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NS
Enthalpy, I h,  C.
i=l 1 i
Enthalpy of species i
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Wall catalytic recombination rate constant for
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Coordinate perpendicular to body (Fig. 1).
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SURFACE-SLIP EQUATIONS FOR MULTICOMPONENT,
NONEQUILIBRIUM AIR FLOW*

Roop N. Gupta**
Car1 D. Scottt
and
James N. Mosstt
SUMMARY

Equations are presented for the surface slip (or jump) values of spe-
cies concentration, pressure, velocity, and temperature in the low-Reynolds-
number, high-altitude flight regime of a space vehicle. These are obtained
from closed-form solutions of the mass, momentum, and energy flux equations
using the Chapman-Enskog velocity distribution function. This function
represents a solution of the Boltzmann equation in the Navier-Stokes ap-
proximation. The analysis, obtained for nonequilibrium multicomponent air
flow, includes the finite-rate surface catalytic recombination and changes
in the internal energy during raflectign freom the surface. Expressions for
the various slip quantities have been obtained in a form which can readily
be employed in flow-field computations. A consistent set of equations is
provided for multicomponent, binary, and single species mixtures. Expres-
sion is also provided for the finite-rate species-concentration boundary
condition for a multicomponent mixture in absence of slip.

_INTRODUCTION
For an accurate prediction of the aerothermal environment of a space
vehicle entering the earth's atmosphere in the high-altitude low-Reynolds-
number flight regime (Ref. 1), the multicomponent, nonequilibrium gas

chemistry as well as the wall slip and catalysis effects, must be evaluated.

*The authors are grateful to Dr. Fred G. Blottner (of Sandia National
Laboratories, Albuquerque, NM) for many useful discussions pertaining to
the mass flux expressions contained in Appendix B.

**01d Dominion University, Norfolk, VA
tJohnson Space Center, Houston, Texas
ttLangley Research Center, Hampton, VA.




Such flow fields are of particular interest for aeroassist and space shuttle
vehicles. This study was undertaken to obtain the boundary relations that
incorporate the effects of slip, multicomponent diffusion, wall catalycity,
and changes in internal energy of the molecules (during reflection from the
surface) for application to flow-field calculations under the general as-
sumption of local thermodynamic equilibrium.

Scott (Ref. 2) first presented the wall boundary conditions for a
multicomponent mixture with diffusion and wall-catalysed atom recombination.
In obtaining these boundary conditions, he used a first order velocity dis-
tribution function at the edge of the Knudsen layer next to the wall, where
the continuum model of the gas breaks down. These boundary conditions,
obtained from the kinetic theory considerations, provide solutions at the
top of the Knudsen layer that would match the solution of the Navier-Stokes
equations in the bulk outer flow. Hendricks (Ref. 3), using Scott's formu-
lation, obtained simplified expressions for engineering applications with
some corrections to Scott's expressions. Hendricks' analysis, however,
contained some gross errors in obtaining the engineering expressions. This
paper reanalyses the wall boundary equations by using the approach of refer-
ence 2 and provides appropriate relations for the various quantities with
surface slip in a form which can readily be employed for flow-field computa-
tions. An effort has also been made to reconcile the differences between
slip expressions employed by the different researchers. The present analy-
sis provides a consistent formulation for the slip equations for a multi-
component, binary, and single species mixture. Expression is also provided
for the finite-rate species-concentration boundary condition for a multi-
component mixture (in addition to that for a binary mixture) in the absence
of slip. This may be of interest for the shuttle flow-field calculations

based on multicomponent diffusion (Ref. 4).




The main difference (among other details) between the results contained
in reference 5 and the present work is that the various internal degrees of
freedom for a molecule were considered frozen during reflection from the
surface in reference 5, whereas, they are allowed to change in the present
analysis.*** Further, the results are provided in both spherical and body-

oriented ccordinate system.

ANALYS IS
The slip conditions are taken to exist across the Knudsen layer, which
is on the order of one mean free path in thickness as sketched in Figure 1.
The analysis outlined here follows the approach of References 2 and 5. It
is based on Shidlovskiy's (Ref. 6) assumption that the distribution function
near the wall can be described to first-order accuracy by the so-called
Navier-Stokes approximation. However, a deviation is made from the proce-
dures of Shidlovskiy in that a Chapman-Enskog type distribution function for
a multicomponent mixture obtained by the variational method of Hirschfelder,
Curtiss, and Bird (Ref. 7) is used. The Chapman-Enskog distribution
function allows accounting for diffusion. The analysis contains the follow-
ing assumptions:
(i) The energy and momentun accommodation coefficients (i.e. «a
and 6, respectively) have the same value.
(i1) The fluxes of mass, momentum, and energy across the Knudsen
layer are assumed constant. This is consistent with the
assunption of negligible variation of the velocity distri-

bution function through the Knudsen layer.

***Since the assumption of local thermodynamic equilibrium is employed, only
those internal energies are considered which equilibrate readily with the
translational energy.




(iii) The internal energy associated with the rotational and
vibrational modes readily equilibrates with translational
energy.

The interaction model at the gas-solid interface, with the various
fluxes sketched in Figure 1, can be mathematically stated for dissociated
air as provided through the following equations.

For a recombining atom:

_ ot + w =
Fo=Fp + (19,) Fp+ (8p-rp) Fa 5 A = 0O,N (1)

For a molecule gaining from the corresponding atom recombination:

_ ¥ ‘ + W w _
Fy = Fy + (18y) Fy +0yFp + YaFa 5 M =0, N (2)

“For all other atoms and molecules (surface is assumed to be noncata-

lytic with respect to them):
F. = FY + (145) Fg + eiFiw (3)

where Fi denotes a convective property such as mass, momentum, or energy.
Summing over all the species, we obtain from Eq. (1), (2), and (3), the

following expression for the net flux of momentum or energy:

NS NS, NS R )
LoFis '21 Fiovl, (09 Fyoe LooogFn (4)
i= i= i=



That is, the net flux at the outer edge of the Knudsen Tayer equals the
incident flux, plus the specularly reflected flux (incident minus the frac-
tion that sticks) at the wall, plus the diffusely reflected flux (those that
accommodate to the wall) from the wall.

Each species is treated separately in the mass balance equations.
Therefore, Egs. (1), (2), or (3) are employed depending on the species being
considered. In Eq. (1), the diffusely reflected flux consists of those
atoms that are accommodated to the wall minus those that recombine. For the
molecules in Eq. (2), the diffusely reflected term is present along with the

source term resulting from the appropriate atoms recombining on the surface.

VARIOUS FLUXES AND THE DISTRIBUTION FUNCTIONS

The interaction model of Egqs. (1) through (4) is employed to obtain the
slip boundary equations at the gas/solid interface. Through Eq.(1), the net
fluxes of species, momentum, and energy at the outer edge of the Knudsen
layer are equated to the difference between the incident and reflected
fluxes at the wall. These fluxes are assumed to be constant across the
Knudsen layer and are obtained from moments of the distribution function.
For a convected property ¢1(;) such as mass, momentum, or energy for the
ith species, the net flux of that property normal to the wall at the outer

edge of the Knudsen'1ayer, for example, is
Fo=l” L Lovge' () fg (D) @V (5)

i i
where Vy is the normal component of the molecular velocity and f; is the
velocity distribution function at the edge of the Knudsen layer.

Similar integrals are obtained for the incident and reflected fluxes by




integrations over appropriate half-spaces in molecular velocity:

Incident flux:

oD L LV i) ey (6)

Specularly reflected flux:
F? = L f? L v; ¢1(V),fi(vx, Vys Vz)dsvi (7)

Diffusely reflected flux:
FeL s L0 e @

where f; is the Maxwellian velocity distribution function.
The velocity distribution functions used in integrals contained in
relations (5) through (8) are those for a nonuniform multicomponent mixture

perturbed out of equilibrium:
Ay = fO @y 11+ et (] (9)

where f(0)1(V) is the Maxwellian distribution function for the ith species

given as



and

X ; . dv NS ., . .
®](V) - .l 3(1nT) _ gl ok | n 3 C1(3) 43 (11)
ke L0 Tk k
axk axz j=1

Here k and £ are the dummy indices for three coordinate directions and
the summations with index j represents summation over all the species.
The summation convention for repeated indices is used. The coefficients

AL, B;z, and C;(l) are functions of the dimensionless velocity:

w“( = 2% (12)
2kT
and are dofined 25
L 5 2 i
Ao = oyt a11(;" WD W (13)
j i i 1 2
Blll = b'lo (w wR, '—3- w'l Skz) (14)
i(3) - (3)
Ck o wk (15)
(3)

where 390 2410 biO’ and Cio are constants determined from the varia-

tional problem in the first approximation for a mixture as given in ref. 7

and sz is the Kronecker delta such that
8§ = 1, if k=12
sz = Q, if k# £,



These constants are functions of the collision integrals and are related to
the transport properties. The simplified form of these constants is pro-
vided in Appendix A of this paper. More details can be found in Appendix A
of Ref. 2, or in Ref. 7. The diffusion vector di in Eg. (11) is related
to the diffusion velocity of the jth species and is defined after neglecting

the external forces as (Ref. 7):

. n. . : .
d o= () el L I (gnp (16)
o} 3xk

where "j and mj are, respectively, the number density and mass of the

jth species, n s the total number density n = ) Ny, P is the total
J
mass density p =) njmj, and p s the total pressure p = | p;- A
- J <

N
-
.

simplified form for di is provided in Appendix A.
The total mass averaged velocity Vok (i.e. the kth component)

appearing in Eq. (11) is defined as

LP -
Vo = — n.m. v
Ok o g1 93 k

where Vﬂ is the mean of total velocity vﬂ = vy t Vﬂ of the jth

species averaged over the distribution function and Vi is the thermal (or
peculiar) velocity, also introduced in Eq. (5). The thermal velocity Vi

of the jth species averaged over the distribution function is known as the
V.

diffusion velocity K



Woo- %_. CLovied dm e (17)
J

A simplified expression for the diffusion velocity in terms of transport

properties is provided in Appendix A.

