp. 216-229.

Swinehart, Daniel C., Polle T. Zellweger, Richard J. Beach and Robert B. Hagmann. A

Structural View of the Cedar Programming Environment. ACM Transactions on Pro-

grammlng Languages and Systems (October 1986) vol. 8, no. 4, pp. 419-490.

Swinehart, Daniel C., Polle T. Zellweger and Robert B. Hagmann. The Structure o/Cedar.

ACM SIGPLAN 85 Symposium on Language Issues in Programming Environ-

ments (June 1985) pp. 230-244.

Teichroew, Daniel and Ernest A. Hershey, III. PSL/PSA: A Computer-Aided Technique for

Structured Documentation and Analysis of Information Processing Systems. IEEE Tran-

sactions on Software Engineering (January 1977) vol. SE-3, no. 1, pp. 41-48.

Teitelbaum, Tim and Thomas Reps. The Cornell Program Synthesizer: A Syntaz-Directed

Programming Environment. Communications of the ACM (September 1981) vol. 24, no.

9, pp. 563-573.

Teitelman, W. _ud L. Masinter. The Interlisp Programming Environment. Computer

(April 1981) vol. 14, no. 4, pp. 25-33.

Terwilliger, Robert B. "Knowledge-Based Development in ENCOMPASS (Preliminary

Report)", Report No. UIUCDCS-R-87-1334, Dept. of Computer Science, University of Illi-
nois at Urbana-Champaign, 1987.

I



178

230. Terwilliger, Robert B. and Roy H. Campbell. ENCOMPASS: a SAGA Based Environment

for the Composition of Programs and Specifications. Proceedings of the 19th Hawaii

International Conference on System Sciences (January 1986) pp. 436-447.

231. _ "ENCOMPASS: an Environment for the Incremental Development of Software",

Report No. UIUCDCS-R-86-1296, Dept. of Computer Science, University of Illinois at

Urbana-Champaign (also to appear in the Journal of Systems and Software), 1986.

232. . "PLEASE: Executable Specifications for Incremental Software Development", Report

No. UIUCDCS-R-86-1295, Dept. of Computer Science, University of Illinois at Urbana-

Champaign (also to appear in the Journal of Systems and Software), 1986.

233. . PLEASE: Predicate Logic based ExecutAble SpEcifications. Proceedings of the

1986 .&CM Computer Science Conference (February, 1986) pp. 349-358.

234. _. PLEASE: a Language for Incremental Software Development. Proceedings of the

4th International Workshop on Software Specification and Design (April 1987) pp.

249-256.

235. Tichy, Walter F. Software Development Control Based on Module Interconnection.

Proceedings IEEE 4th International Conference on Software Engineering (1979)

pp. 29-41.

236. _. Design, Implementation, and Evaluation of a Revision Control System. Proceedings

of the 6th IEEE International Conference on Software Engineering (September

1982) pp. 58-67.

237. Tseng, Jine S., B01eslaw Szymanski, ¥uan Shi and Noah S. Prywes. Real-Time Software

Life Cycle with the Model System. IEEE Transactions on Software Engineering

(February 1986) v01. SE-12, no. 2, pp. 358-373.

238. Warren, Sally, Bruce E. Martin and Charles Hoch. Experience with A Module Package in

Developing Production Quality PASCAL Programs. Proceedings of the 6th Interna-

tional Conference on Software Engineering (September 1982) pp. 246-253.

239. Wartik, Steven. Rapidly Evolving Software and the 0 VERSEE Environment. Proceedings

of the Second ACM SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments (December 1986) pp. 77-83.

240. Waters, Richard C. The Programmer's Apprentice: A Session with KBEmacs. IEEE Tran-

, sactions on Software Engineering (November 1985) vol. SE-11, no. 11, pp. 1296-1320.

241. Wegner, Peter. Programming with Ada: an Introduction by Means of Graduated

Examples. Prentice-Hall, Englewood Cliffs, New Jersey, 1980.

242. Weinberg, Gerald M. and Daniel P. Freedman. Reviews, Walkthroughs, and Inspections.

IEEE Transactions on Software Engineering (January 1984) vol. SE-10, no. 1, pp.
68-72.

243. Whitehurst, R. Alan. The Need for an Integrated Design, Implementation, Verification and

Testing Methodology. Software Engineering Notes (February 1984) vol. 10, no. 4, pp.
97-100.

244. Wile, David S. Program Developments: Formal Explanations of Implementations. Com-

munications of the ACM (November 1983)vol. 26, no. 11, pp. 902-911.

I

I

i

I

I

I

I

I

I

I

I

d

I

i

I

1



177

256.

257.

258.

259.

245. Wing, Jeannette M. Writing Larch Interface Language Specifications. ACM Transactions

on Programming Languages and Systems (January 1987) vol. 9, no. 1, pp. 1-24.

246. Winkler, Jurgen F. H. Version Control in Families of Large Programs. Proceedings of the

9th International Conference on Software Engineering (1987) pp. 150-161.

247. Winston, Patrick H. Artificial Intelligence. Addison-Wesley, Reading, MA, 1977.

248. Wirth, Niklaus. Program Development by Stepwise Refinement. Communications of the

ACM (April 1971) vol. 14, no. 4, pp. 221-227.

249. Wolf, Alexander L., Lori A. Clarke and Jack C. Wileden. Ado-Based Support for

Programming-in-the-Large. IEEE Software (March, 1985) vol. 2, no. 2, pp. 58-71.

250. Wulf, William A., Ralph L London and Mary Shaw. An Introduction to the Construction

and Verification of Alphard Programs. IEEE Transactions on Software Engineering

(December 1976) vol. SE-2, no. 4, pp. 253-265.

251. You, Stephen S. and Jeffery J. Tsai. Knowledge Representation of Software Component

a ........ "_q ,Ht.'_.[ntcrconnection Information f_r Laegp-q,'al, Softwa,e ..Modt).c ..... _. IEEE Transactions

on Software Engineering (March 1987) vol. SE-13, no. 3, pp. 355-361.

252. Yourdon, E. and L. L. Constantine. Structured Design: Fundamentals of a Discipline

of Computer Program and Systems Design. Prentice-Hall, Englewood Cliffs, N.J.,
1979.

253. Yuasa, Taiichi and Reiji Nakajima. IOTA: A Modular Programming System. IEEE Tran-

sactions on Software Engineering (February 1985) vol. SE-11, no. 2, pp. 179-187.

254. Zave, Pamela. The Operational Versus the Conventional Approach to Software Development.

Communications of the ACM (February 1984) vol. 27, no. 2, pp. 104-118.

255. --. An Overview of the PAISLey Project - 198_. Software Engineering Notes (July

1984) vol. 9, no. 4, pp. 12-19.

Berliner, Edward F., and Pamela Zave. An Ezperiment in Technology Transfer: PAISLey

Specification of Requirements for an Undersea Lightwave Cable System. Proceedings of

the 9th International Conference on Software Engineering (1987) pp. 42-50.

Zave, Pamela and William Schnell. Salient Features of an Ezecutable Specification Language

and Its Environment. IEEE Transactions on Software Engineering (February 1986)

vol. SE-12, no. 2, pp. 312-325.

Zelkowitz, Marvin V. Perspectives on Software Engineering. Computing Surveys (June,

I978) vol. 10, no. 2, pp. 197-216.

Zucker, Sandra. Automating the Configuration Management Process. Proceedings SOFT-

FAIR, Arlington, Virginia (July, 1983) pp. 164-172.



178

VITA

Robert Barden Terwilliger was born in in In 1980 he

received the B.A. degree in chemistry from Ithaca College and began graduate studies in the

same field. At that time, he received both a University of Illinois Fellowship and an N.S.F. Gra-

duate Fellowship Honorable Mention. He received the M.S. degree in computer science from the

University of Illinois at Urbana-Champaign in 1982 and attended the University of Wisconsin-

Madison from 1982 until 1984. He received his Ph.D. in computer science from the University of

Illinois at Urbana-Champaign in 1987. Dr. Terwilliger will be an assistant professor in the

Department of Computer Science, the University of Colorado at Boulder beginning in the Fall of

1987. His research interests include software engineering environments, executable specification

languages, formal development methods and logic programming. Dr. Terwitliger is a member of

the IEEE Computer Society and the Association for Computing Machinery. He has co-authored

over ten papers on his work with SAGA, PLEASE and ENCOMPASS.

I

I
I

I
I

I
I

I
I

I
I

l
I

l
I
I
I

l
I



I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

I

APPENDIX C

Automating the
Software Development Process

R. H. Campbell
H. Render

R. N. Sum, Jr.

R. Terwilliger



I
i
I

I
I

I

I
i

I
I

I
I

I

I
I

I
I
I
I

Automating the

Software Development Process

R. H. Campbell

H. Render

R. N. Sum, Jr.

R. Terwilliger

Report No. UIUCDCS-R-87-1333

Department of Computer Science

1304 W. Springfield Ave.

University of Illinois at Urbana-Champaign

Urbana, Illinois 61801

217-333-4428

This research is supported by NASA Grant NAG 1-138

and a grant from AT&T Information Systems.



Automating the

Software Development Process

R. H. Campbell
H. Render

R. N. Sum, Jr.

R. Terwilliger

University of Illinois

Department of Computer Science

1304 W. Springfield Ave.
Urbana, [L 61801-2987.

217-333-0215

Abstract: Much of the software development process is repetitive, tedious to perform,

but possible to automate. Our research on the SAGA Project includes building models

of software development tasks that both accurately reflect the processes involved and
have direct and efficient implementations. In this paper we assume the desirability of a

software engineering environment that supports the entire life-cycle; automation should

greatly enhance the quality and efficiency of software production and maintenance. To

study the problems involved, SAGA has constructed ENCOMPASS, a prototype en-

vironment which supports software development. ENCOMPASS has provided valuable

insights and experience; however, during its development and use many limitations have

surfaced. In this paper we emphasize the configuration and project management aspects

of our work. We discuss the current capabilities and limitations of ENCOMPASS, as

well as describing the new systems being constructed to both overcome its limitations

and extend its life-cycle coverage.

1. lntroduetlon

In a typical development shop, software engineers use poorly integrated tools which cannot control

the complexity of software development and maintenance. To help remedy this situation, the SAGA Pro-

ject is investigating both the formal and practical aspects of providing automated support for the entire

life-cycle. SAGA has constructed ENCOMPASS, a prototype environment which supports software

development. In this paper we emphasize the configuration and project management aspects of our work.

We discuss the capabilities of ENCOMPASS, as well as the new systems being developed.

A life-cycle model describes the sequence of distinct stages through which a software product passes

during its lifetime [Fairley, 85]; there is no single, universally accepted model of the software life-cycle.

The stages of the life-cych generate software components, such as code written in programming languages,

This work was funded by NASA Langley Grant NSG-t38 and a grant from ATg'T Information Systems.
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test data or results, and many types of documentation. Configuration management is concerned with the

identification, control, auditing, and accounting of the components produced and used in software develop-

ment and maintenance iBabich, 86]. Project management controls the software development process: set-

ting objectives, coordinating development activities, creating schedules, allocating resources, monitoring

milestones and reporting on progress [Gunther, 78]. To be effective, the mechanisms and policies involved

in configuration and project management must be integrated with the methodology used to develop and

maintain the software. [n a large project producing many components, automating management should

have a major impact on quality and productivity.

[n section two of this paper we describe a typical software development environment as it might be

found in industry today. In section three we describe both the capabilities and limitations of ENCO._.I-

PASS, a prototype environment to support software development. In section four, we outline our current

efforts to develop a more advanced configuration control system and in section five, we discuss our current

work in project management. Finally, in section six we summarize and draw some conclusions.

2. A Typleal Software Development Shop

As part of our research, we have investigated both the capabilities and limitations of some existing

software development environments. One such environment is used by AT&T to develop and support its

System 75 -_ telephone switching software [Sum, 87]. System 75 is a very large development effort, with

approximately one million lines of source code produced to date. A variation of the traditional waterfall

life-cycle model [Fairley, 85] is used on the project, in this model, the life-cycle is divided up into

discrete, sequential phases. Each phase produces some combination of documents and code which are used

in subsequent phases. For example, the output of the design phase, the system design documents, acts as

the input to the implementation phase.

The example environment contains many tools to support the development and maintenance

processes. For example, the document library stores documents with release numbers and completion

System 75_o isa trademarkofAT&T.



status, such as draft, final, and obsolete. Source code is stored with a hierarchical version control system

built on top of the UNL-_ _ file system. Makefiies are used to record compilation dependencies and SCCS

[Dolotta, et al, 77] acts as the low level version maintainer. During the latter phases of development and

during maintenance, an error reporting and tracking system holds error reports along with their status and

resolutions.

The problem with many existing environments is that they are not well enough integrated. For

example, in the AT&T case study, the document library does not necessarily provide on-line access to pro-

ject members. Generally, project members must request paper copies from a document librarian. The ver-

sion control system lacks flexibility in the types of data (files) whose dependencies it can maintain and in

the hierarchical structure in which those files may be organized. To exacerbate the problem, the version

control system is composed of several loosely-coupled tools that require a project integrator to ensure that

new revisions added to a module are consistent and complete. Even though the tools in such environments

work, they can be awkward to use and require that management enforce their use.

Many environments contain management tools, but they usually support only a small subset of the

management tasks. Common tools include a global project milestone scheduler and tracking system, and

smaller personal computer programs like Timeliae'_. Most work assignments and progress monitoring are

performed by managers using manual procedures. The milestone system allows schedules to be kept on-

line by the developers. Milestones record such information as the contractor, the producer, the consumer,

and the due date. Timeline performs dependency analysis augmented with some critical path and cost

analysis capabilities. The work assignment and monitoring procedure consists of a form in which a worker

and his manager order the worker's tasks by priority. The worker and his manager frequently meet to

review the tasks and set personal milestones for the worker, thereby keeping each other informed.

As one would expect, there are problems with existing management tools. For example, the mile-

stone system provides only a tabular representation of its output and does not have a good mechanism for

UNIX :'_"is a trademark of AT&T.

Timeline ::'_is a trademark of Breakthrough Software.
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creating and maintaining task dependencies. Also, the system is used across entire projects without a

mechanism to view subsets of interrelated milestones. The Timellne program is too small for large pro-

jects, but has proven useful for individual managers to keep track of their groups. For milestones, one

would like a system with the PERT/CPM abilities of Timeline, the scope of the milestone system, selective

viewing of dependencies, and automatic notifications of approaching milestones to the workers producing

deliverables and to the managers. One would also like an automated system to monitor individual work

loads and help with task breakdown and assignment. Similar automation goals are also alluded to in

iHowes, S,tT.

Although tools exist that aid the various phases of conventional software development, for the most

part they require a great deal of manual effort to use and do not satisfy all of the developers' needs.

Automating many existing approaches to software development requires a more formal specification of the

software production process than is available. The research performed by SAGA is motivated by our

observations of deficiencies in existing environments. [n order to clarify our thinking and test our architec-

tural concepts, SAGA has constructed a prototype environment for software development.

3. ENCOMPASS

Our early effortsin SAGA were devoted to building software development tools, documentation sys-

tems (Notesfilesl),and an interactive language-orlented editor that controls access to the software develop-

ment system. A hierarchy of differentlanguages offered project management and configuration control as

well as design and program entry [Campbell & Richards, 81]. Editing would change specificationsin these

languages, automatically advancing the project through a series of development activities. However, the

lack of adequate models for many of the development processes involved has led us to broaden our

research. In particular, although software development and maintenance methodologies, configuration

control, and project management clearly interact, no model for the interaction appears suitable as the

basis for an automated environment. To clarify our ideas, we have devised an experimental environment

tNotesfllesarenow distributedaspartof BerkeleyUNIX.



based on a rigorous software development methodology and integrated it with simple configuration and

project management schemes. We have automated many aspects of this environment using existing tools

from SAGA and elsewhere.

The environment we have used to study the interaction between development methodologies, project

management and configuration control is called ENCOMPASS [Terwilliger & Campbell, 86a:_. ENCOM-

PASS supports small to medium-scale projects using an incremental development methodology similar to

V'DM. The methodology was chosen because it supports the specification, validation, design, implementa-

tion, and verification of software. It also provides acceptance criteria for the steps in the production pro-

cess and offers limited but well-defined project management goals.

3.1. Support for VDM

'v-DM (the Vienna Development Method) supports the top-down development of software specified in

a notation suitable for formal verification [Jones, 80]. [n this method, components are first written in a

combination of conventional programming languages and mathematics. A procedure or function may be

specified using pre- and post-condition8 written in predicate logic; similarly, a data type may have an

i_zvariaat. These abstract components are then incrementally refined into components in an implementa-

tion language. The refinements are performed one at a time, and each is verified before another is applied;

therefore, the final components produced by the development satisfy the original specifications.

ENCOMPASS is designed to support a particular model of the software life-cycle. [t extends the

waterfall llfe-cycle model described in [Fairley, 85 i with the use of executable specifications and VDM.

The ENCOMPASS life-cycle model includes a separate phase for customer validation; a development

passes through the stages planning, requirements definition, validation, refinement and system integration.

Project management and configuration management incorporate features to support the activities that

occur and record the data generated in these stages.

In ENCOMPASS, requirements specifications are a combination of natural language documents and

components written in PLEASE [Terwilliger & Campbell, 86b], a wide-spectrum, executable specification

language. PLEASE specifications may be used in proofs of correctness; they may also be transformed into
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prototypes which use Prolog to _execute" pre- and post-conditions, and may interact with other modules

written in the target programming language. We believe that the early production of prototypes for

experimentation and evaluation will enhance the software development process. PLEASE also provides

many machine-recognlzable milestones for the project management system. For example, the existence of

an implementation, its correct execution of a test case, and the proof of its correctness can all be recog-

nized by the system.

In ENCOMPASS, components specified in PLEASE are incrementally refined into Ada _ implemen-

tations. Since PLEASE specifications are both executable and formal, refinements can be verified rising

either testing or proof techniques. ENCOMPASS is an environment for the rigorous development of pro-

grams. Proof techniques may he ,_sed which range from a very detailed, completely formal pro,'f _x._ing

mechanical theorem proving, to a development _annotated" with unproven verification conditions.

Although detailed mechanical proofs are not required at every step, the framework is present so that they

can be constructed if necessary. Parts of a project may use detailed mechanical verification while other,

less critical, parts may be handled using less expensive techniques.

The ENCOMPASS environment is coupled to four tools for programming in the small: TED, a proof

management system which is interfaced to a number of theorem provers; ISLET a simple program/proof

editor; a tool to support the construction of executable prototypes from PLEASE specifications; and a test

harness. The user interacts with these tools through a common interface.

3.2. Configuration and Project Management

[n ENCOMPASS, the configuration management system structures the software components

developed by a project and stores them in a project data base. It also provides a primitive form of

software capabilities to control access. The project management system distributes these capabilities to

implement a maaaqement by objective8 [Gunther, 78] approach to software development; each phase in the

llfe-cycle satisfies an objective by producing a milestone which can be recognized by the system.

Ada :_; is a registered trademark of the U.S. Government, Ada Joint Program Office.



Theprojectmanagementsystemis organizedaroundwork trays !Campbell & Terwilliger, 861 which

provide a mechanism to manage and record the allocation, progress, and completion of work within a

software development project. Each user may have a number of work trays, each of which may contain a

number of task_ that contain software product_. There are four types of trays: input trays, output trays.

in-progress trays, and file trays. Each user receives tasks in one or more input trays. The user then

transfers these tasks to an in-progress tray where he performs the actions required of him and produces

new products. The user returns the task via an output tray. A user may create new tasks in in-progress

trays that he owns. File trays are used for long term storage.

In ENCOMPASS, software configurations are modeled using a variant of the entity-relationzhip

model [Chen, 76 i. An entity is a distinct, named component. Two or more entities may have a relation-

ship between them. Both entities and relationships may have attributes to describe their properties or

qualities. A group of entities may be abstracted into an aggregate. A view is a mapping from names to

components. A project under development has a unique base view or project library which describes the

components of the system being developed and the primitive relationships between them. Other views can

include images of entities in the base view. in ENCOMPASS, access to components is controlled through

the use of views; the project management system uses views to implement tasks.

ENCOMPASS may be used to develop programs which consist of many interacting modules; in this

sense, it is an environment for "programming in the large." However, the underlying storage mechanisms

(chosen for implementation expediency) impose limitations on its use. in particular, the view mechanism is

based on the use of symbolic links and shell scripts under UNIX and this imposes performance, consistency,

and flexibility constraints.

The configuration and project management systems provide a basic capability to store and retrieve

modules, create milestones and acceptance tests, and create, monitor, and complete tasks. A task can

require a PLEASE specification be refined int;o a more concrete Ada program. The task would have, as its

completion criteria, a milestone which verifies the refinement using predetermined test data. A further

task might be created to verify the refinement step using TED. Its completion criteria could be one of the
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following milestones, a complete proof that can be automatically checked by the theorem prover, the

discovery of an error, or a partially completed proof together with an informal argument as to why the

proof is correct. The individual refinement, testing, and proof steps are saved by ENCOMPASS and may

be reused in maintenance or future design projects.

The completed experimental environment demonstrates the interconnectivity between the phases in

the llfe-cycle, the interaction between the development methodology and project/configuration manage-

ment, and the way in which automated tools can take advantage of an integrated system. For the next

step in the SAGA research program, we are refining the project and configuration management ideas of

ENCOMPASS to produce more sophisticated and general-purpose support. Our subsequent goal will be to

integrate these tools witha revised, !essabstract and more powerful software development method,_logy.

4. Seallng up Configuratlon Management

The ENCOMPASS environment demonstrates the potential benefits from the identification, tracking

and control of the components produced and used in software development. This need is common to all

projects, large or small, and lasts throughout their lifetime. However, the ENCOMPASS configuration

management tools were designed as prototypes with limited capabilities; as a response, the CLEMM.A sys-

tem has been developed.

4.1. A Software Librarlan

CLEMMA is a librarian, providing operations to create and maintain project libraries. A library

contains files that store a software project's components and a relational data base that holds a catalog

and cross reference. CLEMMA operations retrieve and store components and update and maintain the

consistency of the database. When the software project develops a new component, the librarian is used to

create and catalog a corresponding library item. Subsequently, implementations of the component will be

checked into the library as version, of the item. Keyword indexing of library items is provided by

CLEMMA, allowing quick searching and retrieval of project components and encouraging re-use.



Wereferto all theversionsof anitemasa version group. Versions may be revisions or variations.

A variation may have little or no textual correspondence to any other variation of the item it implements,

while a revision is directly derived from an existing version of the item rBabich, 861. Given that any ver-

sion may be modified several times, with each modification producing a new revision, the version group for

an item may be described as a forest of derivation trees. Each variation of an item is the root of a deriva-

tion tree. The use of delta ztorage for the revisions within a derivation tree optimizes the space required to

save versions of an item.

During modification, a version is locked, preventing other users from modifying it concurrently. This

reduces the likelihood of duplicate modifications, and lessens the need ['or merging of overlapping changes.

Parallel revisions of items are possible, but their occurrence is controlled. The compatibility of parallel

revisions, being a language-oriented issue, is left to the users for the moment, and CLEMMA makes no
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restrictions on the types of modifications allowed on item versions. Because many project members may

request access to an item's versions, permission lists are used to manage an item's usage and modification.

A list of permitted managers and users is maintained for each item. Managers may add, modify, and delete

versions of an item. Users may only check out versions of an item.

For example, Figure 4.1 shows the version group for a routine in the paging software of an operating

system. The routine is written in assembly code and is used to fill a newly created virtual memory page

with a pattern of zeros. The version group of Fiil_wlthjeros contains separate variations for a SUN and

a VAX. The derivation tree for the VA.X code contains a number of revisions, including a parallel revision

which creates an independent sequence within the tree. In CLEMM.A, a derivation tree is described using

the derived_rom relation between versions. Solid arcs represent the derived_from relation in the figure°

CLEMMA, like ENCOMPASS, is based on the entity-relationshlp model [Chen, 76}. The elements of

a software project are entities; for example, items, versions and users are all entities. An entity may have

attributes; for example, an item has attributes "name", "type", "owner", and "identification number".

Entities may have relationships between them; for example, "version_off, "contains", "derived_from",

"manager_off, and "user_off are all relations used in CLEMMA. All of the entities, attributes and rela-

tions comprising a CLEMMA library are represented in the relational data base. Using a data base as the

storage mechanism saves space, allows greater flexibility in structuring the data, and makes accessing the

information easier than is possible with ENCOMPASS. This, in turn, enhances the tools that can be built

to automate the software development process.

