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MULTIPLE-MODE NONLINEAR FREE AND FORCED VIBRATIONS
OF BEAMS USING FINITE ELEMENT METHOD

Chuh Mei™ and Kamolphan Decha-Umphai**
01d Dominion University, Norfolk, Virginia
ABSTRACT

Muitiple-mode nonlinear free and forced of beam has been analyzed
by the finite element method. The geometric nonlinearity is
investigated. Inplane (longitudinal) displacement and inertia (IDI) are
also considered in the formulation. Harmonic force matrix is derived
and explained. Nonlinear free vibration can be simply treated as a
special case of the general forced vibration by setting the harmonic
force matrix equal to zero. The effect of the higher modes is more
pronounced for the clamped supported beam than the simply supported
one. Beam without inplane displacement and inertia (IDI) yields more
effect of the higher modes than the one with inplane displacement and
inertia. The effects of inplane displacement and inertia are to reduce
nonlinearity. [For beams with end supports restrained from axial
movement (immovable case), only the hardening type nonlinearity is
observed]. However, beams of small slenderness ratio (L/R = 20) with
movable end supports, the softening type nonlinearity is found. The
concentrated force case yields a more severe response than the uniformly
distributed force case. Finite element results are in good agreements
with the solutions of simple elliptic response, harmonic balance method,

Runge-Kutta method and experiment.
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Chapter 1
INTRODUCTION

In modern engineering, with its continuous refinement of instrumen-
tation, its improved computational capabilities, and the high precision
tolerances, the theory of nonlinear vibrations is gaining more and more
practical meaning. Although it is known that linear vibrations provide
no more than a first order approximation of an actual situation, they
are sufficient for some practical and engineering purposes. The linear
theory is inadequate, however, if the vibration of an elastic body
involves amplitudes that are not very small, as assumed in the linear
theory. Nonlinear vibration approach leads to completely new phenomena
which are not possible in linear sysfems. For example, the dependence
of frequency, or period of vibration, on amplitude cannot in principle
be handled by using linear analyses. In such cases, nonlinear theory
must be used to obtain more accurate results and to explain new
phenomena. The steadily increasing demand for more realistic models of
structural responses has resulted in solution techniques to deal with
nonlinear structural problems. Apart from some few exceptions, it is
generally not possible to provide analytical closed-form solutions for
the differential equations occurring in nonlinear vibrations of
structures. Naturally, a numerical solution may be obtained when the
motion corresponding to certain initial and boundary conditions is to be
determined. Because of the advance in electronics, modern digital
computers have been of great value in solving nonlinear problems.

In general, nonlinearities in structural mechanics problems can

arise in several ways. When material behavior is nonlinear, the



generalized Hooke's law is no longer valid. This type of nonlinearity
is called "material" or ‘“physical” nonlinearity. Alternatively,
material behavior can be assumed to be linear, but structural
deformation can become large and cause nonlinear strain-displacement
relations. Deformation of a structural member can also reach a
magnitude that does not overstrain the material; in such a case,
curvature of the deformed median line can no longer be expressed by a
linear equation. Problems involving large structural deformation are
called "geometrically" nonlinear problems. A combination of material
nonlinearity and geometric nonlinearity is also possible.

Any large-amplitude deflection of a beam which is restrained
axially at its two ends, results in some midplane stretching. This
stretching must be accounted for by using nonlinear strain-displacement
relationship (geometric nonlinearity). The nonlinear equation of motion
describing this situation had been the basis of a number of
investigations. Most of these works are based on a single-mode

1 considered the effect of an axial force on

approach., Woinowsky-Krieger
the vibration of hinged bars. The vibration of an extensible bar,
carrying no transverse load and having the ends fixed at the supports,
caused an axial tensile force with a period equal to the half-period of
the transverse vibration of the bar. The elliptic function was used to
produce the relation of frequency and amplitude of vibration. Eringen2
studied the nonlinear free vibrations of elastic bars having immovable
hinged ends. The solution was accomplished by the use of the
perturbation method. The ratio of noniinear period over linear period
and axial stress were shown against initial deflection. Only the

3

hardening type nonlinearity was found. Burgreen® studied the nonlinear



free vibrations of a pin-ended column whose ends were pinned to points
fixed in space. This imposed the condition of a constant end distance
instead of the usual theoretical assumption that the axial load in the
column remained constant along the beam length. The elliptic function
was performed to get the exact solution. He also found that the
frequency was dependent upon the amplitude of vibration, the effect of
the amplitude of vibration becoming more pronounced as the Euler load
was approached in which the classical 1linear theory yielded the
frequency of vibration as zero. Wooda114 considered the nonlinear free
vibrations of a thin elastic beam. In his formulation, a fixed inertial
reference frame and a Lagrangian description of the motion were
employed. By assuming the motion to be inextensional and, at the same
time, admitting the existence of a resultant normal force acting on each
cross-section of the beam, a system of governing equations was
obtained. The solutions of the simply-supported beam were obtained by
using three methods: the finite difference method, perturbation
technique and Galerkin weighted residual method. For the particular
example considered in his paper, the finite difference solution appeared
to be stable, even for oscillations involving angular rotations at the
ends of the beam of the order of magnitude of 80°. Furthermore, he
found that the Galerkin approximate solution was in closer agreement
with the finite difference solution than the perturbation solution.
Raju et a1.5 Studied free flexural vibrations of a simply-supported beam
when a compatible longitudinal or inplane mode was coupled with the
fundamental flexural mode. The Rayleigh-Ritz method was employed. The
results showed that the effects of longitudinal displacement and inertia

were to reduce the nonlinearity in the flexural frequency-amplitude



relationship. Tseng and Dugundji6

investigated a straight beam with
fixed ends excited by a periodic motion at its supporting base in a
direction normal to the beam span, By using Galerkin's method, the
governing partial differential equation was reduced to the well-known
Duffing equation. The harmonic balance method was applied to solve the

7 investigated the case of straight beams,

Duffing equation. Pandalai
irrespective of the boundary conditions, the nonlinear was found to be
of the hardening type. He further concluded that only the hardening
type can be existed. Later, Atluri® showed that there were some cases
for which the softening type nonlinearity is possible. He investigatea
the large amplitude transverse vibration of a hinged bar with one end of
the beam free to move longitudinally. The equation was solved by the
perturbation procedure of multiple-time scales. The calculated results
showed that the predominant nonlinear effect was due to longitudinal
inertia which was of the softening Duffing type. This result was in
contrast to the earlier analyses where a hardening nonlinearity had been
predicted when the only nonlinearity considered was the effect of
average midplane stretching due to the out-of-plane deflection.

Through the foregoing studies, the general features of the
nonlinear response of beams under harmonic excitation seem to have been
largely clarified. However, most of the actual calculations are based
on a one-term approximation for the spatial function while the
interactions between the modes with amplitude are not addressed.
Corresponding to this phenomena, the effect of multiple modes on beam
response is needed., Because of the complexity in the formulation, there
are very few investigations on multiple-mode analysis 1in the

11 terature.



McDona]d9 apparently was the first to consider moda ]
interactions. The considered investigation was the vibration of a
uniform beam with hinged ends which were restrained. The beam was
subjected to a concentrated lateral force at the mid-span and then
released from rest at the deflected position. The nonlinear effect in
this investigation was produced by the axial stretching of the beam. By
assuming a multiple-mode expansion corresponding to the deflected
position, the elliptic function procedure was performed to evaluate the
coefficients related to the participation of each mode. Bennett and

Eis]eylo

investigated the steady-state free and forced responses and
stability for large amplitude nonlinear vibration of a beam with clamped
ends. The general equations for the response and stability were
derived. By applying Galerkin's method, a set of nonlinear ordinary
differential equations was obtained. The solution of forced vibration
was evaluated by the method of harmonic balance, Later, Bennett11
considered the problem involved the ultraharmonic response of a simply

supported beam, Tseng and Dugundji12

also used a multiple-mode
expansion in considering the forced response of a clamped beam about its
buckled configuration. The buckled beam was excited by the harmonic
motion at its supporting base. By using Galerkin's method, the
governing partial differential equation reduced to a modified Duffing
equation which was solved by the harmonic balance method. Srinivasan13
solved free and forced responses of beams undergoing moderately large
amplitude steady-state oscillations by the averaging method of Ritz.
The application of Ritz's method to solve the governing nonlinear

partial differential equation, yielded nonlinear algebraic equations

instead of nonlinear ordinary differential equations. To solve these



nonlinear algebraic equations, the Newton's method or bigradient matrix
method had to be employed. The method was shown by assuming the first
two symmetric modes of the linear system for the deflection of beam. It
was clear that the method yielded as many simultaneous nonlinear
algebraic equations as the number of modes included. Nayfeh et a1,14
proposed a numerical-perturbation method for the determination of
nonlinear forced response of beams. The deflection curve of the beam
was represented with a multiple-mode expansion in terms of the linear
modes. Then the temporal problem was solved by the method of multiple
scales, and internal resonances was also considered. Van Dooren and

15 considered the nonlinear transverse vibrations of a uniform beam

Bouc
with ends restrained and forced transversely by a two-mode function
which was harmonic in time. A simply supported beam was considered by
the two-mode approach. Approximate solutions were found by using
Urabe's numerical method applied to Galerkin's procedure and by an
analytical harmonic balance-perturbation method. The existence of sub-
harmonic response of order 1/3 and harmonic response in the sub-harmonic
region of the forcing function was proved. Takahashil® analyzed the
inextensible clamped-free and free-free beams by using Galerkin's method
and the harmonic balance method. Yamaki and Moril’ investigated
nonlinear forced vibrations of a <clamped beam under uniformly
distributed periodic lateral loading with the effects of both initial
deflection and initial axial displacement taken into consideration., The
problem was first reduced to that of a finite degree-of-freedom system
with the Galerkin procedure, the steady-state solutions which were
obtained by applying the harmonic balance method. Actual calculation

was carried out for the three degree-of-freedom system with symmetric



modes. Yamaki et a1.18 also performed experiments to compare to the
analytic results. The test results were reported in the root-mean-
square of deflection instead of the actual deflection of the beam.