THE BALANCE AND SLIP EQUATIONS
Based on Egs. (1) through (4), the balance equations for the ith
species for fluxes normal to the surface of the species mass Miy’ the normal
component of momentum Piy’ the tangential component of momentum P1||’ and

the energy Eiy are obtained as follows:

(a) Species mass flux

For a recombining atom

M M, + (o M‘{A’ : A=0,N (18)

. +
ay = %aMa A" TA)
For a molecule gaining from the corresponding atom recombination

+
My MMM+6MM:= +YAW/-I\ ; M=02,N2 (19)

_ + W

(b) Normal momentum flux

gs gs , NS
P. = (2-8,) P, + ) 6. P
1 SRR AN S £

- X
n
0
—~
no
1—
st




(c) Tangential momentun flux

NS NS '
P. = 8, P. 22
R TT RS @2)
1.
(d) Energy flux
NS NS T
E = E. = E. + . M.
y iz=1 4 121 VY 21 “iy Ty
diatomic
molecules
NS NS
= eiEiT++ 6. E.™ 4+ T .M
i=1 =1 17 i T
diatomic
molecules
+ ) W, W
i 05 es M (23)
diatomic
molecules

where e, is the internal energy of ith species that readily equilibrates
with the translational energy EI under the assumption of local thermo-

dynamic equilibrium. For example,

rotation
&

kT

M

In writing the energy flux balance of Eq. (23) it has been assumed that
there is no change in internal energy during specular reflection.
In obtaining Egs. (18) through (23) we have used the following

relations

tThe energy balance is based on the assumption that the various energies
considered readily equilibrate with the translational energy.

10



+ +
My =-M; , P =-P]
il il

+ ¥ W
Ei = = E.i 9 P:‘|| = 0, and Pi

v = Py

Because it is assumed that the atoms are consumed at the wall by catalytic
recombination in Eq. (18), the net mass flux MAy¢0. Similarly, the net
mass flux MMy # 0 1in Eq. (19). However, Miy =0 in Eq. (20) for the
atoms and molecules for whom the surface is assumed noncatalytic.

By substituting Egs. (5), (6), (7) and (8) with the definition of
¢1(V) as mass for Eqs. (18) through (20), as normal component of momentum
for Eq. (21), as tangential component of momentum for Eq. (22) and as energy
for Eq. (23), respectively, and carrying out the integrationsf, one obtains
equations relating the slip properties to wall properties and gradients at
the edge of Knudsen layer. Al1l accommodation coefficients 6i are assumed

to be equal to 8.

Number density (or concentration) slip (obtained from mass flux balance):

M.
2 [1+ L ¥
S 2 W
n; n.m; T
i ; i ‘?z (24)
w .
n; Yoy s
:

Pressure slip (obtained from the flux balance of normal component of momen-

tum)

TThe mass, momentum, and energy fluxes in terms of evaluated integrals over
the distribution function are given in Appendix B.

11



NS
2-8 oT 1
[k — 1 na,

v ay i=1 1

/{?ZT + 22 y a7 el ad] (25)

2.9
.V—

1 NS
with viscosity p = > kT 1'2=1 ny byg
Velocity slip (obtained from the flux balance of tangential component of

momentum)

S 2-9 0 0
Vox = LW (59w (—= + )
20 oy 3X
NS NS
1 s aanT 1 = (3) 4d
*3 1{1 Py [ - (250 - > 2 -0 j2=1 cio” 4l !
NS m.
A G A (26)
i=1 kT
S
3v 3v
s 2-8 0z Oy
Vop = IVr (=) w ( + —=2)
0z (26 S 3y 3z S
NS NS L
1 s oenT 1 ) (J) 43
Yy ].{1 P [—a‘z—(aio‘gail) n Z= o 43l

12



NS s mi
/3% [ (27)
i=1 2kTS

Temperature slip:

3/2 NS NS oY
(1) =[-2v (&) (] E;) + (T Yy
2 =1 A B ™
NS n v v av
ML o 1+2n, (=X 2.2 Wy (28)
1=1‘fmi 4 ax 3z 2y

Equations (24) through (28) differ from the corresponding expressions
provided in Ref. 2 due to small errors and also due to the differences in
the interaction model employed at the gas-solid interface.

The constants ai00 241> biO’ and cgg) (also known as the Sonine ex-
pansion coefficients) appearing in Eqs. (24) through (28). may now be ex-
pressed in terms of the transport properties as given in Appendix A. Using
these relations along with the various flux expressions of Appendix B and
also expressing dk in terms of the gradient of mass fractions aCj/ay as
given in Appendix A (by neglecting diffusion due to pressure gradients and
external forces), the following equations are obtained after some algebraic

§

simplifications:

§The approximations made in the expressions for a1 and biO are given in
Appendix A.

13




Number density (or concentration) slip

Same as Eq. (24).

Pressure slip

v v v NS m
)
B o 3] B - M AR S WY I
3 Ix 32 3y 5 w H dy i=1 2kT
: NS m.
8 w <] 2-8 i
+— pH{=+2(=) 1
2 2 v oi=1 \ KT
NS aC. NS = aC
J=1 3y =1 M, 3y
JE1

NS oK NS aC
xé__l ni\/mi Kils - 121 ™ j2=1 D1J[ 5 x
J*i
NS = oC NS ’
-C, 1 (— —-]]S} ) UFRVLE (30)
Jg=1  m. ax i=1
q
s 2 Vor Vo 1.1 »T
VOZ'”"— (£2) [ (2 + y)]S+_[___ °L
2 G \/kT dy 92 5 T 82

14



NS = aC NS S
-6 L DG/ Ind [m (31)
g=l m_ 3z i=1
q
Temperature slip
W
oo Ply o M) My v e
T = =l m, = i kT, m  2n e
W s ! 2"5 diatomic ! S
molecules
3 = W S
m;e. kT m (e.-e;)m.
S S b 6 S Y i A | i}
3 xl . 3 i N i, m, ! KT
diatomic W ! diatomic 1 W
molecules molecules
P. NS [2kT m P.
ey el ,21/ (D) (e}
3 i= m. m. s
Pi ! ! Py
NS M,
-9 aT
R E LA Cul N UL BN B S FA
G} y i=1l n m,
NS m .
1
=) (2 ¢; (3 L+ 1)} (32)
4 =1 m. S
i P3

15



where the mass fraction Ci and the mass of a mixture molecule m are

defined, respectively, as

and

Equations (24), (29), (30), (31), and (32) differ from Eqs. (25) through
(28) of Reference 3. For dissociated air, the gas-surface interaction model
employed in Reference 3 appears to be inconsistent. Further, the diffusion
vector dg appears to have been incorrectly evaluated in Reference 3. If
one carries out the simplifications in Eqs. (23), (24), and (28) of Refer-
ence 3 {(which contain the binary assumption) through the evaiuation of
-3.(nj/n) in terms of mass fractions as given by Eqs. (35), (36), and (39)

3y
of the same reference, erroneous results are obviously obtained because
NS
.Zl(acj/ar)s (which is zero by definition) is contained as a factor in
J:
several of these equations.
For the first-order recombination at the surface, the following

relation between the atom mass flux MA and the wall number density nX

\
may be employed

May = = Kya (13 ) (33)

where the minus sign indicates that the flux is in the direction opposite to

the outward normal and the expression for the rate constant kwA with

16



diffusion and slip is (Ref. 2).77

kT

- W
Kea = Ya (34)
21rmA

Here Ya is the recombination coefficient.

For a fully catalytic wall (YA= 1), the maxihum value of the rate
constant kwi is limited by the surface temperature. The reaction rate con-
stant for a fully catalytic wall with the gas phase in chemical equilibrium
is often assumed to be infinity for the sake of simplicity.

Employing Eq. (33), the net mass flux Miy appearing in Egs. (24) and
(32) may be defined as

MAy = -k MMy A=0, N (35a)
- W A=0forM=20,
Muy = %en " ™5 a2 N for M - N2 (350)
For all other atoms and molecules,
M, =0 (35¢)

1y

Equation (24), with Miy defined by Egs. (35a) through (35c), gives

TtAs shown in ref. 2, by neglecting slip but keeping diffusion, a slightly
different form of Eq. (34) is obtained:

2 Y kT
_ (- "A W
kwA = (

Z-YA ZwmA

17




the number density ratio n?/n?. However, to obtain n? from this ratio,

. s . .
an expression for ny s required.
The net mass flux of 0 and N atoms to the surface, MAy’ is also

equal to the rate of consumption of these atoms at the wall from surface

recombination:

+

Ay © YAMAy ; A=20,N (36a)

M

and the corresponding net mass flux of O and Nz molecules will be

0 (36b)

e uw . (A
M y.M 9'{ NZ

My A Ay A

nn
=
—h
o
-3
=
i®won

For all other species, the net mass flux to the surface may be assumed to be

zero. Thus,

M, =0 (36¢)

¥
Substituting values of the net and incident fluxes Miy’ Miy from Appendix
B in Eq. (36), the following expression is obtained (after we neglect

thermal diffusion):

S
NS aC NS = 3C Vs
S 1
10 [=2-¢ 1 (= Dlg=-— (37)
j=1 3y q=1 My 3Y m,
j*i

18



. . s .
which may be used to obtain n;.” Here w? is the source term defined as:

Y m,n kT P
S A 1 "A°A S Ay
Vo= 2T . ( +1) (38a)
A ( YAl YT o m p'S
S A A
For O and N molecules
S - _ S . A=0for M=20,
b= v Ly sy for M- N (380)
For all other species
¥3=0 (38c)

SIMPLIFICATIONS FOR A MULTICOMPONENT MIXTURE
Equations (24) (29), (30), (31), and (32) for multicomponent gas flows

can be simplified if one makes the following assumptions:

(i) A1l the diffusion coefficients, Dij’ for a multicomponent gas have

§If no assumption is made about D Eq. (37) would give an expression for

(aCi/ay)S for all the species: 3’

3C, m. NS aC, NS = aC v, NS
(. =(H { £, 0Si[L-c; = ™ 9 -/ £ (Di:C5)
3 S m i= 13 9 J = 3 S s {= 13737s
A A I

The source term ¥. in this expression, however, may be simplified to yield
an expression for CR (or n3) for the recombining atoms only:

S ac, NS = acC,




the same value so that Dij = DIZ,T D;2 1is the same as the

binary diffusion coefficient D,,.