4.2. Vlews

Versions of items may be grouped into aggregate items called views, which have many applications.

Views allow abstractions of a project's components to be constructed, manipulated and maintained. For

example, a view may specify a baseline of a module. A baseline is a configuration of the components of a

module that satisfies all of the acceptance Criteria of a milestone in the production of the module. In prac-

tice, a baseline may often be followed by a release. A release is a view of the module and its components

that is made available to users other than the module's development team.

10



Views may also represent a selected subset o[ the components, chosen by a functional abstraction of

the development process. For example, a test view of a module may contain a specification of the module,

the binary object files, test data and results and a test harness. A quality assurance group may use this

view oI" the module to perform acceptance testing. A documentation view may contain the specification

and source code for the module along with documentation of the program. Such a view would facilitate

the production of a user's manual for the module and might also be used in code and documentation

inspections. A view may also be constructed to select parts of a software system that will be reused in the

construction of a different software system.

Each of these different views of a module may be created and stored as an item in the library and

will have a version group. Fully hierarchical systems may be represented by views that include versions of

other views. This facility is more general than that of ENCOMPASS, which allows for only single-level

module hierarchies. For example, Figure 4.2 shows a hierarchy of modules which implement the page fault

handler for an operating system. The fault_handler module is an item that has a version group. A par-

ticular version of fault_handler is a view that contains items such as maehlne_cheek and views such as

the VM module.

Like other items, views have associated catalog information and can be checked out of the library,

modified, and checked back into the library as a revision. They may also be used to check out the com-

ponents they contain from the library. A test view may be used to check out the components required in

an acceptance test. A release of fault_handler may be used to check out a stable, released version of all

the code associated with the fault handler module and submodules.

The mechanism to perform a check out is implementation dependent. Under the UNIX operating

system, we have used the ENCOMPASS approach. The contents of a view may be checked out read only

in which case a user work space is supplied with an image of the contents of the view. The work space is a

directory structure in which symbolic links are mapped to read-only copies of the files that are stored in a

central repository in the library. When the contents of a view are checked out for modification, copies of

the files are created in the workspace and the versions in the library are locked. [f modifications are made
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Figure 4.2: Fault-Handler Subsystem
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to the contents of a view and the revisions are checked in, a new version of the view does not necessarily

have to be created. A later section discusses how views may be parameterized.

The view in CLEMMA is much more powerful than in ENCOMPASS. A version of a view is imple-

mented by a view descriptor. A view descriptor is a listof specifications,one for each component of the

aggregate, giving the component's name, an item identification number, and a listof attribute matching

expressions. The attribute matching expressions may be constant (as in a view that describes a specific

12



release) or may vary depending upon when a view is checked out of a library. For example, attribute

matching expressions may specify the most recent version, the most recent release, or the version created

by a specific author.

When the contents of a view are checked out of a library, the associated descriptor is evaluated and

the user is given a workspace containing an image of each component in the view. For each component, the

version with attribute values equal to those given in the matching expression is the one whose image is

supplied. A component specification is said to be well-formed and complete if it is syntactically correct

and it resolves to a single version of an existing library item. For example, a descriptor for the SUN

implementation of the demand_.fill module in Figure 4.2 could specify the Fill_with_zeros component as

being the most recent SUN variation that has been released.

Using attribute matching expressions to specify a view's components extends the simple idea of a

module configuration as a list of items and version numbers iBabich, 86]. The facility permits views of a

system that satisfy particular dynamic functional requirements. Views and their attribute matching

expressions may be parameterized by symbolic names that are replaced by arguments at check-oat time.

For example, a view of test results may be parameterized by specifying the version of the software which

was tested. Additionally, the data base implementation of views as sets of components allows them to be

intersected or combined. For example, one can define, a high-level view of all the items which have changed

between one stable configuration and another.

CLEMMA has several advantages over the configuration management facilities of ENCOMPASS.

First, it provides more flexible support for the abstraction and manipulation of software components

stored in the library. Second, by combining data base and file system technology, CLEM_MA capitalizes on

the efficiency of existing tools. Third, CLEMMA may be easily updated to support additional entities,

relations, or attributes without requiring the whole library to be reorganized. Finally, the configuration

model is represented more directly in the configuration management system.

13
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5. Scaling Up Project Management

ENCOMPASS also demonstrates the potential benefits of an on-line project management system;

however, the facilities it provides are minimal. To track, audit, and control a software development pro-

ject, one needs to make project structure visible and accessible, maintain deadlines, ease scheduling, main-

tain task dependencies, coordinate and synchronize task activities, control access to project resources, col-

lect statistics, and produce a project archive. A project management system and the project it controls

can be compared to an operating system and the underlying hardware. The project management system

organizes and supports the task structure, scheduling, and resource management systems. It provides

resource allocation and other services to its users while implementing management policies. With this

metaphor in mind, the SAGA P,oj_t is ao_ol_,,,;._ a ,,.,,;=_ mana=ement .... _m which greatly ..... an

the capabilities of ENCOMPASS.

5.1. A Resource/Process Model of Project Management

In our model, a software development project consists of tasks that are executed by project members.

These tasks produce and use resources, such as specifications, documents, code, test cases and reports. The

tasks form a dynamic hierarchy corresponding to the manager-worker relationships and work breakdown

structures within the project; this is similar to the hierarchy of processes in a UNIX-like operating system.

Although these tasks are similar to the process models proposed by [Osterweil, 87] and [Dowson, 87], our

model differs in that it attempts both to enforce resource allocation and to provide task synchronization.

Even though one may compare the execution of a task to the execution of a program, we do not attempt

the detailed level of programming in [Osterweil, 87]. Instead, one might think of the task execution as a

communication protocol followed by the developers.

With the project management system, tasks may only be created, executed, and destroyed in well-

defined ways. As a task is executed, resources are created, acquired and released. Resources have access

and ownership properties which determine their use. In general, resources are stored and accessed through

subsystems which provide appropriate services; for example, a configuration mangement system for source

code. Such subsystems resemble an operating system's memory managers or device drivers.

14



Taskexecutionfollowsa protocolbasedona managementby objectives approach iGunther, 78]. For

example, Figure 5.1 presents the interaction between manager and worker in the protocol. [n our

approach, each task has objectives which its products must satisfy. Often, some negotiation between the

manager and _vorker is needed to arrive at the objectives for a task. Once the objectives has been agreed

upon, the worker is left to complete the task. Completion of a task means that the manager and worker

agree that the task meets its objectives. During task execution, the system checks for simple forms of

deadlock, delays, or deadlines. These correspond to circular dependency and schedule slippage problems in

PERT/CPNI methods. The task protocol may be likened to executing abatchjob in an operating system.

The job must acquire the resources it needs, create independent subtasks to accomplish its goals, provide

those subtasks with the appropriate resources, wait for their completion, and check their return codes.

The data dependencies in the management system may also be described using an entity relationship

model[Chen, 76]. As a project progresses, the system manipulates the entities and relations to reflect the

current structure and status of the project. A task is created and assigned according to the project's work

breakdown structure. The management system monitors task dependencies to ensure that inputs are

available and sequencing constraints are obeyed. For example, the initiation of a programming task may

depend on a successful design document walkthrough; therefore, the system will not allow the program-

ming task to proceed before the walkthrough is complete.

The system also monitors a task's completion date and informs managers and workers of impending

and missed deadlines. The system can provide appropriate resource views, for example access to file struc-

tures maintained by a configuration manager, for the performance of different tasks. Finally, accounting

information is accumulated by the system; for example, the time spent working on a task by its manager

and worker are stored for use in cost calculations and scheduling.

5.2. From The User's Viewpoint

In a similar manner to the views in CLEMMA, the project management system provides views of the

projects and tasks in the environment. As in ENCOMPASS, access to project management facilities,

15
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{ Task Active -

work being done

{"aproblem may result

in an amendment or revision

Task Complete -

product is accepted }+

Task A.rchived -

for future reference

Notation: {} -= repeat 0 or more times, {}+ = repeat one or more times

Figure 5.1: Task Execution Protocol
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includingbrowsersandreports,is providedthroughthetray mechanism2. This ensures that workers and

managers are provided with the appropriate views of the project and the management operations that they

may perform. A browser supports views of the project task hierarchy based on specific dependencies or

attributes such as deadlines or user names. Report generation facilities automatically retrieve and format

information on the project.

To start a project, a supervisor creates a new project, gives a user project manager capability, and

initiates a root task. During the life of the project, sub-tasks may be created and additional workers may

be added. For example, a hierarchy of tasks might be created to model the structure of the fault handler

subsystem shown in Figure 4.2. A manager might create a task fault_handler to develop the entire sub-

system. This task would have a sub-task for each of the machlne_eheek, data, VM and program

handlers. These sub-tasks could themselves be decomposed until the smallest tasks act as leaves of the

work breakdown structure. It is possible for one to assign oneself several tasks, possibly to break a large

task into smaller units.

Returning to the larger scale, the task hierarchy for a project does not necessarily model the struc-

ture of the software being developed. For example, Figure 5.2 shows the task hierarchy for a project to

develop the virtual memory and fault handler modules of an operating system. The project consists of

three phases: specification, development and testing. The root task represents the entire project, while

each phase has an associated sub-task. Each phase is divided into sub-tasks according to the structure of

the software being developed; there are separate sub-tasks for the VM and fault_handler sub-systems.

The dependencies in a task hierarchy are unlikely to follow the work breakdown structure because

resources such as specifications, designs, code, and tests may be produced by tasks in separate sub-trees.

One way for a task to be dependent on another task is by completion; for example, appropriate code and

specification tasks must complete before the testing task can begin. Thls situation might be represented by

the arrows in Figure 5.2.

2For more information on trays see section 3
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Figure 5.2: Sketch of a Project Task Hierarchy

Within a task, the user's view of the project is the resources allocated to the task. When using

CLEMMA as a resource, access to components such as source code is easily controlled. The manager of a

task is given a complete view of the task and objectives for its completion. He creates and assigns sub-

tasks to his workers, giving them access derived from his view. The sub-tasks' resources are fetched by

invoking the configuration manager when the worker accepts the task. The worker performs his task, and

when he believes that he is finished, he informs his manager. The manager then checks the completed

work; for example, by inspection, by running tests in a test harness, or by running a proof checker. If the

manager accepts the task as complete, then the system stores the task's output resources using the

configuration manager. A task may be archived when it is no longer useful to the manager's or worker's

views of the project.
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There are advantages to the use of configuration managers which support abstract naming. For

example, using CLEMN[A, views need not be specified by exact version numbers; therefore, when a task

becomes active, it receives the intended resources without knowledge of past revisions. More specifically, if

an active task has a view including abstract names for the specifications, and a serious error in the

specifications causes them to change, then the view of the task need not change; the system can re-fetch

the specification to re-establish the correct view. Moreover, if a testing task had been specified but not

activated, even the first fetch of the tester's view would be correct.

We have described a management system by analogy with an operating system, discussed the data

being managed and its relationships, and presented examples of its intended use. The current prototype is

designed to handle basic task structures, resources and minimal accounting information. [t assumes an

available programming-ln-the-small environment, for example the [DEAL environment of ENCOMPASS.

Planned extensions will support various development methods and detailed project accounting.

6. Summary and Conclusions

Current software development shops are characterized by poorly integrated tools which are inade-

quate to control the complexity of software development and maintenance. This paper assumes that an

automated environment which supports the entire life-cycle will improve the quality and efficiency of the

software production process. The SAGA Project is investigating models of software development which

support automation. At present, we are emphasizing models of project management and configuration

control.

ENCOMPASS is the first complete environment constructed by the SAGA Project. ENCOMPASS

supports a formal development method similar to VDM, as well as providing basic facilities for

configuration control and project management. A V'DM-like methodology was chosen because it supports

the specification, validation, design, implementation, and verification of software. It also provides comple-

tion criteria for the steps in the production process and offers limited, but well-defined, project manage-

ment goals. The design, construction and use of ENCOMPASS revealed many shortcomings in its project

and configuration management systems.
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SAGA is now creating new systems both to correct these deficiencies and support more of the life-

cycle. CLEMMA is a configuration librarian which maintains software structures and provides views of a

project's components. CLEMMA capitalizes on existing data base and file system technology to provide

flexible support ['or abstraction and manipulation of software components. It can be easily updated to pro-

vide new facilities and abstractions without reorganizing the project data.

The project management system supports the integration and control of the software development

and management processes. It implements management policies through the use of interaction protocols

and project access permissions. [t also supports repositories of project information and components. The

management system is based on a process/resource model in which the process hierarchy models the per-

..... w and work i. _w.a_ . structures of't- ._,_,;_.. •--.::::-_- ure,_r.u.wn _,.g _.vj_t. The project marLagemer,.t system cor-trols prowet

access, supports resource allocation and usage, and coordinates and synchronizes task activities.

The improved configuration and project management systems are under implementation; many com-

ponents are complete. The two systems are complementary: efficient automation of the software develop-

ment process depends on the effective integration of project management and configuration control. The

systems must combine to provide users with consistent, task related, functional abstractions of activities

and resources. The configuration and project management models have application to existing software

development practices; however, the SAGA Project is seeking to apply them to an improved, rigorous

software development methodology.

Automating the entire software llfe-cycle will require continuing research; one reason is the immatu-

rity of the software engineering discipline. For example, future development methodologies must incor-

porate more formal approaches to requirements analysis, reuse and maintenance. Future environments

should also have more advanced system architectures which support knowledge-based tools.

We believe that the configuration and project management models and systems currently proposed

can significantlyenhance many aspects of the software life-cycle.However, these models and systems

must evolve as we strivefor more effectivedevelopment methodologies;for example, improved implemen-

tationmethods must be pursued as usage data isgathered. Although life-cycleautomation isa long term
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research problem, the current work in project and configuration management can do much to improve

software development as it is practiced today.
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1. Introduction

FOR.\L-kN is a system for creating forms for use in interactive programs. It

consists of a compiler and a run-time library. From an input file specifying the

form, the compiler produces several files of C code that realize the form using the

FORNL-t_N run-time library and the win screen interface library.

This document is the FOR._L-kN reference manual describing the structure of

FORMAN forms, the FORML form language and its compiler, the FORNL-kN

run-time library, programming with FORM.AN, and the FORMAN

implementation.

The following terminology is used throughout this document: FORMA.V

refers to the entire form system whereas forman refers to the FORML compiler.

Also, a user is one using a program containing forms made with FOR._L:kN

whereas a programmer is one using FORNL-kN to write a program containing
forms.

2. Form Structure

This section describes a form with respect to the form's displayed appearance

and user interaction. To do this, brief note about the implementation is needed

first. Then, a description of the displayed appearance is presented. Finally, user
interaction is described.

2.1. Implementation Note

At the implementation level,forms are made up of fields.Every fieldhas a

name, a prompt, some data, and up to three actions. The name is an internal

(not displayed) identifieroften used to interface to C. It is discussed further in

sections on FORML and programming. The prompt and data are part of the

display as the displayed name and value of a field.The actions are determined

by the programmer as the commands available to the user. For some .fields,the

programmer also specifiesthe starting column of the fieldon the display. (The

reader may note the rather direct relationshipbetween FORNLA_N fieldsand win

fields.)

2.2. Displayed Appearance

The displayed appearance of a form has four partitions which are the title,

menu, message, and body. The typical form display shown in the figure An

Ezample Form Display illustrates the form partitions. The figure is an empty

form containing only a system assigned number for a "new module". The

remainder of this section describes the form partitions from the user level.

2.2.1. Title

The titlepartitionis a singlefield.The title'sprompt string iscentered on

the firstline of the screen as the titleof the form and it does not scroll. The

three actionsspecify initialization,quit,and exit actions for the form. These will

FORM._N (draft) - I- RNS (6/30/87)



An Example Form Display

browse

Messages: new module

Module Body:

module name:

number: Ii03527590

project:

manager:

End Module Body.
List of Users:

End list of Users.

List of Imports:

End list of Imports.

Module Form

*** MENU ***

report

*** FORM ***

... top ...

be described during the cursor interaction section.

2.2.2. Menu

The menu partition of the form is optional. When it does exist, it consists of

a field indicating the beginning of the menu and a menu made of matrix of

programmer defined fields. The menu does not scroll. The prompt of each field

is displayed as the action available to the user. A menu field usually has only one
action associated with it.

2.2.3. Messages

Forman automatically supplies this non-scrolling field in every form with its

prompt "'Messages: ". It is used by the command interpreter for error messages.

[t is also available to actions as will be described in the run-time library section.

2.2.4. Body

The body of a form consists of two fields and a list of records. The first field

indicates the beginning of the form area and does not scroll. The second field

indicates the top of the form and does scroll. The list of records contains most of

the fields for user data. The list of records scrolls.
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2.2.4.1. Records

The list of records contains two kinds of records: single records and list

records. Single records have exactly one occurrence in the body of the form.
They have begin and end record fields which bracket their data fields. In the

example, the record starting at "Module Body:" and ending at "End Module

Body." is such a record. List records may have zero or more occurrences in the

body of a form. Therefore, they have begin and end list records in order to

represent empty lists. The other two records in the example are list records.

Because the "example is a new empty form, there are no records in the lists.

Records in the list records are similar to single records. One difference is that

forman automatically builds insertion and deletion actions for user interaction

with list records.

2.2.4.2. Fields

Regardless of the kind of a record, it is composed of fields. Each field has

programmer specifiable insert, delete, and pick actions. The insert action is used

to insert data into a field. Additionally, each field has a type that is checked by

FOR,'vL-kN. FORMAN supports the predefined types identifier, integer, path,

static, and string. It also supports programmer defined scalar types similar to

Pascal scalar types. These types are used to aid the user in interactively entering
correct data.

2.3. User Interaction

This section describes form initialization, cursor motion, menu actions, list of

records manipulation, inserting field data, and exiting from a form.

2.3.1. Initiali_atlon

Each form may have an initialization action which is performed after the

form is built internally, but before the user input is accepted so" that the

programmer may place initial values in various fields, if he so desires. In the

example, the number was entered by the initialization action. The user really has
no control over form initialization.

2.3.2. Cursor Motion

The cursor motion on the screen is governed by the win command

interpreter. A summary of its commands with comments about forms is:

i) h, < backspace> - move to the field to the left,

ii) j, < return > - move to the field below,

iii) k - move to the field above,

iv) l, <space> - move to the field to the right,

v) d - if the field (or record) has a delete action, invoke it,

vi) i - if the field (or record) has an insert action, invoke it,
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vii) p - if the field (or record) hasa pick action, invoke it,
viii) r, < ctrl-L > - refresh (redraw) the form fro m scratch,

ix) b - move to the bottom of the form,

x) B - move to the bottom of the display,

xi) t - move to the top of the body of the form,

xii) T - move to the top of the display,

xiii) q - quit the form. If the form has a quit action, invoke it,

xiv) e - exit the form. If the form has an exit action, invoke it.

xv) otherwise, post an error message to the message field and try to ring the
display's bell!

The interpreter erases the message field after each successful command in order to

prevent lingering error messages.

2.3.3. Menu Actions

The menu actions are determined by the programmer; however_ the are

following convention is encouraged. Of a menu field's three actions, the first two

are conventionally unused, but the third is the application action with which the

field is associated. This third action coincides with the pick (p) command of the
win command interpreter.

2.3.4. List of Records

In the form body, single recorGs have only programmer defined actions

associated with their begin record. There is no convention for these other than

that they are almost never used. When they are used, they correspond to the

insert, delete, and pick actions of the command interpreter.

List records, however, have actions associated with the list begin field and

record begin field (of each record in the list) which are generated by forman. The

insert action is attached to the begin list field and the deletion action is attached

to the begin record field of each record in the list. These actions allow the user to

insert records into the list and delete records from the list. The programmer may

also specify three actions (insert, delete, and pick) to be performed at the user's

command. These actions are attached as follows: The programmer insert and

delete actions are called from the formaa generated actions noted above. The

insert action is called after the fields have been inserted, but before the display is

redrawn. The delete action is called before the record and its fields are deleted.

The pick action is attached to the begin record field of each record in the list.

2.3.5. Field Data

Each field in a record has a type which FORMAN checks during the

insertion action as noted earlier. FOR_LAN type-checks the user data by calling a

run-time routine to check and display the user's data as it is entered. To enter

data. the user uses the insert command of the interpreter, enters data, and

terminates it with a <return>. The FORNLA.N run-time command will print
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error messages(and possibly ring the bell) for erroneousinput. It will not let the
user terminate input without entering a correct value. To aid the user, the
FOR_Lk.N"routinessupport two additional commandsduring insertion:

i) <ctrl-T> -- print a message describing the type of the field.

ii) <ctrl-R> -- if the field is a scalar type, allow the user to run through

the possible values as if he had entered them. The value is cycled to next
one on each <ctrl-R>.

The type static specifically does not allow the user to input data. The

programmer may still specify an insert action and it will be called by FORNL-kN.

Details of the types may be found in the section on the run-time library.

2.3.8. Exiting a Form

Exiting from a form is done when using the quit or exit command of the

command interpreter. Conventionally, the quit and exit commands act as

follows: The quit command leaves the state of the form as if the user had never

entered it. The exit command updates the state of the form with any new data

tb.at the user may have erttered. In either case, if a programmer action for one of

these commands fails, t,_.e user will remain in the form so that he can correct a

mistake and see any error message if displayed.

This section has described the appearance of a form to a user in terms of

both its display appearance and it command actions. The rest of the paper is

devoted to the programmer's use of FOR_L-kN.

3. FORML and Forman

This section describes the syntax and semantics of compiling the form

specification language FORIVLL. It includes the lexical constructs of the language

(e.g. character set, reserved words), common parse elements (e.g. 'composite

identifiers), types and naming (e.g. type checking), and finally describes an entire

form (with an example). The EBNT syntax for FORML is included in the

Appendix.

3.1. Lexical Constructs

The following tokens and directives are processed and executed by the lexical

analyzer.

3.1.1. Character Set

The character set for FORML is the character set (usually ASC[I) as

supported by the host C programming language. FORMAN is case sensitive, if

the host C programming language is. One is discouraged from using non-

printable characters except where specifically needed (e.g. new lines, tabs for

indentation).
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3.1.2. White Space

Blanks and all non-printable characters are insignificant in multiplicity and

generally serve as delimiters between tokens. The only exception to this is blanks

when they appear in quoted strings.

3.1.3. Comments

FORML comments start

Comments act like white space.

with a _ and end with a new Line character.

3.1.4. Options

Options are embedded in comments in a manner similar to Pascal. A

comment beginning °'/c$ is followed with the third character indicating an option.

,_,,,=,._,:, _,,e only option _v_tLLabte is t_ie mcLuOe option indicated by the letter i.

[t is then followed by a path name enclosed in single quotes, "'", that indicates

another FORML file. After the file name is acquired, the remainder of the Line is
_,oo_o,4 as a comment _,..4 the file is inserted _._:_- the ': ...... unu_ _'_nefile' ' ' _enos. -. ,.

the end-of-file, the lexer returns to the file from which the include was made. An

example:

% $I "../h / common_types.h"

There currently is a nesting limit of 19 on include files (which probably exceeds

the open file limit on many UNL-_ '® systems).

3.1.5. Special Symbols

The following characters are used as special punctuation in FORN[L:

3.1.6. Reserved Words

The following are FORML reserved words:

END FORM ID INTEGER IS LINE LIST M'ENX_"

NULL OF PATH RECORD STATIC STRING TYPE

3.1.7. Strings

A string is a double quote, followed by any number of printable characters,

followed by a double quote. To put a double quote in a string, use two

consecutive double quotes. [n other words, the string consisting of only a double

UNIX is a trademark of AT&T Bell Laboratories.
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quote is four double quotes. Theoretically, strings must be less than 1024

characters in length, but practically, they must not extend beyond the edge of a
display when used in a form.

3.1.8. Integers

An integer is a sequence of digits. It is unsigned (i.e. a whole number) that

also follows the rules of C's atoi(3) function.

3.1.9. Identifiers

An identifier is one of [_-k-Za-z] followed by any number of [_0-gA-Za-z!

using the common notation for ranges and alternatives of characters. The

theoretical length limit on identifiers is 1024 characters.

3.2. Composite Identifiers

The composite identifier is the basic structure used in the FORML language

declarations. A composite identifier consists of an identifier, a string, and a
function array. The identifier is the name of the field or record in the form. This

name is used by the compiler to generate names for functions and to interface

with the file system when necessary. The string is the description (prompt) of the

field or record that is displayed to the user. The function array is a list of three

identifiers that correspond to programmer defined semantic actions which are

functions written in C. They should have the C type "pointer to function

returning integer" when used alone. (In other words, they are the names of C

functions that return an integer.) If the programmer does not supply a Semantic

function, then he must use the reserved word NL'LL for each function that is not

supplied.

