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Abstract

Hot structures fabricated from orthotropic
materials are an attractive design option for
future high speed vehicles. Joining sub~
assemblies of these materials with standard
cylindrical fasteners can lead to loose joints or
highly stressed joints due to thermal stress. A
method has been developed to eliminate thermal
stresses and maintain a tight joint by shaping the
fastener and mating hole. This method allows both
materials {fastener and structure), with different
coefficients of thermal expansion (CTE's) in each
of the three principal material directions, to
expand freely with temperature yet remain in
contact. For the assumptions made in the
analysis, the joint will remain snug, yet free of
thermal stress at any temperature. Finite
element analysis was used to verify several
thermal-stress-free fasteners and to show that
conical fasteners, which are thermal-stress-free
for i{sotropic materials, can reduce thermal
stresses for transversely isotropic materials
compared to a cylindrical fastener. Equations for
thermal-stress-free shapes are presented and
typical fastener shapes are shown.

Introduction

Hot structures are an attractive design option
for some structural components of future high
speed vehicles to reduce weight and increase
vehicle efficiency. An example of such a hot
structure is shown in figure ! and described in
reference 1. Most of these hot structures will be
fabricated by joining structural sub-assemblies
with metal fasteners. Moreover, carbon or
ceramic-based high temperature materials will
likely be used in these structural sub-assemblies.
These high temperature materials have much lower
coefficients of linear thermal expansion (CTE's)
than metal fastener materials which makes it
difficult to design a structural joint that
remains tight over the operational temperature
range. The problems encountered using a standard
cylindrical fastener in a high temperature joint
are illustrated in figure 2. In the figure, the
fastener material is assumed to have a much
greater CTE than the structural material being
Joined. If the fastener is snug in the radial
direction at room temperature, high thermal
stresses will result at elevated temperature. If
sufficient radial clearance is left around the

fastener so that it is just snug at elevated
temperature, then it may be too loose at room
temperature. Similarly, if the fastener fis
axially snug at room temperature it will be loose
at elevated temperature, or it must be highly
prestressed at room temperature to remain snug at
elevated temperature. The radial thermal stress
or axial prestress required to maintain an
acceptadly tight joint over the operational
temperature range may cause premature failure of
the joint.

There are several approaches to solving this
problem. First, a joint consisting of a standard
cylindrical fastener joining pieces of the
selected structural material should be analysed to
determine if there is a satisfactory combination
of radial clearance and axial prestress at room
temperature which will provide acceptable radial
thermal stresses and be axially snug at elevated
temperature. A second approach i{s to use a
fastener material with a CTE matching the CTE of
the structural material closely enough to provide
a tight joint with acceptable thermal stresses.
However, such a material with the ductility
desirable for a fastener, is not presently
available for use with cardbon and ceramic-based
high temperature structural materials.

If neither of these approaches provides a
satisfactory joint, the interface between the
fastener and structural materials can be shaped to
reduce or eliminate the joint thermal stresses
while maintaining a snug fit. Figure 3
1llustrates such a joint in which the fastener and
structural materials are free to thermally expand
while remaining in contact to provide a snug,
thermal-stress-free joint at all temperatures.
Previous studies (ref. 2-4) have identified
thermal-stress-free shapes for isotropic and
transversely isotropic materials. In this paper
an isotropic material is defined as having the
same CTE in all directions, a transversely
isotropic material is defined as having the same
CTE in all directions in the plane of the material
but having a different CTE through-the-thickness
of the material, and an orthotropic material is
defined as having a different CTE in the direction
of each of the three principal material axes.

The objective of this study is to develop a
solution for a three-dimensional thermal-stress-
free interface between two orthotropic materials
and to investigate the behavior of these fasteners
using finite element analysis. This paper
contains the solution for a three-dimensional,
thermal-stress-free interface between two
orthotropic materials at elevated temperature. An
algebraic equation is derived for the shape of



such an interface, and the assumptions of the
analysis are discussed. Results of finite element
analysis of thermal stresses in joints with
isotropic and transversely isotropic materials are
presented.

