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FINITE ELEMENT ANALYSIS OF NONLINEAR FORCED VIBRATIONS
OF BEAMS AND RECTANGULAR PLATES

Chuh Mei* and Kamolphan Decha-Umphait
01d Dominion University, Norfolk, Virginia

SUMMARY

Slender beams and thin plate structures subjected to periodic loading
are likely to encounter oséi]]ations large in comparison to beam depth or
plate thickness. The responses predicted using the small deflection linear
structure theory are, therefore, no longer applicable. Nonlinear theory,
taking into account the effects of large amplitude, must be employed.

In this report, a finite element method is presented for the large
amplitude vibrations of complex structures which can be modelled with beam
and rectangular plate elements subjected to harmonic excitation. Both in-
plane deformation and inertia are considered in the formulation. The method
described would give more accurate results than the classic continuum
approaches which neglect the effects of inplane inertia. Derivation of the
harmonic force and nonlinear stiffness matrices for a beam and a rectangular
plate element are presented. Solution procedures and convergence character-
istics of the finite element method are described. Nonlinear response to
uniform and concentrated harmonic loadings, and improved nonlinear free

vibration results are presented for beams and rectangular plates of various

boundary conditions.

*Associate Professor, Mechanical Engineering and Mechanics
tGraduate Student
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INTRODUCTION

Linear models have had, and will continue to have, great importance in
the analysis of real structural systems. There are, however, some dynamic
systems which are inherently nonlinear and their behavior cannot be de-
scribed fully through linear models alone.

NASA 1is considering placing in orbit various large, flexible, and Tow
density space structures. These structures, or some components of these
structures, may be expected to have oscillations large in comparison to some
corresponding dimension (beam depth or plate thickness). In this situation,
the responses predicted using the small deflection linear structure theory
may no longer be valid, therefore, nonlinear structure theory taking account
the effects of large deflection may have to be employed.

The first papers that dealt with nonlinear vibrations of beams and
plates with immovable edge supports were those of Woinowsky-Krieger (ref. 1)
and Herrmann (refs. 2 and 3). Herrmann presented a set of equations of
motions that corresponds to the dynamic analogue of the von Karman plate
theory. The nonlinear beam vibration was treated as a special case of plate
vibration in reference 3. Although the basic equations had been thus
established, the general solutions of the coupled, nonlinear, governing
differential equations of motion are still not available owing to the
mathematical difficulties involved. The classical continuum approach was to

employ various approximate methods to beams and plates of simple geometrical
shape and of simple restraint conditions along the edges.

Nonlinear forced vibration of beams with different boundary conditions
has been investigated by applying the Galerkin method (e.g. refs. 4 to 7)
and the resulting equations were solved by the harmonic balance method.

Other approaches to the problem, namely the finite element method combined



with method of averaging, the form-function approximation method and the
incremental time-space finite strip method were proposed by Busby and
Weingarten (ref. 8), Lou and Sikarskie (ref. 9) and Cheung and Lau (ref.
10), respectively. Further, a perturbation procedure based on the method of
multiple time scales has been presented by Nayfeh et al. (refs. 11 and 12).
Eisley (ref. 13) and Sathyamoorthy (ref. 14) have presented their
comprehensive and excellent reviews on nonlinear analyses of beams
concerning the classical methods.

Nonlinear forced vibrations of circular and rectangular plates with
various boundary conditions have also been investigated by using the
Galerkin or Ritz method (refs. 4, 5 and 15 to 18), the Kantorovich averaging
method (refs. 19 and 20), various perturbation methods (ref. 21 to 24), and
incremental harmonic balance method (ref. 25). Studies based on the simpli-
fjed Berger's hypothesis (ref. 26) have also been made with the use of
the Galerkin method (refs. 27 and 28). Yamaki et al. (ref. 18), Chia (ref.
29) and Sythamoorthy (ref. 30) have presented their comprehensive reviews on
both free and forced nonlinear vibrations of plates.

The finite element method has proven to be an extremely powerful tool
for complex structures. Applications of the finite element method to large
amplitude free vibrations of beams and rectangular plates was first present-
ed by Mei (refs. 31 and 32). The inplane tensile force induced by the
transverse deflection alone was assumed to be constant for each individual
beam or plate element. Nonlinear frequencies of beams and rectangular
plates with various boundary conditions agreed well with the approximate
continuum solutions of Woinowsky-Krieger (ref. 1), Chu and Herrmann (ref.
3), Yamaki (ref. 15) and Evensen (ref. 33). Rao et al. proposed a novel

scheme of linearizing the nonlinear strain-displacement relations in formu-




lating the nonlinear stiffness matrix. They studied nonlinear free vibra-
tions of beams and circular plates (ref. 34) and rectangular plates (refs.
35 and 36). Shear deformation and rotary inertia were also included in the
formulation (refs. 37 and 38). Reddy and Stricklin (ref. 39) presented a
linear and a quadratic isoparametric rectangular element using the linear-
ized Reissner-type variational formulation to study large amplitude free
plate vibrations. Inplane displacements were considered in their formu-
lTation. Two triangular elements have also been developed for nonlinear free
vibrations of plates of arbitrary shape. The first one (ref. 40) is con-
sistent with the higher-order bending element TRPLTL (ref. 41) in NASTRAN®,
and the second one (ref. 42) is consistent with the high-precision plate
element of Cowper et al. (ref. 43). The solutions obtained for numerical
examples include rectangular, circular, rhombic and isosceles triangular
plates. Reddy and Chao (refs. 44 and 45) extended the earlier isoparametric
rectangul ar elements to include transverse shear and Taminated composite
materials. Mei et al. (46) also extended the earlier triangular element to
include lamninated composite materials.