(ii) The normal momentum flux to the pressure ratio, P is the

iy Py
same for all species and equal to that of the mixture. This also
implies that the normal shear stress Tyyi for species 1 1is the
same as that for the mixture (ryy).

(iii) The rotatiornal and vibrational states are fully excited so that
the internal energy e, for the air molecule may be taken as

equal to 2kT/mim

"This is a somewhat stronger assumption. Because Di$ are concentration de-
omp

pendent, whereas Djj are virtually independent of composition. The multi-
component diffusion“coefficient D;. is related to the binary diffusion

coefficient Djij through the fo]]o&qnq relations (see Ref. 7):

Dij '—'-K-.ij - (M'i/Mj) Ki'i

where quantities K;; are coefficients in a matrix which is the inverse of
the matrix with the }%11owing coefficients:

) Ci g IS
s s = + .

1 =
Pooonig Vgl Mesig

0 (i=J)

(i#3)

ot

One can see, therefore, that by employing D12 (which is same as Di2)
for all the species in a multicomponent gas mixture, considerable saving is

obtained in computational effort and time without losing the general flavor
of multicomponent diffusion. This is particularly true if the dissociated
air consists predominantly of nitrogen molecules and oxygen atoms. The
shuttle entry conditions fall into this category. Simple and multicompo-
nent diffusion gave same results in "An Experimental and Analytical Study
of S1ip and Catalytic Boundary Conditions Applied to Spheres in Low
Reynolds Number Arc Jet Flows," by Carl D. Scott, Proceedings of the 9th
International Symposium on Rarefied Gas Dynamics, Gottingen, July 15-20,
1974, pp. D.14-1 to 11.
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These assumptions retain the major effects of multicomponent fluxes on
various slip quantities and provide considerable saving in computational
effort required for the analysis of a flow problem (ref. 2 and footnote on
page 20). With these simplifications, Egs. (24), (29), (30), (31) and (32)

yield:

Concentration slip

s
n; M Znm P
4 =2[1+% iy LT1]\/;_\1 /(_51 +1) (39)
W W s
n; ny m, W ) p
Pressure siip
R W Y PG L") I R I
‘ s
W = ax 3z 3y 5 Ym =
p 3n KT, nKXT,
NS n.K, E NS
x [ U iy - 222 Ja 1 yms
\[ZkT 3y i=1 n 2 YT 2kT i=1
aC. NS = ac
x [+ ) 1 (- —31 (40)
3y =1 "q 3y
Velocity slip
av 3v NS n.K,
0 1 1 387
RN Ll I I G e ) S P L )
2 8 \[kT Yy IX 5 kT 3x i=1 n
. NS ; = SC] NS
ey 3z M [—* (A0 T (— T § oy (D)
i= X g=1 m, 3x i=1



= s NS BC1 NS = va NS <
+n Doy, E\Imi [— + (1-C.) (______J]S}/ niam. (42)
i=1 9z g=1 mq 9z i=1
Temperature slip
T NS M. M. p
S = YT LA ) el y.g
T = i=1 m, = i m, 2 S
W s 1 Ng diatomic 1 P
molecules
m
x 1 (2 Csi‘+_1_( . 3 C1S}
i mi 2 -
diatomic
molecules
NS M, M.
2- 1 K3T 5
A EN GRS AREI S FA R T S 12
] 2 py 4 i=1 n ms n i i
diatomic
molecules
p m P 2kT. m
+§<3 RS -—S)c+§(—y+n I 2 (D )
S m. S 1 m m.
P 1 P diatomic ! !
molecules

or, if the internal energy is frozen during reflection from the surface (see

Eq. (28) of Ref. 5, for example),

T NS M. P
S oY Yy b1 (v c3)
Tw H i=1 m, 2 pS
S
NS M
-9 oT 5
-y (22 (L kT Ls (=0}
8 2 pay 4 i=1 n m,
(43b)
m
S S
(2D ¢

22

(43a)



Equation (37) may also be simplified to yield an explicit expression for n?:

aC,
j

(15 + - (2
P y m.
n$ = S[1+ L 2 (44)
" © a_ci)
S
= 3
=1 my 2
where
S
Y myn T P
w;=-i—¢,}. A A S (My1) 5 A=0, N (450)
S < _ 45 . A=0forM=20
Yy VA LA Nformen, (450)
w? = 0 for all other species (45c)

It is suggested here that the concentration for the major specie (for
example, nitrogen) be obtained by requiring the sum of concentrations of all
the species to equal unity. It may be mentioned here that the mass of the
ith species, M is related to the malecular (or atomic) weight, wi,
through the relation

Tk (46)
wi R
where k 1is the Boltzmann constant and X 1is the universal gas con-
stant.

CONCENTRATION SLIP BOUNDARY CONDITION FOR A FULLY CATALYTIC
AND A NONCATALYTIC SURFACE

Equation (44) gives slip values of the concentration n? for a finite

catalytic surface. For a fully catalytic (YA = 1) surface one generally
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assumes complete recombination of atoms at the surface. There is a slight
discrepancy in this assumption because the maximum recombination rate is
limited by the surface temperature as discussed earlier [See the discussion
following Eq. (34)]. Thus, for a fully catalytic surface, equation (44) or
(41) should be employed with Yp = 1.

For a noncatalytic surface (YA = 0), Eq. (45) gives w? =0 for all

the species. For this case, Eq. (44) becomes

9C.,
. i
o (—,
n§ = S (1+ 2y ] (472)
™ ZNS (m 3&1.)
=l m_ 3y s
q
which may also be written as
aC, NS = 3C
(—)g =-0) I (= 3 (47)
y q=1 mq 3y

| P (48)

for a noncatalytic surface. Therefore, Eq. (47a) is not an appropriate

boundary condition. However, employing Eq. (48) with Eq. (47b) yields:

(49)

~—
I—I
[
w
U]
o

24



which may be used as the boundary condition for a noncatalytic surface with

a multicomponent gas mixture.
SIMPLIFICATIONS FOR A BINARY MIXTURE

At lower altitudes with the flow in slight nonequilibrium (i.e. when
the Reynolds number parameter €2<< 1), the derivatives of various quantities
with respect to x and 2z and some other higher order terms like avoy/ay
may be dropped through an order of magnitude analysis (see Ref. 9, for exam-
ple). Further, the dissociated air may be considered as a binary mixture
(i.e. consisting of atoms and molecules only, see Ref. 8) at these altitu-
des. If an assumption is also made that the internal energy of the mole-
cules remains frozen during reflection from the surface, Egs. (39)/through

(45) can be simplified further to the forms given here.

Concentration slip

S
n 2~y T
A hH (50)
N, 2 TS
A
Pressure Slip
S =
P_ - { 1+ 4 2-9) 1 ( m ﬂ)s
pw 5vn® 8 anTW \/ZkT y

DS
-9 AM
(29

4
N Vi e T,

- - 9C
R (Y A (51)
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Velocity Slip

AT -\ R ) (523

S =
/{(\[mA -,\/mM) g+ ong \myl (53a)
Temperature Slip
T XT. m m, 3/2 m, 372
== D 2D ¢ r2(h
Tw LT My My
w
2kT YN m
+ (22 (1-2 By )
M 2n ™M

8 9y
m kT y.n" kT m
+ L (5.9 A / LANACUS I i i
mM mA ZnS mA mA
m 3/2 m 372
x[t1-2(d 16 +2 (B (54a)
My ™
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or, with frozen internal energy during surface ref]ection;

F-ve (B L&A
C] 2 P a3y

w =
5 Mo, [2KTy Ya My kT mg
+ m (1‘ —) ( = ) + (—)
'mM mA 2 nS mA mA

m. 3/2 m. 3/2

x[{1-(B 1 g+

My My

Il

In Eqs. (54a) and (54b), nx is obtained from "Z by using Eq.

. s
Expression for Na

n aC
kT A 1 A
_— (2 + )],
2'rrmA P Day 2mA oy
aC
A
/-1y (D,
mA mM ay

which may also be written as

(50).

(54b)

(55a)

27



s
n, m 2-y 2rm

Rl SR A o (D, (55b)
p 2YA kTS 3y

For a fully catalytic surface (v, = 1), Eq. (55b) gives appropriate

A

value for the concentration sh‘p.T The relevant boundary condition for a

noncatalytié surface (YA = 0) will be

3C,
(s =0 (56a)
y

as can readily be seen from Eq. (55b).

For a noncatalytic surface (YA = 0), pressure and temperature slip Egs.

