
NASA Technical Memorandum 88280

pEst Version 2.1 User's Manual

James E. Murray and Richard E. Maine

SP.l)tember 1987

G3/b 1

National Aeronauttcs and

Sl:)ace Admin0stration

NASATechnicalMemorandum88280

pEst Version 2.1 User's Manual
James E. Murray and Richard E. Maine

Ames Research Center, Dryden Flight Research Facility, Edwards, California

Nahonal Aeronauhcs and

Space AdmlnlsIralion

Ames Research Center

Dryden Fhght Research Facility
Edwards, California 93523-.5000

f
•,_. ,

CONTENTS

SUMMARY 1

INTRODUCTION

THE PARAMETER ESTIMATION PROBLEM 2

l.l Cost Function .. 2

1.2 Equations of Motion 3

2 INTERACTIVE DESIGN PHILOSOPHY IMPLEMENTED IN pEst

5 INTERFACE TO OTHER PROGRAMS 4

3.1 Measured Time History Data 4

3.2 Program Status File 5

3.3 Computed Time History Data 5
3.,1 Command Files .. 6

3.,5 Plot Commands File 6

tlOW TO RUN THE PROGRAM 6

{.1 llelp Command ... 7

I.'2 Program Startup CommaJnds 7
4.2.1 Read command 7

,1.2.2 Restore command 8

.1.3 Program Termination Commands 8
4.3.1 Save command 8

4.3.2 Quit command 8
•1.3.3 Abort command 9

I.I Plotting Commands 9
4.4.1 Write command 9

,1.4.2 Plot command 9

.1.,1.3 thPlot command 10

1.5 Iterate Command .. 10

1.6 System Variable Commands 11
,1.6.1 Parameter command 11

4.6.2 ('onstant command 11

•1.6.3 State command 12

4.6.4 Response command 12

•t.6.5 Flag command 13

1.7 I'rogr;.m Variable Commands 13
,I.7.1 13

4.7.2 13

,I.7.3 14

4.7.4 14

,1.7.5 14

4.7.6 14

Integration method variable
Gradient method variable

Gradient delta variable

Convergence bound variable

Message level variable
Plot title variable

4._

4.7.7 Statistics variable 14

4.7._ Maneuver window variable 15

Advaured Commands 15

iii

_mmlq___mTr. _, Q_,, ,,

4.8.1 Do comm_nd 15 | J

4.8.2 System command 15

ALGORITHMS 15 1 ,_

.5.1 Minimization Algorithms 15

5.2 Gradient Computation 16

5.3 Integrating the Equations of Motion 17

6 STANDARD USER ROUTINES 1T

6.1 Equations ¢f Motion 17

6.1.1 State equati_ms 18
6.1.2 Initial conditions 19

6.1.3 Total force and moment coefficients 19

6.1.4 Response equations 20

6.1.5 State feedback equahons 21

6.2 System Variables and N_nes 21
6.2.1 Parameters 21

6.2.1.1 Stability stud control derivatives 21
6.2.1.2 State initial conditions 22

6.2.1.3 Instrumentation parameters 23

6.2.1.4 Feedba_ gains 23
6.2.2 Constants .. 23

6.2.2.1 AircrM't physical characteristics 23

6.2.2.2 Time history variable averages 24
6.2.3 States .. 24

6.2.4 Controls ... 24

6.2.5 Responses .. 24
6.2.6 Extru .. 24

6.2.? Flags ... 24

APPENDIX A--PROGRAM STATUS FILE FORMAT 26

A. I Version Record .. 26

A.2 Title Record ... 26

A.3 Parameter Record .. 27

A.4 Constant Record ... 27

A..5 l.'lag Record ... 27
A.6 State Record ... 27

A.7 Response Record ... 28
A.8 Control Record .. 28

A.9 Extra Recor_ ... 28

A.10 Maneuver and Window Kecords 28

A. 11 Option Records ... 29

APPENDIX B_HELP FILES 30

ILl Abort ... 30

11.2 Ilound ... 30
ll.:| ConBtant ... 31

IL,I (?onstants ... 32

11.5 (',ontrols ... 33

iv

B.6 Extra_ ... 33

B.7 Flag .. 34

B.8 Flags ... 35
B.9 GradDelta .. 36

B. 10 GradMeth .. 36

B.I1 IntegMeth .. 37
B.12 Iterate .. 38

!i.13 MinMeth .. 39

B.14 MsgLevel .. 41
!|.15 Parameter .. 43

B. 16 Parameters ... 44

B.17 pEst ... 47
B.18 Plot ... 49

B.19 Quit ... 50
B.20 Read ... 51

B.21 Response .. 52

B.22 Responses .. 54
B.23 Restore ... 54

B.24 Save ... 57

B.25 Set .. 58

B 26 Show ... 59

B.27 State ... 59

B.28 States .. 61

B.29 Statistics .. 62

B.30 thPlot .. 62

B.31 Title ... 63

IL32 Version ... 64

B.33 Window ... 66

B.34 Write .. 67

REFERENCES 69

SUMMARY

This report is a user's manual for version 2.1 of pest, a FORTRAN 77 computer program for interactive

parameter estimation in nonlinear dynamic systems. The pest program allows the user complete

ge,erality in defining the nonlinear equations of motion used iu the analysis. The equations of motion

are specified by a set of FORTRAN subroutines; a set of routines for a general aircraft model is

supplied with the program and is described in the report. The report also briefly discusses the scope
of tile parameter estimation problem the program addresses. The report gives detailed explanations

of the purpose and usage of all available program commands and a description of the computational

algorithms used in the program.