Generally, the classical approach to solve nonlinear vibrations of
a beam is to start with the so-called assumed mode shape. By employing
the Galerkin's method, the governing nonlinear partial differential
equation of motion is reduced to a system of nonlinear ordinary
differential equations. The elliptic function, perturbation method, or
numerical methods, can then be employed to solve the problem.

In practice, many optimum or minimum-weight designed structures are
complex., Because of the versatility of the finite element method, it is
more suitable to use this method to analyze complex structures. meild
investigated nonlinear vibration of beams by matrix displacement
method. Nonlinear free vibrations of various boundary conditions were
investigated and good agreements were obtained between the finite
element method and other numerical methods. Rao et a].zo studied the
large ampliitude free oscillations of beams and orthotropic circular
plates. Their finite element formulation was based on an appropriate
linearization of the nonlinear strain-displacement relations. Simply
supported and clamped beams were investigated. Comparison of their
results with the earlier work confirmed the reliability and
effectiveness of the linearization of the strain-displacement
relations. Reddy and Singh21 investigated the large-deflection analysis
of thin elastic curved beams by conventional and mixed finite element
methods., The conventional finite element method was based on the total
potential energy expression, whereas the mixed method was based on a

Reissner-type variational statement and involved the bending moments and



deflections as primary dependent variables, From their result, it
appeared that in general the mixed method yielded more accurate
results., Recently, Mei and Decha—Umphai22’23’24 developed the harmonic
force matrix for solving nonlinear forced vibrations of beams and plates
by finite element method. By employing the Tinearizing me thod2® and so-
called "single-mode" approach, the frequency-amplitude-force relations
were obtained. There are very few attempts to solve nonlinear
vibrations of beam using finite element method with multiple-mode

expansion, Busby and weingarten26

investigated beams of simply
supported and clamped boundary conditions. Their finite element
technique was performed only to obtain the nonlinear differential
equations of the straight beam and the method of averaging was then used

to obtain an approximate solution. Cheung and Lau?’

investigated the
two-mode nonlinear vibration of beams. The essence of their method
could be regarded as an incremental harmonic balance method associated
with a finite strip procedure in the time-space domain. Unfortunately,
the works reported in References 26 and 27 could not be exactly
classified as finite element method.

The accuracy of the theoretical predictions would not be completed
unless the experimental studies had been compared. Bennett and Eis]eylo
performed the experiment of a clamped beam to compare with their
theoretical results. Tseng and Dugundji6 conducted the experiment of a
straight beam with fixed ends which was excited by the periodic motion
of its supporting base in a direction normal to the beam span. All of
these two experiments were found to compare favorably with the corre-
sponding theoretical predictions. However, these experiments were

carried out with special kinds of excitations, eg. supporting base



excitation. Yamaki et a1.18 performed the experimental studies of a
clamped beam under a uniformly distributed periodic load. Besides the

17 their

reasonable agreement with the theoretical predictions,
experimental results seem to provide effective data facilitating further
theoretical analyses.

It is clear that a substantial amount of literature exists on
nonlinear vibrations of beams. Sathyamoor‘thyzs’29 published two
excellent survey articles, one which dealt with Titerature concerning
classical nonlinear methods, and another with the finite e]emént
me thod.,

Through the foregoing studies, the general features of the
nonlinear free and forced vibrations of beams seem to have been largely
clarified. However, modern structures are complex and the more accurate
theoretical predictions are preferred, therefore, the multiple-mode
approach has to be considered in the formulation of nonlinear vibration
problems. Since the evolution of digital computers, the finite element
method has become widely used to solve many types of complex
structures. It is the purpose of this research to extend the finite
element method to multiple-mode nonlinear vibrations.

In this thesis research, multiple-mode nonlinear free and forced
vibrations of beams using finite element method are presented. Both
out-of-plane deflection and inplane displacement are included in the
formulation. The classical method is provided in Chap. 2 to review the
concepts of nonlinear vibrations, In Chap. 3, the finite element
formulation is presented in detail. The nonlinear stiffness matrices

using the linearizing method25 are derived. The harmonic force matrix

for multiple-mode approach is derived for both uniformly distributed and



concentrated forces. In Chap. 4, the solution procedure of multiple-
mode nonlinear vibrations by finite element method is presented. In
Chap. 5, beams with various out-of-plane and inplane boundary conditions
are investigated. The definition of inplane boundary condition is also
explained. The relations of frequency and amplitude for various
boundary conditions and loads are tabulated and plotted. Results are
also compared to other classical or experimental results whenever
available. The convergence criteria are also studied. Chapter 6 gives

the concluding remarks.

10



. Chapter 2

CLASSICAL FORMULATIONS

In this chapter, the mathematical formulations of the classical
method are expressed. Equations of motion for an isotropic beam are
presented. The characteristic equations are provided by performing the
Galerkin's method. For single-mode approach, the frequency-amplitude
relation is shown in a simple closed-form solution which could not be
done for the multiple-mode approach., For multiple-mode approach, the
general formulation is shown to provide for better understanding in the
multiple-mode formulation. All of these formulations are performed in

detail.

2.1 C(Classical Method

In general, nonlinear forced vibration of a beam is solved by the
assumed mode method. By employing the Galerkin's method, the assumed
mode shape is substituted into the governing equation of motion, then
the integration is performed over spatial domain. The characteristic
equations are obtained. The numerical time integration or other
numerical method 1is needed for solving the frequency-amplitude
relations. Both single and multiple-mode approaches are shown in the
formulations. Because of the simplicity of single-mode approach, this
approach is shown first to provide some concepts which later is extended

to the multiple-mode formulation.

11
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2.2 Single-Mode Approach

The <classical method for single-mode approach is straight
forward. The frequency-amplitude relation exists in a simple closed-
form relation which could not be done for multiple-mode approach. The
formulation for single-mode approach is as follows.

Assume that a uniform beam with cross sectional area K, moment of
inertia I and length L is subjected to a uniformly distributed periodic
lateral load F(x,t) as shown in Fig, 1. In this figure, a clamped beam
is shown for simplicity. The deflection is denoted by w(x,t)}. With the
assumption that axial displacements at both ends are zero (immovable
inplane displacement), the basic governing equation of motion for the

nonlinear bending forced vibration of a beam is found to be

pA w + EI Wssxx N Wy ~ F(x,t) =0 (2.1)
where
T 2
N = > jo (w,x) dx (2.2)

where p and E are mass density and Young's modulus, respectively. The
subscript x following a comma denotes differentiation with respect to x
and a dot denotes differentiation with respect to time t.
For single-mode approach, the deflection is assumed as
wix,t) = ¢(x) g(t) (2.3)
where ¢(x) represents the normal mode of linear free vibration which
satisfies the boundary conditions for the case in consideration, and the

modal amplitude g(t) is an unknown function of time.




NONONNN

z
b4
fos
YOI L44

Fig. 1 Geometry of a clamped beam
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Using the foregoing expression for w, the Galerkin's method can be

applied to Eq. (2.1), which leads to

L
J [Eq. (2.1)] ¢(x) dx = Residual

=0, (2.4)
0
Equation (2.4) can be expressed as
Ly, 3y L
[pA [ ¢ dx] g + [EI | Psyxxx ¢ dx] g.
0 0
L L
- INS o, 0 dx]g-F(t) [ ¢dx=0. (2.5)
0 0
Equation (2.5) can be rewritten in the form as
o L L 2
pA g+ [EI [ &, 0dx] g/] ¢ dx
0 0
L L 2 L L 5
- INJ oy, 0 dxTg/f o dx - F(t) [ edx/[ o% dx = 0. (2.6)
0 0 0 )

By substituting Eq. (2.3) into Eq. (2.2), the inplane force N can be

expressed as
- L
2 2
N=lzm [ (6, )" dxIg. (2.7)
0

By using this value of N, Eq. (2.7), in conjunction with Eq. (2.6), the

characteristic equation is obtained in the form as

3

m a +kg+kg”-cF(t) =0 (2.8)

where m, k and k are the mass, linear stiffness and nonlinear stiffness

terms, respectively. The values of m, k and k can be expressed as



m=op A (2.9)
L L,
k = EI | s xx P dx/[ ¢° dx (2.10)
0 0
- L L L
- EA 2 2
= A . 2.1
K 1 jo (¢,x) dx jo by O dx/jo o dx (2.11)