Bhashyan and Prathap (ref. 47) and Sarma and Varadan (refs. 48 and 49)
also presented a Galerkin and a Lagrange-type finite element formulation for
nonlinear free vibrations of beams with ends restrained from longitudinal
movement. They obtained frequency values at the instant of maximum ampli-
tude which was based on a new criterion for defining nonlinear frequency
presented in references 50 and 51. However, the results (refs. 47 to 50) do
not agree with those classic continuun solutions (refs. 1 and 33). What
they actually solved is a Tinear beam vibration problem subjected to an
initial axial tensile force as commented on in reference 52.

In this report, a finite element formulation is presented for large




amplitude vibrations of slender beams and thin plates subjected to harmonic
excitation. Harmonic force matrices are developed for nonlinear vibrations
of a beam and a rectangular plate element under uniform harmonic loading.
Longitudinal or inplane deformation and inertia are both included in the
formulation. These effects were neglected in the earlier finite element
nonlinear free vibration analyses (refs. 31, 32, 34 to 38, 40, 42 and 46).
Formulation of the harmonic force matrix [p] is based on the first order
approximation of solutions of a Duffing system given by Hsu (ref. 53). He
showed that the simple harmonic forcing function Pocoswr is the first
order approximation of the elliptic forcing function BAcn(Ar,n), and the
well-known perturbation solution of a Duffing system to a simple harmonic
forcing function is the first order approximation of the simple elliptic
response Acn{Ait,n). Derivation of the harmonic force and nonlinear stiff-
ness matrices are given. Nonlinear forced response to uniform and simulated
concentrated (uniform load on short beam segment) harmonic loadings, and
improved nonlinear free vibration results are presented for beams and rec-
tangular plates with various boundary conditions. Finite element results
are compared with approximate solutions of elliptic function response,

perturbation method and other numerical approaches.
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SYMBOLS

amplitude = wmax/h for plate (w__ /R for beam)

max
nondimensional forcing amplitude factor

length and width of rectangular plate

length and width of rectangular plate element
extensional material stiffness matrix

constant defined in equations (46) and (47)

bending material stiffness matrix

length of the loaded element

Young's modulus

membrane strains

linearizing function matrix defined in equation (27)

linearizing functions

matrix relating generalized coordinates and membrane
strains defined in equation (26)

matrix relating generalized coordinates and curvatures
defined in equation (23)

thickness of plate

area moment of inertia of beam
system linear stiffness matrix
system nonlinear stiffness matrix
element stiffness matrix

element nonlinear stiffness matrix

length of beam

mathematical operator defined in equations (34) and (35)
length of a beam element

bending and twisting moments



]
[m]
{N}
(P]

(p]
[Q]

R
S

LT b] s [Tm]

U, V, W

Xy ¥y Z

@is By

{8}
{e}

{«x}

system mass matrix

element consistent mass matrix
membrane resultant forces

system harmonic force matrix
nond imensional forcing parameter
element harmonic force matrix

matrix relating generalized coordinates and linearizing
function defined in equation (25)

radius of gyration of beam cross-section
beam cross-sectional area

matrix relating element nodal displacements and generalized
coordinates defined in equations (21) and (22)

kinetic energy

t ime

strain energy

displacements

coordinates

generalized coordinates

nonlinear coefficient in Duffing equation
shear strain

element nodal displacements

strains

modulus of elliptic function

curvatures

circular frequency of elliptic function
Poisson's ratio

norm

mass density

nond imensional time




{¢}

Subscripts:

b
L

mode shape normalized to unit value of the largest
component

stress function

frequency

bending
linear

membrane



FINITE ELEMENT FORMULATION
Strain and Kinetic Energies
From von Karman's large deflection plate theory, the nonlinear strain-

displacement relations are defined as

{e} = {e} + 2z {x} (1)

where the membrane or midsurface strains {e} and curvatures {x} are

given by
r 2 A
du 1 2w
R
3 X 2 93X
3 2
e =42+ LA y 2)
2y 2 3y
o, Ay
\ Y ax Ix 3y )
(a2 )
8x2
2
{x} =ﬁ-3_w L (3)
3y
_ 5 2w
L aIxdy J

and u, v, w are displacements of the plate midsurface in the x, y, z -

directions, respectively.

The membrane or inplane resultant forces {N} and bending and twisting

moments {M;} are related to the strains and curvatures by




[C] {e} (4)

~
=
-
1]
=
"

[D] {x} (5)

-
=
o
[—
]
=
<
"

M
Xy

where [C] and [D] are the extensional and bending material stiffness
matrices, respectively. For plates of isotropic material and uniform thick-

ness h, the material stiffness matrices are

1 v 0
[c] = E: v 1 0 6)
-V
0 0 i
2
, 1 0
0] = - L P (7)
12(1-v?) Lov
0 0 ==
2

where E and v are the Young's modulus and Poisson's ratio, respectively.

The total strain energy for a plate element is given by

with




7 {MO}T {x} dx dy

[
"
N =

75 (e [D] (k) dx dy (9)

N

FEAN (e} dx dy

[ i
1]
N |

11 (et [C] (e} dx dy (10)

N |-

where the subscripts b and m denote the bending and membrane components,

respectively.

The kinetic energy of a plate element executing harmonic oscillations

is
T=Lonrr 2+ +02) dx dy (11)
2

where p is the mass density and (+) means differentiation with respect

to time t.

Similar expressions for a beam element can be obtained from the corre-

sponding plate equations (1) to (11) by Tletting

10




[C]=ES
(0] = EI (12)

where S and I are the area and moment of inertia of the beam cross-

section, respectively. These beam equations are given in Appendix A.

