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This block diagram shows the plant dynamics in normal mode coordinates, a
linear feedback controller with command 1imits, and the actuator dynamics with
rate and displacement limits. The objective is to examine the effects of
joint rate and displacement saturation 1imits on the stability regions.
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The unstable short-period dynamic model is transformed into normal mode
coordinates, and it is augmented with actuator dynamics. The q mode is con-
sidered as the unstable mode. A Tinear feedback controller is used to provide
closed-1oop stability. We examine the stability boundaries with constrained
actuator rate limits under varying bandwidth, displacement and command limits.
The stability boundaries are unstable 1imit cycles in a phase-plane plot whose
axes are the unstable mode and control deflection.
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The closed-1o0p stability by feedback of only the unstable mode requires
the root magnitude to be greater than that of the unstable eigenvalues. In
other words, the control bandwidth must be high enough to stabilize the
system. This requirement is relaxed when the unstable mode and the
control deflection are fed back because the effective actuator bandwidth is
increased. Furthermore, feedback of control deflection also permits reduction
in the feedback gain of the unstable mode.

CLOSED-LOOP DYNAMICS

® FEEDBACK OF UNSTABLE MODE (q; - MODE) [CONTROL LAW 1]
- CHARACTERISTIC EQUATION:
(s-xp[s2+(n-xp S+@bﬁ1-axp] =0

- STABILITY CONDITIONS:
C1> )\l/bl

a> N

©® FEEDBACK OF UNSTABLE MODE AND CONTROL DEFLECTION (ql AND u)  [CONTROL LAW 2]

- CHARACTERISTIC EQUATION:
6-xp[§+(aagrxps+awﬁ1-cyl-nﬂ=0

- STABILITY CONDITIONS
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The increase in the sizes of stability regions is not proportional to the
bandwidth. At high bandwidths, the sizes of stability regions become almost
independent of the bandwidth because the actuator is almost always rate-
saturated. Feedback of control deflection permits increased region of rate-
unsaturated operation due to reduced feedback gain requirement on the unstable
mode. This helps increase the size of stability region size.

EFFECTS OF BANDWIDTH VARIATIONS (MCE GAIN)

CONTROL LAW 1 CONTROL LAW 2
:T -
i
E" g
BANDWIDTH z 80 R
g0 o2 40 “e
10 Q)
<03 -0.40 «0.10 ‘—P.DG [ Y Q20 0 3t -0.30 -0.20 0.30

-0 80

RATE LIMIT = 40 rad/s




While increase in the system feedback increases the closed-loop
stability, it causes early rate saturation thereby reducing the sizes of
stability regions.

EFFECTS OF BANDWIDTH VARIATIONS (TWICE MCE GAIN)
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Increasing rate limits implies relaxing the constraints, and the rate
saturation occurs at relatively Tlarger values of the control and state
variables. Therefore, the stability region sizes increase with rate limits.

"EFFECTS OF RATE-LIMIT VARIATIONS (MCE GAIN)
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Upon displacement saturation, the system is essentially open-loop and
rate 1imit has no significance. The displacement 1imits restrain the area of
closed-1oop operation in the phase-plane, which causes drastic reduction in
the sizes of stability regions. For this reason, the sizes of stability
regions do not show significant size increases despite large increases in the
rate limits.

EFFECTS OF IMPOSING DISPLACEMENT LIMIT (MCE GAIN)

CONTROL LAW 1 CONTROL LAW 2
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Marginal increases in the sizes of stability regions obtained for large
increases in rate 1imits under displacement constraints sugqaest the
possibility of invariance of stability regions with respect to the rate
limits. Notice that a large part of the stability boundary lies within the
rate-unsaturated region which is essentially sustained by the displacement
limits. Increasing rate limits effectively bring in an even larger portion of
the stability boundary within the rate-unsaturated reaion. Clearly, therefore
there exists an upper bound on the rate 1imits beyond which the stability
boundary is no longer influenced by the rate limits, as illustrated.

INVARIANCE OF STABILITY REGIONS WITH RATE LIMITS
(MCE GAIN CASE)

CONTROL LAW 1 CONTROL LAW 2
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The large command 1imits do not affect the stability regions because the
linear controller meets the demands required for closed-loop stability.
Reduction in these Timits deteriorates the controller capahility. A small
system divergence, due to the inability of the controller to meet the demanded
control, causes a little expansion in the stability region; this divergence is
overcome because of the reduced demand on the controller by a laraer part of
the stability boundary. As the command 1imit is reduced further, the system
becomes unstable for relatively lonaer time placing even larager demands on the
controller. The stability region vanishes because these demands cannot be
satisfied by the controller.

EFFECTS OF COMMAND-LIMIT VARIATIONS (MCE GAIN)
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The limit cycle, representing the stability boundary in the phase-plane
of unstable mode and control deflection, implies that a hypercylinder
represents the overall stability region in the normal mode coordinates. With
the state space coordinates located in the plane of normal modes, the
stability regions clearly become functions of control deflection limits under
rate constraints. Imposition of displacement 1imits implies that a chopped
hypercylinder represents the stability region. Therefore, finite stability
regions can exist in the state space coordinates only for those controls that
satisfy the displacement saturation constraints.

INTERPRETATION OF RESULTS IN PHYSICAL COORDINATES




Under rate constraints, a hypercylinder is shown to represent the
stability region in the normal mode coordinates when a saddle-point type
system is controlled by feedback of the unstable mode and control
deflection. Its intersection with the plane of unstable mode and control
deflection is an unstable 1imit cycle. An increase in rate limits results in
increased size of the stability regions, but imposing displacement constraints
causes drastic reduction in their sizes. That is, the stability reaions are
largely dependent upon the displacement 1imits, and they can even be made
independent of the rate limits. Feedback of control deflection effectively
increases the region of rate-unsaturated operation resulting in increased
sizes of stability regions. However, the sizes of stability regions are
reduced with increased feedback gain due to early rate saturation. Unlike the
case of joint rate and displacement constraints where the existence of a
stability region is always guaranteed, in the case of joint rate and command
constraints, the stability region can disappear when the command limit is
reduced below a certain limit.

CONCLUSIONS

o LIMIT CYCLE REPRESENTS STABILITY BOUNDARY

o MARGINAL EFFECT OF ACTUATOR BANDWIDTH

o INCREASE IN STABILITY REGION SIZE WITH RATE LIMITS

e SIGNIFICANT SIZE REDUCTION UNDER CONSTRAINED DEFLECTION

.0 LARGER REGION WITH FEEDBACK OF CONTROL DEFLECTION

o REDUCED SIZES WITH INCREASED GAIN

o INTOLERANCE OF STABILITY REGIONS TO COMMAND LIMITS
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