The value of constant ¢ is expressed as

L L 2
c=[ ¢dx/[ ¢

0 0o

dx. (2.12)
The characteristic equation, Eq. (2.8), can be written as
.e - 3
mg+kg+kg -P(t) =0 (2.13)

where P(t) is the force term which is expressed as

P(t) = ¢ F(t) (2.14)
The characteristic equation, Eq. (2.13), can be solved for the
frequency-amplitude-force relation in a closed-form solution by various
approximate methods. It should be pointed out that many of these
approximate methods yield the same closed-form solution which can be
classified as a standard form, Because of the simplicity of the
following method, it is chosen to be shown in depth for the derivation
of the c¢losed-form solution. This method is based on omitting the
higher harmonic term,

To obtain the frequency-amplitude-force relation in closed-form

solution, g(t) is specified as

g(t) = A cos (wt) (2.15)
where A is the amplitude of deflection of the beam and w is nonlinear

frequency. The nonlinear term, 93(t), is expressed as

15
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3

g3 (t) = A cos3 (wt). (2.16)

By expanding cos3 (wt) , it can be written as

cos3 (wt) =-% cos {wt) + % cos (3 wt). (2.17)

By neglecting the higher harmonic term, cos (3 wt) , the approximation

of cos3 (wt) can be written as

~

cos3 (wt) = 2 cos (wt). (2.18)

By substituting Eq. (2.18) into Eq. (2.16), the nonlinear term is

expressed as,

3

g (t) = 3

A" cos (wt). (2.19)

) w

The force term, P(t), is written as,

P(t) = PO cos (wt) (2.20)
and by Eq. (2.14),
P0 =c Fo (2.21)
and
F(t) = Fo cos (wt) (2.22)

where F, is force intensity which has the dimension as force per unit
length.
By substituting Eqs. (2.15), (2.19) and (2.21) into Eq. (2.13), the

frequency-amplitude-force relation can be shown as

- wzm A cos({wt) + k A cos(wt) +~% K A3 cos(wt)

- P0 cos(wt) = 0. (2.23)

Equation (2.23) can be rewritten in the closed-form solution as
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o = u)LZ + 38 A2 - P /A (2.24)

where
sz = k/m (2.25)
8 = k/m . (2.26)

Equation (2.24) is the standard closed-form relation between frequency
and amplitude and force. W is defined as linear frequency which has

the dimension as radian per second.
2.3 Multiple-Mode Approach

The classical method for multiple-mode approach follows the same
path as single-mode approach. But the multiple-mode approach could not
yield the simple closed-form frequency-amplitude-force relation, thus,
numerical integration or other approximate method is needed.

The general formulation of multiple-mode approach is as follows,

n
wix,t) =2 ¢.(x) g.(t) (2.27)
. i i
i=1
where ¢i(X) is the i-th normalized Tlinear mode shape with maximum of
unity, and gi(t) is the time function. The total number of modes in
consideration is n.

The time function g;(t) can be expressed as
g;(t) = A, cos(ut) (2.28)

where A; is the amplitude of i-th mode shape. By using the assumed
expression of w, Eq, (2.27), the Galerkin's method can be applied to Eq.
(2.1) as follows:
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L
[ [Eq. (2.1)] ¢; (x) dx = Residual =
0

"
[on]

(2.29)

i l,2no.’ no
By substituting Eq. (2.27) dinto Eq. (2.2),

the axial force N

is
expressed as

= L n
_ EA 2
N =0 fo [§=1 ¢i’x 91] dx. (2.30)

By substituting Eq. (2.30) into Eq. (2.29), the following set of

nonlinear ordinary differential equations are obtained:

. n n n _
m; g. +k, g. +2 £ T k... g.9.9
i 1517 §a) pep =y 1IYS T3TrTs

= pi(t) i =1,2,¢°, n (2.31)
where
m, =pA (2.32)
L L,
ky = EI J %5 xxxx i dx/ | o5 dx (2.33)
) 0
L L
- J q’j,x ¢r,x dx J ¢s,xx ¢1 dx
k. =0 2 (2.34)
ijrs 2L L ) )
[ e dx
0
L L >
P. (t) = [ Fx,t) ¢, dx// ¢.° dx. (2.35)
i o i o |

The set of nonlinear ordinary differential equations shown by Eq. (2.31)

is the set of characteristic equations for nonlinear forced vibration.



In general, the number of characteristic equations is the same as the
number of mode shapes which are included in the assumed deflection
shape, Eq. (2.27). These characteristic equations are highly nonlinear
and coupled, thus, it is very tedious to solve for the steady-state
solution., One way to obtain the frequency-amplitude-force relation is
by performing numerical integration, e.g., Runge-Kutta method.
To clarify the method, a two-mode approach is performed as follows:
2
wix,t) =1 ¢i(x) gi(t). (2.36)
i=1
The deflection shape w(x,t) is assumed as the combination of two

modes. In this case, n is equal two. The value of N, Eq. (2.30), can be

expressed as

= L L
_EA 2 2 2 2
N =or [(f0 % dx) g¢; + (fo % dx) g,
L
+ (2 fo % x %2 4 dx) glgz]. (2.37)

By using Egs. (2.36) and (2.37), the set of characteristic equations,

Eq. (2.31), can be obtained as

g. +k. g +k ik 24 +k
M9 "% 9 " 9 1112 91 92 T 1122 91 92
+ k 3=P(t) (2.38)
1222 92 1 .
: . 3 - 2 . 2
My 9y * Ky 9y + kpppp 97 * K

2112 91 92 * Kp122 97 95

- 3
! =
+ K99 9 PZ (t) (2.39)
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where

- L L L
- EA 2 2
K T/ b x & I bxx 1 dx/f e, dx

: Y 0 0

= L L L
- EA 2 2
klllZ = EE f ¢l X dx f ¢2 XX ¢1 dX/I ¢1 dx

[0} ’ (o] ’ 0

L L L
= 2
k1122 = ?E fo ¢1,X ¢2’x dx fo ¢2,Xx 4)1 dX/J‘O ¢1 dx

- L L L
- EA 2 2
k1222 = == / ¢2’x dx [ ¢2,xx o) dx/ [ b, dx
[0} o] o]
L L,
I=
P it) J F(x,t) % dx/ [ 9, dx
(o} 0
m2 =p A
L L



2111

]

ko120 =

2112

2222

2L

1,x

X¢XdXI¢
0

21

2
dx/[ ¢, dx

dx [ 6 )
0

ct’2,xx 2
0

L L

2
2, 2,xx %2 dX/IO b, dx

L L 5
N I'd s . . 2‘4 Y
dx | ¢2’xx ¢2 dx/)o ¢2 dx ( 0)

The steady-state response for a two-mode nonlinear vibration

problem can be obtained by employing the Runge-Kutta method for solving

the nonlinear coupled characteristic equations, Eqs. (2.38) and (2.39).
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Chapter 3
FINITE ELEMENT FORMULATION

In this chapter, the formulation of a finite element method is
presented. The expressions for strain-displacement relation, kinetic
energy and potential energy are provided. The linearizing function for
deriving nonlinear stiffness matrices 1is defined. The 1inplane
displacement and lateral deflection are expanded in the cubic order.

Furthermore, the derivation of harmonic force matrix is performed.
3.1 Strain and Curvature-Displacement Relations

The strain-displacement relation of a beam element shown in Fig, 2

is given by

e =u, + L w,2 (3.1)
X X 2 X

where €y is the strain 1in x-direction of beam, u 1is the inplane
displacement and w 1is the lateral deflection. The curvature-
displacement relation is defined as

(3.2)

by = Woyx

where ¢x is the curvature. The total strain, € , is defined as

1 2
= 4+ - -
€ u,x 5 w,x Z w’xx' (3.3)
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Fig. 2 Beam Element
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3.2 Kinetic and Strain Energies

The kinetic energy of a beam element is given by

T = % o | (GZ + W 2) dx (3.4)
0

where p is mass per unit length and 2 is element length. The kinetic

energy can be separated into two parts as

T = TS + Tb' (3.5)
The kinetic energy due to mid-plane stretching Ts is defined as
1 R’G
IS M4
TS =50 J u dx (3.6)
0
and the kinetic energy due to bending Ty is defined as
2
1 o2
Tb =5 [ W dx. (3.7)
0
The strain energy of a beam element is given by
2
1 - 2 2
U-EIO(EASX+EI¢X)dx (3.8)

where E is Young's modulus, A is the cross-sectional area of beam, and I
is the moment of inertia. By substituting Egs. (3.1) and (3.2) into Eq.

(3.8), the relation between strain energy and displacements can be

written as
L 2
1 - 2 1 2 1 2
U=>3 /] EA [u,x + Zu,x (E w,x) + (5 w,x) 1 dx
0
2
1 2

0



The strain energy U can be separated into two parts,
strain energy U; and nonlinear strain energy Uy .

y=u, +U

L NL®

The linear strain energy for Eq. (3.10) is expressed as

2 2
1 = 2 1
UL—ZIOEAu,xdx+-2-fOEIw,

2

dx.
XX

namely,
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Tinear

(3.10)

(3.11)

Similarly, the nonlinear strain energy for Eq. (3.10) is expressed as

2 2

NL
0

3.3 Displacement Functions

1 - 1 2 1 2
u 'EI EA[2u,x(-§w,x)+(§w,x)]dx.

(3.12)

The displacement functions are chosen to be in cubic order as

follows:

- 2 3
w—al+a2x+a3x +a4x
and

~ 2 3
u—a5+a6x+a7x +a8x.