Plate Element
The finite element used in the present formulation shown in figure 1 is
the conforming rectangular plate with 24 degrees-of-freedom due to Bogner et
al. (ref. 54). The displacement functions within the element are assumed as
W=a) +a, X +agy + ax? +agxy + agy?
tagx® +agxy + agxy? + apgy’

+ap X3y + a2y + a13Xy3

+ap 3y +apsxy +aex’y’ (13)

By *+ BoX + B3y + Byxy

j
1}

= Bg + Bgx + Byy + Baxy

<
|

The twenty four generalized coordinates

11
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{a}T = [0y s a2 +ovs a16] (16)
8 = [81, gp» «evs g5 ] (17)

can be determined from the element nodal displacements
@' = e, (s 17 (18)

with
{s }T = [Wyy Wy Woy Wy W0y ous,
b 1 722 73 T4 “x1

Mops ooes Wopps wees Myl (19)
A ITYRTARTAR TR AR AN A (20)

The relationship between the generalized coordinates and the element nodal

displacements can be written as

{a}

[T,11(s,} (21)

{8} [Tm] {Gm} (22)

Substituting equation (13) into equation (3), the curvatures can be

expressed in terms of the generalized coordinates as

13



{k} = [H] {a} (23)

The bending strain energy Ub of equation (9) leads to the element 1linear

bending stiffness matrix
T T
[k = [T,1 £/ [(H1'DIH] dx dy [T,] (24)

Similarly, the kinetic energy T of equation (11) leads to the element

consistent mass matrices [mb] and [mm]. These three matrices can be

found explicitly in reference 54.

The membrane strain energy Um of equation (10) can be linearized

utilizing the linearizing functions

aw
f 3 x
tf) { 1} -1 - 1 [l
f2) 2 |%w 2
2y
1
= 2 1] [T Y8y (25)

where the element displacements {Gb} are obtained from the plate deflec-
tion through an iterative procedure discussed in the next section. Thus,

the membrane strains of equation (2) become

14




f-a—! W
:_W 3%
X
{e} = [F] TRl L
aul ey
oyl lau ey
Lay ax)
= [F]1{Q] {a} + [G] {8}
! {a}
= [[F10Q] 6] {{B}} (26)
with
fi1 0
(F]1 =10 f2 (27)
fa f1

and the linearized membrane strain energy in terms of the element nodal

displacements is

[k, k]
.1 T T
Uy E[{esb} {6} ] %1 o
0 0 {8}
+ (28)
0 [k J}i (%8,

where the element linear membrane stiffness matrix is given by

15



[k, = [7,1" £7[617[CI06 Tax dy[T ] (29)

This [km] matrix is also given explicitly in reference 54. The sub-

matrices of the linearized nonlinear stiffness matrix [k] are given by

(%1 = 71,1" /7 01" [F17(C] [F] (0] dx dy [T, ] (30)
T T T
[K,,] = [1,1" 77 101" [F17 [C] [6] dx dy [T ] (31)
T
[%p] = Ky, (32)

Evaluation of [E] is based on numerical integration using a four-point
Gaussian integration which can exactly integrate for polynomial of cubic
order. The matrices [Tb], [Tm], [(H], [Q] and [G] defined in equations (21),

(22), (23), (25) and (26) are given in Appendix B.

The corresponding equations and matrices for the beam element are given
in Appendix A. Element linear bending stiffness matrix [kb], membrane
stiffness matrix [km], consistent bending mass matrix [mb] and membrane

mass matrix [mm] for the beam can be found in reference 55.

Element Harmonic Force Matrix

In classic continuum approach, the dynamic von Karman plate equations

of motion are (refs. 2 and 3)

by = 2
Viy = E (W, Xy = w’XX wsyy) (33)

16




= b o
[-(w$‘p) phw’tt + DVtw h (w,yy w,xx

Wy o = 20 - F(t) =0 (34)

+
v Yy 'xy Waxy)

> XX

The equation of motion for a beam with ends restrained from longitudinal

movement is (ref.4)

L(w) = pS Wapy ¥ EI Wsrsxx " Nw,XX -F(t) =0 (35)
with
N=ES w& dx (36)
2L

For single mode approximate solutions, the deflection function is assumed in

the form

t) o(x,y) , for plate (37a)
t)o(x) , for beam (37b)

N N

w={%§¢
where R is the radius of gyration of beam cross-section, and mode shape ¢
satisfies the related boundary conditions. Substitution of equation (37a)
into equation (33), the stress function y(x,y) is then solved from the
compatibility equation (33). Application of the Galerkin procedure
SIU(w,)é(x,y)dxdy = 0 (or £ L(w)é(x)dx = 0 for beam) yields a modal

equation in the Duffing form (refs. 4, 5 and 15 to 17)

ma,y, + kg + k ¢ = F(t) (38)

or in nondimensional time T (ref. 53)

17




When the forcing function F(tr) 1is simple harmonic Pocos wT, an approxi-

mate solution of equation (39) using the perturbation method is the well-

known result (refs. 4, 15, 53).

p

2

)" =1+3 gaz-.0 (40)
wL 4 A

With a simple elliptic forcing function F(t) = BAcn (At,n) = Bq as the
external excitation to the Duffing system, an elliptic response (refs. 4, 5,

15 to 17, and 53)
g = A cn (At,n) (41)

is obtained as an exact solution of equation (39), where B 1is the non-
dimensional forcing amplitude factor, A and n are the circular frequency
and the modulus of the Jacobian elliptic function, and A = wmax/h (wmax/R
for beam) is the amplitude. By expanding the elliptic forcing function
into the Fourier series and comparing the orders of magnitude of the various
harmonic components, Hsu (ref. 53) showed that the single harmonic forcing
function Pocos wt is the first order approximation of the elliptic forcing
function BAcn (At,n). Also the first order approximation of the elliptic
response of equation (39) yields the same frequency-amplitude relations of
equation (40) as the perturbation solution. In obtaining the exact elliptic
response of equation (39), the excitation force F(t) = Bq 1is treated as a

lTinear spring in the Duffing equation

18




q,_. + (1-B)g+8q® =0 (42)

