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ABSTRACT

This paper describes our concept of "unstructured structure editing" and ted, an editor for unstructured

trees. Ted is used to manipulate hierarchies of information in an unrestricted manner. The tool has

been implemented and applied to the problem of organizing formal proofs. As a proof management tool,

it maintains the validity of a proof and its constituent lemmas independently from the methods used to

validate the proof. It includes an adaptable interface which may be used to to invoke theorem provers

and other aids to proof eonstructioh. Using ted, a user may construct, maintain, and verify formal
proofs using a variety of theorem provers, proof checkers, and formatters.
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1. INTRODUCTION

The manipulation and maintenance of detailed information in an organized manner is a

problem in software engineering projects. This paper describes a management tool that aids the

construction, modification, and maintenance of hierarchies of information. The tool has been

implemented and applied to the problem of maintaining formal proofs.

The tool is based on a tree editor which organizes and manipulates hierarchies of text,

program, or data. As a proof management tool, it maintains the validity of a proof and its

constituent lemmas independently from the methods used to validate the proof. It includes an

adaptable interface which may be used to to invoke automated proof methods. Using the tool, a

user may construct, maintain, and verify formal proofs using a variety of theorem provers, proof

checkers, and formatters.

1.1. Structure Editing

Our approach can perhaps best be described by the phrase "unstructured structure

editing." Our editor allows constrained hierarchies of information to be edited but does not

impose any restrictions on the editing process itself. We can explain our approach by analogy

with syntax-oriented program editors [Cam84], [TeiS1], [Fis84], and [Don80] 1. We see program

editors as being of two types:

o These are the traditional editors, which are marked by flexibility but little power for

editing structured data such as programs. For example, the operation place begin and

end around this statement is not readily accomplished, because the editor has no notion of

what a statement is. It is important to note that there is a lot of structure in the text, but

that structure is not used until compilation time.

0 The newer "syntax-directed" editors have knowledge of the structure being edited, and

strive to maintain that structure at all times. These editors facilitate structure-oriented

operations, but are generally characterized by inflexibility. For example, it is difficult to

transform a while loop to a repeat loop, because this involves changing the type of

statement and also interchanging the two components (Boolean expression and statement)

of the statement; in whichever order these are done, the tree is temporarily in an

inconsistent state.

We want particularly to emphasize that structure editors have taken two steps away from

traditional editors, only one of which we feel is helpful:

(1) Trees are edited (or possibly a mixture of trees and text) rather than just text. Since

programs have a natural tree structure, this is useful.

(2) The structure which the program must possess when editing is done, it must in effect

possess throughout the editing process. In traditional text editors, it is the user's

I We have in fact produced a prototype program editor based on our ideas, which is described in section 5.3.
However, most of our work has been done on proof editing. Our point in giving this example is to explain our struc-
ture editing philosophy in a more familiar setting.
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responsibility to construct a program which is syntactically correct; the editor does not

"look over his shoulder" as he is editing. Yet syntax-directed editors do not trust the user

to construct a valid tree, and impose constraints on what the user can do to ensure that

the tree is in a valid state at all times.

We believe, and our tree-editor to some extent demonstrates, that it is possible to move

from text-editing to tree-editing without making the editing process any more constrained than

it is in text editors.

Our editing approach exploits the manipulation of abstractions without imposing the

constraints of a template editor. The editor manipulates the abstract structure without

verifying that the detailed syntax and semantics are correct. Further tools are used to verify

these details. A program editor based on our tree editor permits the creation of proper syntactic

structures, but never requires syntactic correctness. Each node in the abstract syntax tree can

be individually validated at the user's request. To change a while loop to a repeat loop, the

order of the children would be reversed (a simple tree-editing operation), the parent node would

be changed from while to repeat and the "node validator" would be invoked to verify its

syntactic and semantic correctness.

2. APPLICATIONS TO THEOREM PROVING

We have constructed an editor, ted, for unstructured tree editing. The editor is more fully

desribed in section 3. In brief, ted maintains an internal tree structure which is edited by the

user via commands such as t (copy a node at another place in the tree), t* (copy a sub-tree at

another place in the tree), e (edit the contents of a node), and m* (move a sub-tree to another

place).

The editor was originally designed for use with proof trees. The editor is used to create

proof trees, and external programs, such as automatic theorem provers, are used to certify that

the tree created is, in fact, a proof tree.