3.3. Types and Naming

Because FORML is primarily a language of declarations, there is almost no

type structure within itse[f. Most of the type checking is designed to occur at

run-time during user data entry into the fields of a form. This type checking will

be discussed in the section on the run-time library.

There are, however, two checks that forman could do in FORML. One is

_,hat programmer defined scalar types are defined before they are used in field

declarations. Forman does this correctly. The other is ensuring unique names for

functions that forman must generate. Unfortunately, forman currently does not

do this correctly. Future versions of forman will ensure that generated function

names are unique within a form. For now, the programmer should follow the
following guidelines:

1. The identifier for each form within a program should be unique.

2. The identifier for each record within a form should be unique.

3. The identifier for each field within a record should be unique.
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4. The programmer should not mix the above identifiers with the suffixes

_.form+ _insert, or _delete.

These guidelines arise Prom the Pact that the main function for a form is its title

identifier with the suffix .j'orm, and other function names are constructed by

concatenating the title identifier, record identifiers, field identifiers, with the

suffixes ..insert and _delete.

3.4. A Form

In the previous section, the form structure was presented as it appears when

displayed. Here, the form structure is presented Prom a syntactic viewpoint. A

form also has four syntactic partitions: title, menu, type, and body. Except for

section. The figure An Ezample Form will be used throughout the following

description.

3.4.1. Title

For this example, the file of FORML specifications would be module.f

because forman uses the title identifier with a ".f" appended as the file name. [ts

displayed title is "Module Form". [t has semantic functions for initialization

("module_jail") and exiting ("module_exit") which will be supplied by the

programmer. The quit function is NLrLL, meaning that no function will be
called.

3.4.2. Menu

The menu partition for this form results in a displayed menu of a single line

with two fields. The reserved word LINE is used to start a new line of the menu.

(LINE is not needed for the first line of a menu, but it is good practice to use it.)

The two fields share a common semantic function "sorry_not_imp" which

probably posts a message to the user that the menu functions have not yet been

implemented. Finally, the programmer has specified a starting column for each

field. If omitted, forman just tries to make sure that fields do not overtap. If one

does not wish to have a menu in a form, one merely omits this partition including

the reserved words MENU and (the closest) END.

3.4.3. Type

The type partition is optional in the same way as the menu partition in that

it is denoted by the pair of reserved words TYPE and END. The type partition

is used when the programmer wishes to define scalar types for input by the user.

Each scalar type consists of an identifier, a colon, a list of white-space-separated

identifiers, and a semicolon. The example has one scalar type ("acc_type") with

two identifier values ("read__cc" and "modify_cc"). When a user enters a value

for a field of a scalar type, it must be one of the identifiers in the list for the

scalar type.
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.An Example Form

FGRM module

MENU

END

TYPE

":,[odule Form" [ module Init NULL module exi_

LINE browse "browse" [NULL NULL sorry_not_Imp]

report "report" [NULL NULL sorry_not_Imp]

acc_type : read_acc modify_acc;
END

RECORD module_body "Module Body" [NULL NULL NULL] OF

name "module name:" [NULL NULL NULL] ID;

number "number:" [NULL NULL NULL] STATIC;

project "project:" [NULL NULL NULL] ID;

manager "manager:" [name check NULL NULL] ID;

] IS

16;

24;

END

RECORD LIST user_record "Users" [NULL NULL NULL] OF

user "user name:" [name check NULL NULL] ID;

access "access.:" [NULL NULL NULL] ace_type;

comment "brief comment:" [NULL NULL NULL] STRING;
END

NULL] OFRECORD LIST Import_record "Imports" [NULL NULL

item "item name:" [NULL NULL NULL] ID;

file "from file:" [NULL NULL NULL] PATH;
END

3.4.4. Body

The body of the form begins with the firstrecord and ends at the end of file.

3.4.4.1. Records

Each record begins with the reserved word RECORD, optionally is a list

record by using reserved word LIST. has a composite identifier,the reserved word

OF, a listof fields,and ends with the reserved word END. When displayed, a

single record has a begin fieldand end fieldwhich use the prompt string in the

composite identifier.The functions of the composite identifierare assigned to the

begin field.[n the example, the "module..body" record isa singlerecord. When a

listrecord is displayed, initiallyonly listbegin and listend fieldswhich use the

prompt string of the composite identifierare displayed. The insert function of

the composite identifierisattached to the begin listfield.When the user insertsa
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record, the identifier of the composite identifier is used in begin and end record

flies. Also, the delete and pick functions are attached to the begin record field.

The "user_record" and "'import_record" records are list records in the example.

3.4.4.2. Fields

Each record consists of fields of various types. The exact implementation of

these types is done in the run-time library to be described in the next section.

All the types except integer are included in the example. (The author could not

think of a reasonable integer to be input here.) Finally, forman automatically

assigns the starting cotumn on the disptay both fie[ds and records.

4. Run-Time Library

L,e ,. ,JL,.._L.'_., run-_ime _mr_ry provtaes she run-time support for the form

code produced by forman. It includes routines that type-check user input and

allow forms to be stored in files. The library also includes a few environment

............... are useful to t,Hp programmer.

4.1. Type Checking

Type checking in the run-time library is designed to ease the burden of the

programmer when acquiring user input. Earlier, the user commands were

presented. Here, the FOR,MAN functions that support the field types of

identifier, integer, path, scalar, string, and static are described.

4.1.1. Identifier

In FOR,'vtL, this type is represented by the key-word [D. The run-time

library has a routine called ID.jnsert that provides this type checking. It

prevents the user from entering characters other than those legal for an identifier.

An [D_.insert identifier is identical to a FORML identifier except that "." is also a

legal identifier character. This reason for adding "." is to facilit;ate using

identifiers as UNIX file names.

4.1.2. Integer

In FORML, this type is represented by the key'word INTEGER. The run-

time library has a routine called INT_jnsert that provides this type checking. It

prevents the user from entering characters other than those legal for an integer.

.-kn INT.jnsert integer is identical to a FORM.L integer.

4.1.3. Path

In FORML, this type is represented by the key'word PATH. The run-time

library has a routine called PA TH.jnsert that provides this type checking. A path

is that of a UNIX file system path. It consists of a pattern of [D_insert identifiers

and slashes that must end with an identifier.
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1) < path > --'i/i / <id> / I <id>

PATH._insert ensures that a path has the above form.

4.1.4. Scalar

In FORML, this type is represented by a user defined scalar type. The run-

time library has a routine called SCA_insert that provides this type checking. It

prevents the user from entering identifiers other than those legal for the

particular scalar type. To do this forman generates a type table containing the

legal identifiers and at run-time SCA_insert is called with the appropriate table

as a parameter. An SCA._insert identifier is identical to a FORML identifier.

4.1.5. String

[nFORML, this type is represented by the key_'ord STRING. The run-time

library has a routine called STRjnsert that provides this type checking, it

prevents the user from entering characters other than those legal for a string. An

STRjnsert string is identical to a FORML string.

4.1.8. Static

The forman run-time library support for this type is by not having any way

for the user to input to a field of this type. Usually, static fields are initialized in

the programmer's form initialization function. Unfortunately, the current version

of forman does not provide run-time support for this. The programmer must use

the form structure and follow the pointer links of win to use this type. The code

for the example of the previous section shows this. Future versions of forman will

generate an access function that will return a pointer to the field for use with win

functions, thereby eliminating programmer traversal of the win structure.

4.2. Form Storage

The run-time library contains two functions for file storage of forms:

FORM_.fetch and FORM_store. FORM..fetch takes as its parameter a file

descriptor that has been opened using fopen(3) and fills the current form from the

file. Similarly, FORM_store takes as its parameter a file descriptor that has been

opened using fopen(3) and writes the current form to the file. There are more

details on using these functions in the section on programming with FOR,MAN.

4.3. Environment Variables

There are two environment variables that forman sets that can be very

helpful to the programmer. They are current_FORM_win and

current..FORM..msg. The former is useful for manipulating the data in a form

and the latter is useful for displaying error messages and other useful information.

There are more details on using these variables in the section on programming
with F ORNL-kN.
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5. Programming with FORM.AN

This sectiondescribes how to accessthe FORMAN system and presents some

programming hints.

5.1. FORMAN Access

FORNL_.N was developed as a screen interface mechanism for the PRO_LA.N

project management system. As a result, this library resides in the project

management research area of the author. (For convenience, we will use the tilde

_-' in the usual manner throughout this paper to denote a home directory in

UNL-_.) Access to the compiler and the run-time library are presented below.

5.1.1. Compiler Acce-_s

The FORNL-k.N compiler, forman, is located in

"sum/management/bin

In order to avoid the full path name one should include it in his UND( PATH

environment variable. [t is possible that the compiler could be located in different

places on different machines, so one might check with the person in charge of the

FOR.MAN system if he has problems with access to it. To use forman, the form's

specification in the language FORML (described later) should be in a file whose

name is the same as the name of the form it contains with ".f" as its suffix. (This

is an overload of the .f sui_x. But. forman was not intended for use with

FORTRAN. This also means that one may use a ".f.c" rule in make(l).)

To compile the source file into C code in the source file's directory, one does:

forman my_form.f

A successful compilation results in the generation of four files of C code: One file

is an include file; the other three are code files. The file my..]arm.h contains all

the external declarations of the C functions generated by the compiler and the

programmer's external semantic functions. The file rny..]arm.e contains the main

function for the form and is probably the only function that the programmer's

program will call. The file rny_]arm_i.c contains all the functions needed to

handle data insertions by the program's user. The _.le my_,form_d.c contains all

the functions needed to handle data deletions by the program's user. An

unsuccessful compilation results in an error message that is cryptic except for the

line number and character at which the error occurred. Because forman currently

has no error recovery, it dies on the first error it finds. Fortunately, this is not

much of a problem because form specifications are no_ very long and the language

is fairly simple.
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S.l.2. Library Access

The FOR_L-kN run-time library is needed when compiling and linking

forman's code into a program. (.ks described later, the programmer must supply

at least a minimal main program. Also, note that compilers require either a full

path name or an include option '-f/partial/path/name' to work correctly.) To

use the FORNLAN run-time library, one must include the files

-sum/management ,'include/F ORM.h

my_form, h

and link the library files

"sum;management lib/FOR.'vI.a

"sum,/ management lib/IO.a

"sum/management/lib/win.a

into one's program. Because win is built on top of curses(3x) which is built on

top of termcap(3x), a sample input line for cc(l) might look like:

cc -I/mntb/3/srg/sum/management/include-o my_prog my_prog.c

my..form.c my..form_.i.c my_form_d.c "sum/management/lib/FORM.a

-sum/management/lib/IO.a "sum/management/lib/win.a -Icurses

-ltermcap

which probably justifies using a "makefile" and make(l). Please note that one

need not, and probably should not, include files related to curses(3x) and

termcap(3x) other than their libraries, as shown above. More information about

win is available in "WIN: A Simple Field-Oriented Screen-Interface Library,

Reference Manual." Finally, it is possible that the library could be located in

different places on different machines, so one might check with the person in

charge of the FORM.KN system if he has problems with access to it.

5.2. Programming flints

These programming hints describe both necessities and suggestions when

using FORMAN. Necessities will be clearly stated. The example that has been

used throughout this manual is complete and included in the FORNL.kN

distribution. The implementation section has details of its location. These

programming hints are for the main program, form initialization and storage, and

user (programmer defined) actions.

5.2.1. Main Program

The FORMAN system does NOT provide a main program. This is the

responsibility of the user. The minimal main program is pictured in the figure

Main Program. Basically, the main program must initialize and stop d_e win
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library and call the main routine for a form. The main routine for a form is

always the name of the form with the suffix _,[orm appended to it. [t has no

arguments. [t returns an integer; however, it rarely returns a value other than 0.

On an error, it would return a non-zero value.

5.2.2. Initialization and Storage

The following are merely suggestions and examples of putting data into

static fields and using the form storage routines. The figures ,4 Form
Initialization and ,4 Form Ezit show basic use of these ideas. For the

initialization function, FOR._LAN gives it a win field pointer to the title field as aa

argument. For the exit function, FORMAN passes a pointer to the field where

the user (cursor) was. This can be awkward and may change in the future.

One should note that one can .NOT use the siJype siot in win fields when

using the form storage routines because they depend on the values that FORNL-kN

puts in them. The storage functions save the slots si_type, .si_data, and si_user.

_ dC%D _ A" i_i I "_' D" o'- m_,P use ....•J_,.,._-_,, uses only the first two of these slots, tae ,_,oo_am ..... may t h,_

last two.

5.2.3. User Actions

Examples of user (programmer defined) actions added to a menu field and an

insert data field are shown in figures An Menu Function and A Data Function,

respectively. The menu function demonstrates how one can display error

messages to the user. The data field indicates how to access the data of a field.

Essentially, all user functions are passed a pointer to the win field structure and

can directly access the data.

Main Program

#include "wln.h"

#include "module.h"

main()

{

init screen window();

module form();

stop_screen_window();

FORiNIAN (draft) - 14- RNS (8/30/87)



A Form [nitialization

#include <stdlo.h>

#include "wln.h"

#include "FORM.h"

In¢ module Inlt( sl )

SI * sl;

{

FILE * fetch;

if ((fetch = fopen( "module.say", "r" )) == NULL ){

Int I;

char hum[24];

/* initialization of i is semi magic based on lines in form _/

/* future versions of FGRMAN will have access functions _/

for( i = 8; i > O; i-- ){

si = si->sl do_n;

}

sprlntf( hum, "_d". rand() ) ;

insert data( sl, num );

insert_data( current_FORM_msg, "new module" );

return O;

}

FORM fetch( fetch );

fclose( fetch );

return O;

I

I

I
1

!
I
I

I
I

I
1
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A Form Exit

_include <stdlo.h>

#include "'gln.h"

#include "FORM.h"

Int module exit( sl )

SI * sl ;

{

FILE * store;

if ((store = fopen( "module.say", "w" )) == NULL ){

post_fleld( current FORM msg, "module exit: can't ooen file.")"

return !;

}

FORM store( store );

fclose( store );

return O;

A Menu Function

_include "_In.h"

#include "FORM.h"

Int sorry_not_Imp( si )

SI _ sl;

{

post_fleld( current_FORM_msg, "Sorry command not implemented." );

return I; /* return I so message is not erased */
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A Data Function

#include

#include

#include

#include

<scd!o.h>

<pwd.h>

"win.h"

"FORM.h"

In5

{

n_me check( sl )

SI * si;

struct passwd * bur;

if ((buf = getpwnam( si->sl data )) == NULL){

post fleld( current_FORM_msg, "WARNING:

return t;

return O;

user h_s no

6. Implementation

This section describes the directory structure and code characteristics of the

implementation of the FORMAN system. It will do so by describing the directory

structure and then some characteristics of the each component of the forman

system.

6.1. D|reetory Structure

The parent directory for FOR,MAN is

"sum/management/src/lib,/forman

and it contains the following files and directories:

a) Makefile - the input file for make(l) to make the entire system.

b) doe - a directory containing all external documentation such as this one.

c) example - a directory containing the code for the example form in this
manual.

d) h - a directory of include files that are used in more than one FORMAN

component.

e) lex - a directory containing forman's lexical analyzer.

f) lib - a directory containing the FOR.MAN run-time library.

login. " );
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g) main - a directory containing code for the forman main program and

man(1) man.ual page.

h) parse - a a.rectory containing forman's parser

Occasionally. there are miscellaneous directories with "test" as part of their

names. These are transient and used to test FORNiAN and other related

programs. They are just for fun.

8.2. Makefile

The FORNL-kN system can be made with one command from the top level

directory:

make ROOTD[R=/rootdir install

FORNL-kN requiresthe followingstructureof//rootdir'.

a) It must be an absolute path name (i.e. start with a "/").

b) It must have sub-directories: bin, include, lib, and man.

c) The man sub-directory must have sub-directories man1 and man:?.

Otherwise, paths inside each of FORMAN's sub-directories' make files must be

changed.

Although distributed with all the C source files, FORM.AN uses a version of

S/SL to generate parsers in C for forman's lexical analyzer and parsers. S/SL is

not distributed with FOR.MAN or PROMA.N although it is available. Finally,

FORM.AN depends on the win library and the IO library included in the

distribution. They must exist before FORMAN is made. This is ensured when

FOR.M.AN is made from a PRO_iAN system or PROMAN library distribution.

8.3. Documents

Several documents are available about FORM.AN. The main document is

this reference manual. The others are subsets of this manual. A makefile in the

doc directory describes how to produce these documents using some form of troff

or nroff.

8.4. Forman

Forman uses files in the h, lex, parse, and main directories. The h directory

contains several include files of S/SL and C code that are used by the lexical

analyzer and parser. The [ex directory contains all the S/SL and C code for the

lexical analyzer plus a makefile for building and installing it. Similarly, the parse

directory contains all the S/SL and C code for the parser plus a makefile for

building and installing it. The main directory contains the csh(1) script that

drives the compiler, the man(l) manual page (*roff source), and of course, a
make file.
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When run, the compiler consists of the driving csh(1) forman script, the

lexical analyzer and the parser. The forman script checks the argument and

constructs temporary file names for the two passes. It then runs the each pass

and cleans up any left over temporary files. The [exical analyzer breaks the input

file into tokens including the processing of include files. The parser recognizes the

language and calls semantic functions to build the C code of the form. The

current version of the compiler has rio error recovery. [t does, however, try to

print reasonable error messages and quit gracefully.

6.5. Run-T'me Library

The FORM.AN run-time library contains C code to implement all the run-

time support functions and the include file for user programs. It also contains a

makefile for building and installing the library.

6.6. Example

The sub-directory example contains an example form program with its

makefile. Depending on the installation of FOR_L-kN, one may need to change

the values of path names in the make file. To make and run the example do:

make

module

The example has an exit action that .stores the form in a file module.say and a

quit function that leaves the module alone (N-CLL in FORML). One should not

be concerned with the "module number" for a new module as it is a random

number.

7. Closing

The FORM.AN reference manual has described the FOR,MAN system from

the user and programming points of view. It has presented user interaction, the

FORM'[, language, the run-time library, an example of a form, and a brief

overview of the implementation structure. Hopefully, you will find FOR,M.AN to
be a useful tool.

8. A.ppendlx: FORM_t, Syntax

This appendix contains the EB_N_F descriptionof the syntax of the FORM.AN

form language, FORML.

1) < form> ----*FORM < composite_jd > IS < menu > < type_decl >
< record >

2) <menu> "-'* LrMEN'U { < menu_field > _ END ]
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3) < menu_field >

4) d type_decl>

5) <record>

6) <field>

7) < composite_id>

8) d functions>

9) < t'uncjd >

tO)

II < type>

12)
13)
[4)

Is)

l LINE <composite_id> " <integer> ' ;

I TYPE{ <id> : did> { <id> I; /END]

{ RECORD i LIST I <compositeid> OF [ <field>

tEND ]-

< compositeid > < type > ;

did> <string> dfunctions>

[ < funcid > < func_id > < func..id > ]

--* did>

INULL
I

--_ID

I INTEGERI
J PATHl
i STATICI

I STRING
i
i did>

17) <id> -._

18) <string>

19) <integer>

[A-Za-z_] { [A-Za-z0-0_]

"{ [A-Za-,.O-O_]}"

--[o-o]{ [o-o]

Please note that strings can include any printable character; not just

numbers, digits, and blanks. The double quote is doubled to include it in a

string.
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I. Introduction

The win Library is a simple, field-oriented,screen-interface library. It is

simple in that it provides basic multiple screen manipulations, but does not do

windows. Field-oriented means that the user partitionsthe screen area into fields

that have a static prompt string and a dynamic data string. Screen-interface

means that itisdesigned for building terminal interfacesfor interactiveprograms.

Finally,of course, librarymeans that itisa collectionof subroutines.

This manual is brief, but it will describe win access, data structures

functions,and implementation. Most programmers will not need to bother with

the implementation section. But, because win isstilldeveloping, itmay be that

the code is more usefulthan expected. A simple closing rounds out the paper.

2. Access

Win was developed as a simple, portable screen interface mechanism for the

PRO_L-kN project management system. ,-ks a result, this library resides in the

project management research area of the author. (For convenience, we will use

the tilde '-' in the usual manner throughout this paper to denote a home

directory in UNL-'K. 're Note that compilers require either a fuli path name or an

include option '-I/partial/path/name' to work correctly.) To use win, one must
include the file

"sum/management/include/win.h

and link the library file

-sum/management/lib/win.a

into one's program. Also, because win is built on top of curses(3x) which is built

on top of termcap(3x), a sample input line for cc(1) might look like:

cc -[/mntb/3/srg/sum/management/include-o myprog myprog.c

"sum/management/lib/win.a -lcurses -ltermcap

which probably justifies using a "makefile" and make(i). Please note that one

need not, and probably should not, include files related to curses(3x) and

termcap(3x) other than their libraries, as shown above. Finally, it is possible that

the library could be located in different places on different machines, so one might

check with the person in charge of the library if he has problems with access to it.

UNIX is a trademark of AT&T Bell Laboratories.

win (draft) - I - RNS (6/28/87)



I

i
I

I

I

I
I

I

I
I
I

I
I

i
I
I
I

I
I

3. Data Structures

In this section we will describe the win data structures from a programmer's

viewpoint, i.e. the description will be conceptual rather than sorely about

implementation details. Win has two data structures: the screen also known as a

screen_window and the field also known as a screen_item. Each of these will be

described in turn and a final section will note the implementation details needed

for programming. (When reference to the actual physical terminal display is

needed, display will be used.)

3.1. Screens

Even though win does not support windows, it does support multiple screens.

That is, even though one can not partition the terminal display to view more

than one screen simultaneously, one can have several screens with a current screen

displayed. Win keeps a list of screens and has several functions that allow the

programmer to manipulate them. Except for these functions, all functions act on

the current screen.

3.2. Fields

The field is the basic division of the screen. One may think of a screen as a

matrix of fields. Eacb. field is one line in height but any number of characters in

length. (The programmer must manage field lengths.) Win supports screens

longer than the number of lines of the :erminal display when the programmer sets

all or part of the screen as scrollable. Win does not support screens wider than

the terminal display (see remark above). It does, however, make the length and

width of the terminal display available through the integer variables LINES and

COLS as in curses(3x).

Each field has slots associated with it for programmer data and functions.

There are three groups of slots; one each for character display, general data, and

user functions.

3.2.1. Character Display

Each field has three special data slots for displaying characters: prompt, x,

and data. The prompt slot is used to hold the prompt displayed to the user

concerning the field. It is set at field insertion (creation) time and never changed.

The x slot is the column number where the prompt starts to be displayed. [t is

also set at field insertion time and never changed. Finally, the data slot is where

the ,_ser's input data is placed. [t may change fairly often, usually as a result of
user functions.

3.2.2. General Data

Each field has two general data slots for the programmer's own use: type

and user. They are both suitable for integers and can be set directly by the

programmer via a pointer r,o the _eId.
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3.2.3. Function Fields

Each field has three function slots: insert, delete, and pick. These slots may

contain pointers to functions which may be called based on the program's user's

request. They are named as such by convention with user actions of inserting

more fields or data into fields, deleting fields or data from fields, and invoking

operations from a menu, respectively. These are set at field creation time and are

not changed thereafter in the manner of the prompt and x slots.

3.3. Programming

The table, Concepts to C Code, associates the terms used to describe the

screens and fields with the C code needed. For further details, see the include file
win.h mentioned in the section 2.

4. Functions

This section is a listing of win functions (subroutines) with descriptions of

their parameters and actions. There are three general categories of functions:

screen management, field operations, and cursor motion.

4.1. Screen Management

The following functions are used for creating, destroying, setting, and

otherwise managing screens.

void ifiitjcreen_window 0

Perform all the necessary initialization for the win library. This routine

must be called once before any other calls or references to the library are

made.

SW * create__creen_window 0

Create a screen, set it to be the current screen, and return a pointer to it.