INTRODUCTION

Parameter estimation techniques, in one form or another, have been in use at NASA Ames Research

Center's Dryden Flight Research Facility (Ames-Dryden) and other research organizations for many

years. Iligh-speed digital computers were first used for parameter estimation in 1968 (ref. 1), and

the number of parameter estimation computer programs &vall&ble has since greatly increased. The

MMLE3 program (modified maximum likelihood estimation program.n, version 3) developed at Ames-

Dryden (ref. 2) has been accepted as an industry standard for ai_craJ't parameter estimation and has

hecn used on a variety of aircraft programs. The Mb[LE3 program is representative in two respects

of the majority of parameter estimation programs currently in use. First, it is designed for use solely

in a batch processing environment. Second, the equations of motion defining the dynamic model used

i, the program are linear. For a large class of well-behaved parameter estimation problems, these two

characteristics pose no serious limitations in the utility of the program.

Recent flight test experience at Ames-Dryden has pointed out _ome of the limitations inherent

i, c::rrent parameter estimation programs. The dynamic behavior of aircraft at the extreme flight

co.ditions currently being explored often cannot be appropriately modeled using the simple linear
dynamic equations of motion. More accurate and flexible nonlinear models are often needed. The

difficulties associated with extreme flight conditions, as well as those associated with the unique _ircraft

config_lrations currently being flown, have required significantly more attention from the analyst than

previously. Interaction between the analyst and the estimation program is often the only viable means
for obtaining results in a finite amount of time.

I, response to these problems, Ames-Dryden researchers have developed a new parameter estimation

progr;tm, pEst. The pest program is designed to be fully interactive; however, it can be run in a batch

mode. Ti,e program supports full nonlinear capability in the dynamic equations of motion; linear
eq,atioas are acceptable as a subset.

This report documents the design philosophy, capabilities, and operational use of the pest program.

Sertioa I dcfi,es the parameter estimation problem that pest solves. Section 2 describes the philosophy

of i,teractive program design as implemented in pest. Section 3 describes the external files used by

the program and how the program interfaces with other F _rams. Section 4 gives a description of each

command in the pest command set. Section 5 discusses various algorithms available during program

.se. Section 6 defines the standard user routines supplied with the program. Both the equations of

motion and the definition of all syst.em variables used in the equations are included. In this manual,

file names, program prompts, and literal program input are shown in italics to distinguish them from

other text. Tile appendixes contain information on tile formats used by the program (app. A) and

listings of the help files used in the program (app. B).

1 THE P ARAMETER ESTIMATION PROBLEM

Conceptually, the parameter estimation problem is straightforward: We are studying a physical system,

and we write a vector set of dynamic equations of motion that (hopefully) describes a model of the

actual system. We presume to know the form of the equations but not the values of certain parametric

variab:es in the equations. We perform aJa experiment with the actual physical system, recording

the input to the sytem and the response of the system to the input. We seek to infer the values of

the unknown parameters by adjusting their values in the model until its response agrees with the
measured response.

The pest program does two things. First, the program defines qua_ntitatively the criterion for

measuring the agreement between the model's computed response and the measured response. Second,
it mechanizes the search for the unknown parameter values.

Figure 1 illustrates the pest parameter estimation process. The number in each block refers to the
section in this manual describing the function of the block.

Nonlinearalrcxltt
mockd
0.2)

Minimization

(S.1)

Estimateof
(S._l)

Psrlimetm utlmem

Uncertainty bounds

Figure 1. The pEst parameter estimation process.

1.1 Cost Funct'on

The criterion is a scalar cost function that is an explicit function of the computed response and thus

an implicit function of the vector of unknown parameters. The cost function used in the program is

1 nt

J(_) = 2n, n"----;_ [z(ti)- £(ti)]'W[z(ti)- £(t,)] (1)
i-- I

where nt and n, are the numbers of time history points and response variables respectively, t is the

time variM_le, W the response weighting matrix, z the measured response, $ the response computed

by integrating the equations of motion, _ the parameter vector, a_d superscript , denotes transpose.

The cost function is quadratic in the computed response _.

1.2 Equations of Motion

The pEst program solves a vector set of time-varying, finite-dimensional, ordinary differential equations
of motion. The equations are separated into the continuous-time state equation and the discrete-time
response equation:

#(t) = /[z(t), u(t), (2)

z(t,) = gIz(td, u(ti), (3)

where f is the state derivative function, 9 the response function, u the control variable, and x thest;de variable.