(51) and (54b) are further simplified, with the help of Eq. (56a), to

Pressure slip

= sk, (1-¢%)
-8 3 A
pS - pw 4 (2 \ m T) [ A A + K

5vw eJ\IZkT 3y S \ My \/mM

J

Temperature slip (with frozen internal energy during reflection from the

suface)

2-0 K 1 a7
T =T, —_—) - =
ey (2D | ” ,_a——}y s
Jlag A (= - L) ¢+ L ] (58a)

3/2 372 3/2
MA M ™

1'Sometimes in the literature Cp s prescribed as zero for a fully cata-
lytic surface. Strictly speaking, this will be true only when the
Reynolds number parameter €2 (Ref. 8) is approximately zero (close to the
chemical equilibrium condition at low a1t1tudes) This can easily be seen
by nondimensionalising equation (55b) in a way similar to equation (28d) of
reference 8. Thus, the recombination rate coefficient Ys and density (as
measured through 82), both control the recombination rate and not y, alone.
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Equations (52a), (53a), (57a), and (58a) (with the noncatalytic surface

assumption in Egs. (57a) and (58a)) can be rewritten as:

Velocity slip

av
S 1 u Ox
Vox = A1 [ ] (52b)
Ox ;\jﬁ- VKT oy S

s\V''s

av
S 1 u 0z
v A a [ ] (53b)
0z 1A /= IF= s

Pressure slip

S _ W Y- m AT
p> = p" + By by (L) [ [T K —J (57b)
T kT oy

Temperature slip

T =T +@ cl(Y—'l) [K— L a—/—"]S (58b)
S W T k kT 3y ‘/ri
n_4fm
where A = 3 5 ‘ (Syl)
S = T
(\/mA -.\/mM) Np +\My N
—
: Ma Saka . ™ Cu X
= m = —w— ls
B, = m A m M ( 64) ( R
(afa g BTy
S
A M
= 3/2 1 1 -1 oy
G = [m { 372 3/2) At 31/2} 221
m m My 150m 7-1




_ 5w w (2-8 . 2-8
a = — = {— = 1.2304 (—
1 T ‘/ > ) (=

8 ]
15 \/T 28 2-8
b, = =% (22 =1.1750 (222
1 TRE ( - ) ( - )
75 [ 28 2-9
c, = T 22y = 2.3071 (25
! 128 V2 ( = ( 5

The concentration slip condition consistent with Eqs. (52b), (53b),

(57b), and (58b) is

(3, =0 (56b)

The range of values of A1, Bl, and C1 is as given below for a mixture of

oxygen atoms and molecules and y = 1.4 (ref. 8):

1.0039 < Ay € 1.0186

K Ky K K
0.9507'< B, < (0.9507)x(\f§ A3 My e

mA 2 mM mA

0.9056 < C1 < 0.9507

The minimum values for Ay and C1 occur at np = 0.5 P/mA, whereas the

maximum value for By occurs at this value of np.

The expression (52b), (57b), and (58b) reduce to those obtained in Ref.

Tt

8 1f one assumes the values for A/, B, and C; to be unity and a non

e Appendix C for the dimensional form of the slip boundary conditions
given in Ref. 8. .
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catalytic surface boundary condition as given by Eq. (56b). The concentra-

tion slip boundary condition provided in Ref. 8 is:

2-Y 2rm 3C
¢§ = c5, + (—D) A gy, A (59)
ZYA kT an*
s
which is the same as Eq. (55b) obtained here except for the additive term
CZQ.TTT It is obvious that the temperature slip boundary condition of Eq.

(2.8b) obtained in Ref. 8 is valid, strictly speaking, for a noncatalytic
surface only and is not consistent with the concentration slip boundary
condition of Eq. (2.8c) (reproduced here as Eq. (59)) obtained for a finite
catalytic wall. As a matter of fact, the velocity and temperature slip
boundary conditions of Ref. 8 are similar to those of Ref. 9,§ where these
slip conditions are provided for a perfect gas (or single species mixture).
Tnhe inconsistencies in the boundary conditions used in Refs. 10 and 11

are similar to those of Ref. 8, namely, the pressure and temperature slip

hurIt appears that Eq. (2.8d) of Ref. 8 for the concentration s1ip has been
formulated for small deviations from the chemical equilibrium condition
(i.e. the Reynolds number parameter €2 << 1). Thus, when flow goes to
chemical equilibrium (with €2 = 0), one obtains from Eq. (2.8d) the
equilibrium value for the concentration i.e. Cp = Cpes Which would be
zero for the oxygen atoms for surface temperatures o% 2000°K or Tless.

§There appears to be some error with the form of Egs. (2.7c) and (2.7d)
given in Ref. 9 if one employs the definition of dimensionless heat-trans-
fer rate 'q' in these equations from Eq. (2.4b) of the same reference.
(The Reynolds number parameter, €2, is missing in Egqs. (2.2b) and (2.4b)
for dimensionless shear stress and heat-transfer, respectively, of the same
reference. These have been corrected in Ref. 8.) The resulting pressure
and temperature slip expressions will contain the dimensionless viscosity
coefficient 'u' without the Prandtl number, see Ref. 10 and 11, for exam-
ple. This is in contradiction to Eq. (2.8¢c) of Ref. 8, which contains
dimensionless 'K' in place of dimensionless 'u'. For a perfect gas,
employing 'u' in place of 'K' in the pressure and temperature slip equa-
tions will result in no error. However, for real gas flows, the pressure
and temperature slip values will be in error by the factor of u/K. The
present analysis indicates that Eq. (2.8c) of Ref. 8 is of the "correct"
form for a single species mixture.
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values are in error by a factor of dimensionless viscosity to the thermal
conductivity ratio ‘'u/K'. References 10 and 11 also employ the single
species formulation for obtaining the velocity, temperature and pressure
slip values and the concentration slip expression in these references is
that obtained for a binary mixture (Ref. 8). The coefficients appearing in
the slip equations of Ref. 11 may be obtained by multiplying a, b;, and
c; (coefficients of Ref. 8) given here by 16/5x. The factor 16/5 is some-

times replaced by .

SIMPLIFICATIONS FOR A SINGLE SPECIES MIXTURE

Eqs. (39) through (42) and Eq. (43b) may be simplified for a single
species mixture to the expressions obtained in Ref. 6. For small jump (or
slip) conditions these simplified equations may be written as (with Yo = 0

and Miy = 0 for a single species mixture):

Density slip

e = =3 ’T ' A av v av 21
s _mn" _ W {1+[iJ1_ s ( 0X+ 0z -2 O_Y) ]} (60a)
LI oW TS 24 2 \fRTS 3x 3z 3y s
Pressure slip
S A
p 2-8 16 ,x 3T 5 m S
Poipn-p (B BAy 45 s
pw C] 16 T a3y 12 2\/R¥
av av v 1
x (e 2 0 ) (61a)
Ix 9z 3y
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Velocity slip

v v
B
v (E (O (2 e Yy LB T 22 (62)
o 16 3y 3x 32V 2 ST ax
s 28y /5n War . Wy 15 x aT
o 16 ay 3z 32 V2 T 3z
.t
Temperature slip
s 1.,% 1.3 Py 750 201 % ATy .1
— == (Z+Y[-=+= (= + 1] {=(=3(= ]} (64a)
T, 2 2 4 s 128 6 T 3y

where we have used the following relations between the coefficients of vis-
cosity and thermal conductivity and the mean free path for perfectly elastic

spherical molecules (ref. 12).

h= 2 /ar RT oA (65a)
16

15

K=" n (65b)
4

31 =

The expression for u given earlier, following Eq. (25), for a single spe-
cies mixture is modified to:

=l nkThy
2

If, now, an assumption is made that the slip values are small, equations for

the density, pressure, and temperature slip are simplified to:

TSince the temperature slip expression contained in Ref. 6 is for a gas

" consisting of perfectly elastic spherical molecules, the gas does not

possess any internal degree of freedom. Therefore, we have obtained the
temperature slip egquation from Eg. (43b).
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Density slip

P T by v v 3V
L U = (2 %2 Wy (eon)
P TS 24 ¥V 2 VRTS 3x 3z dy
Pressure slip
S v Vv
P - +(42: (i—? (% — \j— SRbr + 322 -2 asyls (61b)
p" y 2y
Temperature slip
T P P 2 P
Sosll a3 (et l(_l+1)(17§"8)(3i)(%ﬂ) (64b)
8 3
T 4 ps 8 ps 2 pS y
or,
E____ 1 + 2-6)(7577) (A 3T) _ 5 T A5
- ¢ - — [_ =
Tw 128 T ay 48 V¥ 2 RTg
v vy v
x ( Ox v _02_, Oy)s (64c)
ax 9z ay

In obtaining Eq. (64c) from (64b), we have used Py/pS = 1 1in the second-
order terms (i.e. 2nd and 3rd terms on right side of Eq. (64b)). Equations
(61b), (62), (63), and (64C) are the slip equations given in refs. 6 and
12.

NO-SLIP BOUNDARY CONDITION FOR THE SPECIES CONCENTRATION

Multicomponent Mixture. The no-slip boundary condition for the species

concentration without any assumptions may be obtained from Eqs. (44) and
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(45). In the absence of slip, the Knudsen layer thickness shrinks to zero

and the values at the top of the Knudsen layer become the wall values (see

Fig. 1):
aC, v,
vt G
P .
nf o= L1+ U (66)
my NS o 8Cq
L (= =4,
q=1 = ay
q
with
W
2y m,n kT,
e _A 1 AR o5 A=0, N (67a)
(2-v4) = 2n, My
W _ W, A=0 for M =0z .
WA laonformong (670)
w? = 0 for all other species (67c)

where we have neglected the higher order shear (i.e. Py/pw = 1).
It is suggested here, again, that the concentration for the major
specie (for example, nitrogen) be obtained by requiring the sum of concen-

trations of all the species to equal unity.