Symbols

constants in partial differential equation

integration constants for characteristic

equations

E Modulus of Elasticity

L . length

m,n exponents in equation 18

p parameter which determines characteristic
shape in x-z plane

q parameter which determines characteristic

shape in y-z plane

r,0,z cylindrical coordinates

r, radius of fastener shank

T temperature

Te initial temperature

TSF thermal-stress-free

X,¥,2Z rectangular Cartesian coordinates

Z, length of fastener shank or thickness of
washer

1 coefficient of linear thermal expansion
(CTE)

v Poisson's ratio

0 stress

T shear stress

Subscripts:

max maximum

pin referring to a cylindrical pin
r in the r direction

X in the x direction

y in the y direction

z in the z direction

[} in the 6 direction

1 material 1

2 material 2

Mathematical Analysis

Development of interface equation

The objective of this analysis is to find an
interface between two orthotropic, homogeneous
materials, which have different CTE's in all three
principal material directions, along which the two
materials will remain in contact, without
interference or separation, as temperature
changes. The equation for the shape of such an
interface is developed i{n the following
discussion.

Consider a continuous surface, z = f(x,y),
which separates two orthotropic materials, each
with different CTE's along all three principal
material axes (see figure 4). The material axes
of the two materials are assumed to be aligned.
All motion due to thermal expansion is assumed to
be relative to the origin of the coordinate
system, which 1s parallel to the principal
material axes. The CTE's of both materials are
assumed to be independent of temperature and
location within each material. Also, assume the
temperature is uniform throughout the materials
and no frictional forces act along the interface.

Consider a point on the interface at an initial
temperature T, at which adjacent particles in the
two materials are denoted by points 1 and 2.
After an infinitesimal change in temperature, the
two points, which were adjacent, separate yet
remain on a common boundary, as shown in figure 4.
The separation in the x, y, and z directions are
dx, dy, and dz respectively, and are related to
the continuous surface, z=f(x,y) by:

3z 40,
dz = x dx + 3y dy ()

where

dz = dz,~ dz, dx = dx, - dx,

and dy = dy, - dy, (2)

Using the above assumptions, the components of the
motion due to thermal expansion for each material
are given by the following expressions:

For material 1:

dx, = x a, dT , dy, =y uyl qT |,

and dz, = 2 uzl qaT (3)

For material 2:

dx, = x “x, dT , dyy =y ay’ qT ,

and dz, = za_ dT (€))
Z,

Substitution of equations (2), (3), and (4) into
equation (1) produces the following differential
equation which governs the shape of the thermal-
stress-free interface between the materials.

3z 3z
CL X3+ C Y T z (5)
where
a. _a
C,= ax - ux and  C,= c—h———h_ S (6)
Z, z, Z, t

Equation (5) is a linear, first order partial
differential equation which can be solved as
outlined below using the method described in
reference 5. Equation (5) implies the
relationship:

o _ dy _ _dz
e, X Cp ¥ z m

Solution of these two independent ordinary
differential equations produces equations defining
two surfaces which are given by:

p p
X . C, and Zae, (8)
y? z
1 1
where ps= E, , and q= re and ¢, and

¢, are constants of integration.
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Intersections of the two surfaces defined in (8)
define the characteristic curves of the
differential equation (5). To define a unique
surface, a boundary curve through which these
characteristic curves pass must be specified. The
following equations define a boundary which
represents the intersection of the thermal-stress-
free portion of a fastener with a cylindrical
shank. At

z=2, ., ri=x*+y? (9)

where z, 1s the length of the shank or thickness
of the washer, and r, is the radius of the shank.
Substituting z = z, from equations (9) into
equations (8) and solving for x and y gives:

1 1

x = (cy zo)P y = (E::Ea)q . (10)

Further substitution of equation (10) into the
expression for r, from equations (9) gives:

2 2

rf - (e, z,)P + [ngiﬁ]q. )

Eliminating the constants ¢, and ¢, from equation
(11) by use of equations (8) produces the equation
for the thermal-stress-free interface between two
orthotropic materials.

2 2

(L2 (B8P« (L2 (20- 1 (2

For transversely isotropic materials (p = q)
equation (12) can be converted to cylindrical
coordinates and reduced to the following form,
which is identical to the equation in reference 2.

rP (13)

1|N
°oT| o

For isotropic materials equations (12) and (13)
reduce to the eguation for a conlcal surface,
which applies to the fastener described in
reference 3.

Equation (12) represents only one of a family
of surfaces which provide a thermal-stress-free
interface between two orthotropic materials.
Equation (12) is limited to a surface containing
the circular curve defined in equations (9).
Equations (9) could be replaced by any desired
curve, which could then be combined with equations
(8) to define a thermal-stress-free interface. If
equations (8) and the specified curve cannot be
readily combined algebraically, they may be easily
solved numerically to map out points on the
surface.