TT

This linear spring force Bg posses a potential energy of V = Bg?2/2. The

potential energy of an element subjected to a uniform harmonic forcing

function can thus be approximated by

7w dxdy , for plate (43a)

S W dx , for beam (43b)

An examination of equations (11) and (43) indicates that the harmonic force

matrix for the plate or beam element under uniform loading Focosm: is

cF
0
[m, ] , for plate (44a)
Aph? b
(p] =
cFo
[mb] , for beam (44b)
ARpS

The actual applied distributed force intensity FO(N/m2 or psi for plate,

N/m or 1b/in. for beam) is related to the dimensionless forcing parameter

P0 and the dimensionless forcing amplitude factor B by

cF
—9° , for plate (45a)

Aphzmi

P
B:_ﬁ =
A cF
—9° , for beam (45b)

2
ARp Swy

19




where

ff(
Ir

Loaded e]ements)¢dXdy (46)
)¢2dxdy

C:
(Total plate area

For plates under uniformly distributed force over entire plate

Total p1ate)¢dXdy (47)

)¢2dxdy

ff(

ff(Tota] plate area
which is simply the ratio of volumes (area) under plate (beam) mode shape
and square of mode shape. The harmonic force matrix of equation (44) de-

pends on the plate amplitude A = wmax/h (wmax/R for beam) and Py (or

Fo)-

Equation of Motion and Solution Procedures
The application of the Lagrange's equation leads to the equation of
motion for the present rectangular plate and beam elements under the influ-

ences of inertia, elastic, large deflection and uniform harmonic excitation
force as
[m,] o ] . [k, 0
{s} +
0 [m ] 0 [km]

; =0 (48)
[kme 0 0. OJ

20




The coupling between bending and membrane stretching is evident by the pres-
ence of tEBm] and [E%b] matrices in equation (48). Nonlinear free vibra-
tion is a special case of the general nonlinear forced vibration problem
with Po or [p] = 0 in equation (48).

By assembling the finite elements and applying the kinematic boundary
conditions, the equations of motion for the linear free vibration of a given

plate or beam may be written as
2 =
w2 [M] G0} = (K] Co} (49)

where [M] and ([K] denote the system mass and linear stiffness matrices,
respectively, 0 is the fundamental linear frequency, and {¢}O denotes
the corresponding linear mode shape normalized to unit value of the largest

component. The deflection {4:}0 is then used to obtain the element

"nax
nonlinear stiffness matrix [k] through equations (25 and 30 to 32). The
element harmonic force matrix is obtained through equation (44) for given
PO and A. The nonlinear forced vibration response is approximated by a
linearized eigenvalue equation of the form

w? [M] {o}; = ([K] + [K] - [P]) (e (50)

where w s the fundamental nonlinear frequency associated with dimension-
less amplitude A and force parameter Po’ and {¢}; 1is the corresponding

normalized mode shape of the first iteration. The iterative process can now

be repeated with w . {¢}; until a convergence criterion is satisfied.
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Convergence and Strains
The three displacement convergence criteria proposed by Bergan and
Clough (ref. 56) for nonlinear static and post-buckling analyses are employ-
ed in the nonlinear free and forced vibrational problems. The three dis-

placement norms are the modified absolute norm, modified Euclidean norm and

the maximum norm. They are defined as

10| A%y
Hellpg == F (51)
s e ¢
i,ref
, 0 Ad . 27 172
el = |2 2 |— (52)
n i=1 |¢.
i,ref
and
TP
gy = max |- (53)
i,ref
where n is the total degrees-of-freedom of the beam or plate structure,

A¢1 is the change in displacement component i during interation cycle.

The reference displacement ¢i ref is the largest displacement component of

the corresponding type (ref. 56). In addition a frequency norm is also

introduced in the present study and it is defined as

- Aw (54)

w
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where Aw is the change in nonlinear frequency during the iteration cycle.
A typical plot of the four norms versus nunber of iterations for a simply
supported beam of slenderness ratio L/R = 100 with immovable end supports
subjected to a uniform harmonic force of P0 =2.0 at A - wmax/R = 4.0 is
shown in figure 2. Figure 3 shows the convergence characteristics of a
simply supported square plate of length-to-thickness ratio a/h = 240 with

immovable inplane edges (u = 0 at x = 0 and @, v = 0 at y = 0 and a) sub-

jected to a uniform harmonic force of forcing parameter P0 = 0.2 at A=
wmax/h = 1.0. A1l four norms exhibit the important behavior of straightness
and parallelism as described in reference 56, Therefore, there is no great
significance as to what specific norm is being used since they are parallel,
and also an upper bound or maximum error on displacement and frequency con-
vergences can be estimated since they are straight. The results presented
in this report, convergence is considered achieved whenever anyone of the
norms reaches a value of 10-3,

Once the convergence is satisfied, the membrane and bending strain

components at the four nodes of the plate element can be obtained from the

plate deflection and equations (2), (3), (21) to (23) and (25). They are

®x | Tb 0 6b
Sy { = [[F1CQ], [&] (55)
| 0 Tl |%m
Ny _
£
X
Ey =z [H][Tb] {Gb} (56)
Y
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Maximum normal strain is evaluated with z at the top or bottom surfaces

(z =+ h/2). The corresponding strain expressions for the beam element are

given in Appendix A.