Concepts to C Code
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win concept

screen
freld

field slot prompt
field slot data

field slot type

field slot user

pointer to function

field slot insert

field slot delete

field slot pick
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C type

struct screen_window

struct screen_item

char *

char _

int

int

int (*PICK._-kCTION)()
P [CK__CTION

PICK..ACTION

PICK..ACTION

C typedef or field id

SW

SI

si_.prompt

si_data

si_type

si_user

PICK..ACTION

si_insert

si_delete

si_pick
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SW * set_screen_window( SW * )

Set the current screen to the screen pointed to by its argument. It returns

its argument.

void destroy_creen_window( SW * )

Destroy the screen window pointed to by its argument, reclaiming all of its

storage.

void refresh__creen_window()

Redraw the terminal display from scratch.

void refresh.2creen_.on 0

Enable the refresh routine to redraw the terminal screen. Otherwise,

refreshmcreen_window merely updates internal structures. This is sometimes

useful when using the motion routines behind _.h, scenes.

void refresh_creen_off 0

Disable the refresh routine from redrawing the terminal screen.

void suspend jr reen_.window()

Temporarily suspend action of the win library and reset the terminal display

modes. This is useful if the application is using system(3) to run another

program that uses the terminal's display.

void resume__creen_window()

Reset the terminal display modes and the win library. It also refreshes the

screen.

void top2creen_window 0

Move to the cursor to the field at the top of the terminal's display. This

function is [isted here because it is associated with the physical display.

void bot..3creen_window 0

Move to the cursor to the field at the bottom of the terminal's display. This

function is listed here because it is associated with the physical dislflay.

void stop.2creen_window 0

Stop the win library. This should be used before a program exits to clean up

and reset the terminal display modes.

4.2. Field Operations

These functions are concerned with inserting, deleting, filling, and printing

fields.

SI * insertline( type, x, prompt, insert, delete, pick )

SI * insert_right( type, x, prompt, insert, delete, pick )

Win assumes that one will initially build a screen like a matrix in row major

order. Therefore, there are insert_line (new row, down) routines and

insert_right (next col) routines. Insertions always occur with respect to the

current field (where the cursor is). The parameters are:

win (draft) - 4 - RNS (8/2S/S_)



i) type - the value for integer general data slot.

ii) x - the column at which the prompt is to begin.

iii) prompt - a character pointer to the string of characters that will be

the prompt. This character string is copied.

iv) insert, delete, pick - pointers to functions returning integers that are

usually associated with user actions.

SI*

$I*

SI *

SI *

SI *

They return a pointer to the new field.

insert_data( SI _', char * )

This function inserts the data pointed to by the second argument into the

data slot pointed to by the first argument. It copies the data and returns its

_rst argument. It does not print the data on the terminal's display.

top_of_._cro[l( SI * )

This function sets the first line of the scrollable part of the screen to the line

containing its argument. This argument should be the first field in a line.

The remainder of the screen will then be scrolled as necessary by motion

commands if the screen is longer than the physical display:

delete..field( SI * )

This function deletes the field pointed to by its argument which must also be

the position of the cursor. It then moves the cursor to a neighboring field, if

there is one, in the order: right, left, down, up.

post_field( SI *, char * )

This function is like insert_data, except that it does print the data on the

terminal's display.

fetch_field( SI * )

This is a simple routine (that might be used for a field's insert slot) that

accepts a string of characters as data from the user at the field of its

argument. It returns its argument.

4.3. Cursor Motion

This group of functions is used for moving the cursor around and figuring

out where you are in a screen window. They all refresh the screen when necessary

and unfortunately, sometimes when it is not necessary.

SI * up_field 0

Si * down_.field()

$I * left.field()

SI" right_.field()

The above functions all move the cursor to the next field in the indicated

direction, if possible. Otherwise, they do not move. The return a pointer to
the new field.

win (draft) - 5 - RNS (8/28/87)
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S[ * top_form()

This function moves the cursor to the first field in the scrollable part of the

screen. It returns a pointer to the new field.

S[ * bot_form()

This ['unction moves the cursor to the first field in the scrollable part of the

screen. It returns a pointer to the new field.

SI * current_field 0

This function just returns a pointer to the field that the cursor is at.

int screen_command( message, quit, exit )

This function is a fairly standard command interpreter with motions similar

to vi(1). Its arguments are a pointer to a field to post error messages, a

PICK_ACTION to use for the quit command, and a PICK_ACT!ON to use

for the exit command. The commands are:

i) h, < backspace> - move to the field to the left,

ii) j, <return> - move to the field below,

iii) k - move to the field above,

iv) I, <space> - move to the field to the right,

v) d - if the field's delete function exists, call it with a pointer to the

field as its argument,

vi) i - if the field's insert function exists, call it with a pointer to the

field as its argument,

vii) p - if the field's pick function exists, call it with a pointer to the field

as its argument,

viii) r, <ctrl-L > - refresh (redraw) the terminal's display from scratch,

ix) b - move the bottom of the screen,

x) B - move to the bottom of the terminal's display,

xi) t - move to the top of the scrollable part of the screen,

xii) T - move to the top of the terminal's display,

xiii) q - quit the command interpreter, if the quit function is not NULL,

then execute it. If it returns an error (return value != 0), then stay in

the interpreter. The quit function is by convention usually NLrLL and
acts as an abort.

xiv) e - exit the command interpreter, if the exit function is not ._'LL,

then execute if. If if returns an error (return value !-'- 0), then stay in

the interpreter. TEe exit function is by convention usually present

and acts as the completion of the work session.

xv) otherwise, post an error message to message argument and try to ring
the terminai's bell!

The interpreter erases the error message field after each successful command.

For the field functions of the d, i, and p commands, if the function returns a

ann-zero value, then the error message fie{d will ant be erased. This

win (draft) - 8 - RNS (8/28/87)



facilitates posting error messages from those routines. Also, because of the

actions on the quit and exit commands, the interpreter almost always returns
0. On an extreme error it would return some non-zero value.

5. Implementation

This section contains an overview of the win library implementation. Win is

written in the C programming language. Initially, an attempt to modularize the

code was made, but as it was hacked much of that modularity was lost. This

section will describe what remains of the modularity.

First, the high level structure is a main directory with sub-directories for

source code and documentation. The main directory is

"sum,. management/'src/' lib/ win

which contains a make file Makefile for making the library, directory lib with

source code, and a directory doc with the documentation. Note that because the

man page is installed and treated like code, it is in the directory with the source

code. Other documentation such as this manual is in the doc directory.

Within each. sub-directory are make files that indicate the products

available..Make(l) will make a product given its name and any noted special

arguments. Changing the location of the source for win requires changes to paths

in the make files. Making documents may also require changing the names of the

processors in the make files.

The C code for win was structured so that there are two include files and

four source files. The first include file is the user interface file win.h. It contains

the data structure and function definitions. The second include file is an internal

interface among the four source files called internal.h, of course. It contains

internal data and function definitions. The first source file win.c contains all the

user available functions (many of which do little more than call internal

functions) except for the command interpreter. The file command.c contains the

command interpreter. The remaining files contain internal functions that

implement most of the win functionality. The file internal..ai.c contains code to

do most of the field (screen_item) manipulations concerning insertion, deletion.

etc. The file internal_sw.e contains code to do most of the screen (screen_window)

manipulations including initialization, window list management, display
refreshing, and cursor motion.

a. Closing

This has been a rough introduction to the concepts and functionality of the

win library for screen interfaces. Obviously, this is not a product, but has proven

useful in the development of PROSL_.N. One may also wish to check out

FORMAN a compiler for forms that takes quite a bit of drudgery out of using
win.
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Abstract

PLEASE is an executable specification language which supports incremental software

construction in a manner similar to the Vienna Development Method. PLEASE is part
of the ENCOMPASS environment which provides automated support for all aspects of

the development process. In ENCOMPASS, PLEASE specifications are incrementally

refined into Ada ® implementations. ENCOMPASS is now being extended with a

knowledge-based assistant which uses deductive synthesis techniques. During the

refinement process, the assistant can provide advice on design and implementation deci-
sions. The assistant also contains a library of program schemas which can be instantiat-

ed during development. In this paper, we give an overview of ENCOMPASS and

present an example of development using the environment.

1. Introduction

It is both difficult and expensive to produce high_cluality software. One solution to this problem is

the use of software engineering environment8 which integrate a number of tools, methods, and data struc-

tures to provide support for program development and/or maintenance[2,7,22,42,43,51]. Another solution

is the use of tools which combine a knowledge-base and/or artificial intelligence techniques to support

software engineering[3,4,19,32,39,41,49]. One such technique is deductive 6ynthesis, the use of theorem

proving techniques to create verified code from specifications[16,19,20,24,34]. ENCOMPASS[44,45] is an

integrated environment to support incremental software development. ENCOMPASS is being extended

with a knowledge-based assistant which uses deductive synthesis techniques. In this paper, we give an

overview of ENCOMPASS and present an example of development using the environment.

The Vienna Development Method (VI)M) supports the top-down development of software specified

in a notation suitable for formal verification[5,8,14,25-27,40]. In this method, components are first

specified using a combination of conventional programming languages and mathematics. These

Ada _ is a trademark of the US Government, Ada Joint Program Office.
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specifications are then incrementally refined into components in an implementation language. The

refinements are performed one at a time, and each is verified before another is applied; therefore, the final

components produced by the development satisfy the original specifications.

PLEASE [46-48] is a wide-spectrum, executable specification language which supports a development

method similar to VDM. PLEASE extends Ada[15,50] so that a procedure or function may be specified

with pre- and post-conditions, a data type may have an invariant, and an implementation may be com-

pletely annotated. PLEASE specifications may be used in proofs of correctness; they may also be

transformed into prototypes which use Prolog[13,30] to _execute n pre- and post--conditions. We believe

that the early production of prototypes will enhance the software development process.

ENCOMPASS[44,45] is an integrated environment to support the incremental development of

software using PLEASE. ENCOMPASS is a descendant of the SAGA project[8-11,28], which is investigat-

ing both the formal and practical aspects of providing automated support for the full range of software

engineering activities. In ENCOMPASS, software is first specified using a combination of natural language

and PLEASE. Components specified in PLEASE are then incrementally refined into components written

in Ada; refinements can be verified using either testing, proof, or peer review methods. ENCOMPASS pro-

vides facilities for specification, prototyping, refinement, testing, mechanical verification, configuration

control and project management.

IDEAL[45] is an environment for the specification, validation, refinement and verification of single

modules; it is a programming-in-the-small environment for software development using PLEASE. IDEAL

is now being extended with a knowledge-based assistant which uses deductive synthesis techniques. Dur-

ing the refinement process, the assistant can give advice on routine design and implementation decisions.

The assistant also contains a library of program 8¢hema_; the programmer can browse this library and

instantiate schemas with the aid of the assistant.

In section two of this paper, we describe the development methodology PLEASE, IDEAL and

ENCOMPASS are designed to support, and in section three we describe the system architecture. In section

four we present an example of software development using the tools, including specification of a corn-



ponent,validationof the specification, and a single design transformation. The design transformation con-

sists of a number of atomic transformations, some of which are generated automatically by the

knowledge-based assistant. In section five we describe the status of the system and in section six we sum-

marize and draw some conclusions.

2. Incremental Software Development

ENCOMPASS is based on a traditional or waterfall life-cycle[18], extended to support the use of exe-

cutable specifications and a development method similar to VDM. In ENCOMPASS, the requirements

definition phase determines the functions and properties of the software to be produced[18]; software

requirements specifications are a combination of natural language and components specified in PLEASE.

The fact that a software system satisfies its specifications does not necessarily imply that the system will

satisfy the customers' requirements. The validation phase attempts to show any implementation which

satisfies the specification will also satisfy the customers. If the specification is not valid, then it should be

corrected before the development proceeds any further.

To aid in the validation process, the PLEASE components in the specification can be transformed

into executable prototypes. These prototypes can be used in interactions with the customers; they can be

subjected to a series of tests, be delivered to the customers for experimentation and evaluation, or be

installed for production use on a trial basis. The use of prototypes can increase customer/developer com-

munication and enhance the validation process. If it is found that the specification does not satisfy the

customers, then it is revised, new prototypes are produced, and the validation process is reinitiated; this

cycle is repeated until a validated specification is produced.

In the refinement phase, the validated specification is incrementally transformed into a program in

the implementation language. The refinement process consists of a number of steps. Each step is small

and is verified before the next is applied; therefore, errors are detected early and corrected at low cost.

Since each step is correct, the final implementation satisfies the original specification. Each refinement step

adds more information about the data structures or algorithms used in the system; each step produces a

more detailed specification, until an implementation is finally produced.
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Although a new specification has been created, its relationship to the original is unknown. Before

further refinements are performed, a veri)icatioa phase must show that any implementation which satisfies

the lower level specification will also satisfy the upper level one. In our model, this is accomplished using a

combination of testing[36], technical review[17], and formal verification[31]. Many feel that no one tech-

nique alone can ensure the production of correct software; therefore, combinations of techniques are desir-

able.

PLEASE specifications enhance the verification of system components using either testing or proof

techniques. The specification of a component can be transformed into a prototype; this prototype may be

used as a test oracle against which the implementation can be compared. Since the specification is formal,

proof techniques may be used which range from a very detailed, completely formal proof using mechanical

theorem proving, to a development "annotateW with unproven verification conditions. PLEASE provides

a framework for the rigoro_sI26 ] development of programs. Although detailed mechanical proofs are not

required atevery step,the framework ispresentso that they can be constructedifnecessary..

In ENCOMPASS, systems can containmodules developed usingPLEASE and IDEAL as well ascom-

ponents constructed using conventional techniques. The allows the formal power of PLEASE and the

practicalpower ofAda to be combined ina singleproject.Parts of a projectmay use detailedmechanical

verificationwhile other,lesscriticalparts may be handled using lessexpensive techniques.ENCOMPASS

provides an integratedsetof toolsto support such a development method.

3. System Architecture

The toolsin ENCOMPASS can be dividedinto two main groups: support for programming-in-the-

large,including the configuration and projectmanagement systems; and IDEAL, an environment for

programming-ln-the-small using PLEASE. IDEAL isan environment for the specification,validation,

incremental refinement, and verificationof single modules. It contains four tools: TEDI21], a proof

management system which is interfacedto a number of theorem provers; ISLET (IncrediblySimple

Language-oriented Editing Tool), a prototype program/proof editor;a toolto support the constructionof

executable prototypes from PLEASE specifications;and a testharness. The user interactswith thesetools



through a common interface. A set of symbol tables represent the PLEASE specifications and Ads imple-

mentations being developed.

The central tool in IDEAL is ISLET. It not only manipulates the symbol tables representing

specifications and implementations, but provides a user interface and, in a sense, controls the entire

development process. ISLET supports both the creation of PLEASE specifications and their incremental

refinement into'annotated Ads implementations. This process can be viewed in two ways: as the develop-

ment of a program, or as the construction of a proof in the Hoare calculus[23,31]. The refinement process

is a sequence of atomic transformations, which can be grouped into design transformations.

A design transformation implements a choice of data structure of algorithm; for example, whether to

use a hash table or B-tree to implement a data base. Atomic transformations are the smallest distinguish-

able changes to the system; in ISLET, editor commands are atomic transformations. From the program

view, an atomic transformation changes an unknown statement into a particular language construct; from

the proof view, an atomic transformation adds more steps to an incomplete proof. From the program

view, defining a predicate adds a new construct to the program; from the proof view, defining a predicate

adds new axioms to the first-order theory on which the proof is based.

Figure 1 shows the architecture of ISLET. The user can interact with ISLET through a simple

language-oriented editor similar to[38]. The editor provides commands to add, delete, and refine con-

structs; as the program/proof is incrementally constructed, the syntax and semantics are constantly

checked. The editor also controls an algebraic simplifier, a number of simple proof procedures, and an

interface to TED.

Many steps in the refinement process generate verification conditions in the underlying first-order

logic. These verification conditions are first simplified algebraically and then subjected to a number of

simple proof tactics. These methods can handle a large percentage of the verification conditions generated.

If a set of verification conditions can not be proved using these methods alone, the TED interface is

invoked to create a proof in the proper format. Using TED is very expensive, both in system resources and

user time; however, many complex theorems can be proved with its aid. The algebraic simplification and
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simple proof tacticsused in ISLET are very inexpensive;however, they are not very powerful.

The al_ebraicsimplifierisimplemented as a term rewritin_system[29,371;itcontains a knowledge-

base of ruleswhich are assumed to be convergent. The simple proof proceduresrelyon a knowledge base

which containsinformation such as: ifthe formulae F land Fs are equivalentto the renaming of variables,

then the formula F t3 Fs isalways true. Other rulesimplement simple knowledge of equality;forexam-

ple,ifF{X) and X=c are both true then so isF(c). At present,itisdifllculttoexamine, analyseor change

the contents of these knowledge bases;for example, algorithms existto determine ifa setof rewriterules



are convergent, but they are not implemented in ISLET. We are developing tools to correct these

deficiencies.

The user can also interact with ISLET through a knowledge-based assistant based on deductive syn-

thesis techniques. During the refinement process, the user can ask the assistant for advice on how to

implement an undefined construct. The assistant attempts to solve this problem by first searching for

values that satisfy the pre- and post-conditions for the construct and then synthesizing Ada code to set

these values. The assistant can access the information stored in the symbol table and invoke the algebraic

simplifier and simple proof procedures. The assistant also contains a library of program schemas which

can be instantiated to produce code fragments. The user can browse this library and instantiate schemas

with the aid of the assistant; he can then use the instantiated schema in a refinement.

To further clarify our approach and to better illustrate the use of PLEASE and DEAL, we will con-

sider an example of software development.

4. A.n Example of Software Development

Assume that a customer needs a component that sorts a list of natural numbers. The component

should take a possibly unsorted list as input and produce a sorted list which is a permutation of the origi-

nal as output. In the requirements definition phase, the customer discusses his needs with the systems

analyst and a requirements specification is produced. Along with other documentation, this specification

might contain a component specified in PLEASE.

4.1. Speelfying a Proeedure

For example, Figure 2 shows the PLEASE specification of a package, sort..pkg, which provides a pro-

cedure called sort. To increase readability and understandability, the syntax of PLEASE is similar to

Anna[33]. The specification uses the pre-defined package naturai._list..pkg, which uses the PLEASE type

list to define the type natural..li6t as list of aatura£ In PLEASE, as in Prolog, the empty lest is denoted by

[], and a llst literal is denoted by [/], where I is a comma separated list of elements. The functions hd, tl,

and cons have their usual meanings and L I I f L¢ denotes the concatenation of the elements of L 1 and L_.
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with natural_list_pkg ; use natural_list_pkg ;

package sort_pkg is

--" predicate permutation( L1, L2 : in out natural_list )

--: Front, Back : natural_llst ;

--' begin

--: L1 = [] and L2 = []

--: or

--: L1 = Front [[ ccns(hd(L2),Back) and

--: permutat£on(Front II Back, tl(L2))

--" end ;

is true if

--" predicate sorted( L : in out natural_list ) is true if

--" begin

--: L= C]

-- : or

--: ti(L) = []

-- : or

--: hd(L) <= hd(tl(L)) and sorted(tl (L))

-- : end ;

prooedu.%'e sort( Input : in natural_list : Output : out natural_list )

--I where in( true ),

--I out(permutatlon(Input,Output) and sorted(Output) ) :

end sort_pkg ;

Figure 2. Specification of sor_ procedure

The _ort procedure takes two arguments: the first is a possibly unsorted input list, the second is a sorted

llst produced as output. The specification defines the predicates perr_utation and sorted, as well as giving

pre- and post-conditions for the procedure.

In PLEASE, the precondition for a procedure specifies the conditions that the input must meet

before execution begins, while the post-condition specifies the conditions that the output must meet after

execution has completed. In the specification, the state before execution begins is denoted by _n(...), while

the state after execution has completed is denoted by o_t(...). For example, the pre-condition for sort is

simply true; the type declarations for the parameters give all the requirements for the input. The post-

condition for sort states that the output is a permutation of the input and the output is sorted.



In PLEASE, a predicatesyntacticallyresembles a procedure and may contain localtype, variable,

function or predicatedefinitions.For example, the predicatepermutation statesthat two listsare permu-

tationsofeach other ifboth ofthe listsare empty, or ifthe firstelement inthe second listisinthe firstlist

and the remainder of the two listsare permutations of each other. At present,predicatesare specified

using Horn clauses: a subsetof predicate logicwhich isalso the basis for Prolog[12,13].This approach

allows a simple translationfrom predicatedefinitionsinto Prolog procedures;however, there are draw-

backs[46].

Although this specification describes a procedure, it ks not known if any procedure which satisfies the

specification will satisfy the customers. Before the development proceeds further, we should show that the

specification is valid. To aid in the validation process, the PLEASE specification can be transformed into

an executable prototype which can be used for experimentation and evaluation. Producing a valid

specification is a difficult task; the customers may not really have defined what they want, and they may

be unable to communicate their desires to the development team. Prototyping and the use of executable

specification languages have been suggested as partial solutions to these problems[l]. Providing the custo-

mers with prototypes for experimentation and evaluation early in the development process can increase

customer/developer communication and enhance the validation and design processes.

4.2. Refining the Speelfication

After the specification has been validated, it ks refined into a concrete implementation. In ENCOM-

PASS this is performed using ISLET, a language--oriented editor which views the refinement process as the

construction of a proof in the Hoare calculus[23,31]. ISLET contains a knowledge-based assistant based on

deductive synthesis techniques[18,19j20,24,34]; during the refinement process the programmer can invoke

the assistant to request advice or have it perform routine refinments. The assistant also contains a library

of program schemas; the programmer can search the library and instantiate a schema with the aid of the

assistant.



Continuing our example, at the beginning of the refinement phase the body of sort consists of an

unknown statement sequence with pre-eondition true and post-condition permutation(Input, OutputJ and

sorted(Output J; this can be displayed as follows:

beqin

end ;

-- i true ;

--[ permutation(Input,Output) and sorted(Output)

At this point, the programmer invokes the assistant and requests advice on how to refine the unknown into

an implementation. The assistant searches for Ada code which satisfies the pre- and post-conditions for

the unknown; if code to handle part or all of the problem can be automatically generated, the complexity

of the refinement task performed by the programmer will be reduced.

First, the assistant searches for general or specific values which satisfy the pre- and post--condltions;

if specific values are found, simple constructs may be used to implement a solution. In our example, the

assistant searches for values of Input and Output such that the formula

tr,,e and pe._utaaon(Input, Outp,,t) an,i ,o_ted(o,,tput)

evaluates to true. Using its knowledKe of the types and predicates involved, the assistant finds the two

solutions:

Input = [], Output : []

Input = [X], Output : [X] (for any natural number X)

The assistant is aware that these solutions do not cover all possibilities.

Deducing Ada code from these solutions is ditticult. First, the assistant realizes that Input is an in

parameter, while Output is an out parameter; therefore, the value of Input can not be set in the procedure,

but the value of Output should be. Based on a heuristic, the assistant tits to use a sequence of if-then-else

statments on the value of I_put to handle the individual cases. However, the expressions used in the state-

ments must be representable in Ada. For example, the formula Input --- //can be represented, but Input =

10



/]6/can not I. The assistant can automatically generate a partial solution to the problem: if Input isequal

to the empty listthen Output is set to the empty llstand the procedure returns. The assistant modifies the

symbol table to e_ect the necessary refinement; Figure 3 shows the result.

The procedure's actions when called with a non-empty llstare stillnot determined. The assistant

can not automatically implement the second branch of the i/-then-else; the programmer must perform this

task himself. However, the assistant has successfully handled the special case of an empty llstas input. At

this point the programmer can search the assistant's library for a schema which can help him to imple-

ment the else branch; otherwise, he simply constructs an implementation using language-orlented editor

commands.

For example, Figure 4 shows a divide and co_zquer schema. The schema can be instantiated to pro-

duce an annotated code fragment; in other words, a sequence of statements with a predicate logic formula

I

I
I

i
I

I
I

I
I

proceduze sort( Input : in natural_llst ; Output : out natural_list )

--I where in( true ).