Discussions of assumptions

In the previous analysis the following
assumptions were made: No frictional forces act
along the interface between the materials, the
principal material axes of the two materials are
aligned and parallel to the coordinate system,

motion resulting from thermal expansion of both
materials is relative to the origin of the
coordinate system, the CTE of each material lis
independent of temperature and location within the
material, and the temperature is uniformly
increased in both materials.

Frictional forces have been ignored to
simplify the analysis. For an interface between
two materials which is shaped according to
equation (12) the thermal expansion will not
produce any normal forces across that interface to
induce friction. 1In the absence of adherence
between the surfaces or applied mechanical forces
normal to the interface there should be no
frictional forces. :

The material axes of the two materials have
been assumed to be aligned to simplify the
expressions for motion due to thermal expansion.
As indicated in reference 6, the CTE's are
described by a symmetric second order tensor,
which by definition has principal directions.
Therefore, it should be possible to align the
principal axes of any two homogeneous materials.
In fact, because the CTE's are a second order
tensor for completely anisotropic, homogeneous
materials, the present development is directly
applicable to anisotropic homogeneous materials.

The motion due to thermal expansion in both
materials is assumed to be relative to a common
point. The fastener and washer must be arranged
to make this assumption correct.

The CTE's for each material are assumed to be
constant with temperature. 1In many real
materials, however, the thermal expansion varies
considerably with temperature. The interface
between materials can be shaped to be in full
contact, but thermal-stress-free, at the
fabrication temperature and at a particular, but
arbitrary design temperature by using the average
coefficients of thermal expansion between the two
temperatures. The assembly will have to be
analyzed for other temperatures to determine if
the resulting separation along the interface
and/or thermal stresses are acceptable.

Both materials were assumed to be at a
¢ommon, uniform temperature. For the derivation
of the i{nitial shape of the {nterface at T = T,
the implied assumption is that the temperature
increases uniformly everywhere in both materials.
The materials would most likely be shaped and
assembled at a uniform temperature -- probably
room temperature. Uniformly increasing the
temperature would therefore result in a uniform
elevated temperature. In many applications
temperature gradients may develop and the joint
must be analyzed to determine if the resulting
thermal stresses and/or separations along the
interface are acceptable. If these conditions are
unacceptable, it may be possible to shape an
interface to be thermal-stress-free for a specific
temperature distribution by modifying expressions
(3) to account for the spatial variation of
temperature change required to go from uniform
room temperature to the design temperature
distribution. The resulting shape would be
thermal-stress-free only for that specific
temperature distribution, however.



Characteristic shapes

The shape of the thermal~stress-free
interface defined by equation (12) is governed by
the parameters p and q, which are functions of the
CTE's of the two materials. The curves produced
from the intersection of the surface described by
equation (12) and the x-y and y-z planes are
identical to the characteristic shapes shown in
reference 2 and figure 5. Thus the values of p
and q determine the characteristic shape of the
surface and the suitability of the surface for use
as a fastener. The first three characteristic
shapes shown on figure 5 are those which can be
most readily applied to fasteners.

A typical thermal-stress-free joint is shown
in figure 3. The joint consists of a fastener
which has its bearing surface shaped according to
equation (12), a matching hole in the sheets of
Joined material, and a spacer with the same
thermal expansion properties as the joined
material. The shaped head of the fastener is
mated to a cylindrical shank. A clearance is
necessary around the cylindrical shank within the
spacer. The horizontal interface between the
spacer and fastener material assures that the
thermal expansion will occur relative to the
origin of the coordinate system as assumed in the
analysis.

Figures 6a and 6b show various thermal-
stress-free fastener shapes for different values
of p and q greater than zero. The thermal-stress-
free shapes are joined to a cylindrical shank
which reaches to the origin of the coordinate
system. Figure 6a shows a typical conical
fastener which would be thermal-stress-free for
isotropic materials (p=q=1), and axisymmetric
fasteners which would be thermal-stress-free for
transversely isotropic materials (p=q). The
shapes in figure 6a are identical to those
described'in reference 2. Figure 6b shows
thermal-stress-free shapes for various
combinations of p and q. These shapes are
essenti{ally combinations of the characteristic
shapes in figure 6a. However, the shapes are not
axisymmetric and would therefore be more difficult
to fabricate. Not all combinations of materials
have thermal-stress-free interfaces which are
feasible for use as fasteners. Figure 6c shows
examples of several shapes which are not feasible
for fasteners (either p<0 or q<0). The upper
fastener has no means to provide clamping forces,
and the other two fasteners cannot be inserted
into similar shaped holes. The shapes shown in
figure 6 were shaped to mate with a ¢cylindrical
shank. It is possible, as stated earlier, to mate
the thermal-stress-free portion of the fastener
with almost any shape of shank. For a different
shape of shank the fastener shape could be much
different, however, the characteristic shape in
the x-z and y-z planes would be the same. Also,
as discussed {n reference 2, the radius and length
of the cylindrical shank of the fastener provide a
designer with some control over the dimensions of
the thermal-stress-free fastener.