(3.13)

(3.14)

The generalized coordinates ay, ****e, ag Can be written in vector form

as

T _
{a}' = [a1 3y a3 34 A5 Ag Ay a8]

and the element nodal displacement, Fig. 2, are defined as

T _
{8} = [w1 61 W, 92 Up o U a2]

(3.15)

(3.16)
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where ei and a; are the differentiation with respect to x of w; and uj
at node i, respectively. The generalized coordinates in Eq. (3.15) can

be written as

{a} = [T] (&} (3.17)

where [T] is a transformation matrix.

The displacements u and w including théir derivatives can be

expressed in terms of element nodal displacements as

u=[00001xx%x3] {a)

= [B] [T] {8} (3.18)
u, = (000001 2 3x%] (a)
= [C] [T] {8} (3.19)
| w=[1x x% 3 000 0] {a}

j = [D1 (T] (8} (3.20)
| W, = [012x 3x 000 0] {a)
= [E] [T] (&} (3.21)

Wy = (0026x 000 0] {a}

= [G] [T] (&} (3.22)
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3.4 Linearizing Function

The linearizing function is defined as°»25
£ =%”’x (3.23)

By substituting Eq. (3.21) into (3.23), the linearizing function can be

expressed as

1

f =5 [E] [T] {&}. (3.24)

|

This linearizing function f is assumed to be constant in each element.
The main advantage of wusing linearizing function is shown in the

foliowing sections.

3.5 Element Equations of Motion for Nonlinear
Free Vibration

The nonlinear free vibration is the backbone of the investigation
of steady-state response. The equations of motion can be derived by
applying Lagrange's equations as follows.

From Eqs. (3.6) and (3.18), the expression of kinetic energy due to

mid-plane stretching Ts can be written in matrix form as

L
T % ST 1" o 81" 181 dx [TT ()
0
1 (3.25)
2 3

where [ms] is the element mass matrix due to inplane displacement

function and is expressed as
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T A T
[m =011 [ o (8] [B] dx [TI. (3.26)
0

Similarly, from Eqs. (3.7) and (3.20) the expression of kinetic energy

due to bending Ty can be written as

T =

L] T L]
b {8} [mb] {8} (3.27)

Nof =

where [mb] is the element mass matrix due to bending and is expressed as
T A T
[m 1 =011 [ o (D] [D] dx [T]. (3.28)
0

The total kinetic energy T, Eq. (3.5), can be expressed in matrix form
as

T=2 & m & (3.29)

NI

where [m] is the element mass matrix and is expressed as
[m] = m.] + [m,] (3.30)

The linear strain energy U_, Eq. (3.11), can be expressed in matrix

form as

Uu =

T
L {8} [kL] {8} (3.31)

N

where [kL] is the element linear stiffness matrix. The element linear

stiffness matrix [k ] can be separated into u-part [k sl and w-part

[kLb] as

[k 1= [k ] + [k, (3.32)
where

T A T
[kLS] = [T]' [/ EA[C] (C] dx [T] (3.33)
0
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T A T
[k, ,1 = [T] J EI [G]' [G] dx [TJ. (3.34)
0

The nonlinear strain energy Uy, Eq. (3.12), can be written by
using the linearizing function f, Eq. (3.23), as
L 2

1 - 2
UNL =3 fo E A [2f Uy Mo + f W ] dx (3.35)

By substituting Egqs. (3.19) and (3.21) into Eq. (3.35), the nonlinear

strain energy can be expressed in matrix form as

1 T
Uy =3 {5} [kNL] {5} (3.36)

where [k,,] is the element nonlinear stiffness matrix and is expressed

as

2
Ty = (17 J {€ & £ [rc1” 1 + [e1" [c]
0

£ A fIE] [E]} dx [TI. (3.37)

The 1linearizing function f which is a constant for each element
transforms the element nonlinear stiffness matrix [kNL] into the linear
form as in Eq. (3.37). The strain energy U, Eq. (3.10), can be written

as

U=t k1 (8 (3.38)

Nt =

where [k] is the element stiffness matrix and is expressed as

(k] = [kL] + [kNL]. (3.39)
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The application of Lagrange's equation leads to the element nonlinear

free vibration equétion of motion as
[(m] {6} + [Tk 1 + Tky 1] €8} = 0. (3.40)
3.6 Element Harmonic Force Matrix

In Chap. 2, the equation of motion for nonlinear forced vibration

in classical approach is expressed in Eq. (2.13) as

3

mg+kg+kg> = P(t) (3.41)

when the forcing function P(t) 1is a simple harmonic P0 cos {wt), an

approximate solution of Eq. (3.41) is in the form of Eq. (2.24) as

2 2 3 2
W= w + i B A PO/A. (3.42)

When the forcing function P(t) is a simple elliptic function and

expressed as

*
P(t) =8B Acn (rt, 7)

B"g (3.43)
where g is the Jacobian elliptic function and expressed as
g = A cn (At,n) (3.44)
where B* is forcing amplitude factor, A is circular frequency of the
Jacobian elliptic function and m is modulus of the Jacobian elliptic
function,
By expanding the elliptic forcing function into Fourier series then
comparing the order of the magnitude of the various components, Hsu30
concluded that the harmonic forcing function Po cos {wt) is the first

order approximation of the elliptic forcing function B A cn (At, n).
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Also, the first order appoximation of the elliptic response of Eq.
(3.41) yields the same frequency-amplitude-force relation of Eq. (3.42)
which is the perturbation solution (standard form, Eq. (2.24)). To
obtain the exact elliptic response of Eq. (3.41), the forcing function
P(t) in Eq. (3.43) 1is treated as a linear spring in the Duffing
equation, Eq. (3.41).

*

mg+kg+kg =B g

mg+(k=-8)g+kg =o0. (3.45)

This linear spring force B*g possesses a potential energy as B* 92/2.
Similarly, the potential energy of a beam due to the uniform harmonic
forcing function Fo cos wt can thus be approximated by
* 2
Ve=z S W ax (3.46)
0
where the summation denotes the sum of all elements.

*
To find the value of B , the conclusion by Hsu30 is needed (Eq.

(3.43)) as follows

*

P(t) =B g
*
=B Acn (At,n)
SO,
P, cos(wt) = 3°A cn (At,n). (3.47)

By using Hsu's conclusion, the harmonic function cos (wt) is the first

order approximation of the elliptic function cn (At,n), thus,

~

cos (wt) = cn (At,n). (3.48)
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By using the relation of Eq. (3.48), substitutes into Eq. (3.47), the

relation of B* can be expressed as
*
B = PO/A. (3.49)

From Eq. (2.21), the relation of P, is expressed as follows

Po= ¢ F0 (3.50)

where the constant ¢ is expressed in Eq. (2.12). The constant ¢ can be
interpreted as the ratio of area under mode shape and square of mode
shape. And the nonlinear mode shape in multiple-mode approach is
assumed to be sum of Jinear modes, thus, the defiection w(x,t) can be
written as o . x 7
w (x,t) = ¢ (x) g (t) (3.51)
where ¢*(x) is normalized nonlinear mode and g*(t) is time function,
thus,

n
5 (x) = =3 A b, (x) (3.52)

1
A e

where A; and ¢i(X) are the amplitude of i-th mode shape and the i-th
normalized linear mode shape, respectively. By using Eq. (3.52) and the
definition of ¢ in Eq. (2.12), in general, the expression of ¢ for

simple harmonic force is expressed as
(Load elements)

c = ] . (3.53)
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Thus, for the uniformly distributed force over the entire beam, the

value of ¢ is expressed as

In the finite element method, the concentrated force can be represented
by the distributed force over a small length, thus, the value ¢ for

concentrated can be expressed as

b
i ¢ dx
c =_E.____“ - (3.55)

/] (¢ )2 dx
0

where a and b are coordinates of beam under that distributed force.
By using the Eq. (3.46), the element harmonic force matrix can be

derived from
* K
2
v=;-j wo dx (3.56)
o
where B, is expressed in Eq. (3.49). By substituting Eq. (3.20) into

(3.56), the potential energy due to the uniform harmonic force can be

expressed as
2

* -~
v=2 @' 11" ] 017 (0] ax [T] (&)
(0]

21 T
== {8} [h] {&} (3.57)

where [h] is the element harmonic force matrix and expressed as
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« 1 7
[hl1 =8 [T] [ [p] [D] dx [T]. (3.58)
0

By comparing Eq. (3.58) to Eq. (3.28) and using the expression of B and

Pys Egs. (3.49) and (3.50), the harmonic force matrix can be written as

c Fo
[h] = A_p [mb] {3.59)
where ¢ is a constant expressed in Egs. (3.53), (3.54) or (3.55). It

should be noted that the harmonic force matrix is a symmetrical matrix.

3.7 Element Equations of Motion for Nonlinear
Forced Vibration
The application of Lagrange's equation leads to the equations of
motion for nonlinear forced vibration of a beam element under harmonic
forcing function. By using Egs. (3.29), (3.38) and (3.57), the

equations of motion are expressed as
[m] (6} + [[k ] + [k 1 - [h1] (&} =0 (3.60)

where [m] is the element mass matrix in Eq. (3.30), [k ] is the element
linear stiffness matrix in Eq. (3.32), [ky ] is the element nonlinear
stiffness matrix in Eq. (3.37), and [h] is the element harmonic force
matrix in Eq. (3.59). It should be noted that all these matrices are

symmetric.