RESULTS AND DISCUSSION
Beams

Improved Nonlinear Free Vibration

The fundamental frequency ratios w/wL of free vibration at various
amplitude A = wmax/R for a simply supported beam (L/R = 100) with both
ends immovable (u = 0 at x=0 and L) are shown in table I. Due to symmetry,
only one-half of the beam which is divided equally into six elements is
used. Finite element results with and without considering longitudinal
deformation and inertia (LDI) in the analyses are both given. It shows that
the effects of improved finite element results by including LDI in the
formulation are to reduce the nonlinearity. The elliptic function solution
(refs. 1, 4 and 53) is also given to demonstrate the closeness of the
earlier finite element results without LDI. Raju et al. (ref. 57) used the
Rayleigh~Ritz method in investigation of the effects of inplane deformation
and inertia on large amplitude flexual vibration of slender beams.
Appropriate frequency-amplitude relationship using Rayleigh-Ritz method is
also given in table I. In Rayleigh-Ritz method, accuracy of the frequency
depends heavily on the assumed beam deflection functions (usually linear
mode shapes). The present finite element approach, the beam deflection
approachs the "true" nonlinear beam deflection through an iterative process.
The final beam deflection, therefore, would be more accurate, and also the

frequency ratios obtained.
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Nonlinear Forced Response of Beams with Immovabie Ends

Table II shows the frequency ratios of the same simply supported beam
(L/R = 100) subjected to a uniform harmonic force of P0 = 2.0. It demon-
strates the closeness between the earlier finite element results without
LDI, the simple elliptic response (refs. 4 and 53) and the perturbation
solution of equation (40). The present improved finite element results
indicate clearly that the effects of LDI are to reduce the nonlinearity as
in the free vibration case. Similar results of a clamped beam (L/R = 100)
with immovable axial end supports subjected to a uniform harmonic force of
P =1.0 are also given in table II. The present finite element results of
a slender beam (L/R = 100) to uniform harmonic excitation of P0 =0, L.O
and 2.0 are given in figures 4 and 5 for simply supported and clamped
boundary conditions, respectively.

Table III shows the maximum strain-amplitude relation for the simply
support and clamped beams (L/R = 100) with immovable axial end supports.

These results are also shown in figure 6 for absolute value. The service

1ife can thus be estimated from the maximum strain and frequency in conjunc-
tion with the corresponding material strain-cycle fatigue data (S-N curve).

This is not possible if small deflection free vibration analysis is employ-

ed.

Nonlinear Forced Response of Beams with Movable End-Support

Figures 7(a) and (b) show the nondimensional amplitude A versus mﬁnL
for a simply supported beam of slenderness ratio L/R = 100 and 20, respec-
tively. One of the end supports (x = L) is assumned to be free to move in
the axial direction. For a highly slender beam (L/R > 100), the hard spring
type nonlinearity due to large deflection is so small as shown in figure

7(a), therefore, it can be practically neglected. Longitudinal deformation
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Table II.

FORCED VIBRATION FREQUENCY RATIOS w/w
AND A CLAMPED BEAM WITH IMMOVABLE AXIAt ENDS.

FOR A SIMPLY SUPPORTED

Without LDI? With LDI
Simple Earlier Present
Elliptic Finite Element Finite Element
A = wrgax ?esgonsi ge;tszation First Final gina}t
rers. otutton Iteration Result esu
and 53)
Simply Supported Beam Subjected to P, = 2.0 (F, = 2.31506 105 N/m)
- 1.0 1.7852 1.7854 1.7852 1.7856 1.7682(3)b
+ 2.0 0.8472 0.8660 0.8621 0.8460 0.7108(4)
1.6557 1.6583 1.6563 1.6512 1.5829(4)
+ 3.0 1.4003 1.4216 1.4102 1.3760 1.2123(4)
1.8217 1.8314 1.8226 1.8002 1.6743(4)
+ 4,0 1.8413 1.8708 1.8453 1.7846 1.5871(6)
2.1013 2.1213 2.0988 2.0495 1.8759(6)
+ 5,0 2.2606 2.2995 2.2525 2.1619 1.9371(7)
2.4361 2.4673 2.4236 2.3432 2.1337(7)
Clamped Beam Subjected to P, = 1.0 (F0 = 5.73862 x 10° N/m)
+ 1.0 0.2118 0.2165 0.2096 0.2091 0.1772(3)
1.4307 1.4307 1.4297 1.4297 1.4251(3)
+ 2.0 0.8279 0.8292 0.8215 0.8203 0.7905(4)
1.2987 1.2990 1.2942 1.2936 1.2743(4)
t 3.0 1.0401 1.0433 1.0279 1.0239 0.9726(5)
1.3232 1.3248 1.3127 1.3099 1.2694(5)
+ 4.0 1.2183 1.2247 1.1979 1.1888 1.1151(6)
1.4101 1.4142 1.3910 1.3836 1.3197(6)
+ 5.0 1.3938 1.4042 1.3619 1.3457 1.2513(8)
1.5322 1.5401 1.5016 1.4874 1.4014(8)

a. Longitudinal deformation and inertia.
b. Number inside parenthesis denotes the number of iterations to get a converged
solution.
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MAXIMUM STRAIN FOR BEAMS WITH IMMOVABLE AXIAL ENDS

Table III.
(L/R = 100) INCLUDING INPLANE DEFORMATION AND INERTIA.
A = wm;x Simply-Support Clamped
1.0 1.955 x 10-3 -4.741 x 10-3
2.0 4.386 x 10-3 -9.367 x 10-3
3.0 7.292 x 10-3 -14.107 x 10-3
4.0 10.676 x 10-3 -19.169 x 10-3
5.0 14.535 x 10-3 -24.726 x 10-3
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and inertia effects are more pronounced in a short beam than a long one. As
a consequence, the reduction of nonlinearity due to longitudinal deformation
and inertia, from the nearly small deflection linear case in figure 7(a),
leads to a situation that the beam eventually exhibits slightly soft spring
type nonlinearity as shown in figure 7(b). Atluri (ref. 58) also obtained

similar nonlinearity of softening type in his investigation.