For the recombining 0 and N atoms, Eq. (66) may further be simpli-

fied to:
3C NS = 3aC
= A
e LR, = 1) I (& D, (68)
kwA 3y g=1 My oy

The recombination rate constant kwA in Eq. (68) has been defined as (Ref.

2)
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Figure 1. The Knudsen layer showing general fluxes and coordinate axes.
The temperature as a function of normal distance is schematically

overlayed.
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without slip and higher order shear.

For a noncatalytic wall (with Yp = 0), Eq. (49) gives

(-a—‘)w = 0 (70)
y

for all the species of a multicomponent mixture.

Binary Mixture. For a two-species mixture of atoms and molecules, Eq.

(55b) gives

aC
CX = ! X (DAM ——A')w .(71)
k 3y
WA
for a surface with finite catalycity and
3C
(=5, =0 (72)
y

for a noncatalytic surface. Egs. (71) and (72) are employed in Ref. 4.

Appendices D and E give the slip and no-slip boundary conditions (pre-
sented in the text earlijer), in the dimensionless form for the body-fitted
and spherical polar coordinates, respectively, for a planar flow. The

various integrals employed for evaluation the net, incident, and specularly

reflected fluxes defined through Egs. (5) to {(7), respectively, are given in

Appendix F,
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DISCUSSION AND CONCLUSIONS

The present analysis provides a consistent formulation for the slip
equations for a multicomponent, binary, and single species mixture reacting
catalytically on the surface. The differences between the slip expressions
obtained by various researchers have been reconciled and implication of
various assumptions (some of them inconsistent) contained in those express-
jons is discussed. The slip equations have also been obtained in body-fit-
ted and spherical polar coordinates in a form which can readily be employed
in the flow-field calculations.

Usually, the equation for pressure slip is not required as a boundary
condition, but is needed to obtain the surface pressure. The temperature
slip equation given here is for a constant surface temperature, which is
provided as a boundary condition. For an adiabatic surface, however, the
slip temperature, T_, may be obtained by equating the wall heat-transfer

S
rate to zero i.e.

( 3T gS v
q, =(K— - Jh +uv
W 3y j=1 11 Ox

OX) =0
3 S
Y

where the expression for mass flux ji is provided in Appendix B and the
higher order terms have been dropped. The temperature slip equation will
now be required to obtain the wall temperature, Tw'
An expression has also been obtained for the finite-rate species-con-
centration boundary condition for a multicomponent gas mixture without sur-
face slip. This boundary condition in the literature (Ref. 4) has generally

been specified by assuming the dissociated air as a binary mixture.
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However, the binary mixture formulation does not provide boundary conditions
for the recombined molecules (on surface) such as 0, and N, in a multicompo-
nent mixture; it gives boundary conditions only for the recombining atoms.

To assess the importance of various terms in the general boundary con-
ditions suggested here, a study is being undertaken in which the fiow prop-
erties and boundary conditions would be varied systematically. The boundary
equations form a simultaneous set, which is being coupled with a flow field
calculation procedure in the stagnation region. These equations would
finally be coupled with the viscous shock-layer code developed by Moss (Ref.
13) for the detailed flow-field calculations. The boundary equations
obtained in the present work should provide a more realistic set of boundary
conditions for a multi-component mixture for low-Reynolds-number slip flows
as well as no-slip flows.

In conclusion, the boundary slip expressions obtained here are closed
form solutions of the mass, momentum, and energy flux equations using the
Chapman-Enskog velocity distribution function. This function represents a

solution of the Boltzmann equation in the Navier-Stokes approximation.
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APPENDIX A

CONSTANTS APPEARING IN THE DISTRIBUTION FUNCTION
AND DIFFUSION VELOCITY IN TERMS OF TRANSPORT PROPERTIES

(J)
i0
in the general velocity distribution function are found by a variational

The Sonine expansion coefficients aiO’ ail’ biO’ and ¢ appearing
technique in which they are solutions to sets of simultaneous equations.
References 2 and 7 provide the coefficients in terms of solutions to these
set of equations. These solutions are expressed in terms of the collision

i ' L
integrals Qsé’ ).

Reference 7 also provides the transport properties in
terms of the Sonine expansion coefficients. Thus, in place of evaluating
these coefficients in terms of the collision integrals, they may be
expressed in terms of the transport properties. The various relations

are:

(i) for 3.0

(ii) for a,

il
NS ‘
Ke) = - Sk ] n & e ) (A2)
: 4 i=1 : mi
(iii) for bio
NS
() = = T T ng byg(e) (A3)

(iv) for cgg)

In the distribution function used here the Kernel E§J)- Egk)
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(J,k)

has associated Sonine polynomial coefficients Cs . Now t§1)= 0 (see

(3) = _(3,1)
Ref. 7), then ¢io = Sip and

N, 2kT i
035 = —— |— c{Pe) (hd)
m.

j i

where D¥ (), K(), u(€), and D; (¢) are the multi-component thermal

j
diffusion coefficient, thermal conductivity, coefficient of viscosity, and
the multicomponent diffusion coefficient, respectively. The argument & is
the number of terms used in the Sonine expansion. Except for Dg, letting
& =1 gives quite good results for K, » and Dij‘ When & =1, however,
coefficients Dg vanish., Hence, in order to get the coefficient of thermal
diffusion, it is necessary to take at Teast two terms in the Sonine expan-
sion (i.e. & =2). If the argument does not appear with a coefficient (ex-
cept for aio), it is considered to have one term in the Sonine expansion.

The diffusion velocity for ith species in terms of the transport co-

efficients is obtained as (see ref. 7)

. = NS .
- 2
v =(D 1 mo, ¢ - Lol 20T (A5)
nse j=1 3 nsm, axk

where the diffusion vector dﬂ for the jth species is defined after ne-

glecting the external forces as (see Eq. (16) in the text):
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Eq. (A6) may be simplified to obtain

SIMPLIFIED EXPRESSIONS FOR COEFFICIENTS 344 AND b1.0
Since iy and bi0 can not be obtained directly from equations (A2)
and (A3), we introduce the following assumptions for the mixture thermal

conductivity and viscosity; respectively,

NS n,
K= § = K (A8)
izl n
NS n.
L) = ¥j (A9)
i=l n

Equations (A8) and (A3) are approximate forms for the more exact formula of

Wilke (see ref. 14). These equations imply that

NS
)

J=1

¢1J = 1 (A].O)

:ul >
.

in the Wilke's relation. This is approximately true for air.
Thus, with the help of Egqs. (A2), (A3), (A8), and (A9) we may obtain

the following approximate expressions for iy and biO’ respectively,

n. Ki mi
—_— f— (A11)
k N 2kT

8 -

o |+
:Ill—a

n. a.
i 7l
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n, b, ~.2_._

(A12)
i 710 KT

:'u‘ >3
-t
=

For accurate evaluations of 251 and biO’

type of Eq. (7.4-49) of ref. 7 are required to be solved.

cumbersome expressions of the
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APPENDIX B

EVALUATED EXPRESSIONS FOR THE FLUXES OF MASS,
MOMENTUM, AND ENERGY FROM INTEGRALS OVER
THE DISTRIBUTION FUNCTION

The fluxes of mass, momentum, and energy (i.e. of a property ¢(V))
are given in terms of integrals over the velocity distribution function
f(V) in the "Analysis" section of main text. Here we give evdluated forms
for these fluxes obtained from integration over the distribution functions.
The various integrals needed in these evalulations are provided in Appendix

F.

(i) Expressions for Mass Flux of Species

Net
m: n 2kT_ 172 NS . .
_ My Ny s 3 (3) 43
Mip = ) [ {0} a,+n oy dy]
ik 2 m. 3 x i0 j<1 i0 ks
i k
K=X,Y, 2 (B1)
Incident
s
W= 2kTg 1’2[ 1+ bjg 3Vox . IV, 2 3VOy)]
! 2Vr m; 6 Ix 3z 3y 5
+ M (B2)
2 VY
Specularly Reflected
M= - M (83)
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Diffusely Reflected

w
m. n. 2kT 172
MV%I - 'l_'l ( WJ (34)
2Vw m

It may be mentioned that Miy as obtained here is similar to the mass flux

(ji) expression of Ref. 14.
(ii) Correlation with Blottner's Expression (Ref. 15) for Mass Flux

If the thermal diffusion term is neglected in Eq. (Bl) and

substitutions are made for cgé) and di from Eqs. (A4) and (A7), Eg. (Bl1)
may be simplified to obtain'r
pW, NS 3aC, _ NS aC
A N NI ) 1 9 (85)
g i 3y g=1 Wq oy

where wi is the molecular (or atomic) weight of the ith species and is

related to the mass of the ith species, m., through the relation

1’

m.
1

W,

itl'x'
—
w
a
o

Here k 1is the Boltzmann constant and 2 1is the universal gas constant.