2.1. An Example

As an example, consider one of the first (and easiest) theorems proved in our system,

cancellation on the left in a group; that is that for all a, b, and c, ab = ac --b = c. Initially we

tried to prove this directly from the axioms for a group. Figure 1 depicts the tree we initially

tried 2. Unfortuately, the theorem provers being employed were not able to verify this fact in a

reasonable amount of time, so the problem was decomposed into two lemmas, the children of the

root in Figure 2. Each of these lemmas was verified by the theorem prover, and finally, the

theorem was proved by using the two lemmas. Note that in the final tree, the proof of the

theorem does not use the axioms concerning group theory, rather the supporting lemmas are

assumed to be true, and the validity of the inference is checked.

These figures are not meant to show how trees are displayed in our system, but rather to represent to tree
structure being discussed
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= ac) -.(b----_)_

_EG rou p Axio_

quality Axioms S

Figure 2.

2.2. Related Work

Before the editor was built, other systems (those with well-documented interfaces) were

investigated [Wey77,Wey74], [Ble83,Ble73], [Gor79], [Ger79, ISI79], and IRep84]. The systems

examined can be divided into two groups: those that explicitly maintain a proof tree, and those

that do not. For constructing formal proofs, a system which does not retain a proof tree leaves

the user disadvantaged in a number of ways. If the user becomes lost in a proof, there is no way

to retrace the steps taken. There is no way to reconstruct the proof when proving a similar or

related theorem. Among systems in which an editable history is not kept are LCF IGor79] and

the UT interactive prover [Ble83,Ble73]. The UT prover makes use of user interaction to make a

theorem prover faster and more efficient. However it prover provides no real flexibility: all the

user can do is attempt to guide the prover down the proper path. In Edinburgh LCF, a user

can write procedures which map formulas or theorems to theorems. The user defines "tactics"

which are applied, under the user's control, to the proposition to be proved. While LCF

provides the power of programability, it is very easy to "become lost" in a proof. The user must

4
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often resort to naming many intermediate results just so that they can be referred to later.

Three systems which actually allow the user access to the tree being created were

investigated: Affirm [Ger79,ISI79], FOL [Wey77,Wey74], and Reps' interactive proof checker

[Rep84]. Although these systems allow the user to, in some sense, consult the tree, they still lack

the flexibility afforded by general purpose tree editing. Affirm, a specification and verification

system, includes a method for doing interactive proof development; proof tree management is

emphasized in the Affirm literature. Although the user of Affirm is free to view the tree, the tree

can only be manipulated by asking the system to make a specific (legal) transformation. This

prevents the user from re-using parts of the tree or parts of other proof trees, or modifiying a

proof by making small changes in each node. In FOL, the user inputs a rule of inference with

associated parameters, where some of the parameters are usually line numbers referring to

previously checked proof steps. While FOL provides a very versatile methodology for

referencing previous lines, the user is still restricted to proving theorems in a bottom up manner:

any proposition being used on a deduction step needs to have been previously proven. A proof

checking editor has been implemented by Reps and Alpern using the Cornell Synthesizer

Generator. When using the editor, the user edits program source code with imbedded assertions

for the partial correctness proof in a Hoare-style logic. As the user edits the program and

assertions, the editor checks the correctness of the program and proof; program fragments

without valid proofs are highlighted. The interactive proof checker is very close to our approach

in spirit: a user is free to move about in the tree, and proofs of supporting lemmas can be tried

in any order. However, in the interactive proof checker, the proof tree is really a derivation tree

for the proof in a proof language; the user has no direct access to the tree, and it can only be

indirectly modified by a reparse.

3. EDITOR OVERVIEW

The prototype unstructured tree editor is written in Franz Lisp [Fod83]. The intent was

to explore the uses of this form of tree editor for proof management (and possibly other uses).

To make the editor easier to use, a familiar command set was desirable. Consequently, much of

the editor addressing scheme, as well as the commands provided and the basic command

structure, is based on that of the editor ex [Joy80]. The editor, called ted, is presented in the

following manner. First a brief description of the trees being edited is given, then the method of

addressing used in the editor is described. Following that the editor commands are presented.

The editor is used to create, modify and maintain proof trees in the system. Throughout

the development of the editor, it was kept as general purpose as possible; that is, whenever

possible, no assumptions were made concerning the interpretation to be placed on the trees

being edited. As might be expected, this turned out to be difficult, and unresolved problems

remain.



3.1. Tree Structure

The editor edits arbitrary trees. Each node in a tree contains an element of text and a

status element. Because the editor is ignorant of the content of a node, the user is free to

manipulate the node text at any time. The status of a tree node is used to indicate the

consistency of the structure begin edited and access to it is restricted.