Concentrated Harmonic Force

The element harmonic force matrix [p] derived in equation (44) is for
uniformly distributed load over the element. The method used here to simu-
late a concentrated force is to let the length of the loaded beam element
become smaller and smaller. This is demonstrated by a concentrated force
applied at the center of a simply supported beam (L/R = 100) with immovable
inplane edges. The magnitude of the concentrated force is equal to the same
beam under a uniform distributed load of PO = 1.0 (F0 = 1,158 x 10° N/m or
661 1b/in.) over the entire beam. Therefore, the uniform loading of the
loaded element for the concentrated case is Fo = 115.8 x L/d kN/m where d
is the length of the loaded beam element. The constant ¢ is given in
equation (46). The results are given in table IV at various d/L ratios and
in figure 8 for d/L = 5%. The elliptic function and perturbation solutions
(without inplane deformation and inertia) are also given in table IV. It is
shown that the concentrated force case is approximately 1.6 times as much

severe as the uniform distributed force for the case studied.
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Table IV. CONVERGENCE OF FREQUENCY RATIOS w/ WITH LOADED LENGTH d FOR A

SIMPLY SUPPORTED BEAM (L/R = 100) WI*H IMMOVABLE INPLANE EDGES SUBJECTED

TO A CONCENTRATED FORCE F0 = 115.8 x L/d kN/m AT THE CENTER.

Without LDI* Finite Element with LDI
A = "max Elliptic Perturbation at (d/L)%
R Solution Solution 20 5 1 0.5

- 1.0 1.6607 1.6608 1.6316 1.6411 1.6423 1.6425
- 2.0 .9695 .9821 .8585 .8506 .8497 .8497
1.5894 1.5923 1.5077 1.5134 1.5143 1.5143
- 3.0 1.4519 1.4710 1.2742 1.2718 1.2717 1.2717
1.7815 1.7920 1.6273 1.6317 1.6325 1.6326
- 4.0 1.8711 1.8993 1.6229 1.6226 1.6229 1.6229
2.0751 2.0959 1.8446 1.8485 1.8494 1.8495
- 5.0 2.2801 2.3181 1.9606 1.9615 1.9620 1.9621
2.4179 2.4498 2.1116 2.1154 2.1164 2.1165

*Longitudinal deformation and inertia.
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supports under concentrated loading.
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Table VI. CONVERGENCE OF FREQUENCY RATIOS w/w WITH GRIDWORK REFINEMENT FOR
A SIMPLY SUPPORT SQUARE PLATE (a/h = 240) WITH IMMOVABLE
INPLANE Edge Subjected to P0 = 0.2.
Gridwork
W
A = X 2 x 2 3x3 4x4
(4 Elements) (9 Elements) | (16 E]ements)
£ 0.2 0.1645(3)* 0.1643(3) 0.1636(3)
1.4243(3) 1.4238(3) 1.4237(3)
+ 0.4 0.7815(3) 0.7800(3) 0.7792(3)
1.2697(3) 1.2682(3) 1.2677(3)
* 0.6 0.9576$4) 0.9544(4) 0.9530(4)
1.2588(4) 1.2560(4) 1.2550(4)
+ 0.8 1.0937(5) 1.0886(5) 1.0865(5)
1.3026(5) 1.2981(5) 1.2963(5)
t 1.0 1.2242(5) 1.2171(6) 1.2143(5)
'1.3781(5) 1.3717(6) 1.3691(5)

*Number in parenthesis denotes the number of iterations to get a

congerged solution.
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Plates

Improved Nonlinear Free Vibration

The fundamental frequency ratios wﬂnL of free vibration at various

amplitude A = wmax/h for simply supported square (a/h = 240) and rectangu-
lTar (a/b = 2 and a/h = 480) plates with immovable inplane edges (u=0 at x =
0 and a, v=0 at y=0 and b) are shown in table V. Due to symmetry, only one
quarter of the plate modelled with 9 (or 3 x 3 gridwork) elements of equal
sizes is used. Both finite element results with and without inplane defor-
mation and inertia (IDI) are given. It shows that the improved finite ele-
ment results by including IDI in the formulation are to reduce the non-
Tinearity. The elliptic function solution and perturbation solution (with
inplane deformation only, refs. 4 and 53) are also given to demonstrate the
closeness of the earlier finite element results without IDI. Raju et al.
(ref. 57) used the Rayleigh-Ritz method in investigation of the effects of
IDI on large amplitude free flexural vibration of thin plates. The linear
mode shape is very close to the nonlinear mode shapé for the simply support-

ed case. Therefore, the Rayleigh-Ritz solution demonstrates a good result

compared to the present improved finite element solution.

Convergence with Gridwork Refinement

Table VI shows the frequency ratios for a simply supported square plate
(a/h = 240) with immovable inplane edges subjected to a uniform harmonic
force of Po = 0.2 with three finite element gridwork refinements. Only
one quarter of the plate was used in the analysis due to symmetry. Exami-
nation of the results shows that the present finite element formulation
exhibits excellent convergence chéracteristics. Therefore, a 3 x 3 (or 9

elements) in a quarter of plate was used in modeling the plates in the
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FOR A SIMPLY SUPPORTED PLATE