35

Chapter 4
SOLUTIONS PROCEDURES

In this chapter, the solution procedures of finite element method
are explained in detail. The solution procedures are divided into two
major parts, namely, the small deflection part which is the linear
solution, and the 1large amplitude part which 1is the nonlinear
solution., Each part consists of minor steps which evaluate the element
and system matrices. The iterative process for the large amplitude part
is also explained. The convergence criteria are also provided and
convergence characteristics are shown in figqures. Finally, the computer
flow-chart of the solution procedures is provided at the end of this
chapter.

4.1 Small Deflection Solution
(Linear Solution)

Linear solution is performed to evaluate the linear eigenvalues
(Tinear frequencies) and linear eigenvectors (linear mode shapes). The
combination of these linear mode shapes and amplitude for each mode is
represented for multiple-mode approach which is Jlater used in the
nonlinear solution.

The application of Lagrange's equation leads to the equation of

motion for linear free vibration of a beam element as

[m1(& } + [k (8} = 0 (4.1)



where [m] and [kLJ are the element mass and linear stiffness matrices as
defined in Eqs. (3.30) and (3.32), respectively. The element mass
matrices, [ms] and [mb] as defined in Eq. (3.30), can be evaluated from
Egs. (3.26) and (3.28), respectively. After all element mass and
stiffness matrices are known, the equations of motion for the system can
be assembled as

[M] {2} + [k 1 {a) =0 (4.2)

where [M] and [KL] are the system mass and linear stiffness matrices,
respectively. {A} is the eigenvector which consists of the vectors in

term of w and W o and u and Uy This eigenvector {A} can be expressed

_ oy
{a} {{c}} (4.3)

where {¢} is the eigenvector related to w and Ws o and {z} is the eigen-

as

vector related to u and Usy By using the bending part of Eq. (4.2),

the system equations of motion for bending only can be expressed as
M1 {o} + [k 1 (o} =0 (4.4)

where [Mb] and [KLb]are the bending system mass and linear stiffness
matrices which are related to Egs. (3.28) and (3.34), respectively.

Equation (4.4) can be rewritten as
2 -

where 0 is the linear frequency (eigenvalue) and {¢L} is the corre-
sponding linear mode shape normalized to unity at the middle of beam.
It should be pointed out that for each linear frequency, there is a

corresponding linear mode shape, for example, the first linear

36
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frequency 1 corresponds to {¢L1}, W o corresponds to {¢L2},---, and
9 n corresponds to {¢Ln}.

Through the foregoing procedure, the linear solution for free
vibration of beam has been <clarified. The 1linear frequencies;
“L1 Y2 "7 “ULn
{¢Ll}, {¢L2},°", {¢Ln} have been evaluated. These linear mode shapes

and the corresponding  linear mode  shapes;

will be used later for multiple-mode approach in the next section.

4.2 Llarge Amplitude Solution
(Nonlinear Solution)

In this section, the multiple-mode nonlinear free and forced
vibrations of beam by finite element method are presented. The
iterative procedure and the convergence criteria are also included.

After the linear mode shapes have been determined (see Section 4.1
Small Deflection Solution), the nonlinear solution is performed as
follows.

By using the first linear mode shape and the total amplitude at the
middle of the beam, the deflection shape for the first iteration is

expressed as

{¢} = A {¢L1}. (4.6)

By using Eq. (4.6), the deflection shape of each element {8} can be
found. By using {8} and Eq. (3.24), the linearizing function ,f, for
each element can be determined. After the linearizing function has been
determined, the element nonlinear stiffness matrix [kNL] for each

element can be evaluated by wusing Eq. (3.37). The integration in




Eq. (3.37) can be performed by the extended Simpson's rule for 20
intervals3?,

The element stiffness matrix [k] and element mass matrix [m] can be
determined by using Eqs. (3.39) and (3.30), respectively.

The element harmonic force matrix [h] can be determined by using
Eq. (3.59). The constant ¢ in Eq. (3.59) is expressed in Egs. (3.53),
(3.54) and (3.55).

The application of Lagrange's equation leads to the element

nonlinear forced vibration of beam under harmonic forcing function.

This equation of motion is expressed as

[m] (8} + [[k] - [h1] {8} = O. (4.7)

Equation (4.7) can be rewritten as
[m] {8} + [[k 1 + [k, 1 - [n]] (&} = o. (4.8)

After all the element mass, stiffness and harmonic force matrices
have been determined for each element, the equations of motion for the

system can be assembled as
(M) (A} + [[K 1+ [Ky 1 - [H1] (8} = 0 (4.9)

where [KNL] and [H] are the system nonlinear stiffness and system
harmonic force matrices, respectively. The system equations of motion,
Eq. (4.9), can be reduced into the terms of w amd Way by using Guyan's
reduction technique31 and the definition of {A} is defined in Eq.

(4.3). This reduced system equation of motion can be expressed as

[RM] {6} + [RK] {4} = 0 (4.10)

38



where [RM] is the reduced system mass matrix and [RK] is the reduced
system stiffness matrix. It should be noted that [RK] consists of not
only the reduced system linear and nonlinear stiffness matrices but also
the reduced system harmonic force matrix.

In the process of transformation Eq. (4.9) into Eq. (4.10) there
exists the relation between the system deflection shape {A} and the

reduced system deflection shape as 31

{a} = [TRF] {¢} (4.11)

where [TRF] is the transformation matrix.

By the definition of multiple-mode approach, the reduced system
deflection shape {¢} is the combination of the 1linear mode shapes
{¢L} in Eq. (4.5) and their amplitudes. This reduced system deflection

shape {¢} can be expressed as
{6} = A {¢Ll} t A, {¢L2} *oeeee v AL {chn} (4.12)

where A; is the amplitude of the i-th mode, {¢Li} is the linear mode
shape of the i-th mode and n is the total number of modes. Equation

(4.12) can be rewritten in a matrix form as

(4,
(0 = Lloy} o) oee (o 2| (4.13)
\An
or
{0} = Lo (A} (4.14)
where

[¢0] = [{(bLl} {¢L2} ""'{¢Ln}]
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{A}= [A
of (725 (4.15)

By using Eq. (4.14), Eq. (4.10) can be transformed to the normal

coordinates, {Ao}, and is expressed as

T - T _
[¢o] [RM] E¢o] {AO} + [¢0] [RK] [¢o] {Ao} =0 (4.16)
or

[RMOJ {AO} + [RKo] {Ao} = 0, (4.17)

Equation (4.17) is in the form of an eigenvalue problem which can be
expressed as

mﬁL [RM_] (A} = [RK.1 (A} (4.18)

where w,, is the nonlinear frequency. By solving the eigenvalue

NL
problem, Eq. (4.18), the nonlinear frequency WNL1 and the eigenvector
{Ao} can be deterzined. After the eigenvector {Ao} has been known, the
amplitude ratios K%; i=1,2,+++, n can be determined.

By the definition of multiple-mode approach, Eq. (4.12), the
maximum deflection {amplitude) is the summation of amplitudes of all the

modes. This can be expressed as

n
A=3% A (4.19)
i=1 i
or
A,
A n i
—_—=1+73 — (4.20)
A i=2 A
1 1

or
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A =P (4.21)
1 - .

i
1+ —
A

—~p S

=2
A, 1
The ratio Il is from Eq. (4.18) as mentioned before. The value of
1
amplitude for 1i-th mode, A;j, can be solved by
Aj
Ai = (II) Al; i=2,3,*°s, n, (4.22)
Through the foregoing procedure, the first iteration has been

completed. The next iteration starts by using

A . 4.23
RN OO (4.23)

M3

(¢} =

-

8y wusing Eq. (4.23) instead of Eq. (4.6), the next iteration is
performed from that point onward to obtain the improved nonlinear
frequency WnL1 and i-th amplitude A;. This iterative process can now be
repeated until a convergence criterion (Section 4.3) is satisfied. It
should be noted that the nonlinear stiffness matrix [kNL] and the
harmonic matrix [h] are updated in each iterative process because of the
changing of the values of A;. The flow-chart of this solution procedure

is shown in Fig, 3.