3.2. Tree Addressing

Structural addressing, similar to that used in Mentor [DonS0], is used to reference

individual nodes and subtrees within the tree being edited. Each node's address is dependent

only upon its position in the tree at any given time. The address of a node is derived by

starting at the root (denoted by "]') and, for each link traversed in getting to the desired node,

appending the number of the child that that node represents to the address. In addition to

using the full address of a node, a node may be specified by a base address and a combination of

address offsets. There are three base addresses: the root, the current address, and address

variables. The root is just "]". The previous address, the current address, and stored addresses

are referenced as in ex.

In addition to base addresses, address offsets can be used to specify an address relative to

some other address. The offsets are: a digit, ,,A,, ,>,, and "<'. A digit n, where 1--_n--9,

addresses the nth child of a node. "^" refers to the parent of a node. ">" and "<" denote the

right and left siblings of a node, respectively. For example, "1>1 ^'' represents the second child

of the current node (that is the parent of the first child of th right sibling of the first child},

which may also be written simply as "2."

3.3. Editor Commands

The syntax of commands is: [tree address][command][tree address], with all parts optional.

Each command has a default address (as in ex, usually ".', but "]" for w). The default

command is an abbreviated print. Unless otherwise noted, the commands are the tree analogue

to the corresponding ex command. There are, however, two exceptions: 1) the *'ed versions of

commands refer to entire sub-trees, while the un-*'ed versions refer to single nodes; 2) in

commands that have a target address (t,m), the node or sub-tree is inserted into the tree in such

a way that the target address becomes the address of the new node or sub-tree. The editor

commands are (default addresses in parentheses):

(t)a add a new node. t is the rightmost son of the current node.

(.)c <external prog>
invoke an external program.

(.)d, (.)d*

{.)e Call the node editor.

f [<filename> l

h [<cmd>]
help.
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(.)k <letter>

(.)m<address>, (.)m*<address>

(.)p print the data at this node.

(.)p*ln]
print the "first line" of every node in the subtree down to level n (previous n if n is
omitted).

q

(.)r [<filename>]

(.)s <status>
set the status of a node.

(.)t<address>, (.)t*<address>

(/)w [<filename>l

(.)=

4. A Detailed Example

In this section we present transcript of an editor session. The session shows the creation

and validation of the proof tree discussed in section 2.

The following is an example of editor use for theorem proving. The example used is

exactly that given in section 2.1. When the edit session starts the tree is that of figure 1. Then

the axioms are deleted and the two (previously proven) lemmas are added to the tree as children

of the root, giving the tree of figure 2. Finally, the proof is completed.

In the node formulas, "A" is universal quantification. It is followed by a list of quantified

variables and then the formula in which they are quantified. Commands typed by the user

appear in boldface, the text in italics is comment added to help explain effects of the command,

all other text is output by the editor

% ted tree1

ted version 0.2

First the entire tree is displayed. Note that the status is "unproven."

I"p*
: unproven

(A (a b e) (IMP (= (* a b) (* a c)) (= b ¢)))

/1 : AXIOM

(a (x y z) (= (* x (* y z)) (* (* x y) z)))

/2 : AXIOM

(A (x) (= x x))

/3 : SIMP

(A (x) (= (* x id) x))

We now show the content of each of the axiom (and simplification) nodes

7



I-Dp
]1 : AXIOM

(A(xy z)(= (*x(*y z)) (* (* x yj z)))

I'>P

/2 : AXIOM

(A (x)(= x x))
(A (x y) (IMP (= x y) (= y x)))

(A (x y z)(IMP (AND (= x y) (= y z)) (= x z)))

(A (x y) (IMP (= x y) (= (inv x) (inv y))))

(A (w x y z)(IMP (AND (---- w x) (= y z)) (= (* w y) (* x z))))

_>P

/3 : SIMP

(A (x) (---- (* x id) x))

(A(x)(= (* ia x) x))
(A (x)(= (* (inv x) x)id))
(A (x)(= (* x (inv x))id))

We now return to the root of the tree, delete the children just shown, and add
the two lemmas as children.

A

: unproven

(A (a b e)(hMP (= (*
&&&

3d
2d

I" 1 r lemmal

a b) (* a c)) (---- b c)))

we have now read in the first lemma, and take a look to see what's there.

I'P*

/1: (e pvl)

(A (a b e)

(IMP (= (* a b) (* a c)) (---- (* (inv a) (* a b)) (* (ins, a) (* a c)))))

/11 : AXIOM

(A(xy z) (= (* x (* y z))(* (*x y) z)))

/12 : SIMP

(A (x)(= (* x id) x))

/13 : AXIOM

(A (x)(= x x))

_- >r lemma2

Now the same for the second lemma.