Verification of Thermal-Stress-Free Shapes

It remains to be demonstrated that two
materials with an interface shaped according to
equation (12) will remain in contact without

thermal stresses at any temperature. This can be

shown as follows:

Consider the thermal expansion of each
material separately. As discussed in reference 2,
if the CTE's are assumed to be independent of
temperature the exact expression for thermal
expansion can be found by integrating the
equation:

dL = L o dT (14)

eu(T-T,)

to produce L = L, (15)

The equations for the location of points in
material 1 after expansion are therefore:

a, (T-T,) ay (T-T,)
X, =Xxe ! s Yi=ye'! ’

e, (T=T,)
and z, =z e ! (16)

Similarly, for material 2:

uyz(T‘To)

a, (T-To)
Ya =Y e ’

X, = X € 2 B

a, (T-T,)
and z, =z e “? (17

The location of the boundary of material 1 at
an arbitrary temperature, T, can be found by
substituting equations (16) into equation (12),
replacing the x, y, and z in equation (12) by the
expressions for x,, y,, and z,. Similarly, the
location of the boundary of material 2 at
temperature T can be found by substituting
equations (17) into equation (12). The shape of
the two boundaries at temperature T i{s found to be
the same for both materials and is given by the
equation:

2 2
X 12 (2%p _a(T-T,) ¥ 12 (25a _n(1-T,) _
()P e e () () e 1

z
(18)
a, a =-a G
X, Z X, Z
where m o= =t =1,
Z, z,
a a, =~-a, «a
and n = Yy “zz aYz 2z, .
Z; Z,

The boundaries are coincident at any temperature,
T, and therefore the two materials remain in
contact, yet do not develop thermal stresses.

Finite Element Analyses

The finite element method is commonly used to
numerically analyze the stresses in joints.
Therefore, finite element solutions were obtained
for comparison with the mathematically derived
solutions presented in this study. Finite element
analysis was used for two purposes in this study:
to verify that a typical joint with a fastener




shaped using equation (12) maintains contact, yet
is thermal-stress-free at elevated temperature;
and to {nvestigate the thermal stresses which
result from using a conical fastener (thermal-
stress-free only with isotropic materials) to join
a material with transversely 1isotropic CTE's. An
existing, general purpose finite element program,
Engineering Analysis Language (EAL) (ref. 7), was
used for the analyses.

Modelling

Three-dimensional finite element models were
used.to represent several joint configurations
with isotropic and transversely isotropic
materials. For the axisymmetric fasteners a 5
degree wedge shaped model of the fastener and
surrounding material was used. The three joints
which were modeled are shown in figures 7, 8, and
9. Figure 7 shows the finite element model of a
cylindrical fastener and surrounding material,
figure 8 shows the model of a conical fastener
with washer and surrounding material, and figure 9
shows an axisymmetric fastener shaped to be
thermal-stress-free for transversely isotroplic
material.
ular, but arbitrary, dimensions were
chosen for each of the three joints modelled. The
radius of the cylindrical fastener and the
cylindrical shanks of the other two fasteners was
chosen to be 0.1 inches and the radius of the
surrounding material for all three models was
chosen to be 1.0 fnch. The thickness of the
cylindrical fastener model was 0.15 inch, but the
symmetry constraints on the lower surface made the
model respond as though it was 0.3 inches thick.
The thickness of the material surrounding the
fastener in the other two joints was chosen to be
0.3 inches. The half angle of the conical

fastener was 30 degrees and the thickness of the
washer shown in figure 8 was sized so that the

vertex of. the conical surface was located on the
bottom plane of the model. The fastener in figure

9 was shaped according to equation 13 so that its
maximum and shank radil would be the same as the
conical fastener in figure 8. The thickness of

the washer was sized so that the origin of the
coordinate system was located on the lower surface
-of the model. The radil of the washers in figures
8 and 9 were sized to be slightly larger than the
maximum radii of the respective fasteners.