4.3 Convergence Criteria

Three displacement convergence criteria proposed by Bergan and
C]ough33 and a frequency convergence criterion are employed in the
present study. The three displacement norms (criteria) are the modified
absolute norm, the modified Euclidean norm and the maximum norm. The

definitions of these three norms are given in the Appendix. The
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frequency norm is defined I(AwNL)j/(wNL)jI where (AmNL)j is the change
in nonlinear frequency during the j-th iterative cycle. Fig. 4 shows a
typical plot of these four norms versus number of iterations for a
three-mode simply supported beam (L/R = 1010) without inplane
displacement and inertia (IDI) subjected to a uniformly distributed
harmonic force Fo = 0.001 N/mm at A/R = 2.0. Fig. 5 shows a plot of
these four norms versus number of iterations for a three-mode clamped
beam (L/R = 1010) with inplane displacement and inertia (IDI) when both
ends are immovable (u = 0 at x = 0 and L) and the beam is subjected
to a uniformly distributed harmonic force Fo = 0.002 N/mm at
A/R = 4,0, For all of the following results presented in this study,
convergence 1is considered to be achieved whenever any one of the norms

reaches a value of 107>,
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Chapter 5
RESULTS AND DISCUSSIONS

The fundamental frequency ratio (w = wNLl/le) of multiple-mode
nonlinear free and forced vibrations at various amplitudes for simply
supported and clamped beams are reported in this chapter, Both
immovable and movable inplane edges conditions are considered. Finite
element results with and without inplane displacement and inertia (IDI)
are given. The meaning of "without inplane dispalcement and inertia” is
to neglect {¢}, Eq. (4.3), completely from the formulation. The
harmonic balance so]ution17, Runge-Kutta solution and experimental
resultl® are also given for comparison Qith the finite element
results., Because of symmetry, only a half of beam divided into twenty

elements of equal length is considered herein.
5.1 Boundary Conditions and Material Properties

The transverse deflection boundary condition for simply supported
beam is defined by letting the deflection (w) equal to zero at that
location. For <clamped supported beam, the transverse deflection
boundary conditions are the deflection (w) and its associated
slope (w,x) equaled to zero at that Tlocation. The inplane boundary
conditions are divided into two catagories; namely, immovable and
movable inplane edge. The definition of immovable inplane edge is

defined as the inplane displacement (u) at the boundary equaled to
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zero. For the movable inplane edge, the inplane displacement (u) is set
free at the boundary.

A11 the results presented here are based on the following material

properties:
mass density p = 26.6832 E-10 N - sec’/mm?
thickness h = 0.514 mm
width B =26.0 mm
Young's modulus E = 6.98 E+04 N/mm 2
radius of gyration R = 0.148379 mm

For nonlinear vibration, the effect of slenderness ratio (L/R) has
some influence 1in the solutions. In this report, there are many
slenderness ratios in use as shown in Table 1. These slenderness ratios
are calculated by changing the beam length and keeping the cross-
sectional area constant. Most of the results reported herein, is based
on the 150 mm. beam length (L/R = 1010) otherwise specified. This 150
mm. Tong beam (L/R = 1010) 1is the same dimension as the beam which

Yamaki et a1.18 performed the experiment.
5.2 Improved Nonlinear Free Vibration

The fundamental frequency ratios (“NLl/le) of free vibration at
various amplitudes (A/R) without inplane displacement and inertia (IDI)
for clamped and simply supported beams (L/R = 1010) are shown in Table 2
for the cases of single, two and three-mode method, respectively. The
amplitude ratio for these beams are also provided in Table 3. Table 2
shows that the more numbers of modes are used in the analysis, the less

the frequency ratios will be, e.g., at A/R = 5.0, the three-mode



Table 1 Relations Between Slenderness Ratio

(L/R) and Beam Length

Slenderness Beam
Ratio Length
L/R L (mm.)
1010 150,000
100 14,840
50 7.420
20 2.968

48



Table 2 Frequency Ratios for Nonlinear Free Vibration of
Clamped and Simply Supported Beams (L/R = 1010)
without Inplane Displacement and Inertia (IDI)

49

Frequency Ratio, w,  ./w
A/R NL1 L1
2 modes 3 modes
i Finite Elliptic Finite Finite
Element Solution Element Element
Clamped Beam
' 1.0 1.0218 1.0222 1.0218 (2)2 1.0217 (3)
2.0 1.0845 1.0857 1.0844 (3) 1.0831 (4)
| 3.0 1.1817 1.1831 1.1814 (5) 1.1757 (4)
| 4.0 1.3056 1.3064 1.3051 (6) 1.2900 (6)
5.0 1.4495 1.4488 1.4490 (8) 1.4188 (9)
Simply Supported Beam
1.0 1.0897 1.0892 1.0888 (3) 1.0888 (3)
2.0 1.3229 1.3178 1.3120 (5) 1.3119 (5)
3.0 1.6394 1.6257 1.6030 (7) 1.6022 (7)
4.0 2.0000 1.9760 1.9248 (11) 1.9218 (11)
5.0 2.3848 2.3501 2.2624 (17) 2.2549 (18)
a. Number in brackets denotes the number of iterations to get a

converged solution 1073
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Table 3 Amplitude Ratios for Nonlinear Free Vibration of Clamped
and Simply Supported Beams (L/R = 1010) without Inplane
Displacement and Inertia (IDI)

AmpTlitude Ratio

A/R 2 modes 3 modes

Al/AZ Al/A2 Al/A3

Clamped Beam

1.0 - 1054 - 1056 2164
2.0 - 280 - 282 559
3.0 - 137 - 139 261
4.0 - 87 - 89 157
5.0 - 64 - 66 109

Simply Supported Beam

1.0 446 446 *

2.0 125 125 7652
3.0 66 66 1972
4.0 45 44 848
5.0 35 34 480

* Number is larger than |104‘



solution yields smaller frequency ratiés than the two-mode solution.
Table 3 shows the influence of the amplitudes of the higher modes,
especially the amplitude of second mode. Table 4 shows the comparison
of a two-mode response between the finite element method and the Runge-
Kutta method for clamped and simply supported beams (L/R = 1010) without
inplane displacement and inertia (IDI). This clearly demonstrates .the
remarkable agreement between finite element and Runge-Kutta solutions.
These results are also shown in Figures 6 and 7 for the clamped and
simply supported cases, respectively.

The clamped and simply supported free vibration results
(L/R = 1010) with inplane displacement and inertia (IDI) for both ends
restrained from longitudinal movement (immovable case) are shown in
Table 5. The amplitude ratios for this clamped beam are also shown in
Table 6. The frequency-amplitude relationships for three-mode responses
of these clamped and simply supported beams are also shown in Figure
8. This figure clearly shows that the simply supported beam yields the
higher nonlinearity than the clamped beam.

The responses for both ends free to move longitudinally (movable
case) are shown in Tables 7 and 8. Table 7 shows the frequency-
amplitude relations for three-mode solution of clamped and simply
supported beams with inplane deformation and inertia for the slenderness
ratio of 100, 50 and 20. The result for the clamped case is also shown
in Figure 9., From this figure, the high slenderness ratio beam
(L/R = 100) yields almost none of nonlinearity. Conversely, the less
slenderness ratio case (L/R = 20) leads to a situation that eventually
exhibits slightly softening type nonlinearity. The softened type exists

when the nonlinear frequency is less the linear frequency (w<1.0).
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Table 4 Comparison Between Runge-Kutta Method and Finite

Element Method for Two-Mode Nonlinear Free Vibration
of Clamped and Simply Supported Beams (L/R = 1010)
without Inplane Displacement and Inertia (IDI).

Frequency Ratio, wNLl/le

1.

A/R % Difference
Finite Element Runge-Kutta
Clamped Beam
1.0 1.0218 1.0222 0.04
2.0 1.0845 1.0852 0.07
3.0 1.1817 1.1810 0.03
4.0 1.3056 1.3009 0.32
5.0 1.4495 1.4373 0.81
Simply Supported Beam
1.0 1.0888 1.0888 0.00
2.0 1.3120 1.3135 0.11
3.0 1.6030 1.6115 0.53
4.0 1.9248 1.9467 1.13
5.0 2.2624 2.3023 1.73

T Z Difference =

(Runge-Kutta) - (Finite Element) x 100 %

{Runge-Kutta)
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Table 5 Frequency Ratios for Nonlinear Free Vibration of

Clamped and Simply Supported Immovable Beams

(L/R = 1010) with Inplane Displacement and Inertia

(IDI)
Frequency Ratio, wNLl/wLl
A/R 1 mode 2 modes 3 modes
Finite Rayleigh Finite Finite
Element Ritz> Element Element
Clamped Beam
1.0149 - 1.0149 (2)3 1.0149 (2)
. 1.0582 - 1,0581 (3) 1.0581 (3)
1.1268 - 1.1264 (4) 1,1259 (4)
. 1,2164 - 1.2151 (5) 1.2140 (2)
. 1,3226 - 1.3202 (6) 1.3176 (6)
Simply Supported Beam
1.0 1.0607 1.06070 1.0607 (2) 1.0607 (2)
2.0 1.2247 1,2246 1.2247 (2) 1.2247 (2)
3.0 1,4577 1.4573 1.4577 (2) 1.4577 (2)
4.0 1.7320 1.7309 1.7320 (2) 1.7320 (2)
5.0 2.0310 2.0289 2.0310 (2) 2.0310 (2)

a. Number in brackets denotes the number of iterations to get a

converged

b. L/R = 100

solution 1073
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Table 6 Amplitude Ratios for Nonlinear Free VYibration of
Clamped Immovable Beams (L/R = 1010) with Inplane
Displacement and Inertia (IDI)

Ampli tude Ratio

A/R 2 modes 3 modes

A1/Ay Ap/Ay Ap/A3
1.0 - 1354 - 1354 *
2.0 - 346 - 346 2690
3.0 - 159 - 159 1202
4.0 - 94 - 95 678
5.0 - 64 - 64 442

* Number is larger than |104'
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Table 7 Frequency Ratios (wNLl/le) for Three-Mode Nonlinear
Free Vibration of Clamped and Simply Supported Movable

Beams with Inplane Displacement and Inertia (IDI) for

Different Slenderness Ratio (L/R)