--I out( permutation(Input. Output) and sorted(Output) )

begin -- sort

--I true ;

if Input = [] then

--I Input = [] ,

Output "- [] :

--I permutatlon(Input, Output) and sorted(Output) ;
else

--1 Input /= [] ;
< unknown >

--I permutatlon(Input,Output) and sorted(Output) ;
end if ;

-- I permutation(Input. Output) and sorted(Output) .
end SORT ;

Figure 3. Automatically generated refinement of sort specification

IS
I

1

I

I

1

I

I

tltmight be possibleto representthisformula as length(input)- I, but at present the a.ssist_ntisnot intelligent
enough to deduce this.
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generic

with formula Pre_conditlon is <> •

with formula Post_conditlon is <> •

N : natural ; -- number of sub-parts

type Input_type is private ;

type Output_type is private ;

type In_Part_type is array (1..N)

type Out_Part_type is array (1..N)

of Input_type ;

of Output_type ;

Input : Input_type ;

!n_P_rts : In_Part_type

Out_Parts : Out_Pert_type ;

-- sub-per_s

-- sub-solutions

with predicate Is_divided(

Input : Input_type ;

Parts(l) .. Parts(N)

) is <> •

with procedure Conquer(

Input : Input_type ;

Output : Output_type

) ie <> ;

: Output_type

fragment divlde_end_conquer is

--J Pre_condition ;

< Divide >

--I Is_divided(Input, In_Parts(1)..In_Parts(N))

Conq,,_r(Tn P_rts(1),Out_Parts(1))

Conquer (In_Parts (N) ,Ou=_Parts (N))

< Combine >

-- J Post_condltlon ,

end divide_and_conquer ;

Figure 4. D_4de_a.d_co_quer schema

I

I

I

I
1

before and after each executable construct. The statements (or unknowns) plus the assertions form an

incomplete proof in the Hoare calculus. The schema assumes that the code to be constructed will take a

single input and process it to produce a single output; however, the input and output can be very" compli-

cated data structures. The schema states the the output will be computed by dividin_ the _nput into a

12



numberof sub-parts, finding a solution for each sub-part, and then combining the sub-solutions to gen-

erate the output.

The schema takes a number of parameters. Pre_condition and Post_condition are the pre- and

post-conditions for the fragment, while N is the number of sub-parts into which the input is to be divided.

Input_type and Output_type are the types of the input and output respectively, while Input is the variable

which contains the input. In..Part8 and Out_Parts are the variables to be used to store the sub-parts of

the input and the corresponding sub-solutions respectively, while In_Parts_type and Out_Parts_type are the

types of these variables. The predicate Is_dit:ided defines the proper division of the input into sub-parts,

while the procedure Conquer will be used to solve the sub-problems. The notation Parts(I) .. Parts(N) is

shorthand for all the elements of Parts; therefore the number of parameters to Is_divided is dependent on

the number of sub-parts into which Input is divided. Similarly, when instantiated the schema will call

Conquer once for each sub-part of the input.

The parameters to the schema must be l_rovided when it is instantiated; some are entered by the pro-

grammer, others are automatically generated by the assistant. For example, Pre_condition and

Post_condition are inherited from the context of the instantiation. The programmer must specify the vari-

able to be used for Input; the system looks up its type and sets Input_type automatically. The programmer

must declare variables for the sub-parts and the sub-solutions. He gives the variables for In_Parts and

Out_.parts when the schema is instantiated; the system looks up their types and sets In_Parts_type,

Output_type, N, and Out_Parts_type. The programmer must also specify the predicate to be used for

Is_divided and the procedure to be used for Conquer.

Continuing our example, assume the programmer decides to implement the sort procedure using the

quicksort algorithm; he realizes this can be accomplished by replacing the unknown in Figure 3 with an

instantiation of divide_and_conquer. In the quicksort algorithm, an element is selected and the input list is

divided into two sub-lists such that all the items in one list are less than or equal to the element and all

the items in the other list are greater than or equal to the element. The sort procedure is then recursively

called with these sub-lists and the results are combined to form a sorted output. The quicksort algorithm
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can therefore be seen as an instantlation of divide_and_conquer with the selection and partitioning as

Divide, the recursive calls to 8oft as Conquer, and the merging of the sorted sub-lists as Combine

To instantiate the schema and perform the refinement, the programmer must first define decide how

Input is to be divided, declare variables for the sub-parts, and define a predicate which describes the

proper division of Input. The programmer declares the variables Elmt, Low and High to hold the parti-

tioning element, the list of all members less than or equal to Elmt and the llst of all members greater than

or equal to Elmt respectively. He also declares the following predicate to define the proper division of

Input into sub-parts:

--' predicate is_partitlon(

--: List:Low;Elmt;High : in o_t natural_list

--" ) is true if

--: beqin

--: permutatlon(Lis_,Low II Elmt II High) and

--: iseqall(Low,hd(E!mt)) and greqall(High,hd(Elmt))

--: end ;

The programmer must also define variables to hold the sub-solutions; he declares Sorted_l, Sorted_e and

Sorted_.h for this purpose.

With the aid of the assistant, he can now replace the unknown with an instantiation of

divide_a_d_conquer. The pre- and post-conditions are determined by the context of the instantiation;

Pre_eondition becomes Input /= [], while Po_t_condition becomes permutation(Input, Output) and

_orted(Output). The programmer specifies that the input variable is Input and that Low, [Elmt/, and Hick

are the sub-parts. He also states that Sorted_] Sorted_e and Sorted..]_ are to be used for the sub-solutions,

that i__par_ition(Input, Low,[Elmt],HighJ defines when the input is properly divided, and that sort should be

used to compute the sub-solutions. The rest of the parameters are generated automatically by the assis-

tant.
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Theassistant first instantiates the schema to the following:

--I Input /= [] ;
< Divide >

--t is_partition(Input,Low. [Elmt] ,High) ;

sort (Low, Sorted_l) ;

sort([Elmt] .Sorted_e) ;

sort (High, Sorted_h) ;

< Combine >

--I permutation(Input,Output) and sorted(Output)

In PLEASE, there is normally an assertion before and after each executable statement in the program;

however, at this point the system has not placed assertions around the calls to sort. This is because the

generation of these assertions may be expensive, and the assistant will try to optimize the instantiated

schema before performing the necessary actions. To optimize the schema, the assistant examines each pro-

cedure call to determine if it can be replaced with a simpler construct; this involves checking if there is a

specificsolution to the pre- and post--conditions for the given inputs.

For example, to optimize the call 8ort(/Elmt/,Sorted_e] the assistant trys to find a value of Sorted_e

such that the formula tr_e and permutation(/Elrnt],Sorted_e) and 6orted(Sorted_e) evMuates to true; it dis-

covers the solution Sorted_e = [Elrnt/. It now realizes it can replace the call _ort(/Elrnt/,Sorted_eJ with the

assignment Sorted_e := /Elmt]. However, the assistant can do even better than this. It can access the

symbol table and determine that Sorted_e is not referenced anywhere else in the code generated so far; it

therefore asks the programmer if the variable is really necessary. The programmer replies that it is not,

and both the declaration of Sorted_e and the call are removed.
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The instantiated schema now appears as follows:

--[ Input /= [] ;

< Divide >

--l is_partitlon(Input. Low. [Elmt].High) ;

sort (Low, Sorted l) ;

--l is_partltion(Input,Low, [Elmt] ,High) and

--I permu_ation(Low,Sorted_l) and sorted(Sorted_l)

sort (High, Sorted_h) ,

--I is_partition(Input,Low, [Elmt],High) and

--i permutation(Low,Sorted_l) and sorted(Sorted_l)

--I permutation (High, Sorted_h) and sorted (Sorted_h)
< Combine >

--] permutation(Input,Output) and sorted(Output) ;

and

I

I

I

I

i

I

I

!
I
I

This fragment is completely annotated; the assertions were automatically generated by the assistant as it

instantiated the schema. Some care was necessary to correctly h_ndle the procedure calls. The procedure

call rule used in ISLET is a variant of the one developed in[35]. To use it,one needs to define an invariant

for each call. The invariant states properties that are necessary for proof of the rest of the program, but

are independent of the procedure call. The invarlant must be true both before and after the call. While in

this case the invarlants can be generated quite simply, in general the process isvery difficult.

For example, to generate the invariant for the call _ort(Lo,n,Sorted.J), the assistant firstchecks ifthe

out parameter from sort, 5orted_/, occurs in the assertion preceding the call. Since it does not, the callcan

not invalidate this assertion. The assistantthen checks the precondition for 6ort; since it is true the asser-

tion preceding the call can safely be used as the invariant. The post-condition for the procedure, with the

proper substitutions performed, can be added to the invariant to produce the assertion after a call. Con-

tinuing the example,

i,_.partition(Input, Low,[Elmt/,High] and permutation(Low, Sorted_J) and ,orted(Sorted._l)

is the assertion following the call sort(Low, Sorted.J). Similar reasoning gives this assertion as the invariant

for the second call to sort and produces the assertion between the call and Combine.

The programmer now defines three procedures which are called by sort and uses them to implement

Divide and Combine from the schema. Figure 5 shows the body of aort after the design transformation is

complete. Sor_ has the same specification as before, but now implements an abstraction of the quicksort

. 16
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procedure sort( Input : in natural_list ; Output : out natural_list )

--I where in( true ).

--J OUt(permutatlon(Input,Output) and sorted(Output) ) ;

Low, High, Sorted_l, Sorted_h : natural_list ; Elmt : natural ;

begin -- sort

--J true ;

if Input = [] then

-- Input = [] ;

Output :- [] ;

-- permutation(Input,Output) and sorted(Output) ;
else

-- Input /= [] ;
select_Elmt(Input,Elmt) ;

-- member(Elmt, lnput) ;

partition(Input,Elmt,Low,High) ;

-- is_partitlon(Input,Low, [Elmt],High) ;

sort(Low,Sorted_l) ;

"- is_partitlon(Input,Low, [Elmt].High) and

-- permutation(Low,Sorted_l) and sorted(Sorted l)

sort(High. Sorted_h) ;

--J is_partltlon(Input. Low, [Elmt],High) and

--J permutation(Low,Sorted_l) and sorted(Sorted_l)

"'-J permutation(High, Sorted_h) and sorted(Sorted_h)

combine(Sorted_l,Elmt,Sorted_h,Output) :

-'J permutation(Input,Output) and sorted(Output) ;

end if ;

--I permutation(Input,Output) and sorted(Output) ;

end SORT ;

and

Figure5. Abstract implementation of quicksortalgorithm

is I
I

I
I

I
I
I

I

I
I

algorithm. To sort the input llst,select_elmtiscalledto selectan element from the input listand then

partitioniscalledtodividethe llstinto two sublists,Low and//igh, so that allthe members of Low are less

than the selectedelement and allthe members of High are greater. The listsLow and IIig/_are then sorted

recursivelyand combine iscalledto form a sortedpermutation of the input from the sortedsub-lists.Fig-

ure 6 shows the definitionsof selcct_elmt, partition, and combine.

Although this refinementhas narrowed the possibleimplementations to those using the quicksort

algorithm,there are stillmany design decisionsleftunmade. The new specificationmay be refinedintoa

/amil!/of quicksortprograms; these programs might differin many characteristics,but allwould satisfy
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I

procedure select elmt(

List : in natural_llst :

Elmt : out natural

) is separate :

--I where in( List /= [] ),

--i out(member(Elmt,List) ) ;

procedure partiUion(

List : in natural_list :

Elmt : in natural ;

Low, High : out natural list

) is separate ;

--i where in(member(Elmt,List) ),

--i out( is_partltAon(LAst,Low, [Elmt],High)

procedure combine(

Sorted_l : in natural_list ;

Elmt : in natural ;

Sorted_h : in naturai_llst ;

List : out natural_llst

) is separate ;

--I where in( true ),

--I . out( List = Sorted_l ] I [Elmt] [[ Sorted_h ) ;

) ,

Figure 8. Definitions to support refinement of sort specification

I
I

i

I
I
I

I
I

the specification. For example, the specification for select_elr,*t only requires that Etmt be a member of

List; the algorithm used to select a particular element is not specified at this level of abstraction. Simi-

larly, the specification for partitioa only states that all the elements in Low are less than or equal to E[mt

and all the elements in High are greater than or equal to E[mt; it says nothing _bout the algorithm used to

produce these lists. As the specification is refined further these algorithms will be defined, thereby narrow-

ing the acceptable implementations. However, before the new specification is refined further, it must be

shown that any implementation which satisfies the new specification will aLso satisfy the original.

In ISLET, as a specification is refined into an implementation, a Hoare calculus proof is simultane-

ously constructed. Many refinements will generate verification conditions in the underlying first--order

logic. These refinements are first algebraically simplified and then submitted to a number of simple proof

tactics; these methods can eliminate a large percentage of the verification conditions generated at a very
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low cost. For example, the design transformation presented in this section produced a number of

verification conditions. Only the following could not be proved using the inexpensive techniques:

Is_partition(Input,Low, [Elmt],High) and

permutatlon(Low,Sorted_l) and Sorted(Sorted_l) and

permutatlon(High,Sorted_h) and Sorted(Sorted_h) and

LisK = SorKed_l [ [ [Elm_] [ [ Sorted h ->

permutation(Input,Lis_) a_d Sorted(List)

This formula can be certified using TED, or by some form of peer review process. When all the

verification conditions have been certified,the design transformation is known to be correct. Once the

design transformation has been verified, the new specification may be refined further and the process

repeated until an implementation is produced.

5. System Status

The SAGA project has been active at the University of RUnois at Urbana-Champaign since the early

eighties. The ENCOMPASS environment has been under development since 1984. A prototype implemen-

tation of ENCOMPASS has been operational since 1986; it is written in a combination of C, Csh, Prolog

and Ada. This prototype includes the tools necessary to support software development using PLEASE: an

initialversion of ISLET; software which automatically translates PLEASE specifications into Prolog pro-

cedures and generates the support code necessary to call these procedures from Ada; the run-time support

routines and axiom sets for a number of pre-defined types; and interfaces to the ENCOMPASS test har-

ness and TED. PLEASE and ENCOMPASS have been used to develop a number of small programs,

including specification,prototyping, and mechanical verification. An experimental implementation of the

knowledge-based assistanthas been written in Prolog. It shares many components with the fullimplemen-

tation of ISLET, but in general uses much simpler data structures. It is not a completely general tool, but

does perform the deductions described in this paper. Work is now underway to integrate the assistant into

the fullimplementation.
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6. Summary

ENCOMPASS [44,45] is an integrated environment which provides automated support for all aspects

of a development method similar to VDM. In ENCOMPASS, software is first specified using a combina-

tion of natural language and PLEASE [46-48], a wide spectrum, executable specification and design

language. In ENCOMPASS, components specified in PLEASE are incrementally refined into components

in Ada. The refinement process consists of a number of steps. Each step is small and is verified before

another is applied; therefore, errors can be detected early and corrected at low cost. Since each step is

correct, the final components produced by the development satisfy the original specifications. In ENCOM-

PASS, refinements can be verified using any combination of testing, peer review, or formal methods.

ENCOMPASS is being extended with a knowledge-based __sistant which uses deductive synthesis

techniques. During the refinement process, the programmer can ask the assistant for advice on how to

implement an undefined construct. The assistant attempts to solve this problem by first searching for

values that satisfy the pre-- and post-conditions for the construct and then synthesising Ada code to set

these values. The assistant can access the information stored in the symbol table and invoke an algebraic

simplifier and simple proof procedures. The assistant also contains a library of program schema8 which

...... I°.1L .... 1
r_lt"" "'''" "'-- _kLZDc_n be instantiated to produc_ _cd: fragmcn*.: ............ b ..... "_:- , .... ,_ _,m _,:_a_ia_e schemas

with the aid of the assistant; he can then use the instantiated schema in a refinement. We believe the use

of future environments similar to ENCOMPASS will enhance the design, development, validation and

verification of software.
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ABSTRACT: PLEASE is an executable specification

language which supports program development by incre-

mental refinement. In this paper, we present the

PLEASE specification for a small library data base.
PLEASE is part of the ENCOMPASS environment which

r,v.,,-_ _,,_,,_,,o_, support for all _tJ_ _,,_ _ut_ware

development process. Software components are first

specified using a combination of conventional program-

ming languages and predicate logic. These abstract com-

ponent._ _= "_--_ :,_e,_en_aJy refined into compo_e_ in

an implementation language. Each refinement is verified

before another is applied; therefore, the final components

produced by the development satisfy the original

specifications. PLEASE allows a procedure or function to

be specified with pre- and post-conditions written using

Horn clauses. PLEASE specifications may be used in

proofs of correctness. They may also be transformed into

prototypes which use Prolog to _execute* pre- and post,
conditions.

I, Introduet|on

It ia widely a_knewledged that producing correct

software is both difficult and expensive. To help remedy

this situation, many methods for specifying and verifying

software have been developed{12,21]. The SAGA

(Software Automation, Generation and Administration)

project is investigating both the formal and practical

aspects of providing automated support for the full range

of software engineering activitiesiS,8 I. PLEASE is a

language being developed by the SAGA group to support

the specification, prototyping, and incremental develop-

ment of software componentsi30,31 !. PLEASE is part of

the ENCONLPASS environment which provides support

for all aspects of the software deyelopment process[28.29!.
[n this paper we briefly describe the development metho-

dology for which PLEASE was created, present an exam-

ple specification written in PLEASE, and outline the

methods used to produce prototypes from PLEASE
specifications.

The first step in the production of a software system

is usually the creation of a specification which describes

the functions and properties of the desired system. We

say that a specificationis validatedwhen itis shown that

it correctly reflectsthe users' desiresilOl. Producing a

validspecificationis a difficulttask. The users of the sys-

tem may not reallyknow what they want, and they may

be unable to communicate their desires to the develop-

ment team. Prototyping[13,20! and the use of executable

specificationianguagesii7,32! have been suggested as par-

tialsolutionsto these problems. Providing the customers

with prototypes for experimentation and evaluation early

in the development process can increase

customer/developer communication _n_ienhaace the va|i-

dation and design processes.

Even with a validated specification,producing a

correct implementation is not an easy task. We say that

an implementation is verifiedwhen it is shown to satisfy

the specification[lO].Many methodologies for the design

and development of implementations have been pro-

posed[1,2,16,24].For example, ithas been suggested that

top-down development can help control the complexity of

program construction. By using stepwise refinement to

create a concrete implementation from an abstract

smaller, more comprehensible groups.

The Vienna Development Method ('v'DM) supports

the top-down development of programs specified in a

notation suitable for mathematical verification!3,4,16 I. In

this method, programs are first written in a language

combining elements from conventional programming
languages and mathematics; a procedure or function can

be specified using pre- and post-conditions written in

predicate logic. These abstract programs are then incre-

mentally refined into programs in an implementation

language. The refinements are performed one at a time,

and each is verified before another is applied; therefore,

the final program produced by the development satisfies

the original specification.

The ENCOMPASS environment is being developed

by the SAGA project to provide automated support for
all aspects of a software development process similar to

V'DM. We believe that neither testingill,23!, technical

review'.9!, or formal verification'211alone can _uarantee

progra.__m_co_rreccness_;_therefore.ENCOMPASS provides a

framework in which all three methods can be used as



needed.ENCOMPASSincorporatesa number of different

tools including: a structure editor which develops pro-

grams and their verificationconditions simultaneously; a

test harness; and a simple configurationcontrol and pro-

ject management system. ENCOMPASS is in the early

stages of development; an initialprototype has been con-

structed and used to develop small programs.

PLEASE is the wide-spectrum, executable

specification language used in ENCOMPASS. PLEASE

extends its underlying implementation, or base, language

so that a procedure or function can be specifiedwith pre-

and post-conditions and an implementation can be corn-

pletely annotated. At present, all our implementation

efforts involve Ada t as the base language. PLEASE

specificationscan be used in proofs of correctness; they

can also be transformed into prototypes which use Pro-

logl8! to "execute" pre- and post-conditions, and can

interact with other modules written in the base language.

We believe that the early production of executable proto-

types for experimentation and evaluation willenhance the

software development process.

[n section two of this paper, we describe the develop-

ment methodology PLEASE was designed to support and

the ENCOMPASS environment of which it is a part. [n

section three, we give an example specification in

PLEASE and in section four we discuss how an execut-

able prototype is constructed from thisspecification.[n

section five we summarize the use of PLEASE

specificationsin software development.

2. Software Development in ENCOMPASS

ENCOMPASS is based on a traditionalor phased[10]

life-cycle model extended to support executable

specificationsand formal verification.[n ENCOMPASS,

software requirements specificationsare a combination of

natural language and components specified in PLEASE.

Although a software system may be shown to meet its

specification,thisdoes not imply that the system satisfies

the customers' requirements. In ENCOMPASS, the va/i-

dation phase attempts to show that any system which

satisfiesthe specificationwill alsosatisfy the customers'

requirements, that is. that the requirements specification

isvalid. Ifnot, then the requirements specificationshould

be corrected before the development proceeds any further.

To aid in the validation process,the PLEASE com-

ponents in the specification may be transformed into

executable prototypes which satisfy the specifications.

These prototypes may be used in interactions with the

customers; they may be subjected to a seriesof tests,be

delivered to the customers for experimentation and

evaluation, or be installedfor production use on a trial

basis. The use of prototypes should increase

customer/developer communication and enhance the vali-

tAda is a trademark of the US Government, Ada Joint

Program Office

dation process. [f it is found that the specificationdoes

not satisfy the customers, then it is revised, new proto-

types are produced, and the validation process is reini-

tiated;thiscycle is repeated until a validated specification

isproduced.

in general, this process does not guarantee that the

specificationis valid. The fact that the prototype does

satisfythe customers means only that at feastone imple-

mentation which satisfiesthe specificationis acceptable.

For example, the post-condition for a procedure may hold

true for an infinitenumber of values while the prototype

willonly return one. We say the specificationof a com-

ponent is complete if, for any input state, it is satisfied by

only one output state. Although in some cases it is possi-

ble to require and verify that the specification of a com-

ponent is complete, this is difficult in practice. We

believe that while prototypes may enhance the validation

process, they do not replace communication with the cus-

tomers and review of the specification.

[n the refinement phase, the validated specification is

incrementally transformed into a program in the imple-

mentation language. This process is viewed as the incre-

mental construction of a proof in the Hoare calculus. In

ENCOMPASS, the refinement process is supported by a

language oriented tool similar to[26}. As the specification

is transformed into an implementation (and the proof is

constructed) the syntax and semantics are checked.

Many steps in the refinement will generate

verificationconditions in the underlying first-orderlogic.

These are algebraically simplified and then subjected to a

number of simple proof tactics. If these fail, the

verification conditions are passed to TED, a proof

management system which is interfaced to a number of

theorem proverslil5 !. In our experience, it is too expensive

to mechanically certify all of the verification conditions;

therefore, the implementor can simply inspect the

verification conditions for a refinement and continue.

The verification conditions are recorded by ENCOMPASS

for use in project monitoring and debugging.

PLEASE specifications enhance the verification of

system components using either testing or proof tech-

niques. The specification of a component can be

transformed into a prototype. This prototype may be
used as a test oracle against which the implementation

can be compared using the ENCOMPASS test harness.

Since the specificationis formal, proof techniques may be

used which range from a very detailed,completely formal

proof using mechanical theorem proving to a development

"annotated" with unproven verification conditions.

PLEASE provides a framework for the rigorous!l{_1

development of programs. Although detailed mechanical

proofs are not required at every step, the framework is

present so that they can be constructed if necessary.

Parts of a project may use detailed mechanical

verificationwhile other, lesscriticalparts may be handled

using lessexpensive techniques.



3. Specifying So.ware using PLEASE

To better understand the strengths and weaknesses

of our approach, we willconsider a PLEASE specification

of Kemmerer's library example[18]. The example con-

cerns a small librarydata base which supports the follow-

ing transactions:

I - Check out or return a book.

2 - Add or remove s book from the library.

3 - Get allthe books by a particularauthor.
4 - Get the books checked out to a borrower.

5 - Find out who has a book checked out.

Users of the system are divided into sta_ and non-sta_

categories. Only staffusers can perform transactions one,

two, four or five,except that any one can perform tran-

saction four to find the books they currently have checked

out. The data base must satisfy the following integrity

constraints:

I - All books must be availableor checked out.

2 - No book may be both availableand checked out.

3 - No user may have more than a set number of

books checked out at any time.

Figure 1 shows the PLEASE specificationof the data

structures for the librarydata base2. In PLEASE, several

high level data types are added to the base language to

enhance the expressivity of specifications. For example,

the specification of the library data base uses the

PLEASE type list to define the type BOOK_[,[ST as list

o/ BOOK. In PLEASE, as in Lisp or Proiog, lists may

have varying lengths and there is no explicit allocation or

releaseof storage. However, In PLEASE the strong typ-

ing of Ada _s retained and allthe elements of a listmust

have the same type. For example, each element of a
BOOK_LIST has tvmR BOOK. The data hn__ enn_.t, nt

four data structures. SHELF_LIST is a list of all the

books owned by the library, while A VA[LABLE is a list

of all the books currently available for check out.
CHECKED_OUT contains a record of each book

currently checked out, while BORROWERS records the

number of books currently checked out by each borrower.