- Three-dimensional, linear 6-node and 8-node
elements were used to model the fastener and 8-
node elements were used to model the surrounding
material. Nodes on the sides and bottom of the
models were constrained to remain in their
respective planes, but were free to move within
those planes.

The most challenging portion of the finite
element analysis was modelling the contact between
the fastener and surrounding material along the
bearing surface. Adjacent nodes along this
boundary were connected by zero-length elements
which had high stiffness perpendicular to the
bearing surface and no stiffness tangent to the
surface. The elements allowed relative motion
along the boundary between the adjacent nodes, but
not perpendicular to it. The model was set up so
that if one of these elements was found to be in
tension, the element stiffness could be reduced to
an insignificant value and the two adjacent nodes

allowed to separate. The contact between the
washers and the material surrounding the fasteners
in figures 8 and 9 was modelled in the same way.
The clearance between the shank and the washer was
simulated by providing no connection between the
washer and shank in the radial direction.

An arbitrary set of i{sotropic stiffness
properties was used for all three models. The
modulus of elasticity used for the fastener was 30

X 106psi. and the modulus used for the surrounding

material and washer was 15 x 106 psi. The
Poisson's ratio used for both materials was 0.3.

For all three models the CTE, a, used for the

fastener was 10 x 100 {n/in/°F tn all three
directions. For the cylindrical model, the CTE of

the surrounding materjal was also assumed constant
in all three directions and varied between 1.0 and

5.0 x 10—6 in/in/°F. For the conical model the

CTE in the plane of the material surrounding the

fastener was varied between 1.0 and 5.0 x 100
in/in/°F, and the CTE through-the-thickness of the

material was varied between 1.0 and 12.0 x 10-6
in/in/°F. For axisymmetric fastener shown in
figure 9, the CTE in the plane of the material was

1.0 x 1078 tn/1n/°F, and the cTE through the
thickness of the material was 4.0 x 10-6 in/in/°F.

A limitation of the finite element program
precluded modelling a thermal-stress-free joint
for orthotropic materials shaped using equation
(12). The program only allows definition of CTE's
in the element reference frames and does not
provide a means to specify CTE's in the global
reference frame. It is impractical to construct a
finite element mesh for this problem so that all
of the element reference frames are parallel to
the global frame. In addition, the program does
not provide a means of inputting the full CTE
matrix for each element, so it was impossible to
input the correct CTE matrix for each element to
simulate principal expansions relative to the
global reference frame.

Numerical Resulis

The three finite element models, previously
described, were used to calculate thermal stresses
for several combinations of materials loaded by a
uniform temperature increase of 1000 °F. The
geometry and loading are axisymmetric. Therefore,
the r-6 shear and the 6-z shear stresses are zero.

The thermal stresses for a combination of
isotropic materials in a cylindrical fastener
Joint and a conical fastener joint are shown in
figure 10. The CTE of the fastener material is 10

x 10°4n/1n/°F and that of the material

surrounding the fastener is 1 x 10°8 in/in/°F in

all directions. As shown in the figure, the
cylindrical fastener is in blaxial compression of
just over -80,000 psi. The material around the
cylindrical fastener has compressive bearing
stress and a tensile hoop stress of approximately
the same magnitude. Stresses in the z direction
are negligible. The conical fastener model,
loaded by the same 1000 °F temperature increase,



showed negligible thermal stresses. The expanded
shape of the conical fastener joint in isotroplc
material is fllustrated in figure 11, The conical
fastener expands more than the surrounding
material, yet the two materials on the conical
interface do not separate or interfere. Thermal
growth is accommodated by sliding along the
conical interface, so that both materials can
expand freely. Although the exaggerated thermal
expansion appears large on the figure, the actual
difference in vertical growth is only 0.0036
inches, which is small compared to fastener
dimensions. Interference does occur between the
fastener shank and the washer as anticipated.
However they are not connected in the finite
element model to simulate the clearance which
would be required in a physical joint to avoid
this interference.