Slenderness Ratio, L/R

A/R
100 50 20
Clamped Beam
1.0 .9999 (2)3 .9997 (2) .9983 (2)
2.0 9997 (2) .9989 (2) .9933 (2)
3.0 .9994 (2) L9976 (2) .9850 (3)
4.0 .9989 (2) L9957 (2) L9737 (3)
5.0 .9983 (2) .9933 (2) .9596 (3)
Simply Supported Beam

1.0 1.0000 (2) .9999 (2) .9993 (2)
2.0 29999 (2) .9996 (2) .9973 (2)
3.0 .9998 (2) .9990 (2) .9938 (2)
4.0 .9996 (2) .9982 (2) 9891 (2)
5.0 .9993 (2) .9973 (2) .9832 (2)

a. Number in brackets denotes the number of iterations to get a

converged solution 1077,
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Table 8 Amplitude Ratios for Three-Mode Nonlinear Free
Vibration of Clamped and Simply Supported Move-
able Beams (L/R = 20) with Inplane Displacement
and Inertia (IDI)

Amplitude Ratio

A/R

Al/AZ Al/A3

Clamped beam
1.0 6410 *
2.0 1613 *
3.0 724 - 8914
4.0 414 - 5152
5.0 270 - 3413
Simply Supported Beam

1.0 * *
2.0 * *
3.0 5178 *
4.0 2936 *
5.0 1898 *

* Number is larger than 'lO

Y
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Atluri® also obtained the similar softening type in his investigation.
For the simply supported case as shown in Table 7, it exhibits 1less
influence of softening type than the clamped case. Table 8 shows the
amplitude ratios for three-mode solution of clamped and simply supported
movable beams (L/R = 20) with IDI. The comparison of the amplitude
ratio between the movable clamped case (Table 8) and the immovable
clamped case (Table 6) shows that the higher modes have more influence
on the immovable case than the movable case.
5.3 Nonlinear Response to Distributed
Harmonic Force

The responses of clamped and simply supported beams (L/R = 1010)
without IDI are shown in Tables 9 and 10. Table 9 shows the frequency
ratios for the cases of single, two and three-mode approaches. It
should be noted that as the amplitude is increased, the more iteration
is needed. The amplitude ratios for these beams is shown in Table 10,
The frequency-amplitude relations for these clamped and simply supported
beams with various force intensity (Fo) are also plotted in Figures 10
and 11 for the three-mode solution, respectively.

The responses of clamped and simply supported immovable beams
(L/R = 1010) with IDI are shown in Tables 11 and 12. Table 11 shows the
frequency ratios for the cases of single, two and three-mode
approaches. It also shows that the higher modes are more important for
the clamped beam than the simply supported beam. This can be observed
by looking at one of the amplitude, eg. A/R = + 5,0, the frequency ratio
for the clamped beam is changed for different numbers of modes used in

the formulation, but the frequency ratio for the simply supported beam



Table 9 Frequency Ratios for Nonlinear Forced Vibration of
Clamped and Simply Supported Beams (L/R = 1010) without
Inplane Displacement and Inertia (IDI) under Uniform
Harmonic Distributed Force

Frequency Ratio, wNLl/le

A/R
1 mode 2 modes 3 modes
Clamped Beam: F = 0.002 N/mm
- 1.0 .4101 .4105 (3)3 L4097 (3)
1.3856 1.3855 (3) 1.3856 (2)
+ 2.0 .8592 .8595 (4) .8573 (3)
1.2705 1.2701 (3) 1.2694 (4)
+ 3.0 1.0509 1.0511 (5) 1.0440 (5)
1.2994 1.2987 (4) 1.2940 (4)
+ 4.0 1.2189 1.2189 (6) 1.2019 (7)
1,3869 1.3860 (6) 1.3725 (6)
+ 5.0 1,3877 1.3878 (8) 1.3554 (9)
1.5087 1.5078 (8) 1.4794 (8)
Simply Supported Beam: F, = 0.001 N/mm
- 1.0 1.8328 1.8331 (3) 1.8331 (3)
t 2.0 .8150 .7937 (5) .7934 (5)
1.6840 1.6771 (5) 1.6771 (5)
+ 3.0 1.4013 1.3560 (7) 1.3549 (7)
1.8470 1.8168 (7) 1.8162 (7)
£ 4,0 1,8593 1.7760 (11) 1,7725 (11)
2.1314 2.0629 (11) 2,0603 (11)
£ 5.0 2.2920 2.1625 (17) 2.1543 (18)
2.4742 2.3581 (17) 2.3511 (18)

a. Number in brackets denotes the number of jterations to get a
converged solution 1073
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Table 10 Amplitude Ratios for Nonlinear Forced VYibra-

tion of Clamped and Simply Supported Beams
(L/R = 1010) without Inplane Displacement
and Inertia (IDI) under Uniform Harmonic
Distributed Force

Amplitude Ratio

A/R 2 modes 3 modes

Ay/A, Ay/As A1/A5

Clamped Beam: F, = 0.002 N/mm
1,0 - 1054 - 10586 2164
t 2.0 - 280 - 282 559
£ 3.0 - 137 - 139 261
t 4.0 - 87 - 89 157
£ 5.0 - 64 - 66 109
Simply Supported Beam: F, = 0.001 N/mm

- 1.0 446 446 *
t 2.0 125 125 7652
t 3.0 66 66 1972
t 4.0 45 44 848
£ 5.0 35 34 480

* Number is larger than ‘10

4}.



64

"S3pOW € 93403 PIINGLJUISLPp ‘B[qeAouwmwl Il O/M ‘weaq padwe|d ‘uoLjeAqLA Paduo4 0T "Hid
Mo /4 WNm 01wy AIN3ND3YA
0 8l 9l 7l 4! 0l 80 90 70
{ | | | | | I { 0

d/v




65

7'C

‘sapow ¢ 92404 PIINQLUISLP ‘IdI O/M ‘weag pardoddns Ajdwis ‘uorjeaqia paduo4 11 "bBi4

Vlm/ 4 WNm 0wy AON3ND3YA

a4 0¢ 81 9l 7 <l 0l 80
I I T T _ T T I 0
1
l
y/v
—€
O“Ow kK
\ﬁoo
oIt
g



Table 11 Frequency Ratios for Nonlinear Forced Vibration
of Clamped and Simply Supported Immovable Beams
(L/R = 1010) with Inplane Displacement and
Inertia (IDI) under Uniform Harmonic Distributed

Force
Frequency Ratio, w,, ./w
A/R NL1" L1
1 mode 2 modes 3 modes
Clamped Beam: F, = 0.002 N/mm.
+ 1.0 .3925 .3929 (3)2 .3928 (3)
1.3805 1.3804 (3) 1.3804 (3)
+ 2.0 .8258 .8260 (4) .8258 (4)
1.2481 1.2478 (3) 1.2478 (3)
+ 3.0 .9888 .9888 (4) .9881 (4)
1.2497 1,2489 (3) 1.2486 (4)
+ 4.0 1.1227 1.1220 (5) 1.1205 (5)
1,3033 1.3017 (4) 1.3007 (4)
+ 5.0 1,2546 1.2527 (6) 1.2497 (6)
1,3872 1.3845 (6) 1.3821 (6)
Simply Supported Beam F, = 0.001 N/mm
- 1.0 1.8156 1.8156 (2) 1.8156 (2)
+ 2.0 .6436 .6436 (2) L6436 (2)
1.6080 1.6080 (2) 1.6080 (2)
+ 3.0 1,1837 1.1837 (2) 1.1837 (2)
1.6879 1.6879 (2) 1.6879 (2)
+ 4.0 1.5675 1.5675 (2) 1.5675 (2)
1.8823 1.8823 (2) 1.8823 (2)
+ 5.0 1.9211 1,9211 (2) 1.9211 (2)
2.1352 2.1352 (2) 2.1352 (2)

a. Number 1in brackets denotes the number of iterations to
get a converged solution 107
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Table 12 Amplitude Ratios for Nonlinear Forced Vibration of
Clamped Immovable Beam (L/R = 1010) with Inplane
Displacement and Inertia (IDI) under Uniform Harmonic
Distributed Force; Fo = 0.002 N/mm.

Amp1itude Ratio

A/R 2 modes 3 modes -

+ 1.0 - 1354 - 1354 *

+ 2.0 - 345 - 346 2689

+ 3.0 - 159 - 159 1202

+ 4.0 - 94 - 94 682

+ 5.0 - 64 - 64 442

* Number is larger than 'lO

Y
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apparently remains the same no matter how many modes are used in the
formulation., Figure 12 shows the frequency-amplitude relation for the
clamped immovable beam under uniform harmonic force intensity of Fy = 0
(free-vibration case), 0.002 and 0.004 N/mm. It should be noted that
all curves in this figure shows the hardening type nonlinearity. Figure
13 shows the comparison of harmonic balance methodl7, expem’ment18 and
finite element method for a clamped immovable beam under uniform
harmonic distributed force intensity Fo = 0.004170277 N/mm. It clearly
demonstrates the remarkable agreement between the experiment and the
finite element (with IDI) solution.