Equation (BS) may also be written as

J
Diq Cql (— (B7a)

W, N = N
ji=p—— 7 [0, - 7
= Wi oy

or, with the introduction of the multicomponent Lewis number, Lij’ defined

1t may be noted here that Djj= 0. See reference 7 for details. 46




as

Lij =p Cp Dij/ K=p Pr D1.J./u,

Eq. (B7a) may be rewritten as

" NS wi w1 NS ecj
Jj = ) [‘_— L‘J - - Z Liq Cq] (—) (B7b)
" gs [w1 wi ) NS ] aCj
or, ji = — — Lo+ (1-—) ¥ c] (—) (B7¢)
1 Pr J#i W 1 W. gt i 9 4 dy
J
3Ci NS wi wi NS
or, Ji= - (B (Le; — +7 {te, - [t..+(1- 7 L. c]}
i p Lo i _ ij . ig ’q
r ay J#i i W, @i
J
3C.
x —) (87d)
ay
] aci NS _ aC,
or, Jy= 0 = (key — + I dby; = (B7e)
where
A [— ( w‘) ZNS ]
A =le, ~ |[— L, + (1 - — C B8)
1] 1 - 1] 19 °q

§

In general”,

L.. =L,. (C, . s L.
ij LV AR R R RS |

§See Egs. (7), (8a), and (8b) of reference 15.
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If the binary Lewis numbers Iﬁj are assuned to be the same for all the

species, then

and Eq. (B8) for Xbij becomes

W, W. NS
= % *
Bbjs = Le Sy - L:q C]

Further, if the binary lLewis numbers, L .., are constasi Vor

species, the term

is zero in Eq. (B10). Therefore,

NS 3C, NS W, . W NS aC.
I oLe, =) [L Li; + (1 SUNLIN B Liq Cql ()
J#1 ay j#i i WJ. i 3y

~ o
[ I}

(810)

"

(Blla)
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] e (-1 L, e )3
#ioog5 Y Wy @ 1979 5y
or, le; = - (Bl1b)
oC.
i)
ay

Thus, Eq. (B10) gives the mass flux due to concentration gradients only with
*
Abij and Lle;, defined through Egs. {(B9) and (Bllb), respectively.
*
To utilize Eqs. (B9) and (Bllb), Lij are still to be evaluated

through complex matrix inversions (ref. 15). If we now make a little

*
stronger assumption such that Lij = L12 = Le (same for all the species),
f *
we obtain a much simpler expression for Abij and Eq. (Bllb) becomes
e, = Le [— -(1-¢)(—37 I ({(1-—3 =] (Bl2)
i 3y j#i W. 2dy
J
or,
m aci-l NS W. 3C,
Le;, = Le [— + (1-C4) (— D . (B12b)
i 3y Jj=1 Nj 3y

=*
Similarly the expression for Abij may be obtained from Eq. (B9) as

= % w‘i wi
Abij =le, - Le [— + (1 - —) (1-¢))] (B13)
i W
aci _ aC.
It may be noted that for the case when ——— = 0, the term ,Lei —1 in Eq.
dy dy

(B10) vanishes and Eq. (B12b) is not required. Further, employing a
constant value for the Lewis number, Le (=p Pr D;,/y), does not imply Lei
to have a constant value.

It should be pointed out here that for Fhe case when Lij is the same
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for all the species we have used the condition

(and not just Eb:k = 0 as employed in ref, 15) to obtain Eq. (Bl1lb) for
Lei. The present formulation appears to provide a more consistent
expression for Lei.

Finally, Eqs. (B10), (B12b), and (B13) for a binary (two species)

mixture give

dC,
i; = -1 e (-—lJ ; (Fick's law for mass flux) (B14)
Pr dy
le, =Le (B15)
= %
Abij =0 (B16)

(iii) Expressions For Normal Momentum F1ux

Net
bin BV, AV av
P o=ps (1 0Oy 2 M) (B172)
vy ! 3 IxX 3z 3y
- 03 [1ee, ) (B17b)

where 1;2 are terms in the stress tensor for the ith species.
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Incident and Specularly Reflected

P? - P: - pf Ll + 10 ( 0x 0z _ 2 Oy)
y v 2 6 3x 32 3y
LT L,y 0 XN (3) o |
+ - 2 las~ - a. - - o) d
T 3y i0 5 il Y7 i i0 “y's
Diffusely Reflected
W 1 w
P. = _ p;
iy 5
(iv) Expressions For Tangential Momentum Flux
Net
_ s 20 PVox |, Yoy,
Pix =P [ ( + 15]
2 3y 3x
— p§ [b1.0 avoz . any)J
iz L 3y 57 S
Incident and Specularly Reflected
b. v v
PJ’ix = P:x = Fl P; [- Yox -V LO ( 80x + aOy)
T y X
= NS
1 a2nT 1 n (3) 4d
+ 2220 (agn-= a;q) == 7 ey dY]
2 3% io 5 il 2 =1 i0 “xis
b.. 9dv v
P:z=-P§z=%p1['w02'ﬁ lO(aOZ+ Oy)
T y 3z

(B18)

(B19)

(B20)

(B21)

(B22)
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1 3enT 1 n (3) 43
+ — (a - — a.) - z C. d] (823)
2 3z 0, "i0 2 j=1 i0 z's
Diffusely Reflected
W oW
Pix =Piz = 0 (824)

(v) Expressions For the Energy Flux

Net
2kT m.n.
B =2 (—3) [ (RDwz 200 oo ] 5 k=x,y, 2z (825)
4 m, 2 m. 9X ! 1k°s
j i k
kT n.xK.
. 5 S . itioaT
=gy, += (=) M, 5 a5 = - [— —] (B25b)
ik 5 m, ik ik - axk S

S
m. n; 2kT._ 3/2 b:n 9V v v
E+i=_E+i=_ LI Gt {1+10( Ox , 0z _, Oy)}s
¥ m; 4 3Ix 3z 3y
+1 g - (826)
2 VY
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Diffusely Reflected

m.n.
11

kT

2Vr

m

372

(B27)
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APPENDIX C

SLIP BOUNDARY CONDITIONS GIVEN BY DAVIS FOR A BINARY MIXTURE
In this appendix, the dimensional form of the slip boundary conditions
obtained by Davis (Refs. 8 and 9) is provided for the purpose of comparison
with the slip expressions obtained in the main text for a binary mixture.
The dimensionless form of the surface slip conditions provided in refs.
8 and 9 are

Concentration slip (ref. 8)T

S - 2 n A
CA CAe + e - (c1)
2 W
Velocity slip (ref. 8)
T - (€2)
Pressure slip (ref. 9)*T
—5
55 - (C3)

fHere the dimensionless quantities are denoted with a 'bar'. See Appendix
D for details of nondimensionalization and the coordinate system.

T?For the reasons explained in the main text, we have employed 'K* in place
of "w' in this expression.
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Temperature slip (ref. 8)

(C4)

With the help of the nondimensionalizing quantities given in refs. 8 and 9,

the following dimensional forms of Egs. (Cl) through (C4) are obtained:

Concentration slip

2-Y 2rm 3C
S _ (S A A A
Co = Che * (ZY ) T (Dam ——;95 (C5)
A S an
Velocity slip
u
]
B a S (== 2 (c6)
VKT 3VA an -
Pressure slip
Y- m 3T
p=p,+b (I |2 (ki) (c7)
- kT *
Y S an

Temperature slip

(C8)
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*

where n is the coordinate normal to surface (see Fig. D1 in Appendix D)

and n and m are the number density and

respectively.

The constants ap, by, and

(

Sn m 2-6
16) 2 ( 6 )
15 T 28
T 7 o
75n " (2-'9)
128 2 8

mass of a mixture molecule,
cy are defined as:

- 12304 (2

0

- 56



APPENDIX D

SLIP CONDITIONS IN THE BODY-ORIENTED COORDINATE SYSTEM
In this Appendix we obtain the slip conditions for an axisymmetric body
in the body-oriented coordinate (s*, n*) system. The coordinate configura-
tion for such a system is given in Fig. Dl. The equations of this Appendix
contain simplifications similar to those given for a multicomponent mixture,

following Eq. (38c) of the main text.

- *
n,v
*
5,u

R1=R+n*coss-————>
L 1

_. — Body Axis

Figure D1. Coordinate Configuration For A Body (Symmetric About Its Axis)
*
By employing the metric coefficients (see ref. 16) of hy =1 +n « and

hp = 1, equations (39) through (45) give the following slip equations in the

body-oriented coordinate system.
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Concentration slip

S
n . .
d . g1+l Iy /X /(XL (D1)
, T

=<
¥
3

—
O

W P

n; i M s

where ( from Egqs. (35a) through (35c)) we define Miy as:

- w -
MAy = - kwA Ny My 3 A =0, N (D2a)
= W A=0forM=202.
Mwy = Ken "A ™ 1A N for M- N (D2b)
For all other atoms and molecules
Miy = 0 (D2c)
Pressure slip
s 8 1 ) 3 2 (2-8 1 oT
P = - a2i) s 2 _
3 1n k35 an 5 Vn 2kT n
NS n_ K.
xr S lm e 2o el 2R P
i=1 n 2 2 LB 2T
NS aC = 3C
x 1 Vo [— + ¢ (& 91y (03)
= an 9 My an

Velocity slip

S m 2-9 u du KU 1 v
u” = { /-—-( ) [ ( + )
2 9 VKT * ]5

* * *
A an l+n'x  l#+nk 3s
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1 1 1 aT i
+§[ * Tk z.—. —ﬁ Vmi]s

k T (l+n k) 3s 1=1
S aci ZNS I‘Tl 1 8C(‘J
+ ng D \/ + (1-C,) —_— ]}
12 i N x 1 & 1g
i= 1 1+n K) 39S g=1 mq (l+n*K) 35*
S
D HEN (04)
Temperature slip
NS M, M, p
R GD A B P A (A S P B O 2
ﬁs i=1 m, ; i m 2 ps
d1atom1c
molecules
m P NS [T m
1
x ] (D) ¢ +2 (L+1) (=) ¢}
j m 2 S i=1 m,
diatomic ! P !
molecules
NS M,
2-8 1 oT
M- (D L3 (Y
G 2 p an 4 i=1 n m;
M. p NS
1 i 1 S
-= 1 Zp+2 3Ly g C;
z i m; 4 ps i=
diatomic
molecules
p KT m
1 - .
= (s g \/ > (3 3] (05)
2 S i m. mi
P diatomic 1

molecules
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If the internal energy (comprising of rotational and vibrational energies in
this case) is considered frozen during reflection from the surface, the

following form of the temperature slip equation is obtained (see Eq. (28) of

Ref. 5):
T NS M. P
S = {-‘!E_ PR A 1 (¥
Tw = i=1 m, 2 pS
3
NS ES <
x 1 (=3 ¢}
i=1 m,
j
NS M,
26y 1 (K 3T 5
rl-v (L L Yy
8 2 p an* 4 i=1 n m,
+ (2D ¢ (D6)
m.
j
. S
Equation for ni
aC. v,
j 1 i
B+ L,
p an m, D
m NS = 3C
i m q
L =D,
q=1 mq an

where
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' S
S Y man 2kT P
=._A 1 AA S (A ;0 a=o0, N (D8a)

(ZAYA) Y 2n My p:
S - _ 4S A=20for M=02.
IR SR N S i (08b)
w? =0 for all other species (D8c)
P
In Eqs. (D1), (D5), (D6) and (D8a) the ratio —L is defined as
pS
P b
Y =1 + 0 ( 1* 32; - 2.31; )]S (D9)
pS 3 1+n ¢ 3s an
and b, 1is related to viscosity, u, through the relation

0

W =%~ nkT by (D10)

which has been obtained from (A3) by assuming b1.0 to be the same (bO) for

all the species.