I" P*

/2: (e pvl)
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(A (a b e) (IMP (---- (* (inv a) (* a b)) (* (inv a) (* a c))) (---- b c)))

/21 : AXIOM

(A (xy z) (= (*x (*y z))(* (*x y) z)))

/22 : SIMP

(A (x) (= (* x id) x))

/23 : AXIOM

(A(x)(= x x))

Finally, we return to the root and validate the proof by invoking one of the provers,
pvl.

: unproven

(A (a b c) (IMP (= (* a b) (* a c))(= b e)))
&&

_- e pvl

Skolemizing:

Pri: 6 7 10 7 [3]

Stored (Non_input + input = total):
1 proof, tree size: 6
PROOF:

3 CONTRADICTION <-(7 1)
Time (see): CPU: 0.45 GC: 0.0

3+4=7

Total: 0.45

The proof is successful, so the root's status has been updated to show

that the node was certified by calling pvl.

_P

/: (c pvl)

(A (a b c) (IMP (-- (* a b) (* a e)) (---- b e)))

The tree representing the completed proof is written to the current file.

_W

_q
%

5. DISCUSSION

This section describes work that has been done using the editor as a front-end for theorem

proving and other applications to and extensions to unstructured structure editing.

5.1. Experience

The editor has been used extensively as a front-end for theorem provers. The editor was

originally conceived of as a theorem prover front-end; a number of proofs have been completed

0



using the editor in this capacity.

Sam Kamin and Myla Archer have successfully used the editor to do proofs in group

theory and category theory. David J. Carr has been a major user of the proof system, and has

used it to prove the homomorphism conditions necessary to show the implementation of the

tree-address data type correct with respect to a final algebra specification [Kam83] of that data

type. (A further discussion of ted and proving specifications follows below.) Finally, Carol

Beckman and David Hammerslag have used the system to prove (most) of the verification

conditions for a program from the Basic Linear Algebra Subprogram package.

5.2. Other Applleatlons

As the editor was designed to be application independent, it has been used in other

applications. The editor was modified to manipulate trees that represent hierarchical

information and to edit abstract syntax trees for a simple programming language.

5.2.1. Browse

The information tree editor, called browse, was created to allow users to peruse a hierarchy

of information about programs, narrowing the class of programs under consideration as he

moves down into the tree structure. Each internal node in the information tree contains

information about a related group of programs; in general, a child contains information about a

subset of those programs encompassed by the node's parent. Each leaf node in the tree contains

information for a single program.

Except for re-writing the editor's output routines to reflect the new interpretation of node

text, only minor changes were necessary (e.g. the locate command was re-written to search for

nodes containing certain strings in their text). Browse was used to create and maintain a data-

base of information concerning user contributed software.

5.2.2. FASE

Ted was originally developed to provide user-friendly access to theorem-provers, for use in

program verification. As such, it is connected to a program specification system called fase

[Kam83]. These connections, which we hope to strengthen in the future, include:

Syntax

fase has been designed to allow for user-defined syntax for discussing modules appearing in

the program specification. This syntax can also be used in ted nodes to state properties of

the modules to be proven.

Theory

Ted proofs inherit axioms relating to modules from the fase specifications. At present, this

is done manually, but we expect to have it automated in the near future. In the same way,

proofs of module implementations are based upon fase specifications and the associated

formalism.

Thus, ted is really just one major component of a system which includes (executable)

program specifications and program proofs. Eventually, we hope to expand this into a program

development system with the inclusion of program-editing and execution facilities (based upon

10
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the peg model), and program transformations.

5.2.3. Peg

A third use of tree editing which has been explored is program syntax tree editing. The

editor, peg, allows the user to construct programs by either explicitly constructing abstract

syntax trees or by filling a node with source code for the language. In the system, the user is

provided with tools to transform text into an abstract syntax tree and to compress syntax trees

back into text. Each node in the tree is labeled to indicate which syntactic entity the node or

subtree represents. As is the case with the proof system, the editor keeps track of which nodes

have been invalidated.

Although peg has only been implemented for a very restricted subset of the programming

language C, we feel that it demonstrates the advantages of unstructured syntax tree editing over

the syntax directed editing schemes discussed in section 1.

5.3. Conclusion

Our experience in applying our philosophy of structure editing has been favorable. We

have completed and used extensively a prototype system for managing formal proofs and have

experimented with other applications. We feel that as this system is made more general (that is,

less dependent on the application domain) and is given a better user front end more uses will be

found for unstructured structure editing.

11
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