In PLEASE, the integrity constraints on the data

base are expressed as an invariant; the invariant must be

true both before and after any transaction is p_rformed.
Figure 2 shows the PLEASE specificationof the Invariant

for the library data base. [n PLEASE, asBertio_ state

logicalproperties which must be satisfiedby the software

being specified;each line of assertions begins with the

symbol --I. Virtual program teat defines constructs

which are used only in assertions,not in the actual pro-

gram being constructed; each line of virtual program text

begins with the symbol --:. For example, Figure 2
contains an assertion Which sl_ecifies the invarlant for the

data base, as well as virtual program text which defines a

number of predicates used in the invariant.

2To increase readability and understandability, the syntax
of PLEASE/Ada is similar to Anna;2T.

_ype BOOK is record

ID : BOOK ID ;
TITLE : STRNG ;

AUTHOR : STRNG ;

end record ;

type BORROWER is record

NAME : USER ;

NUM CHECKED OUT : NATURAL ;
end record ; -

type CHECK OUT REC is record

U : USER ;

BK : BOOK ;

end record ;

type BOOK LIST is list of BOOK ;
type BORROWER LIST is list of BORROWER ;

type CHECK 0UT LIST is list of CHECK OUT REC ;

SHELF LIST : BOOK LIST ;
AVAILABLE : BOOK-LIST ;

_,"u="_'_.,__,_"_,"CHECK ,_,_'_'"_LIST ;

BO_mO_S : BO_mO_ lIST;

Figure 1. SpeciFication of the library data base

In PLEASE, a predicate syntactically resembles a

procedure and may contain local type, variable, function

or predicate definitions. For example, the predicate

if the number of books he has checked out isLess_hen the

pre-defined BORROW_LiMIT. At present, predicatesare

specifiedusing Horn clauses: a subset of predicate logic

which isalso the basis for Prolog. This approach allows a

simple translationfrom predicate definitionsinto Prolog

procedures; however, there are drawbacks.

In pure Horn clause programming, there is no way to

specify the falsehood of formulae; for example, the fact

that UNDER_LIMIT is not true if the number of books

checked out by the borrower is greater than the borrow

limit. The solution used in Prolog is the closed world

assumption: if a fact is not provably true then it is

assumed to be false. Unfortunately, tbe closed world

assumption may cause inconsistenciesfor full_rst-order

logici25I. At present, the best solution using PLEASE is

to define a new predicate which is understood to be the

negation of the predicate in question; unfortunately, this

relationship can not be recorded in a formal manner.

Eventually, we plan to extend PLEASE to support a

more powerful logic.

Figure 3 shows the specificationof procedures to per-

form the check in and check out transactions. [n



--: predicate ALL AVAILABLE OR CHECKED OUT
--: £s true if"

-- : begin

--: permucatlon( SHELF LIST,
--: AVAILABLE I} BOOKS CHECKED OUT)

--: end ;

--: predicate NONE_AVAILABLE AND CHECKED_OUT
--: is true if

-- : beEin

-- : member_both (AVAILABLE, B00KS_CHECKEDOUT)
--: = []
--: end ;

--: predicate UNDER LIMIT(
--: BORROWER : _n out BORROWER

--: ) ts true if

-- : begin
-- : BORROWER. NUN[ CHECKED OUT
--: <= BURROW LI._IT

--: end ;

--: predicate ALL UNDER LIMIT(
--: BORROWERS-: in out BORROWER LIST

--: ) is true if

-- : begln
-- : BORROWERS = []

-- : or

--: UNDER LIMIT(hd(BORROWERS)) and

--: ALL _DER LIMIT(tI(BORROWERS))

--: end ;

--I where ALL AVAILABLE OR CHECKED_0UT,

--{ NONE_AVA I LABLE_AND CHECKED_0UT,
--{ ALL UNDER LIMIT(BORROWERS) ;

Figure 2. [nvariant for the library data base

PLEASE, a procedure is specifiedwith a pre-condition,
which statesthe conditions which must hold before execu-

tion of the procedure begins, and a post-condltion, which

states the conditions which must hold after execution has

terminated. The state before execution begins isdenoted

by in(...},while the state after execution is complete is

denoted by out(...).

For example, the procedure CHECK_OUT imple-

ments the check out operation. [tiscalled with the iden-

tity of the user performing the operation, as well as the

identity of the borrower and book in question. The pre-

condition for CHECK_OUT, states that the user perform-

ing the transaction must be a staffmember and that the

book to be checked out must be available. The post-

condition for CHECK_OUT, statesthat the book must be

checked out to the borrower, that the book must uot be

on the available list, that the borrower's record is

updated to reflect the new book checked out, and that the

borrower is still under the limit for number of books

checked out.

Figure 4 shows a number of user-defined predicates

which are used in the specification of CHECK_OUT. The

specification also uses a number of operations on the type

list. [n PLEASE, as in Prolog, a list literal is denoted by

a comma separated list of elements surrounded by [ and

] and the empty list is denoted by []. The functions hd,

tl, and eo_s have their usual meanings and L l {{ L_

denotes the concatenation of the elements of L I and L¢

The function eztract(list, member) returns a fist with a[l
instances of member removed.

When a book is checked out of the library,the state

of the library data base is changed; the specificationof

CHECK_OUT refers to the state of the data base both

procedure CHECK_0UT(
U : In USER ;

B : in BORROWER ;

BK : tn BOOK ) ;

-- where in( IS STAFF(U) and
-- IS-AVAILABLE (BK)),

-- out( BOOK IS CHECKED OUT(

-- B. NAME,

-- BK,

-- In(CHECKED_OUT) ) and
-- AVAILABLE =

-- extract (in (AVAILABLE) ,BK) and

-- BORROWER IS UPDATED (

---- B,

-- in (BORROWERS)) and

--I UNDER LIMIT(BORROWER) ) ;

procedure CHECK_IN(
U : tn USER ;
B : In BORROWER ;
BK : in BOOK ) ;

-- where In( IS STAFF(U) and

-- IS CHECKED 0UT(BK) ),
-- ou% ( A_AILABLE-=

-- cons (BK,in (AVAILABLE)) and

-- BOOK IS NOT CHECKED OUT(

-- B.NAME,

-- BK,
-- in (CHECKED OUT) ) and

-- BORROWER IS UPDATED(

---- B,

--I -I,
--{ In (BORROWERS) ) ) ;

Figure 3. Procedures to check books in and out



--: predicate BOOK_IS_CHECKED_OHT(
--: B : in ou% USER ;
--: BK : in out BOOK ;

--: CHECKED OUT 0 : In out CHECK OUT LIST
--: ) ts true i_ -

--: NEW RECORD : CHECK OUT REC ;

-- : begin
--: NE# RECORD.U = B and

--: NEW RECORD.BK = BK and

--: CHECKED OUT =

-- : cons (NEW_RECORD, CHECKED OUT O)

--: end ;

--" predicate BOOK IS NOT CHECKED OUT(
--: B : in out USER ;

--" BK : In out BOOK ;

--- CHECKED OUT 0 : in out CHECK OUT LIST

--' ) is true if

--' NEW RECORD : CHECK OUT REC ;

--" begin
--" .NEW RECORD. U = B and

--" NEW RECORD.BK = BK and

--. extract (CHECKED OUT_O, NEW_REC0RD)
--" end ;

--: predicate BORROWER_ISUPDATED(
--: B : in out BORROWER ;

--: INC : in out integer ;
--: BORROWERS 0 : in out BORROWER LIST

--: ) is true if

--: NEW B : BORROWER ;
--: BORROWE_ TAIL : BORROWER LIST ;

-- : begin
--: BORROWERS TAIL = eT_r_c_.f;_rIRROWFI_._O _

--: and NEW B-NAME = B.NAME and
--: NEW B.Nt_M CHECKED OUT =

--: B,NUM CHECIO_D OUT • INC _nd

-- : BORROWERS-= cons (_'W_B, BORROWERS_TAIL)
--: enct ;

Figure 4. Predicates to support check in operation

before and after the operation is performed. A predicate

is evaluated in a single state; therefore, in order to refer

to both the initialand finalstates,the value of one of the

states must be passed as a parameter. For example, in

the post-condltion for CHECK_OUT the initial value of

CHECKED_OUT, ,denoted by in(CHECKED_OUT), is

used as an argument to the predicate

800K..IS_CHECKED_OUT. This allows the predicateto

referenceboth the initialand finalvalues of the list.

Figure 5 shows the specificationof procedures which

add books to or remove books from the library. Figure 8

5"

procedure ADO_B00K (
U : In USER ;
BK : In BOOK ) ;

--I where in( IS STAFF(U) ),
-- l out ( AVAILABLE =
-- [ cons (BK,in (AVAILABLE)) and

--I SHELF LIST =

--I cons(BK,In(SHELF_LIST)) ) ;

procedure RISMOVE__0K (
U : In USER ;

BK : in BOOK ) ;

--I where in( IS STAFF(U) and IS AVAILABLE(BK) ),
-- I out ( AVAILABLE = -

-- I extract (In (AVAILABLE) ,BK) and

--I SHELF LIST =

--I extract(in(SHELF LIST),BK) ) ;

Figure 5. Procedures to add and remove books

shows the PLEASE specificationof a function which

returns a listof all the books by a particular author.

There is no pre-condition specified for this function;

therefore,it isassumed to be true. For thisfunction, the

type declarations for the parameters and the invariant for

the data base give all the requirements for the input. The

post-condition for the function specifies that any list

returned must satisfy the predicate ALL..BY_4UTHOR.

Figure 7 shows the specification of functions which return

the borrower to whom a book is checked out, as weLl as

_he _ O__art ooot_s cnecKea out to a borrower.

4. Prototyplng the Specification

The specification given in section three can be

• automatically translated into a prototype written in a

combination of Protog and Ada. The user-defined predi-

cates and pre- and post-conditions for functions and pro-

cedures are translated into Prolog, which is executed by

an interpreter. When a procedure or [unction is called,

the in parameters are converted to the Proiog representa-

tion and the callis passed to the interpreter. When the

Prolo& procedure completes, the out parameters are con-

verted to the Ada representation and the original call

returns. Tools in the ENCOMPASS environment per-

form the translationand generate code to handle I/O and

other implementation [eve[details.

The notion of execution is quite differentfor pre-

and post-conditions. Executing a pre-condition involves

checking that given data satisfiesa logical expression.

For example, the pre-condition for ADD_BOOK 3 simply

3 Figure 5 shows the specification of ADD_BOOK.



--: predicate ALLBY_AUTHOR(
--: SHELF LIST : in out BOOK LIST ;
--: AUTHOR : in out STRNG ;'

--: LIST : in out BOOK LIST

--: ) is true if

--: TAIL : BOOK LIST ;

--: begin
--: SHELF LIST = [] and LIST = []

-- : or

--: hd(SHELF LIST).AUTHOR = AUTHOR and

: ALL_BY_A_I_{0R (

-- : tl (SHELF LIST) ,AUTHOR,TAIL) and
--: LIST = cons(hal(SHELF LIST),TAIL)

--: or

--: ALL BY AUTHOR(tI(SHELF LIST) ,LIST)

--: end ;

function BOOKS BY AUTHOR(

U : in USER ;
AUTHOR : in STRNG

) return BOOK LIST ;

--I where return LIST : BOOK LIST =>

-- I ALL BY AUTHOR(SHELFSIST, AUTHOR, LIST)

Figure 8. Function to return all books by an author

checks that the procedure is being invoked by a staff user

and that the invariant is satisfied. Executing a post-

condition means finding data that satisfies a logical

expression. Tot example, the post-condition for
ADD_BOOK must find a value for AVAILABLE that is

equal to a list with BOOK as the head and the initial

value of AVAILABLE as the tail.

Although many implementations show significant

deviations(27], a _pure" Pro[og interpreter can be viewed

as a resolution theorem prover for Horn clauses(7,8].

Using this model, the translation from PLEASE predi-

cates to Prolog code is simply a sequence of transforma-

tions between equivalent formulae. The process consists

of four steps. First the predicates are syntactically con-

verted to the logical formulae they represent. Both the

parameters to a predicate and its local variables represent
universally quantified logical variables.

Next, the terms on the right hand side of the impli-

cation are unraveled into conjunctions of relations. This

is necessary because Prolog does not have a good notion

of equality (for other solutions to this problem seei14,19!).

We assume that for each function f(_, there exists a rela-

tion F(x',y) such that f(x-')---y iffF(x',y). Axioms which

characterize the relation F(x',y) are part of the Prolog

run-time library. We unravel the formula P(..f(x-')..) into
the equivalent formula 3t (F(x,t) and P(..t..)). The stand-

C_

ard transformations to clause form are then used to con-

vert the resultant formulae to P roiog procedures.

The prototypes produced by this translation process

are partially correct!211 with respect to the specifications.

In other words, if a prototype terminates normally then

the value returned will satisfy the post-conditiom A pro-

totype would be totall!l correct!211 if it was also

guaranteed to terminate normally. The set of all logically

--' predicate OUT TO BORROWER(
--: CHECKED OUT : in out CHECK OUT LIST ;

--" B : in out USER ;
--" LIST : in out BOOK LIST

--" ) is true if

--" TAIL : BOOK LIST ;

--" begin

--" CHECKED OUT = [] and LIST = []
--" or

--" hd(CHECKED OUr).U = B and

--- OUTTO_BORRO_.R__(

--" tl (CHECKED OUT) ,B,TAIL) and

--" LIST = cons(hd(CHECKED OUT).BK.TAIL)

--" or

--" OUT TO BOI_I0_(tI(CHECKED OUT) .LIST)

--" end ;

function WHAT CHECKED OUT(

- U : in USER ;
B : in USER

) return BOOK LIST ;
--I where In(-IS STAFF(U) or U = B ),

--I return LIST : BOOK LIST =>

--I OUT TO BORROWER(

-- J CHECKED_0UT, B, LIST)

__°

predicate HASBOOK(
B : in out USER ;
BK : in out BOOK

) is true if

TE_g= : CHECK OUT _C ;

begin
member(CHECKED 0UT,TEMP) and
TEMP.BK = BK and TEMP.U = B

end ;

function WHO HAS(
: in USER ;

BK : in BOOK ;
B : in USER

) return USER ;

--I where in(IS_STAFF(U) ),
--[ return B : USER =>

--I HAS_BOOK(B,BK) or B = NONE ;

Figure 7. Functions to examine check out status
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valid formulM of-predicaze logic is not de_dable[21!;

therefore, in general it is not possible to extend our

approach to total correctness. Furthermore, most Prolog

implementations utilize an unbounded, depth-first search

strategy which makes them incomplete as theorem-

provers; although the Prolog procedures proddced by our

translation process have the proper logical properties,

there is no guarantee that they will terminate. In prac-

tice, this is not always a problem. For example, the

library specification given in section three produces a Pro-

log prototype which always terminates in normal use.

5. Summary

PLEASE is an executable specification language

which supports program development by incremental

refinement. PLEASE is part of the ENCOMPASS

environment which provides automated support for all

aspects of the software development process. Software

components are first specified using a combination of con-

veational pregrammiag !aaguages and predicate Logic.

These abstract components are then incrementally refined

into programs in an implementation language. Each
refinement is verified before another is applied; therefore,

the fi-.na! components produced by the development satisfy

the original specifications.

PLEASE specifications can be transformed into pro-

totypes which use Pro[og to %xecute" pre- and post--

conditions. We believe that the early production of exe-

cutable prototypes for experimentation and evaluation

will enhance the development process. Prototypes can
increase the communication between customer and

developer, thereby enhancing the validation process. Pro-

totypes produced from PLEASE specificationscan be

used in experimenm performed to guide the design pro-
Cq_Lq. Prnt_t_ rlt,_1,i-lbcl fw.nm dl_,ont la_,l Pr 11_.*_1_

specificationscan be run QG she same testdata and the

results compared; this method cam give significant

assurance that a refinement is correct at a low coat.

PLEASE prototypes are based on existingProlog techn61-

ogT, and their performance willimprove as the speed of

Prolog implementations increases. As logicprogramming

progresses,new versions of PLEASE can be built based

on more powerful logics. We believe that the use of

methods similar to those based on PLEASE specifications

will enhance the design, development, validation and_
verification of software.
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Abstract

ENCOMPASS isan integratedenvironment being constructed by the SAGA project to support

incremental software development in a manner similarto the Vienna Development Method. In

this paper, we describe the architectureof ENCOMPASS and give an example of software

development in the environment. In ENCOMPASS, software ismodeled as entitieswhich may

have relationshipsbetween them. These entitiescan be structuredintocomplex hierarchieswhich

may be seen through differentviews. The configurationmanagement system storesand structures

the components developed and used ina project,as well as providing a mechanism for controlling

access.The projectmanagement system implements a milestone-based policyusing the mechan-

ism provided. In,ENCOMPASS, software is firstspecified using a combination of natural

language and PLEASE, a wlde-spectrum, executablespecificationand design language. Com-

ponents specifiedin PLEASE are then incrementally refinedinto components written in Adat;

thisprocesscan be viewed as the constructionof a proof in the Hoare calculus. Each refinement

isverifiedbeforeanother isapplied;therefore,the finalcomponents produced by the development

satisfy the original specifications. PLEASE specifications may be used in formal proofs of

correctness; they may also be transformed into executable prototypes which can be used in the

validation and design processes. ENCOMPASS provides automated support for all aspects of

software development using PLEASE. We believe the use of ENCOMPASS will enhance the

software development process.

1. Introduction

It is both difficult and expensive to produce high-quality software. One solution to this problem is

the use of soft,#are engineering environments which integrate a number of tools, methods, and data struc-

tures to provide support for program development and/or maintenance[2,17,29,34,43,54,{}8,79,90,93-

97,108,111]. The SAGA (Software Automation, Generation and Administration) project is investigating

both the formal and practical aspects of providing automated support for the full range of software

engineering activities[10,18-21,49,83,98-100]. ENCOMPASS[g8] is an integrated environment being

tAda is a trademark of the US Government, Ada Joint Program Office.



created by the SAGA project to support the incremental development of software using the

PLEASE[99,100} executable specification language. [n this paper, we describe the architecture of ENCOM-

PASS and give an example of software development in the environment.

A life-cycle model describes the sequence of distinct stages through which a software product passes

during its llfetime[37]. There is no single, universally accepted model of the software llfe-cycle[3,6,13,112].

The stages of the life-cycle generate software components, such as code written in programming languages,

test data or results, and many types of documentation. In many models, a specification of the system to

k,, built is created o_rly ;, the I;f___y_lo (m_nv m_h,_,4_ f_. _o_;¢v;_ _,_f_w_o h_o I_oo, pro-

posed[39,42,46,47,60,78,82]). As components are produced, they are verified[37] for correctness with

respect to their specifications. A specificat'_on is vaiida_eg[37] when it is shown to correctly state the custo-

mers' requirements.

Producing a valid specification is a difficult task. The users of the system may not really know what

they want, and they may be unable to communicate their desires to the development team. If the

specification is in a formal notation, it may be an ineffective medium for communication with the custo-

...... ,,__g __ ..... :e__.. ........... : .... , .... _:_ ........ J : .... _,_._ r, ...... : ..... j ._

use of executable specification tanguage_ have been suggested as partial solutions to these prob-

lems[28,41,50,61,62,{}5,103,113]. Providing the customers with prototypes for experimentation and evalua-

tion early in the development process may increase customer/developer communication and enhance the

validation and design processes.

It may be difficult to determine if an implementation is correct with respect to a specification. Many

techniques for verifying the correctness of implementations have been proposed. For example, testing can

be used to check the operation of an implementation on a representative set of input data[38,?4]. In a

technical review process, the specification and implementation are inspected, discussed and compared by a

group of knowledgeable personnel[36,106]. If the specification is in a suitable notation, formal methods

can be used to verify the correctness of an implementation[48,51,52,58,73,109]. Many feel that no one

technique alone can ensure the production of correct software[31 32]; therefore, methods which combine a



number of techniques have been proposed[86].

To help control the complexity of software design and construction, many different development

methods have been proposed[5,44,56,58,75,110]. Many of these methods are based on a model of the

software development process; they combine standard representations, intellectual disciplines, and well

defined techniques in a unified framework. For example, it has been suggested that the development pro-

cess be viewed as a sequence of transformations between different, but somehow equivalent,

specifications[6,7,23,70,7?,831.

Others have suggested that modular programmittg[81,101,104] and the top-down development of pro-

grams[33,44,58,107] can help reduce the difficulty of program construction and maintenance. By logically

dividing a monolithic program into a number of modules, we reduce the knowledge required to change

fragments of the system and decrease the apparent complexity. By using stepwise refinement to create a

concrete implementation from an abstract specification, we divide the decisions necessary for an implemen-

tation into smaller, more comprehensible groups. A number of modern programming languages support

modular programming[30,69,72], and environments to support such methods have been both proposed and

constructed[17,93,94,111]. Methods to support the top-down development of programs have been both

devised and put into use[12,14,15,27,58,75,87,88].

The Vienna Development Method (VDM) supports the top-down development of software specified

in a notation suitable for formal verification[ll,12,27,57-59,88]. In this method, components are first writ-

ten in a language combining elements from conventional programming languages and mathematics. A

procedure or function may be specified using pre- and post-conditions written in predicate logic; similarly,

a data type may have an invariant. These abstract components are then incrementally refined into com-

ponents in an implementation language. The refinements are performed one at a time, and each is verified

before another is applied; therefore, the final components produced by the development satisfy the original

specifications.

PLEASE is a wide-spectrum, executable specification language which supports a development

method similar to V'DM. PLEASE extends its underlying implementation, or base, language so that a pro-

3



cedureor functionmaybespecifiedwithpre-andpost-conditions,adatatypemayhaveaninvariant,and

an implementationmaybe completelyannotated.At present,weareusingAda[30,105]as the base

language.PLEASEspecificationsmaybeusedin proofsof correctness;theyalsomaybetransformedinto

prototypeswhichuseProlog[2G,G4]to %xecute"pro- andpost-conditions,andmayinteractwith other

moduleswrittenin thebaselanguage.Webelievethat theearlyproductionof executableprototypesfor

experimentationandevaluationwill enhancethesoftwaredevelopmentprocess.

ENCOMPASSisanintegratedenvironmentbeingconstructedbytheSAGAprojectto supportincre-

EJLJL_LLIJO*L ,._%JLb_axe _.A_V_;LV_JLAA_&L_ USing • J_J_--_bkJJ.J. L_L LJ_.P£VLL _--L_J_J, _tJLb_CAL_ L_ ALA_Lq_Aq_/. ¢_L= _;LbL_Le= le_LJL/_.*L[

have relationships between them. These entities can be structured into complex hierarchies which may be

accessed through different ,v;,,.._ws'. The configuration management system' stores and structures the com-

ponents developed and used in a project, as well as providing an access control mechanism. The project

management system uses a milestone-based policy implemented using the mechanisms provided by the

configuration management system. In ENCOMPASS, software is first specified using a combination of

natural language and PLEASE. Components specified in PLEASE are then incrementally refined into

enmnnnantq wF_tt_n ;n Acid- th;_ nrne_ e_n I_p v;_w_ :_ th_ ('_n_te_,ct_n _f _ nr_f ;n th_ _-_r_ e'_ll.

culus[51,73]. Each refinement is verified before another is applied; therefore, the final components pro-

duced by the development satisfy the original specifications. ENCOMPASS provides automated support

for all aspects of this development process.

In section two of this paper we describe the ENCOMPASS environment, both its architecture and

the life-cycle model on which it is based. In section three we describe IDEAL, the programming-in-the-

small environment used within ENCOMPASS, and in section four, we give an example of software

development using ENCOMPASS. [n section five, we briefly describe the current status of the system and

in section six, we summarize the support ENCOMPASS provides for incremental software development.

2. ENCOMPASS

ENCOMPASS is designed to support a particular model of the software llfe-cycle; this is basically

Fairley's phased or waterfall life-cycle[37], extended to support the use of executable specifications and the

4



ViennaDevelopmentMethod.In ENCOMPASS,a developmentpassesthroughthe phasesplanning,

requirementsdefinition,validation,refinementandsystemintegration.

In theplar_aing phase, the problem to be solved is defined and it is determined if a computer solution

is feasible and cost effective, while in the requirements definition phase, the functions and qualities of the

software to be produced by the development are precisely described[37]. In ENCOMPASS, software

requirements specifications are a combination of natural language documents and components specified in

PLEASE. Although the requirements specification describes a software system, it is not known if any sys-

tem which satisfies the specification will satisfy the customers. In ENCOMPASS, we extend Fairley's

phased life-cycle model to include a separate phase for customer validation.