Thermal stresses in joints with transversely
isotropic materials are shown in figure 12 for
¢ylindrical pin, conical shape, and thermal-
stress-free shaped fastener. The properties of
the materials and the geometries of the
cylindrical and conical fastener joints are the
same as those for figure 10, except that the CTE
through-the-thickness of the material surrounding

the fastener is 4 x 10-6 in/in/°F (p=0.667). The
stresses in the cylindrical fastener joint are
identical to those in figure 10. The conical
fastener, however, now has nonzero stresses
because the materials are transversely isotroplc.
Note, however, that the thermal stresses in the
conical fastener joint are lower than those in the
cylindrical fastener for these particular
dimensions and material properties. In addition,
the fastener stresses are significantly higher
than those in the surrounding material. The z and
r-z shear stresses, which are negligible in the
cylindrical fastener joint, are significant in the
conical fastener joint. Figure 12 also shows that
a fastener shaped according to equation (13) can
eliminate: the thermal stresses in a transversely
isotropic joint.

Figure 13 shows the variation of thermal
stresses in the conical fastener joint as a
function of the parameter, p, which depends on the
CTE's of the two materials and determines the
characteristic shapes for a thermal-stress-free
shape (see figure 5). The stresses are normalized
by the absolute value of the peak stress in the
cylindrical fastener joint. When p=1 the conical
fastener is the correct thermal-stress-free shape
and the thermal stresses are zero. For p>! the
fastener and material separate and the fastener
becomes loose. For p<! the fastener and material
interfere with each other and thermal stresses
develop. These normalized stresses were found to
be a linear function of p for the cases analyzed.
The slope of these lines depends on the particular
geometry and set of stiffness properties used.

The horizontal dashed lines indicate the level of
peak stress in the cylindrical fastener joint for
comparison with the conical fastener stresses.
Since the stresses are small when p is close to 1,
it may be desirable to use conical fasteners to
reduce thermal stresses to an acceptable level
rather than using a more complex shaped fastener
to eliminate thermal stresses.

Figure 14 shows the expanded shape resulting
from thermal expansion of a fastener shaped to be

thermal-stress-free in transversely isotropic
material. As in figure 11, both materials are
free to expand, yet remain in contact on the
shaped portion of the interface between them.
Again, the shank and washer interfere, indicatiny
the need for a clearance between them in a
physical joint.

Concluding Remarks

High temperature carbon and ceramic-based
materials have significantly lower coefficients of
linear thermal expansion (CTE's) than metals which
are being considered for fasteners. A method was
developed to define the shape of the joint
interface between dissimilar orthotropic fastener
and structural materials that will eliminate joint
thermal stresses and maintain a snug fit over a
wide range of uniform temperature distributions,

A partial differential equation, which governs the
shape of such an interface, was derived and solved
to produce an algebraic equation for the shape of
a thermal-stress-free fastener for orthotropic
materials. This solution was also shown to apply
to completely anisotropic materials. This
equation was shown to reduce to a conical fastener
for isotropic materials and to an axisymmetric
fastener for transversely lsotropic materials.

The shape defined by the algebraic equation was
mathematically shown to be thermal-stress-free,
yet remain snug at all temperatures for the
assumptions made in the analysis. The following
simplifying assumptions were made: no frictional
forces act along the interface between the
materials, the principal material axes of the two
materials are aligned, the CT® of each material
is independent of temperature and location within
the material, and the temperature changes
uniformly in both materials. The motion resulting
from thermal expansion of both materlals was
assumed to be relative to the origin of the
coordinate system.

The finite element method is commonly used to
numerically analyze the stresses in joints.
Therefore, finite element solutions were obtained
for comparison with the mathematically derived
solutions presented in this study. Finite element
analysis was used for two purposes in this study:
to verify that a typical joint with a fastener,
shaped to eliminate thermal stresses, maintains
contact, yet is thermal-stress-free at elevated
temperature; and to investigate the thermal
stresses which result from using a conical
fastener to join a material with transversely
isotropic CTE's. Finite element calculations
verified that a conical fastener can be thermal-
stress-free for i{sotropic materials and that a
properly shaped axisymmetric fastener can
eliminate thermal stresses for transversely
isotropic materials. A conical fastener joint in
transversely isotropic materials develops through-
the-thickness thermal stresses not found in
cylindrical fastener joints. The thermal stresses
for such a conical fastener joint were found to be
significantly higher in the fastener than in the
surrounding material for the geometry analyzed.

The results of this stud:; indicate that
cylindrical fasteners may cause high thermal
stress, but fasteners can be shaped to eliminate
thermal stresses while maintaining a snug fit for
three-dimensional, homogeneous, orthotropic




materials. Conical fasteners, which are thermal-
Stress-free for isotropic materials, can reduce
thermal stresses for some transversely isotropic
materials compared to a cylindrical fastener.
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