Table V. FREE VIBRATION FREQUENCY RATIOS w/w
WITH IMMOVABLE INPLANE EDGES,
Without IDI® With Inplane With IDI
Deformation
(No Inertia)
ET1liptic
A = Vnax o Function Ra¥1eigh Present
h Finite Result Ritz Finite
Element (refs. 4 Perturbation Result Element
Result and 53) Solution (ref. 57) Result
Square Plate (a/h = 240)
0.2 1.0185(3)b 1.0195 1.0196 1.0149 1.0134(3)
0.4 1.0716(3) 1.0757 1.0761 1.0583 1.0528(3)
0.6 1.1533(4) 1.1625 1.1642 1.1270 1.1154(4)
0.8 1.2565(6) 1.2734 1.2774 1.2166 1.1979(5)
1.0 1.3752(7) 1.4024 1.4097 1.3230 1.2967(6)
Rectangular Plate (a/b = 2, a/h = 480)
0.2 1.0238(3) 1.0241 1.0241 1.0177 1.0168(3)
0.4 1.0918(4) 1.0927 1.0933. 1.0690 1.0658(4)
0.6 1.1957(6) 1.1975 1.1998 1.1493 1.1439(5)
0.8 1.3264(8) 1.3293 1.3347 1.2533 1.2467(6)
1.0 1.4762(11) 1.4808 1.4903 1.3753 1.3701(8)
a. Inplane deformation and inertia.
b. Number inside parenthesis denotes the number of iterations to get a

converged solution.
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remainder of the nonlinear forced responses presented unless otherwise

specified,

Nonlinear Forced Response of Plates with Immovable Inplane Edges

Table VII shows the frequency ratios m/wL for simply supported and
clamped square plates (a/h = 240) subjected to a uniform harmonic force of
P0 = 0.2. It demonstrates the closeness between the earlier finite element
formulation without IDI, the simple elliptic response (refs. 4 and 53) and
the perturbation solution (with inplane deformation only). The present
improved finite element results indicate clearly that the effects of IDI are
to reduce the nonlinearity. The present finite element results of a square

plate (a/h = 240) to uniform harmonic excitation of P0 =0, 0.1 and 0.2 are

given in figures 9 and 10 for simply supported and clamped boundary con-

ditions, respectively.

Nonlinear Forced Response of Plates with Movable Inplane Edges

The dimensionless amplitude A versus the fundamental frequency ratio

w /w for a simply supported square plate (a/h = 240) with movable inplane

L
edges subjected to uniform harmonic load P0 =0, 0.1 and 0.2 1is shown in
figure 11. The nonlinearity is greatly reduced with the inplane edges no

longer restrained as compared to the case of immovable inplane edges in

figure 9.

Concentrated Harmonic Force

Application of the present finite element to the case of a concentrated
force is to let the area of the loaded element becoming smaller and smaller.
It is demonstrated by a concentrated force applied at the center of a simply

supported square plate (a/h = 240) with immovable inplane edges. The magni-
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Table VII. FORCED VIBRATION FREQUENCY RATIOS w/w FOR A SQUARE PLATE
(a/h = 240) WITH IMMOVABLE INPLANE EDGEE SUBJECTED TO P, = 0.2.

Finite Element
Simple -
Elliptic Perturbation
Solution Without With
A = "max Response IpI® )
T (refs. 4
~and 53)
. Simply Supported
+ 0.2 0.1944 0.1987 0.1932(3)b 0.1643(3)
1.4281 1.4281 1.4274(3) 1.4238(3)
* 0.4 0.8102 0.8111 0.8052(3) 0.7800(3)
1.2874 1.2876 1.2839(3) 1.2682(3)
+ 0.6 1.0084 1.0110 0.9984(4) 0.9544(4)
1.2983 1.2995 1.2898(4) 1.2560(4)
t 0.8 1.1703 1.1755 1.1528(6) 1.0886(5)
1.3686 1.3718 1.3524(6) 1.2981(5)
+ 1.0 1.3283 1.3369 1.3004(7) 1.2171(6)
1.4726 1.4789 1.4460(7) 1.3717(6)
C1 amped
t 0.2 0.1200 0.1227 0.1180€2) 0.1033(3)
1.4195 1.4195 1.4195(2) 1.4183(3)
+ 0.4 0.7483 0.7438 0.7459(3) 0 7372(4)
1.2490 1.2491 1.2477(3) 1.2426(4)
t 0.6 0.8951 0.8956 0.8905(4) 0.8746(4)
1.2117 1.2119 1.2083(4) 1.1966(4)
+ 0.8 0.9941 0.9954 0.9863(5) 0.9617(5)
1.2203 1.2210 1.2137(5) 1.1938(5)
* 1.0 1.0822 1.0845 1.0700(6) 1.0362(5)
1.2540 - 1.2555 1.2429(6) 1.2140(5)

a. Inplane deformation and inertia.
b. Number inside parenthesis denotes the number of iterations to get a
converged solution.
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tude of the concentrated force is equal to the same plate under a uniformly
distributed harmonic loading of P0 = 0.1 (F0 = 45,74 N/m® or 0.66347x10-2
psi) over the total plate area. Therefore, the uniform loading of the load-
ed element for the concentrated case is F0 = 45,74 (a/d)2 N/m¢ where d
is the length of the loaded square element. Table VIII gives the fundamen-
tal frequency ratios w/mL at (d/a)?2 = 16.0, 4.0, 1.0 and 0.25%. It
indicates that the convergence is rapid and (d/a)? = 1.0% would yield accu-
rate frequency response. Results obtained using earlier finite element
without IDI and elliptic function (with in plane deformation but no inplane
inertia) are also given. Nonlinear response of concentrated force obtained
with (d/a)2 = 1.0% 1is plotted in figure 12. Frequency ratios of the same
plate to uniform harmonic force P0 = 0.2 is also given. It shows that the
concentrated force is approximately two to three times as much severe as the

uniformly distributed force for the case studied.