The validation phaze attempts to show that any system which satisfies the software requirements

specification will also satisfy the customers, that is, that the requirements specification is valid. [f not,

then the requirements specification should be corrected before the development proceeds to the costly

phases of refinement and system integration. To aid in the validation process, the PLEASE components in

the specification may be transformed into executable prototypes which satisfy the specification. These pro-

totypes may be used in interactions with the customers; they may be subjected to a series of tests, be

delivered to the customers for experimentation and evaluation, or be installed for production use on a trial

basis. We feel the use of prototypes will increase customer/developer communication and enhance the

validation process.

In the refinement phase, the PLEASE specifications are incrementally transformed into Ado imple-

mentations. The refinement phase can be decomposed into a number of steps, each of which consists of a

design transformation and its associated verification phase. The design transformation may produce anno-

tated components in the base language as well as an updated requirements specification. Components

which have been implemented need not be refined further, but components which are only specified will

undergo further refinements until a complete implementation is produced. Each design transformation

creates a new specification, whose relationship to the original is unknown. Before further refinements are

performed, a verification phase must show that any implementation which satisfies the lower level

5
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specification will also satisfy the upper level one. In our model, this is accomplished using a combination

of testing, technical review, and formal verification.

PLEASE specifications enhance the verification of system components using either testing or proof

techniques. The specification of a component can be transformed into a prototype; this prototype may be

used as a test oracle against which the implementation can be compared. Since the specification is formal,

proof techniques may be used which range from a very detailed, completely formal proof using mechanical

theorem proving, to a development "annotated" with unproven verification conditions. ENCOMPASS is

an environment for the rigorou,[58! development of programs. Although detailed mechanical proofs are

not required at every step, the framework is present so that they can be constructed if necessary. Parts of

preject may use detailed mechanical verification while other, less erltlc_! p._rts m_:; be handled using less

expensive techniques.

The planning, requirements definition, and validation phases are sequential in nature, but during the

refinement phase, some tasks may be performed in parallel. For example, suppose a specification is refined

to produce a more detailed specification which contains a number of independent components. These com-

nonents may I'verefined concurrently tn nrndnce more. detailed _ne.eifie_tinns and finally imnl_,m_nt_tinnq.

These independently developed implementations must then be integrated into a complete system. In the

system integration phase, separately implemented modules are integrated into successively larger units,

each of which is shown to satisfy the specifications[3T]. When the final integration has been performed, the

acceptance tests are performed, the product is delivered and the development is complete.

In ENCOMPASS, a phase may contain a sub-development just as a development contains a number

of phases. For example, if a system is very large and complex, the production of a prototype in the valida-

tion phase may in itself be a complete development. If the system is composed of several major com-

ponents, the production of each component from its specification during the refinement phase might also

be considered a complete development. By dividing the development process into small steps using

hierarchical composition, ENCOMPASS allows each step to be smaller and more comprehensible and

thereby increases management's ability to trace and control the project.

8



2.1. System Architecture

Figure 1 shows the top-level architecture of ENCOMPASS. The user accesses and modifies com-

ponents using a set of software development tools. These include ISLET, a language-oriented editor for the

construction and refinement of PLEASE specifications, and Ted[49], a proof management system which is

interfaced to a number of theorem provers. The configuration management system structures the software

components developed by a project and stores them in a project data base. The configuration management

system also provides a primitive form of software capabilities to control access to components. The project

management system distributes these capabilities to implement a management by objectives[45 t approach

to software development; each phase in the life-cycle satisfies an objective by producing a milestone which

........

Software Development Tools

Project Management System

Configuration Management System

_Project Data Base/._

L. ........................... I

Figure 1. Architecture of ENCOMPASS



can be recognized by the system.

Configuration management is concerned with the identification, control, auditing, and accounting of

components produced and used in software development and malntenance[1,8,9,16]. A number of different

configuration control systems and models of software configurations have been used as aids to

configuration management [4,35,40,53,55,67,68,71,78,89,102,114]. In ENCOMPASS, software

configurations are modeled using a variant of the entity-relationship model[24,25,80] which incorporates

the concepts of aggregation and generalization[91,92].

An er_tity is a distinct, named component; an entity may have attributes which describe its properties

or qualities. Two or more entities may have a relationship between them; a relationship may also have

attributes. A group of entities with a relationship between them may be abstracted into an aggregate

entity. This entity would have entities as the value of some or all of its attributes. A view is a mapping

from names to components. A project under development has a unique base view or project library which

describes the components of the system being developed and the primitive relationships between them.

Other views can include images of entities in this base view. In ENCOMPASS, access to components is

con_roiied _hrousn _he use o_ views.

The project management system is organized around work trays[18], which provide a mechanism to

manage and record the allocation, progress, and completion of work within a software development pro-

ject. In ENCOMPASS, each user may have a number of work trays, each of which may contain a number

of tasks that contain software products. The products produced by a project are stored in a task called the

project library. There are four types of trays: input trays, output trays, in-progress trays, and file trays.

Each user receives tasks in one or more input trays. The user may then transfer these tasks to an in-

progress tray where he will perform the actions required of him and produce new products. The user may

then return the task via a conceptual output tray to an input tray for the originator of the task. A user

may also create new tasks in in-progress trays that he owns. These tasks may then be transferred to

another user's input tray. A task that has been transferred back into the in-progress tray of the user who

\

created the task may be marked as complete and transferred to a file tray for long term storage.



3. IDEAL

ENCONIPASS may be used to develop programs which consist of many interacting modules; in this

sense, it is an environment for programming-in-the-large[84,108]. [DEAL is an environment concerned

with the specification, prototyping, implementation and verification of single modules; it is the

programmlng-in-the-small environment used within ENCOMPASS.

Figure 2 shows the top-level architecture of IDEAL, which contains four tools: TED, a proof
i

management system which is interfaced to a number of theorem provers; ISLET (Incredibly Simple

Language-oriented Editing Tool), a prototype program/proof editor; a tool to support the construction of

executable prototypes from PLEASE specifications; and a test harness. The user interacts with these tools

through a common interface. The tools in [DEAL operate on components which are stored in a module

data base. The module data base is stored as part of a project data base by the configuration control sys-

tem; [DEAL receives a capability to the module data base from the project management system. The

module data base contains five types of components: symbol tables, proofs, source code, load modules and

test cases.

A set of symbol tables represent the PLEASE specifications and Ads programs being developed.

These symbol tables are displayed and manipulated by ISLET, a prototype program/proof editor. ISLET

can be used to create PLEASE specifications and incrementally refine them into Ads programs; this pro-

cess can also be viewed as the construction of a proof in the Hoare calculus[51,73]. Some steps in the proof

may generate verification conditions in the underlying first-order logic; these can be reformated as proofs

which serve as input for TED. Using TED, the user can structure the proof into a number of lemmas and

bring in pre-existing theories.

The symbol tables also serve as input for the prototyping tool, which uses them to produce execut-

able prototypes from PLEASE specifications. The source code for the prototypes is written in a combina-

tion of Prolog and Ads and utilizes a number of run-time support routines in both languages. The load

modules produced from both prototypes and final implementations are used by the test harness. From the

test harness, the user can invoke commands to manipulate test eases. Commands are available to: edit or
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browse the input for a testcase;generate output for a testcase;or run a program and compare the results

with output that has been previouslychecked for correctness.

The central tool in IDEAL is ISLET. It not only manipulates the symbol tables representing

specificationsand implementations, but provides a user interfaceand, in a sense,controls the entire

development process.
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3.1. ISLET

ISLET supports both the creation of PLEASE specifications and their incremental refinement into

annotated Ada implementations. This process can be viewed in two ways: as the development of a pro-

gram, or as the construction of a proof in the Hoare calculus[51,73]. The refinement process consists of a

number of atomic transformations, which can be grouped into design transformations. An atomic transfor-

mation cannot be decomposed. From the program view, an atomic transformation changes an unknown

statement into a particular language construct; from the proof view, an atomic transformation adds

another step to an incomplete proof. From the program view, defining a predicate adds a new construct to

the program; from the proof view, defining a predicate adds new axioms to the first-order theory on which

the proof is based.

Figure 3 shows the architecture of ISLET. The user interacts with ISLET through a simple

language-oriented editor similar to[85]. The editor provides commands to add, delete, and refine con-

structs; as the program/proof is incrementally constructed, the syntax and semantics are constantly

checked. The editor also controls the other components: an algebraic simplifier, a number of simple proof

procedures, and an interface to TED. Many steps in the refinement process generate verification conditions

in the underlying first-order logic. These verification conditions are first simplified algebraically and then

subjected to a number of simple proof tactics. These methods can handle a large percentage of the

verification conditions generated. If a set of verification conditions can not be proved using these methods

alone, the TED interface is invoked to create a proof in the proper format.

TED can then be invoked in an attempt to prove the verification conditions. Using TED is very

expensive, both in system resources and user time; however, many complex theorems can be proved with

its aid. The algebraic simplification and simple proof tactics used in ISLET are very inexpensive; however,

they are not very powerful. The combined use of these two methods supports the rigorous[58] develop-

ment of programs. Most of the verification conditions will be proven using inexpensive methods; those

that are expensive to verify may be proven immediately, or deferred until a later time. Parts of a system

may be developed using completely mechanical methods, while other, less critical parts may use less expen-

11
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sivetechniques.

To furtherclarifythe concepts and operation of ENCOMPASS and show how ENCOMPASS can

enhance the software development process,we willconsider an example of software development. We will

follow the development from receiptof the assignment by the team leader through delivery of a verified

and validatedimplementation.

4. An Example of Software Development

For our example, we willconsider a programming team consistingof a leaderand two programmers;

there isa workspace for each member of the team. The team leader'sworkspace contains output trays to

12



send assignments to each of the programmers as well as an input tray in which he receives completed

tasks. Each programmer's workspace contains an input tray in which he receives assignments from the

leader and an output tray to facilitate the return of assignments to their originator. Assume that the team

is assigned the task of developing a set of procedures to compute simple combinatoric quantities. The sys-

tem is to be both validated by prototyping and formally verified. It will contain a procedure to calculate

the factorial of a number as well as a procedure to compute the number of unique k-combinations of n

items 2.

When the team leader receives the assignment by electronic mail, he creates a project library called

combinatorics in his in-progress tray. In the planning phase, the team leader consults with the customers

and creates preliminary copies of two documents: the system definition and project plan. At this point, it

is decided that the system will consist of two modules: one called k_comb and one called factorial. The

team leader creates a program object containing two modules with these names; each module contains an

empty symbol table and set of test cases. The team leader then opens the factorial module and uses

iSLET to specify the procedure factorial.

Figure 4 shows the team leader's screen after completing the specification of factorial. The large

window on the left of the screen gives the team leader access to his workspace, which contains the trays in,

in_progress, out, to._programmer_.1, and to__programmcr__2. The small window on the left of the screen is to

trap console messages that would disrupt the display. The windows on the right of the screen show the

hierarchy of components through which the team leader accessed the factorial module. First the team

leader opened the tray in_rogres6 which contains the project library for the combinatorics task; this

created the window on the bottom of the stack which is labeled TRAY_TOOL. Next, he opened the pro-

ject library, creating the window labeled TASK_TOOL. He then opened the program object to create the

window labeled PROG_TOOL, and finally he invoked IDEAL on the factorial module to create the top

window on the stack.

2The number of k-combinations is equal to a!/(k!(n-k)!)
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The top window shows the PLEASE specification of the factorial module. This specification defines a

package factorial, which provides & procedure by the same name. In PLEASE, procedures are defined

using pre- and post-condltions which are designated by inC...) and out(...) respectively. The pre-

condition for a procedure specifiesthe conditions the _nput data must satisfy before procedure execution

begins. The pre-cond[tlon for factorial 6 _rue; the type declarations for the parameters give sll _he

requirements for the input. The post-condition for a procedure scares the conditions the output data rnusc

14



satisfy after procedure execution has completed. The post-condition for factorial is is__act(z,y); the predi-

cate is_fact must be true of the parameters to factorial after execution is complete.

The predicate is_fact is not pre-defined; it was developed by the team leader as factorial was

specified. In PLEASE, a predicate syntactically resembles a procedure and may contain local type, vari-

able, function or predicate definitions. At present, predicates are specified using Horn clauses: a subset of

predicate logic which is also the basis for Prolog[22,26]. This simplifies translation from PLEASE to Pro-

log, but limits the expressive power of PLEASE. The predicate is_fact states that z factorial is equal to y

if z equals zero and y equals one, or if z minus one factorial is equal to tl and y equals tl times z (in other

words, is_.fact(z,y) is true if (x = 0 A y : 1) V ((z-1)!=tl A y = tl_z)).

After factorial is specified, it is prototyped. From IDEAL, the team leader issues a command which

automatically creates an executable prototype from the PLEASE specification. This prototype is compati-

ble with the IDEAL test harness; the program produced reads z from input, calls factorial, and then writes

y to output. From the test harness, input data can be edited, the prototype can be used to generate out-

put, and the output can be manually checked for correctness. The team leader uses these tools to check

that the factorial prototype performs correctly on simple test data. After factorial has been prototyped,

the specification and prototyping processes are repeated for k_comb, which uses factorial.

After both modules are specified and prototyped, the validation phase begins. The prototype system

is delivered to the customers for evaluation; it is subjected to a series of tests, and possibly installed for

production use on a trail basis. The team leader consults with the customers to produce an updated set of

documents, as well as a set of acceptar_ce tests[37] which will be used to evaluate the final implementation.

These tests are stored in a form compatible with the IDEAL test harness; the implementation can be run

on pre-existing input and the results compared with those produced by the prototype. After the valida-

tion phase is complete, the refinement phase begins. The production of a verified implementation which

passes the acceptance tests is the milestone for completion of this phase.

First, the implementation task is decomposed into sub-tasks that can be performed in parallel. It is

decided that the implementation of factorial will be performed by the first programmer, while k_eomb will
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be implemented by the second. The team leader creates two views of the project library; both provide

access to all the documents produced in the development, but one provides access to factorial while the

other provides access to k_comb. The team leader then transfers the first view to the tray labeled

to._prograrnmerl in his workspace; this causes the view to appear in the first programmer's input tray.

Similarly, the second view is sent to the second programmer.

Figure 5 shows the team leader's and programmer's workspaces after the transfers are complete.

Legend.
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Figure 5. Different Views of the Project Library
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The team leader's workspace contains the project library, which contains two documents, the system

definition and the project plan, as well as a program object containing the modules factorial and k_comb.

The first programmer's workspace contains the first view, which contains an image of the system

definition, the project plan and factorial; it does not provide access to k_comb. The view in the second

programmer's workspace is similar, but gives access to k_comb and not factorial.

When the first programmer checks his input tray, he discovers the view of the project library; he can

receive more information by electronic mail or in an auxiliary document. He then opens the view, the pro-

gram object, and the factorial module. Using ISLET, the programmer then refines the specification of fac-

torial into an implementation. As the refinement is performed, verification conditions are generated

automatically. As the project plan calls for a formally verified implementation, the verification conditions

are mechanically certified as the refinement is performed.

After the implementation is produced, the programmer uses the test harness to run the implementa-

tion on the acceptance tests produced in the validation phase. The milestone for completion of his assign-

meat is the production of a formally verified implementation which passes the acceptance tests. When the

milestone has been reached, the programmer transfers the view of the project library to his output tray;

this causes the view to appear in the team leader's input tray. The second programmer follows a similar

implement and verify, test, and transfer scenario with the k_comb module.

When the team leader discovers that both views are in his input tray, he knows the project should be

complete. He checks to be sure that the milestone for the refinement phase has been reached; using tools in

ENCOMPASS, he certifies that the implementations are formally verified and pass the acceptance tests.

When the milestone has been verified, the project is delivered to the customers. At this point the project is

complete, and can be transferred to a file tray for long term storage.

5. System Status

The SAGA project has been active at the University of Illinois at Urbana-Champaign for over five

years. ENCOMPASS has been under development since the summer of 1984. A prototype implementation

of ENCOMPASS has been operational since the summer of 1986; it is written in a combination of C, Csh,
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Prologand Ada. This prototypeincludessimpleimplementations of the project management and

configuration control systems, as well as IDEAL. At present, the implementation of ENCOMPASS is not

complete. The software capabilities used by the configuration control system and the automatic recogni-

tion of completed milestones by the project management system are currently under development. The

subset of PLEASE currently implemented includes the if, while, and assignment statments, as well as pro-

cedure calls with in, out or ia out parameters. The language now supports a small, fixed set of types

including natural numbers, lists, booleans and characters.

ENCOMPASS has been used to develop small programs, including the example given in this paper.

Our experience so far leads us to believe that the complete, mechanical verification of large programs will

be prohibitively expensive; however, inexpensive methods can eliminate a large percentage of the

verification conditions generated during a development. By eliminating these "trivial" verification condi-

tions, the total number is reduced so that the verification conditions remaining can be more carefully con-

sidered by the development personnel.

6. Summary

ENCOMPASS is an integrated environment being constructed by the 5A(JA project to support incre-

mental software development in a manner similar to the Vienna Development Method. In ENCOMPASS,

software is modeled as entities which may have relationships between them. These entities can be struc-

tured into complex hierarchies which can be accessed through different views. The configuration manage-

meat system stores and structures the components developed and used in a project, as well as providing an

access control mechanism. The project management system uses a milestone-based policy implemented

using the access control mechanism provided by the configuration control system.

In ENCOMPASS, software is first specified using a combination of natural language and PLEASE, a

wide-spectrum, executable specification and design language. Components specified in PLEASE are then

incrementally refined into components written in Ada; this process can be viewed as the construction of a

proof in the Hoare calculus. Each refinement is verified before another is applied; therefore, the final com-

ponents produced by the development satisfy the original specifications. PLEASE specifications may be
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used in formal proofs of correctness; they may also be transformed into executable prototypes which can

be used in the validation and design processes.

ENCOMPASS provides automated support for all aspects of software development using PLEASE.

A prototype implementation of ENCOMPASS has been constructed at the University of Illinois at

Urbana-Champaign. Although the prototype does not implement all the features of the environment, it is

substantial enough to demonstrate that the construction of a complete prototype is feasible. We believe

the use of future environments similar to ENCOMPASS will enhance the software development process.
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Abstract

An important research problem in software engineering is to find

appropriate formalisms and tools to support the software development

process. Efforts to build program development support tools have de-

Trees are inherentlylimitedand also createlong path lengthsalong

which semantic informationisforcedto flow.We propose ANLC graph

grammars as a formalismwhich can be used to generatetoolsbased on

graphsratherthan treestructures.This paper definesANLC grammars,

illustratesthe use of the formalismwith an example and discussesthe

advantages of the use of graphsratherthan treesin buildingprogram

development tools.

1 Introduction

The development of tools that will assist in all aspects of the software de-

velopment process is a major software engineering research problem. This

paper introduces attributed NLC (ANLC) graph grammars, a formalism that

we believe is suitable for the specification of tools that support many different

aspects of the software development process.



Traditional program development tools that are generated from formal

specifications,such as the Cornell Synthesizer Generator [23],Pecan [21],

Mentor [7],POE [9]or the SAGA editor [3]alluse treesas the internalstruc-

ture to represent the object (usually a program) that a user isediting. The

treecorresponds to the derivationtreeofthe stringrepresenting the program.

An important featureof such tools isthat they incrementally (i.e.aftereach

edit) check the semantic consistency of the structure, thereby providing the

user with a programming environment in which errors in his program are

reported immediately. This incremental checking is performed by passing

attributevalues that represent semantic information along arcs of the tree.

For example, in a Pascal programming environment the semantic restriction

that "identifiersmust be declared before use" could be checked by building a

symbol table attributeholding allidentifiersand then propagating that table

attributeup to the root of the treeand then clown to each use of an identifier

in order to check that the identifierhas been declared. After an edit on the

tree,the appropriate setof attributesisreevaluated so that the semantic con-

si.stencyof the program can be reestablished.[22]discusseshow this isdone.

From the viewpoint of the software researcher building such environments,

the derivation tree'representinga program isfar more important than the

string itself,and most research into programming environments has concen-

trated on manipulating thistree, with the string representing the program

as a byproduct of thismanipulation.

In order to generate such tools automatically, attribute grammars [16]

are most commonly used. An attribute grammar is a context-freegrammar

- which describes the structure of legal derivation trees - augmented with

attributionrules- which describe the semantic restrictionson the grammar.

Algorithms to incrementally perform attribute updating after an edit in op-

timal time have been developed by Reps [22].

Many interestingstructures- such as module interdependence structures,

manager/programmer relationsor criticalpath networks - for which one

might want to develop editing systems are graphs rather than trees. We

believethat in order to automate the software development process, itmust
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be possible to build environments that manipulate graph structures rather

than trees. We must also retain the utility of editing on trees, specifically the

ability to perform incremental semantic consistency checking. Further, we

do not want to build tools for individual applications by hand, as this would

be far too expensive; rather we wish to build a tool generating system that

can take as input a specification of a tool and generate a corresponding tool

automatically. We plan to use graph grammars as the formalism in which

to specify the graph structures. Because we want to permit semantic analy-

sis of programs represented by these structures, we will augment the graph

gr_,mmars ;;';+_,,_,,,+,_,,_,_,_,v,,_+';_'"*;^-rules to obtain attributed graph grammars. In

order to manage the complexities inherent in graph rewriting systems, we use

node-label controlled (NLC) graph grammars [12].

This paper overviews attributed NLC graph grammars and illustrates

their use through a simple example. The body of the paper is structured

as follows. Section 2 introduces attributed NLC grammars and overviews

some results concerning properties of the graphs. Section 3 discusses editing

graphs constructed from the grammars, and section 4 illustrates the use of

the formalism through an example. Section 5 elaborates on some practical

aovlications of the form_.|].qm Th_ n_na_- e_n,-h,,_ ,_,;+h _____;=C,2___;.,:,.___f

related work.

2 Attributed Graph Grammars

This section of the paper introduces the reader to attributed graph grammars.

It is broken into three subsections: section 2.1 introduces NLC grammars,

section 2.2 extends NLC grammars to attributed NLC (or ANLC) grammars,

and section 2.3 summarises some results concerning the graphs constructable

from the formalism. We do not give proofs of results in this paper; readers are

referred to [14] for proofs as well as more details concerning our attributed

graph grammar formalism. First, we informally overview graph grammars.

Graph grammars are similar in structure to string grammars. Productions

have a nonterminal symbol as the goal, and graphs (called body-graphs) rather



than strings on the right-hand sides of the productions. Each vertex in the

body-graph is labelled by a terminal or nonterminal symbol. In the particular

graph grammar formalism we are using the rewriting action on a graph is the

replacement of a vertex labelled with a nonterminal by the bodygraph of a

production for which that nonterminal is the goal. We call the graph in

which the rewriting is performed the host graph. Performing the rewriting

action in this manner requires that each production must be augmented by

an embedding rule that describes how to link the bodygraph into the host

graph.

Recall that in traditional programming environments we are more inter-

ested in the derivation tree of a program than its representation as a string

because we want to use the tree as a vehicle for semantic analysis. In the

graph case, however, we use the graph itself for attribute propagation rather

than a derivation structure. This creates a counter-intutitive correspondence

between the tree case and graph case; in the former we build a derivation tree

from a string and then use that tree, but in the latter we build a graph and

use that directly. Therefore the derivation tree in the string case corresponds

to the graph in the graph case.

Because the rewriting action involves the replacement of a node (vertex)

by a body-graph, and the symbol labelling the node controls the set of body-

graphs which can be used, this form of graph grammar is called node-label

controlled (NLC). We should also stress that the graphs constructed from

NLC grammars are undirected.

In NLC grammars the embedding rules are restricted in that when a ver-

tex v is rewritten, only vertices that are in the neighbourhood of v - those

connected to v by a path of unit length - can be connected to the vertices in

the bodygraph that replaces v. This restriction greatly reduces the complex-

ity of the embedding process.

2.1 NLC Graph Grammars

This section of the paper formally defines NLC grammars. For more informa-

tion on NLC grammars see [12]. We begin with some preliminary definitions:
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Definition 1 For any graph G, let Va denote the vertices in G and E_ the

edges of G. Edges are denote iv, w], and are undirected unless otherwise

indicated.

Definition 2 For any vertex v in a graph G, the neighbourhood of v )¢u =

{wL[v,wle Ec}

Because it is unwieldy to maintain a continual distinction between the

symbol labelling a vertex in the structure graph and the vertex itself, we will

generally refer only to the vertex. By this we will mean either the vertex or

the symbol associated with it, depending on the context.