The responses for the movable cases are shown in Table 13 and 14.
Table 13 shows the frequency ratios and amplitude ratios for three-niode
clamped movable beam with IDI under uniform harmonic force. Similarly,
the results of the simply supported beam are shown in Table 14, Figure
14 shows the frequency-amplitude relation for three-mode clamped movable
beam of slenderness ratio L/R = 20. A1l of the curves in this figure
shows that the beam eventually exhibits slightly softening type
nonlinearity. Figure 15 shows the comparison between the immovable case
and the movable case for a three-mode clamped beam (L/R = 100) with
IDI under the force intensity F, = 20 N/mm. This clearly shows that the
movable case reduces beam nonlinearity when compared to the immovable
case,

5.4 Nonlinear Response to Concentrated
Harmonic Force
The application of the finite element method to simulate the case

of a concentrated force is to let the 1length of the 1loaded element
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Fig. 13. Forced vibration, clamped beam, immovable distributed force F0 =

0.004170277 N/mm experiment vs. harmonic balance method vs.
finite element method (W/IDI, 3 modes).



Table 13 Frequency Ratios and Amplitude Ratios for
Three-Mode Nonlinear Forced Vibration of
Clamped Movable Beam with Inplane Displace
ment and Inertia (IDI) under Uniform Harmonic
Distributed Force

Frequency Amp1itude Ratio
A/R Ratio,
onL1/oLy Ar/A; A1/A3

L/R = 100; Fy = 20 N/mm

£ 1.0 .4011 (2)8 * *
1,3560 (2) * *
£ 2.0 L7617 (2) * *
1.1911 (2) * *
+ 3.0 .8482 (2) * *
1.1306 (2) * *
+ 4.0 .8880 (2) * *
1.0987 (2) 8271 *
+5.0 .9107 (2) 7704 *
1.0788 (2) 5488 *

L/R = 20; Fy = 5000 N/mm

+ 1.0 .8137 (3) 9653 *
‘ 1.1538 (2) 4797 *
+ 2.0 .9061 (3) 1940 *
1.0734 (3) 1380 *
+ 3.0 .9282 (3) 817 *
1.0387 (2) 651 - 8020
+ 4.0 L9319 (3) 452 - 5620
1.0137 (3) 381 - 4757
+ 5.0 .9268 (3) 290 - 3655
.9913 (3) 252 - 3202
a. Number in brackets denotes the number of iterations to

get a converged solution 107°



Table 14 Frequency Ratios and Amplitude Ratios for Three-
Mode Nonlinear Forced Vibration of Simply Supported
Movable Beam with Inplane Displacement and Inertia
(IDI) under Uniform Harmonic Distributed Force

Frequency Ampli tude Ratio
A/R Ratio
wyL1/eL1 A1/A; Ar/A3

L/R = 100; Fo = 3 N/mm

t 1.0 .6131 (2) * *
1.2744 (2) * *
t 2.0 .8293 (2) * *
1.1453 (2) * *
t 3.0 .8897 (2) * *
1.0988 (2) * *
+ 4.0 .9183 (2) * *
1.0747 (2) * *
£ 5.0 .9349 (2) * *
1.0598 (2) * *

L/R = 205 F, = 1000 N/mm

t 1.0 .8162 (2) * *
1.1537 (2) * *
t 2.0 9105 (2) * *
1.0770 (2) 9929 *
t 3.0 L9371 (2) 5825 *
1.0475 (2) 4660 *
t 4.0 L9471 (3) 3203 *
1.0295 (2) 2709 *
+ 5.0 .9499 (3) 2034 *
1.0154 (2) 1779 *

a. Number in brackets denotes the number of iterations to
get a converged solution 107>
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become smaller and smaller. By letting 20 to be the length of loaded
element from coordinate x=a to x=b, Eq. (3.55) can be applied to
evaluate the constant c¢ which provides the harmonic force matrix [h] in
Eq. (3.59). The effect of the length of the loaded element, L4 is
studied and shown in Table 15 for a three-mode clamped immovable beam
(L/R = 1010) with IDI for the total force P of 0.3 N at the middle of
beam. The simulated distributed force intensity over the loaded element
is calculated by Fo = P/xo for Eq. (3.59). Similarly, the effect
of 10 is shown in Table 16 for a two-mode simply supported immovable
beam (L/R = 1010) with IDI. The comparison of a beam under the same
amount of the total force P = 0.3 N, but different kind of loading, is
shown in Figure 16. In this figure, a three-mode clamped immovable bLeam
(L/R = 1010) with IDI under a  concentrated force at the middle
(xo /L=2%) is plotted against a similar beam under uniformly distributed
force over the entire beam (Fj = 0.002 N/mm.). Similarly, the two-mode
simply supported solutions for the total force P = 0.15N, Fo = 0.001
N/mm for uniform distributed force over entire beam case, are plotted in
Figure 17. It shows that the concentrated force cases are much more

severe than the uniform distributed force for the cases studied.



Table 15 Frequency Ratios for Three-Mode Forced Vibration

of Clamped Immovable Beam (L/R = 1010) with Inplane
Displacement and Inertia (IDI) under Concentrated

Harmonic Force: Total Force P = 0.3 N

Frequency Ratio, wNLl/le

A/R (XO/L) percent
5 2 1
- 1.0 1.6425 (3)2 1.6436 (3) 1.6437 (3)
+ 2.0 5372 (4) .5357 (4) .5354 (4)
1.3965 (4) 1.3971 (4) 1.3972 (4)
+ 3.0 .8468 (5) .8462 (5) .8461 (5)
1.3485 (4) 1.3489 (4) 1.3490 (4)
t 4.0 1.0314 (6) 1.0310 (6) 1.0310 (6)
1.3724 (5) 1.3727 (5) 1.3728 (5)
+ 5.0 1.1879 (7) 1.1876 (7) 1.1876 (7)
1.4356 (5) 1.4359 (5) 1.4359 (5)

get a converged solution 107°

. Number in brackets denotes the number of iterations to



Table 16 Frequency Ratios for Two-Mode Nonlinear Forced
Vibration of Simply Supported Immovable Beam (L/R =

1010) with Inplane Displacement and Inertia (IDI) under

Concentrated Harmonic Force: Total Force P = 0,15 N.

Frequency Ratio, wNLl/le

. A/R (xo/L) percent
5 2 1
- 1.0 2.1286 (2)2 2.1296 (2) 2.1297 (2)
- 2.0 1.7897 (2) 1.7903 (2) 1.7904 (2)
+ 3.0 .9949 (2) .9941 (2) .9940 (2)
1.8056 (2) 1.8060 (2) 1.8061 (2)
+ 4.0 1.4658 (2) 1.4654 (2) 1.4654 (2)
1.9625 (2) 1.9628 (2) 1.9628 (2)
5,0 1.8558 (2) 1.8555 (2) 1.8555 (2)
2.1923 (2) 2.1925 (2) 2.1925 (2)

a. Number in brackets denotes the number of iteratives to get
a converged solution 1070
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Chapter 6
CONCLUSIONS

Multiple-mode nonlinear forced vibration of a beam has been
analyzed by the finite element method. Inplane (longitudinal)
displacement and inertia (IDI) are considered in the formulation.
Nonlinear free vibration can be simply treated as a special case of the
general forced vibration by setting the harmonic force matrix equal to
zero, The effect of the higher modes is more pronounced for the clamped
supported beam than the simply supported one. In addition, the beam
without inplane displacement and inertia yields more effect in the
higher modes than the one with inplane deformation and inertia. The
effect of midplane stretching due to large deflection is to increase the
nonlinearity. However, the effects of inplane displacement and inertia
are to reduce nonlinearity. A beam with end supports restrained from
axial movement (immovable case), only the hardening type nonlinearity is
observed., For beams of large slenderness ratio (L/R > 100) with movable
end supports, the increase in nonlinearity due to large deflection is
partially compensated by the reduction in nonlinear due to inplane
displacement and inertia. This leads to a negligible hardening type
nonlinearity, therefore, the small deflection linear solution can be
employed. However, beams of small slenderness ratio (L/R = 20) with

movable end supports, the softening type nonlinearity is found. The

80



concentrated force case yields a more severe response than the uniformly

distributed force case.

The finite element method, in practice, is more suitable to use to

analyze modern complex structures. Nonlinear theory can be employed to

obtain more accurate solutions and explain new phenomena. By combining
the finite element method and nonlinear theory together, the more
realistic models of structural responses can be resulted easily and less

time consuming. The nonlinear finite element method which is studied

herein, may be extended to study many more advanced topic researches,

for example, the service life of the structure (S-N curve), the study in
nonlinear random vibration and the effects of sub or super-harmonic

excitations. This clearly demonstrates an advantage for researchers to

employ this multiple-mode nonlinear vibration in the future.
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APPENDIX

CONVERGENCE CRITERIA

85

Three displacement convergence criteria (norms) used by Bergan and

C]ough33 for multiple-mode nonlinear free and forced vibrations by

finite element method are employed. These three norms are the maximum

norm, the modified absolute norm and the modified Euclidean norm.

The maximum norm is defined as

Av .
J
J,ref

]le]lM = max

.|V
J

The modified absolute norm is defined as

Av ;.
j
Vi,ref

lelly =42

The modified Euclidean norm is defined as

2
N Av .,
. J
elle = (g ¢ )
'l ‘IE N- J=1 vj,ref

(A.1)

(A.2)

1/2
(A.3)

In these expressions, Avj is the change in displacement component j

during jterative cycle n, and vj,ref

is the reference displacement which

is the largest displacement component of the corresponding “type". For

instance in a nonlinear vibration problem involving deflections w and

rotations Ws oo the reference displacement are the largest deflection and

the largest rotation of the corresponding type.