CONCLUSTIONS

The finite element method has been extended to analyze nonlinear forced
vibration problems. Harmonic force matrices were developed for a beam and a
rectangular plate element subjected to wuniform harmonic excitation.
Improved finite element results on nonlinear free flexural vibration of
slender beams and thin plates are achieved by considering inplane deforma-
tion and inertia effects in the formulation. Nonlinear free vibration can
be simply treated as a limiting case of the more general forced vibration
problen by setting the harmonic force matrix equal to zero. The effect of
midplane stretching due to large deflection is to increase the nonlinearity,

however, the effects of inplane deformation and inertia are to reduce non-

linearity.
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For beams with immovable end supports, only hardening type nonlinearity

is observed. For beams of large slenderness ratio with a movable axial end

support, the increase in nonlinearity due to large deflection is partially
compensated by the reduction in nonlinearity due to longitudinal deformation

and inertia. This leads to a negligible hardening type nonlinearity, and

thus small deflection linear solution can be used, i.e. a simply supported

beam with movable axial end support. For beams of small slenderness ratio,

however, softening type nonlinearity is observed.

For rectangular plates with immovable or movable inplane edges, how-

ever, only hardening type nonlinearity is observed. This is because the

middle surface of the bent plate is not a developable surface.
For concentrated loading (beams and rectangular plates) yields re-

sponses several times as severe as the uniformly distributed load. Fatigue

life can be estimated with material fatigue S-N data.
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APPENDIX A: BEAM ELEMENT

The nonlinear strain-displacement relation is

e+zx

m
1]

+ [ —

du 1aw)2 Zazw
ax 2 ax ax?

Axial resuitant force and bending moment are given by

N = ESe

=gs R4+ L (32
9 X 2 Ix
M = EI «
2
- 1w
ax2

The bending strain, membrane strain and kinetic energies are

L
U == 5 (22 4
2 0

L
TR N LORRE N GLAC L
2 0 3x 2 3x

(AL)

(A4)

(A5)
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T = 22. IO (1 +w2) dx (A6)

where £ and S are the length and cross-sectional area of the beam

element. The displacement function is chosen as

W=ap +oapXx +ag X2 +ayx (A7)
u=g; + B2x (A8)
The element nodal displacements at the two end nodes are
(5} = [{Gb}T {sm}T]
= D Wygs Wy W Ups U] (A9)

The matrices relate the element nodal displacements and the generalized

coordinates are

— S
10 0 0
0 1 0 0
[yl = 3 2 3 1 (AL0)
22 4 22 g
21 2 1
i 23 22 23 22
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—
o

Mol =1 1 (AL1)
L L
The linearizing function is evaluated from the expression
f :l Eﬂ
2 9x
- e
2
21 2
-2 [0 1 2x3x] T ls 3 (A12)

The matrix relates generalized coordinates and membrane strain defined in

equation (26) is

(6] =[{o 1] (AL3)

The element harmonic force matrix is

i 1
156 synmetric
cf 2 228 4.2
[p] = (Al4)
420AR 54 132 156
[ -13¢ -2 =228 482

The total strains at the two end nodes of a beam elemnent are

€ 0 f -2z 0 0 17 [T, ©
- {8} (Al5)
€2 0 f 2(2f-z) 3(%f-2z) 0O 1| [o T,
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APPENDIX B: PLATE ELEMENT

The inverse of matrix [Tb] in equation (21) 1is given by

ay Ay ag a2 6
B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 o ]
1 a 0 a2 0 0 a3 0 0 0 0 0 0 0 0 0
1 2 b 3 @/ b2 @ ab a2 B Fb a2 ab? %2 aZp? a¥%?
1 0 b 0 0 b2 0 0 0 b o 0 0 0 0 0
0 1 0 0 0 0 0 0 0 o 0 0 0 0 0 0
0 1 0 2a 0 0 32 o 0 o 0 0 0 0 0 0
0 1 0 2a b 0 3a? Zab b2 0 3ab 2ab2 b 3a2? Zab? 3Ja%b?
0 1 0 0 b 0 0 0 b2 0 0 0 b o0 0 0
(T, =
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 a 0 0 a2 0 o0 FERN 0 0 0 0
0 0 1 0 a 2 0 a2 Zab 32 3% Z2a%b 3ab? 2a’b  3a%? 3adb?
0 0 1 0 0 2b 0 0 0 32 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 o0 0 0 0 0 0 0
0 0 0 0 1 0 0 2a 0 0 3@ o0 0 0 0 0
0 0 0 0 1 0 0 2a 2 0 3a% 4ab 3b2 6a?b  6ab2 9a%b?
0 0 0 0 1 0 0 0 % 0 0 0o 32 0 0 0 |
(B1)

where a and b are the 1ength and width of rectangular plate element.
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Matrix [T.] in equation (22) is given by

- Uy Uy Vi Vy o _
1 0 0 0
-a* ax 0 0
0
-b* 0 0 b*
a*b* - a*b* a*b* - *b*
[r.1 = 3 (82)
1 0 0 0
-ax a* 0 0
0
-b* 0 0 b*
L a*b* -a*b* a*b* -a*b*
where a* = 1/a and b* = 1/b.
Matrix [H] 1in equation (23) is of the form
a a, ag @2 %6
] 0 0 2 0 0 6x 2y 0  6xy 2y 0 6xy? 2y 6xy3
W] =={0 o o 0o o 2 0 0 6y 0 2x2 6xy 2x®  6xy? 6xdy
0 0 0 0 2 0 0 4x 4y O 6x2  Bxy 6y2 12x2y 12xy? 18x%y?
(B3)
Matrix [Q] in equation (25) is
e & ag %2 IV
0 0 Xy 0 3x2 2xy ¥y 0 3x2y 2xy? y3 3x2y?  2xy3  3x2y3
Q- 0 1 0 X 2y 0 x2  2xy 3y2 x3 2x2y 3xy? 2x¥y 3x2y2  3x3y2
(84)
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Matrix

(6]

in equation (26) is given by
B1 By
0 y

(6] = |0 0 0 0
0 0 1

—
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