We can now define NLC grammars:

Definition 3 An NLC graph grammar is a tuple NLC= (N,T,P,Z), where

• N is a finite set of vertez labels called the nonterminals of the grammar; and

• T is a finite set of vertex labels called the terminals of the grammar, such that

TnN =O;

• P is a set of productions, where productions are defined in definition 4 below;

and

• Z is a unique distinguished nonterminal known as the axiom of the grammar.

Definition 4 A production in a NLC graph grammar is defined as: p : Lp --+

Bp, Fp where

• p is a unique label;

• Lp E N is called the goal of the production;

• B n is an arbitrary graph (called the bodygraph of the production), where each

vertex is labeled by an element of T u N;

• Fp is the embedding rule of the production: a set of symbol pairs < v, w >

where v _ VBp and w E T U N. When rewriting L n by p, for each symbol pair

< v,w > an undirected edge is placed between v and each w in _Lp.



Note that the same symbol may appear several times in a bodygraph; this

is resolved using a standard convention of subscripting the symbol with an

index value to allow them to be distinguished [22] [26]. For example, multiple

occurences of a symbol X would be distinguished as X$1, X$2, etc.

Definition 5 The rewriting Cor refinement} of a vertex v in a graph G con-

structed from a NLC grammar by a production p for which v is the goal is

performed in the following steps:

• The neighbourhood )1_ is identified.

• The vertex v and all edges incident on it are removed from G.

• The bodygraph Bp is instantiated to form a daughter-graph which is in-

serted into G.

• The daughter graph is embedded as described in definition 4.

We call the graph constructed in this way the structure graph.

Note the unpredictable nature of the embedding Fp, in that some subset

of the symbol pairs < v, w > in Fp may not result in edges being generated

because there is no w in JCz (if z is the vertex being rewritten). Conversely,

sometimes there may be multiple vertices w in the neighbourhood and in this

case edges to each will be placed.

Requirement 6 The axiom Z is restricted in that

• There must be exactly one production with Z as the goal;

• Z may not appear in any bodygraph.

This requirement is not a restriction in practice as one can always augment

the grammar with a distinguished production that satisfies this requirement.
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2.2 Attributed NLC Grammars

Attributes are a practical system used by software tools to annotate a struc-

ture with semantic information. Each node in the structure has a (possibly

empty) set of annotations, called attribute instances. Relations among the

annotations are given by attribution rules and induce a directed graph over-

laying the structure. Informally, an attributed NLC graph grammar is a NLC

graph grammar with attributes attached to each symbol and attribution rules

attached to each production.

Definition 7 An attribute is just an identifier[20/. Each symbol in the gram-

mar has a (posMbly empty) set of attributes associated with it; when necessary

we will qualify an attribute bit its associated symbol to avoid ambiguity. For

attribute a and symbol X we write this as X.a.

Definition 8 An attribute instance is a value. Each vertex in the structure

graph has a set of attribute instances associated with it for each attribute

associated with the vertex's symbol, there is an attribute instance associated

with the vertex.

Attribute instances are assigned values as the result of the evaluation of

attribution rules (definition 9). We will usually ignore the distinction between

attribute and attribute instance.

Definition 9 An attribution rule has the form X.a _ f(-_) where X is a

vertex,/3 is a vector of attributes such that each attribute is associated with

a vertex in )Ix U {X} and f is a total function.

Definition 10 A completing rule is an attribution rule where the function f

is a constant function.

Definition 11 An attribute embedding pair associated with a production p is

a pair < v,l : g(-a) >, where v E Vs_, g is a predicate on a vector of attributes

-_ and l is a unique label. An attribute embedding pair set is a finite set of

attribute embedding pairs.

|



Definition 12 An attributed NLC graph grammar is a tuple ANLC= (G, A, R, C, E),

where

• G = (N, T, P, Z) is a context-free graph grammar as defined above;

• A = UxeruN Ax is a finite set of attributes;

• R = UpeP P_, is a finite set of attribution rules;

• C = OpeP Cp is a finite set of attribute completing rules.

• E = [.Jpej, Ep is a finite set of attribute embedding pair sets.

Productions in ANLC grammars are productions for NLC grammars with

each production p augmented by a set Rp of attribution rules, Cp of attribute

completing rules and E v of attribute embedding pair sets.

Because attribution rules are total functions, it is imperative that all their

argument attributes can always be assigned a value. In the applications for

which we will use ANLC grammars we need to be able to attribute a graph in

which there are nonterminals; therefore we use the completing rules to give

the attributes of nonterminals "placeholder" values where appropriate. We

should note that completing rules are a syntactic artifice; we could achieve

the same effect with regular attribution rules but introduce the distinction

to clarify specifications.

Definition 13 The attribute embedding pairs < v, 1 : g(-_) > in the attribute

embedding pair set Ep of a production p are used to embed the daughter-graph

during the rewriting of Lp in the following manner:

• Identify the set of vertices in )ILF that have all of the attributes in -_ and for

which the predicate g holds.

• Place an edge from v to each element of that set.

In this paper g will always be the trivial predicate (meaning that we will only

be interested in identifying vertices by virtue of their having the attributes

and not in any relation between the attributes. The role of the label I is to
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stand in for the symbols qualifyingthe attributes in _, because itmay not

be possible to identifythese symbols a priori.

In NLC grammars, rewritings of the structure graph can remove and

introduce verticesand edges in a fairlyarbitrary way (constrained by the

structure of the grammar). In order to maintain consistent relationsamong

attributesitisimportant that an attribute/3which isrequired for the evalu-

ation of some other attributea not suddenly vanish from the structure graph

because the vertex to which it is attached is removed due to a rewriting.

The following requirements and theorem guarantee that the rewritings will

introduce new verticesand edges sufficientto reestablishthe consistency of

attributerelations.

Requirement 14 (Law of guaranteed attribute flow through embedding)

Given an (undirected) edge [v, w] in the structure graph such that v qualifies

an attribute or, w qualifies an attribute 8, and there is a dependency between

a and 13, any refinement of v must introduce a vertex z such that z qualifies

an attribute a. Further, the embedding for the production being used to refine

v must place an edge between z and w.

Requirement 15 (Law of initial embedding) For all v E P'B, such that p is

the unique production with the axiom Z o� the grammar as goal, the neigh-

bourhood J¢_ must be such that the refinement of v by any production p_ with

v as the goal and embedding Ep, allows the embedding o� the daughter-graph

of p_ in such a way that requirement 14 is not violated.

I 2.3 Properties of Graphs

I

I

I

We give several theorems about the structure of ANLC grammars that obey

these requirements. These theorems allow reasoning about the correct be-

haviour of the structure graph and the attribute flows, and a definition of

editing on a structure graph constructed from an ANLC grammar. For proofs

and detailed discussion about ANLC grammar analysis and incremental at-

tribute evaluation on graphs constructed from ANLC grammars, see [14].

I 9
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Theorem 16 Whenever a vertex v in a structure graph G constructed .from

an ANLC grammar which obeys requirements 14 and 15 is rewritten using

some production p, the neighbourhood Xv of v will be such that all the edges

necessary for meaningful attribute flow will be placed by the embedding Ep.

From this point on, by ANLC grammar we mean an attributed graph

grammar that obeys requirements 14 and 15 (and therefore theorem 16).

The theorem leads naturally to these two corollaries:

Corollary 17 It is a decidable problem to determine whether an ANLC gram-

mar satisfies requirements 14 and 15.

Corollary 18 Given a graph G constructed from an ANLC grammar, the

vertices in G may be rewritten in any order.

Definition 19 By recursive rewriting of a vertex v we mean possibly rewrit-

ing v to some graph - the instantiation of the bodygraph Bp of some rule p

.for which v is the goal - and then rewriting recursively the vertices in that

graph.

Definition 20 For any vertex v in a graph G, let

• 34_ denote the universe of possible neighbourhoods of v that could arise by

rewriting (recursively) the vertices of )4_;

• let G_ denote the universe of graphs obtainable by all possible recursive rewrit-

ings of v;

• let S_ "- G: - (G - {v}) 1, i.e. S: is just the set of 8ubgraphs constructable

from v in the recursive rewriting

Theorem 21 (Theorem of bounded extent) Given a vertex v in a graph G.

Any (recursive) rewriting of v will not introduce edges from the vertices of the

daughter graph of v (or any daughter graph recursively introduc'ed into that

daughter graph} to any vertex that is not in )1_, U S_.

1Note this is set difference so the _-" does not distribute.
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These results indicate that ANLC grammars have a property that comes

close to the Church-Rosscr (or confluence) property, m'z. that the graph

may be rewritten in parallel. Because of neighbourhood changes, we cannot

rewrite any vertices in parallel. However, given two vertices v and w, where

neither vertex is in the neighbourhood of the other, v and w can be rewritten

in parallel2.

3 Editing Structure Graphs

,_,,e.-,Lun_ such as "is this graph a member of some class of graphs" are in

general very difficult to answer (often NP-complete, at least). A graph editor

cannot afford this time overhead so we introduce the concept of a embedding-

tree that holds a "revisionist" refinement history for a graph, and reduces the

cost of identifying a subgraph to a linear time operation. The theorems we

will prove about graph structure are vital to the attribute evaluation engine's

provably optimal behaviour.

The embedding treeuses multicolored edges to achieve easy identification

of neighbourhoods and refinement historiesin the graph. When editing a

v A

• The embedding-tree consists of the axiom of the grammar;

• The structure graph consists of the body-graph of the production with

axiom as the goal; and

• there is an edge colored yellow between each vertex in the graph and

the axiom.

When a vertex v in the graph is rewritten by a production p, it is replaced

by a daughter-graph: an instantiation of the bodygraph Bp. The algorithm

in figure1 performs thisprocess.

2Another way of saying the same thing is to say that rewriting in our system is an

atomic action, and allthe vertices in the neighbourhood of the vertex being rewritten cannot

themselves be rewritten until the rewriting is complete.

11



• Identifythe production p, which has v as a goal,which isbeing

used to refinev.

• Identify the neighbourhood .A/,_.

• Identify the "parent" of the vertex being refined. This is the

vertex in the embedding-tree such that there is a yellow edge

from it to the vertex v being refined.

• Remove v and all edges incident on it (regardless of their color)

from G.

• Place v in the embedding-tree by placing an edge colored red

from it to its parent.

• Place an edge colored green from v (now in the embedding-

tree) to each vertex in A/_. (This neighbourhood information is

needed if the refinement is ever reversed by a deletion operation;

this will be discussed further below).

• Instantiate the bodygraph Bp to create a daughter-graph.

• Place an edge colored yellow from v to each vertex in the

daughter-graph.

• Embed the daughter-graph using the embedding rule Fp and

the embedding strategy defined in definition 5. If any vertex b

in )4_ that gets an edge added to it in the embedding process

has a yellow edge [b, c] incident on it, then place a green edge

[a, c] from the a that was introduced in the instantiation of Bp

to the vertex c (which must be in the embedding-tree).

• Complete the embedding of the daughter-graph into G using the

attribute embedding rule: For each attribute embedding pair

< a,l : _ > in Ep, identify the set of vertices {bl-_ C Ap(b)}

and place an edge to each vertex in this set. If any vertex b in

A/_ that gets an edge added to it in the embedding process has

a yellow edge [b, c1 incident on it, then place a green edge [a, c]

from the a that was introduced in the instantiation of Bp to the

vertex c (which must be in the embedding-tree).

Figure l: Algorithm to refine _$rtex v by production p
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The embedding-tree createsa treethat shows the refinement relationbe-

tween vertices in the tree. There are red edges between nodes of the tree.

Each leafof the tree has a set of yellow edges incident on itthat indicates

the location in the structure graph of the unrefined verticesof that leaf's

daughter-graph. Green edges link the verticesin the embedding-tree to the

neighbourhood they would have had ifthey had not yet been refined (this

information isused to relinkthem when deletingsubgraphs).

A deletion of a subgraph that corresponds to the daughter-graph of some

production (regardlessof how the vertices therein have been refined) can

be acomplished by referenceto the embedding-tree in time proportional to

the number of verticesin the embedding-tree and graph reachable from the

"parent" of the daughter-graph in the embedding-tree. The algorithm in

figure2 accomplishes the deletion.

An immediate implicationof the above strategiesis:

Lemma 22 Each vertez in the structure graph has ezactly one yellow edge

incident on it.

Lemma 23 When deleting a subgraph and replacing it by its aparent" ver-

tez, which is found in the embedding-tree, the neighbourhood into which it is

embedded (determined by the green edges incident on the vertex whilst in the

embedding-tree} is the neighbourhood the vertez would have had, had it never

been rewritten.

The auziliary nature of the embedding-tree should be strongly empha-

sized; the embedding-tree is used to prevent a combinatorial explosion in the

time needed for the administrative effort of maintaining the structure graph.

Attribute propagations through the embedding-tree are not allowed.

I 4 Example

This section of the paper illustrates the use of the ANLC formalism by con-

I sidering a simple desk-calculatorlanguage. An expression in the language

13



• Identify, in the embedding-tree, the "parent" of" the graph to

be deleted. This is the goal symbol of the production, which

will-be inserted into the structure graph to replace the deleted

graph. Call this the replacement vertex (r).

• Identify all the vertices in the structure graph that can be

reached via the tree rooted in r using red and yellow edges.

• Remove allthe verticesidentifiedin the previous step from the

structuregraph, and alledges incident on them. Delete allchil-

dren of r (and alledges incidenton them) from the embedding-

tree.

• Identify the new neighbourhood of the replacement vertex )4,.

These are all the vertices at the other end of the green edges

incident on r.

• Remove all green edges incident on r.

• Remove r from the embedding-tree, and place it in the struc-

ture graph. Place a yellow edge from it to the vertex in the

embedding-tree that was at the other end of the red edge inci-

dent on r.

• Embed r into the structure graph by placing an edge from it

to every vertex in Hr. If any vertex b in H_ that gets an edge

added to it in the embedding process has a yellow edge [b,c]

incident on it, then place a green edge It, c], where c must be in

the embedding-tree.

Figure 2: Deletion of Subgraph
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consistsof a singleidentifier-valuebinding (viaa let clause) followed by an

expression,for example:

let a = 10 in a ÷ 10

The grammar has the form shown in figure 3. Issues such as syntactic

sugar are ignored in the grammar. Because of sp.acelimitationswe have al-

lowed only one variable binding clause and one operator (÷); however the

grammar iseasilyextensible.Also, because we only ever use the trivialtrue

predicate we have omitted the predicate symbols in the embedding clauses.

The structure graph for the expression is shown in figure4(a). A fullyat-

tributed version of this figureis found in figure5. The attribution is not

shown on the other examples of structuregraphs, but i_similarto that shown

in thisfigure.The nonterminals id and int are intrinsic;we do not rewrite

them further, rather they have fixed meaning, and pre-supplied attributes

idva/and intvalrespectively.By corollary18 itmakes no differencein which

order the binding and expr nonterminals are refineds.

Dependencies among the attributesare induced from the attributionrules

to form a directeddependency graph which overlays the structuregraph. Itis

.... "_-'- - _ ..... " ............. d ii b d

the scope of the paper. The interestedreader should referto [14].

Consider now the effectofreplacingthe literalII in the expression by the

variablea. The effecton the structuregraph isshown in figure 4(b). The int

11 ispruned out and replaced by the ida. The embedding for a connects the

vertex holding the variable to the vertex defining the bind attribute. The val

attribute associated with this id is given the value 10 (determined from the

binding pair) which is then propagated to the plus vertex and then onward

to the resu:l.1; vertex.

Now suppose the identifier-value binding is edited to 15. The val at-

tributes of both id clauses will now be incorrect. These are reevaluated,

which in turn triggers the reevaluation of the val attribute of the plus ver-

SThe valuenil which is_signed to attributesthrough the completing rulesisa predefined

valueof appropriatetype.

15



program

binding

EMBEDDING

COMPLETIONS

binding.bind = <nil, 0>

expr.val -- 0

attribution rules

result.value -- expr.va________l

I _ _1 EMBEDDING COMPLETIONS

_l Od - m:val) int.intval = 0id.idval = nil

attribution rules:

id.bind = <id.idval, int.intval>

expr

EMBEDDING

(plus - l:value)

(factorS1 - m:bindt

(factorS2 - m:bindp

COMPLETIONS
factor$1.val = 0
factor$2.val = 0

attribution rules

plus.val = factor$1.val + factor$2.val

EMBEDDING COMPLETIONS(id - l:bind) id.val=0

(id - m:val) id.idval=nil

attribution rule

id.val=if id.idval=projectionl(id.bind) then projection2(id.bind) else 0

factor

factor

attribution rules

int.val=int.intval

16

EMBEDDING

(int - l:bind)

(int - m:val)

COMPLETIONS

int.intval--0

Figure 3: Grammar for Module Language
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(a) leta=lO in a+ll (b) leta=lO in a+a

Figure 4: Some Refinements of a Structure Graph
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Figure 5: Attributed Structure Graph
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tex, which becomes 30. This value is then passed to the result vertex.

Figure 4(c) shows the structure graph afterthisedit.

5 Supporting the Software Development Pro-

cess

It is widely believed that both software production costs and quality can

be improved by the Use of appropriate tools during the process of designing

and building the software. Schofeld argues that editing is a paradigm for

building all interfaces to a computer system [24] and many projects includ-

ing the Cornell Synthesizer, the Gandalf, and MENTOR projects have used

such ideas in building program coding tools. It is claimed that such context

sensitive editors can help the user by identifying errors early in the coding

phases, improving software organization by constraining the software that is

built to a set of standard building blocks, and documenting the development

process. A problem that underlies the building of such tools is managing the

modification of complex information. Much of the information involved in

semantic analysis of software can be represented graphically [19]. However,

the modification of such graphical structures while maintaining their consis-

tency is difficult. We believe that the ANLC approach can be used to reduce

the complexity of building such tools by introducing a notation from which

the tools can be manufactured automatically.

For example, an incomplete program contains declarations, control state-

ments, and data structures that are interdependent. As new control state-

ments are added to the program, declarations of procedures or data structures

may be added to the program. Existing variables that are used in new con-

trol statements can be checked for consistency of use. Executable code could

be generated for completed fragments of the program. The interdependen-

cies within such a program involve syntactic and semantic knowledge of the

underlying programming language. While various methods of specifying the

semantics of programming languages exist (for example, denotational seman-
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tics [25]), creating an editor to assist in the construction of a program requires

a new notation; one that allows the definition of partially complete programs

and allows that definition to be refined.

However, the context sensitive editor is but one example of a range of

tools that would enhance software production. Each of these tools depends

upon the consistent manipulation of a complex structure under the guidance

of a user. Other examples include configuration management, change control,

project management and scheduling. Configuration management is concerned

with the identification, control, auditing, and accounting of the components

produced and used in software development and maintenance [1]. Project

management controls the software development process: setting objectives,

coordinating development activities, creating schedules, allocating resources,

monitoring milestones and reporting on progress [11]. To be effective, the

mechanisms and policies involved in configuration and project management

must be integrated with the methodology used to develop and maintain the

software [4]. In a large project producing many components, automating

management should have a major impact on quality and productivity.

Software configurations can be modeled using a variant of the Entity-

relationship model [6] [5]. The elements of a software project are entities; for

example, items (modules, object code, documents), versions and users are all

entities. An entity may have attributes; for example, an item has attributes

name, type, owner, and identification number. Entities may have relation-

ships between them; for example, version_of, contains, derived_from, man-

ager_of, and user_of are all relations used in CLEMMA [4]. Versions of items

may be grouped into aggregate items called views, which have many applica-

tions. Views allow abstractions of a project's components to be constructed,

manipulated and maintained (for example, a software release.) They may also

represent a selected subset of the components, chosen by a functional abstrac-

tion of the development process. For example, a test view of a module may

contain a specification of the module, the binary object files, test data and

results and a test harness. In existing systems, a configuration management

system is often implemented as a relational database. However, the relational
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database is a monolithic approach to representing the information and, al-

though itprovides operations to examine the entitiesand relations,it does

not easilysupport the consistent and interactivemanipulation of software

configurations required in a software development environment. Following

Scholfeld's paradigm, it is desirable to interact with the configuration control

system by editing configurations. The ANLC approach would allow graphs

of entities and relations to be manipulated by productions. The analysis

supported by the ANLC formalism would ensure the consistency of these

edits.

An ,,,.I_,_,,project ......... + ....,^_ _t.^..latrack, audit, and control

a software development project. The data dependencies in the management

system may alsobe described using an entityrelationshipmodel. As a project

progresses,the system manipulates the entitiesand relationsto reflectthe

current structure and statusofthe project.A task iscreated and assigned ac-

cording to the project'swork breakdown structure. The management system

monitors task dependencies to ensure that inputs are availableand sequenc-

ing constraintsare obeyed. For example, the initiationofa programming task

may depend On a successfuldesign document walkthrough; therefore,the sys-

tem will not allow the oro_rammin_ task to nrnc_fl h_fnr_ th_ w_llfth_-n,_=h

is complete.

Once again, it is desirable to interact with project management system

by editing, for example, tasks, resource allocations, and schedules. Again the

project structure is complex but the ANLC approach provides a method of

formalizing and specifying the system. Vertices of the ANLC graphs represent

development and management tasks as well as resources like specifications,

documents, code, test cases and reports. Relations exist between these enti-

ties, examples include the work breakdown structure and scheduling depen-

dencies. The various components have attributes like cost and completion

deadlines. Productions would allow manipulation of the project structure;

permitting creation of new tasks and allocation of resources.

In summary for the potential applications of the ANLC approach, we

conclude that an ANLC representation of many aspects of the software de-
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velopment process could have a significantadvantage over current methods.

6 Related Work |

Generating environments from attributed string grammars has already been

widely investigated [22] [13] [15]. The principles used to generate environ-

ments based on graph grammars are similar to those described in the refer-

ences. The major advantages of the ANLC approach over the attributed

string approaches of the references are that (1) graphs allow short path

lengths over which attributes must flow, thereby reducing semantic evalu-

ation and checking overheads; and (2) because the ANLC approach uses

graphs it is useful in a larger domain of applications. Further, the optimal

attribute evaluation behaviour which is a feature of the cited approaches is

retained in the ANLC approach [14].

One project to use graph grammars to build programming environments

is IPSEN [17] [8]. In this project, the environments are constructed by hand-

translating the graph grammars, rather than generating environments auto-

' matically as we propose. Further, the grammars only specify the structures

to be constructed in the environments; semantic checking of the kind we per-

form with attribute grammars is also hand-coded using a style very similar

to the action routines approach taken in Gandalf [18]. Because this style of

specifying semantics is non-declarative, the writer is forced to provide many

different kinds of action routines, for example, one for insertion of a sub-

graph and another for its deletion. The attributed graph grammar approach,

in contrast, allows declarative specification of the semantics, thereby elimi-

nating the need to provide more than one semantics specification.

Attributes have been used with various flavors of graph grammars in the

past [2] [10]. Attributes in these cases appear to have purely local values

(rather than being propagated around the graph) and are used to indicate

static information such as how to lay out a subgraph on the screen when

displaying graphs. We use attributes in a more general way. Also, we are

interested in incremental attribute propagation on structure graphs.
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7 Conclusions

A major research problem in software engineering is to find appropriate tech-

nologies for the construction of tools that automate and support the software

development process. This paper has proposed attributed NLC grammars as

a formalism that is appropriate for such a purpose. There are several reasons

why the ANLC approach is attractive:

• ANLC is a formalism. This means that we can reason about specifica-

tions of tools.

Attribute evaluation on graphs constructed from ANLC grammars is

time-optimal. This impliesthat tools generated from ANLC grammars

willbe e_cient.

• Tools may be generated automatically from ANLC specifications, rather

than having to be hand-coded.

• Because ANLC grammars generate graphs, rather than trees, it is possi-

ble to manipulate and reason about structure graphs with very different

semantics, as opposed to traditional work using trees, where the scope

of application of the work was inherently limited by the fact that the

structures are trees. Examples of structure graphs range from compact

program representations with very short path lengths (which reduce

attribute propagation overhead) to module interdependence hierarchies

and organizational structure charts.

• ANLC grammars have application in many areas outside that of soft-

ware development environments. Applications that we have investi-

gated include generating schedulers for operating systems and model-

ing distributed systems. This wide-ranging domain of application of

the formalism encourages us in our beliefof the importance of graph

grammars to computer science in general.

We are currently building a prototype tool generator based on ANLC

grammars. The status of thistool generator isthat it can take a grammar

23



as input, analyze it and produce a rudimentary tool as output. We are

currently incrementally improving the generated tools; particular emphasis

is being given to the hard problem of the user interface to the system.
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