Equations (D1) through (D8) may now be nondimensionalized by using the

following relations (refs. 8 and 13):
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E = 32 . p— = _p__ . ﬁ- = H = H
pm © p°° H (TY‘Ef) uref
= _ Cp _h _ kw1
Cp = — > b = T2’ wi T
C
p’& U@ UQ
* *
k= _K , 5=, w=1_,
cp,w ur‘ef r'N r'N
e = = R ™M = ]'y
K KPy R r— . MT.Y =
N n, m.,U
] - -]
— ll)1 kwA
m /ey “ua - U
ADLITN w

Introducing the nondimensional quantities as defined here, the following

equations are obtained from Eqs. (D-1) through (D-8):

Concentration_s]ip

S -
C: )
-:;= 2 W [1+%u,ﬂ1.y XY, (D11)
Ci g
where

MAy = - kwA ; A=0, N (D12a)
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C
M = A A=0 for M=0,
MMy kwa (=) {A=N for M =Ny} (D12b)
o™
M
.ﬁiy =0 for all other atoms and molecules (D12¢)
Pressure slip
- 2 _ 1 au 3v.
P = {p, -¢2 [2 7 (—=— & -2_1’__)]5
1+« 9s an
re2 [_2_ (29 7) 1, ZTrefTsww(lﬁ)
5 9% 8 YU TMer Y 7T W, Ton °
NS W
By )
i=]l W,
K i
(D13)

where we have assumed that Pr = Pri and Cpi/Ri = (;.- 1) /N

Velocity Slip

U= e2 ( = ) ( )S [ Vv | ) —
°s S 2TefTs
i=1\ W,
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U kU v Y
R Py b TRy JYE U N1
an 14k 1+nc 35 5 M‘,‘,Pv',s -1 T (1+nx) 35S
3C, S = aC
—L+acpz (ML gy
3s g=1 wq (1+n<) 3
(D14)
Temperature Slip
T o NS W W
S - ()T RS« M Y (=
T, 2 PF, i=l o w) 21 vy 1(wi)]
diatomic
molecules
P NS W W
1 ‘ 3/2 3/2
= CEATS VN N O - S e R}
2 s i=1 w1 j W
P diatomic !
molecules

ARV C SR S .
2 e 2y, MEPrS
W 5 NS 5
%@ 3
JOCHEUTE QR - e
W™ s 4 = =1 W m
s I:)SpS
°, W P NS W 3,9
L S
(=L My (N Ly [T G
PL. 1= .
A PLs diatomic 1 . p i

molecules
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P

+ i(_~y.+ 1) (_W_S)a/z ¢S (D15)
2 S 1 W i
P diatomic i
molecules

Or, with frozen internal energy during reflection from surface,

N
W o NS W
-] P S
<3 D-2 (2 3R, o )
= — —_—— 1= .
ws an PP s i
+2(3 2y ] (97 ) (016)
4 ps i=1 Ni
Equation for n?
3C;, Wy _
5 o i
m . .
¢S=_11 214 i {A = 0 for i=0,. (017)
i o NS ﬁ 5C i A =N for 1=N2’
> L ("“ ':ng
g=1 wq an
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O L L S O O s _ (3.
= = - ) =) (D (2
A os (2vp) M (2T, W T, W, LS FS
A 12
Py s
x (=+1) ¢, ; A=0,N (D18a)
p° |
=g . [A=0 forM =0 : b
V; ip-A ? {A=N for M = N, (D180)
—s ' .
v; = 0 for all other species (D18c)
and
P P Y. T — W
Lo Xl (2 (e 2
—S — ™~
pS p 3 Tref p T A
(L W Y (019)
1+ n « 35 an
or,
Ex =1+2 uS 82( 1 3l_1- _23\1_\
- = — ) e
ps 3 Ps l+nk 35 n
= R
W, m, /k
Href
€2 = (Rejmolds number parameter)

poo Ucn rN
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Pr = _{%_ (Prandtl number)
pC_D
Le = _B_EL (Lewis number)
K
U@
M, = —  (Mach number)
a

and

T ,
ul (Recombination)rate
= constant

TST

ref

For a noncatalytic surface (YA = -EQA = 0), eq. (D18a) through (D18c) give

$? = 0 for all species. For this case, Eq. (D17) becomes

aC, o NS ﬁs 3C
(=D, =- L) I (= I, (D20)
a7 S =l W_ an
q
Equation (D20), similar to Eq. (47b), gives
8C1
(=3, =0 (021)
K]

which may be employed as the boundary condition for a noncatalytic surface

with a multicomponent gas mixture (with the binary assumption for diffusion
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coefficients). For a fully catalytic surface, employing Yp = 1 and using
Eqs. (D18a) through (D18c) in Eq. (D17) would yield the appropriate
concentration slip.

If the multicomponent diffusion coefficients are retained without the

binary assumption the underlined terms in Eq. (D13) are to be replaced by

NS
L.. 3C. NS = aC
SN WRLC R A R A S .
=1 Le W Jg=1 W a7
j*i a

and the underlined term in Eq. (D14) are to be replaced by

. aC, =
oL T TR L Ty
=1 le (1) 3% V@1 (14c) a5 s
ji 9

where the multicomponent Lewis number, Lij’ is defined as
L'ij = ____K___...

Simplifications For A Binary Mixture

When all the species in a gas mixture can be considered as atoms and mole-
cules only (see ref. 8), Eqs. (D11) through (D18) may be further simplified.
With the assumption of Py/ps = 1, Eqs. (D11) through (D18) for a binary mix-

ture yield:
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Concentration Slip

s
CA i
o (D22)
A
Pressure Slip
—S = —
P Pu t
W W
A
x(2)372 [} iy + (372 (1- C}) wy) (D23)
ATA A PM
W W
A M
where we have used the equation of state
B T T W
5 M2 . T @
PS - -] Yoo @ S
and neglected the higher order shear terms as well as diffusion terms.
Velocity slip
= =,”L (2% e2 5 - (D25)
2 8 14n «

where we have again employed the equation of state given earlier and neglec-
ted higher order shear, conduction, and diffusion terms. In obtaining

Eq. (D25) we have also used the approximation:
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s 172
. [CA (WM -WA) - NA]

[Cy Wiy - V) +\Wy]

=1

To be more exact one may keep this factor in Eq. (D25).

Temperature slip

™ Y 2-6, ,e2 JS aT
\f—xl( 1}5( ) (— (Zﬁ]s]

= = , 1
T; = [ LI 3

2 Y- 8 PY‘S 55 ‘;S
5 X Y
5 )
/{-1-%,[% EHn 22—} (026)
9 e +
Ps Pg (Ca )
where
3/2

[CA(NM - NA) + wA]

X1 -
372 3/2 3/2
[CA(NM -2 NA ) + 2 wA Ji

1
and -E <x31 <1 for 0« CA < 1 and diatomic molecules (wM =2 wA). In

obtaining Eq. (D26), we have employed the equation of state and %w = zwA.

With frozen internal energy during reflection from the surface, the

temperature slip equation becomes
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H (D27)

where

For diatomic molecules (WM = 2 NA), x2 may be taken as unity for

0< CA< 1. Equation (D27) employs NM = ZWA.

Equation for CZ

2-Y 2 —_ T 3CA
= (D 9, W, | (D, (028)
2 k—wA Pr o TsTref an

Equation (28), for a noncatalytic surface with Yp = kwA = 0, gives

(B, =0 (D29)
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whereas using YA =1 in Eq. (D29) and in the expression for E@A:

(D30)

would yield the appropriate concentration slip for a fully catalytic sur-

face.

With the following (somewhat inconsistent) assumptions, Eqs. (D23),
(D25), (D27), and (D28) may be simplified to those obtained in refs. 8 and
11: {

(i) In pressure slip Eq. (D23), Pr = 1 is employed along with approxi-

mations

T, -3
5~
Y-
and
g 372 [¢S5S Aas2 Sy 751 & 7
(w—') [CA Ha + (W—) (1 - CA) UM] ¥ Mg
A M

(ii) In velocity slip Eq. (D25) the following assumption is made for the

mixture molecular weights
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(iii)

In temperature slip Eq. (D27) an assumption is made for the surface

to be noncatalytic so that I;A = 0. In addition, Prandtl number

(Pr) is taken unity and it is assumed that

N o
—~
[~
—
wn

15
8

.<|
1
—

No assumption is required in the concentration slip Eq. (D28). But
it may not be appropriate to employ (Ref. 11) this equation for all
the species of a multicomponent mixture. This equation is applic-
able to concentration slip of recombining atoms only in a binary

(two-species) mixture (Ref. 8) of atoms and molecules.

No equation has been obtained in reference 8 or 11 to correspond to Eq.

(D22) to obtain wall values of the species concentration (CX) from the

values at the edge of the Knudsen layer (Ci).

Slip Expressions For A Single Species Mixture

For a single species mixture (YA = 0), the following slip expressions are

obtained:

Density Slip

(D31)
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Pressure Slip

- —W 4 Y 2-9, €2 aT
p> = p o+ (— ¢ (= (— (032)
5Va v -1° "o Pr om S
Velocity Slip
;' — -
T - ,_"_ (20 2 5 (A4 . x4y (D33)
2 ® 55 SS an 1+n <

Temperature Slip [For a gas consisting of molecules only (i.e. diatomic

perfect gas)]

Tz 1 7 T 2-6y €2 Hs (T
To=T,+ = JT (29, (&) (= (D34)
S 4 N2 7-1°% @ Pro 5 =E
Ps Ps
where we have used x; = l., or with frozen internal energy during
2
reflection from the surface,

Z - 1 ™ ;_ 2-8 g2 uS 3T
Te =T, + = ,f— (= (=3 (= (D35)
S w 2 2 Y 5 a7 S

Equations (D32) (D33) and (D35) are the ones employed in References 8 and 11

with Pr = 1.

No-S1ip Species Concentration Boundary Condition

Multicomponent Mixture
The no-slip boundary condition may be obtained from Egs. (D17) and
(D18). 1in the absence of slip, the Knudsen layer thickness shrinks to

almost zero, the values at the top of the Knudsen layer become the wall
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values (See Fig. 1):

3C, W
[ — + A Wity
on W A =0 for i=0
W o_ = ri=0.
C1 1+ NS & 3aC ? {A =N for i = NZ’ (036)
=9
g=1 W, om W
where
A=0,N (D37a)
= - . [A=0forM=20
q’_; WX : {A = N for M = Ny (D375)
Ji = 0 for all other species (037¢)

where we have neglected the higher order shear (i.e. Py/pw = 1).

For the recombining O and N atoms, Eq. (D17) may also be written as

aC NS = aC
o= _A LI
Al qZ=1(wq a'ﬁ)}"
NS 5 aC X W _
/ L WA (W Py B D38
{ q2=1 (w aﬁ)w + ( 52) (wA) (Le),,, (ﬁ)w} (D38)

The recombination rate constant EQA in Eq. (D37a) and (D38) has been

defined as (Ref. 2)
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2y

[N L (D39)

" 2=y M

A ©

without slip and higher order shear.
For a noncatalytic wall (with Yp = EQA = 0), Eq. (D21) gives

aCi
(—), =0 (D40)

am

for all the species of a multicomponent mixture with the binary assumption

about the diffusion coefficients.

Binary Mixture

For a two-species mixture of atoms and molecues, Egq. (D28) gives

) =,
G = 3, B, 3, (041a)
wA r P n

which may also be obtained from Eq. (D38) for a surface with finite
catalycity. E;A jn Eq. (4la) is again obtained from Eq. (D39). For a
noncatalytic surface with E@A = 0, Eq. (D4l) gives

(=D, =0 (D42)
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Egs. (D41) and (D42) are obtained in ref. 4, However, ref. 4 employed Eq.
(D30) in place of Eq. (D39) for obtaining the reaction rate constant, E@A‘
As obtained in ref. 2, Eq. (D30) is more appropriate when slip and higher

order shear are included in the flowfield analysis (e.g. under rarefied or

low density conditions).

If IQA is substituted from Eq. (D39) in Eq. (D4la), we may also

obtain

W 2
Cp = 2 (—3 ( (D41b)
TA
where we have used the equatibn of state
p T W
R - (043)
o = Y, T, W,

Eq. (D41b) compares with the corresponding equation of ref. 8, if one
keeps in mind that the diffusion coefficient FD (of Ref. 8) in the absence

of slip is related to the present variables by the relation

: _ - Le
Fo = by (;;Jw

It may be seen from Eqs. (41la) or (41b) that the gradient (BCA/B?DW is
governed by the ratio E@A/ez or Yp/e?. Therefore, for surfaces which are
almost noncatalytic, this ratio would be of the order of one'for large

values of the Reynolds number parameter (1/e2). This would imply that a
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surface may behave effectively as more catalytic under high density than

under low density conditions.
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APPENDIX E

SLIP CONDITIONS IN THE SPHERICAL COORDINATES
For analyzing the flow in the stagnation region of a body, it is conven-
ient to use the spherical polar coordinates (r,s) for the two-dimensional
flow. The following relations exist between the spherical polar and the

* *x
body-oriented (s , n) coordinates over the spherical portion of a body

Figure E1. Coordinate Configuration

* * w
rsin¢ =R +n cosB
* * 1
rery*+n o= (lmx) ok =~Fﬁ L (E1)
*
rd=s ;3 B=90-9¢
N
/
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or, in the non-dimensional form,

(E2)
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=
w
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Q
wy

where we have used nose radius, rye to nondimensionalize all the distances
(see Appendix D).

Using the relations given by (E2) in Eqs. (D11) through (D19), we can
obtain the slip equations in the spherical polar coordinates for a multicom-
ponent mixture. Once again,'these equations employ the simplifications

given for a multicomponent mixture, following Eq. (38c) of the main text.

Concentration Slip

S _
C: p
—l=2 (—'Vi) [l+lM°° W]y 2“?—&
— 2
Ci Pg
/(P 1) (E3)
ps
where
MAy = - kwA ; A=20, N (E4a)
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= = A A =0 for M=0,,
My = Kua (C—)w 1A = N for M= N33 (E4b)
M
ﬁiy =0 for all other atoms and molecules (E4c)
Pressure Slip
—s — — (1 au av
= (B, -2 2w (L 2]
3 r 3 ar
ver (22 Ly Ly [ZletTs % 1Ty
5vi 8 ¥-1° Mpr — T oF S
S Y, T, ws
NS W_ -
4 ,2-8
x I (a3l - 2 (29
i=1 W, v "
NS wi BCi NS ; BCq
) — [— + (1-C;) L (= —:_—)]5} (E5)
i=1 W ar g=1 W_ ar

Velocity Slip

Mm i

sl

1 v 11 Ty (1 a7y & Koo, -
+ = )+ 2 (—) (2 =g I (3¥2¢) —
roo9 5 M Pr‘S -1 T 7o ~ i=1 wi T
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= -T O om0 oW, o
2 == i1 Ty, i o
PP 1 diatomic
molecules
p NS W W
1 3/2 3/2
2 (L) (I (D C?* I 3 13
2 S i=1 N1 1 N'I 1
p diatomic
molecules

- — T
;) 2
M-JdS CE3 (= (L ®. (g, (r=h
2 80— e -5 _ ST
i s p y-1 ®
W = o NS W
© 2T
(D - 2D Tw, (D
Ws o7 Y 55 =l Wi
\/ PP
o W p NS W,
() 1w+l sy T (Y
== i ol Ty, 4 s jop Wi
psps diatomic ! P B
molecules
1 Py s 372
+= (ZL+1) 1 (=3 cil
2 S i wi
P diatomic

molecules
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or, with frozen internal energy during reflection from surface,

W P NS WS 3/2

= cs
S i=1 wi

i

—| , —]
[V2)
1]
—_—
1
N.ﬁ\
~
©
x
N’
=
(Vo)
=
«<
(]
.
N
%
S
+
N
oY
<
+
—
—

I 3 NS W
oy 3 T: 5 S
R MR e B M e
— — ‘I:
s ar PP i
P NS ﬁ
3/2
+ L3 I (S s (E8)
4 ps i=1 w1
3C. W, .
{a_‘L * —b-‘ﬁ Vil
r
S - j A=0fori=20,
Ci 1+ NS " 3C ’ {A =N for i =Ny’ (E9)
L (= __q)s
q=1 wq ar
where
=S _ 3
‘J’A = = CA s
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— =0 for M =0
o= Va3 las N for M= N, (E100)
s :
¥; = 0 for all other species (E10c)
and
p P .. -~ R
Loe X oa1e 2 (2D (2 (D) 2w
pS o 3 T o T7 W
. —
(- 229 (E11)
3 T

In obtaining these various equations, the following form of the equation of

state has been employed:

—
=3

p T T W,
= =M§ (=_reh (2 (£12)
p -] Yu: Tm wS

Similar to- Appendix D, Egs. (E3) through (E11) may further be simpli-

fied for a binary mixture and for a single species mixture.
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APPENDIX F

INTEGRALS REQUIRED FOR OBTAINING VARIOUS FLUXES
In order to obtain the normal fluxes of mass, momentum, and energy, it
s necessary to evaluate various integrals over the velocity space of the
distribution function. These integrals involve terms that are various
velocity moments of the distribution function. The integrals are provided

for the net, incident, and specularly reflected fluxes. These integrals are
basically the same as those provided in Reference 2 except for some

corrections and additions.

F1. Integrals Over the Entire Velocity Space (For Net Quantities)

Looo Wy e -0

- -] o0 (- -] -2

LLL W we ewso iy
1 3/72 .
=_ 7 1=y
2

« o @ W2

Lo wweleu-o

L Lo wwiw.ewd3w=o

L Lo wywivﬁe'”d3w=o iy

5 3/2

= i=y
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F2.

b

8

b

Integrals Over the Lower Half Velocity Space (For Incident Quantities)
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(-wy) appearing in the integrals emphasizes that the sign of the thermal

velocity component normal to the surface, Vy (and consequently that of wy)

changes in the distribution function f+s upon reflection from the surface.

END
DQT\’: 89

Nov . S 192 (