We have implemented a discrete-time feedback feature in the equations of motion. The feedba(.k

fe_tture is similar in implementation and function to the process noise feature of the MMLE3 proglam
(ref. 2). The nonlinear equations used in pEst, however, preclude using the discrete-time Kalman

filter formulation of MMLE3; an ad hoe and intuitive approach is used in pest. The feedback term is

proportional to the difference between the measured and computed responses and is applied at each

time point. Tile feedback gains k are parameters adjustable by the user (see section 6.2.1.4).

= + - (4)

where _ is the corrected estimate of the state variable and _ is the predicted estimate.

hnput u and time t are assumed to be known exactly. The responses are measured at every sample

point. There is no restriction that the sample rate be constant. The state derivative function f and

the response function 9 are nonlinear functions of the paraaneter, state, input, and time. The specific

form of the functions f and 9 is defined by a set of user-modifiable subroutines in pest; the equations
supplied with the program are documented in section 6.1.

2
INTERACTIVE DESIGN PHILOSOPHY IMPLEMENTED
IN pEst

'rl,, first i,riority of any interactive program is a simple and efficient interface with the user; we have

I,_id very close attention to the program's interface. Initially, we used a hierarchical menu-driven

interface, llowever, we soon found the menu structure cumbersome, difficult, and sometimes even

da,gerous. We have rewritten the interface completely, adopting a simple command-driven interface.

All program commands and capabilities are available for use at any time. Each command starts with a

simple English key word; we also allow a wide range of synonyms and abbreviations for each commandkey word.

Error detection and correct;on are integral parts of any program, interactive or otherwise. A

simple and responsive interface, however, gives the user greatly increased opportunities for making
mistakes. In the interactive environment, good error handling becomes increasingly important. We

hawr implemented error detection at every potential error source identified, and where possible we have

appli_,d error recovery procedures. We have made every attempt to make it impossible for you to crash

the program. The program gives a one-line response to each error detected; we have attempted to give
briq.f y_,t meaningful error messages. We leave all detailed explanations to the help files.

().line help files are also an integral part of any interactive program. Interactive program input calls

for interactive troubleshooting of input errors. We have incorporated an online help facility into the

program. Each program command has its own help file detailing the use and syntax of the command.

Additionally, we have incorporated information on subjects of interest to the program user into the help

file system. All help files are accessible during program use; they axe also available outside the program.

l_lteractiw, programs are generally reserved for difficult problems, where the approach to the solution

is not clear at the outset. The solution progress tends to be discontinuous and incremental, with

numerous dead ends met during the process. Efficient interactive problem solution requires a means

of recovery from such dead ends. We have implemented a program feature that greatly enhances the

l)_)tential to recover from errors and to restaxt the program if necessary. We have defined a program

status file on which you can record the current status of the program at any point, thus allowing you

to maintain an ancestor that can be used in the event of reaching a dead end. Effective use of the

status file gives you freedom to experiment with different approaches to the problem, without fear of

losing any progress alreaziy made.

The pEst program is an interactive program. Some problems do not require much user interaction

to obtain a solution. If you can define a sequence of pest commands that, when executed, will solve

the problem, you can use the program in a batch operating mode.

3 INTERFACE TO OTHER PROGRAMS

The I,Est package must be installed on your computer. Depending on the operating system and specific

installation, a fi_w features of the program may not be availabie (notably tile help facility).

The pest package consists of three separate programs. The pest program itself is the parameter

estimation program. The thPlot program plots time history data and time history fits. The GetData

program (ref. 3) selects signals and maneuver times for analysis. In use, the pest program interfaces

with these and other programs through several files external to the program. All file names used

by pest and other programs are italicized in the following sections only to distinguish them from
other text.

3.1 Measured Time History Data

A lile of mea._ured time history data for the case to be analyzed must be available in a form suitable to

the l)rogram. The program reads the entire measured time history file into memory; the upper limit on

the number of time points that the program can handle is 2000. This limit can be easily changed by

a single-line modification in the program code. While you can interactively select subsets of the time

history for use in the analysis (see section 4.7.8), it is most convenient for the measured time history

to approximate the time interval or intervals to be used. The time between sample time points oil the

lilt' need not be constant. The u,easured time history data file is never rewritten or altered by pest.

Operationally, the measured time history file is divided into one or more time intervals called ma-

ne_evers. Each maneuver is treated as a complete and separate time history record in the integration of

the e(lUatiol,s of motion; the integration is reinitialized at the beginning of each maneuver. All maneu-

v(,rs are nse(I together in tl,, estimation process; program variables, including estimated parameters,

apply t,) all time points in ',_aneuvers. The program automatically breaks the time history into

maneuvers when reading the h a new maneuver is defined when one of two conditions is found. Both

co_ditions are based on time values for successive time points read. If the time is nonincreasing or if

the time in('r(,ment exceeds a certain value (1.0 see), then a new maneuver is started. In the simplest

and most common case, the file consists of a single maneuver. The maneuver times defined by the
program may be displayed (see section 4.7.8).

By default, pEst expects the time history data to be on a file named rneasu,ed. Other file names
can be specified by user command.

Tile measured time history file is normally produced by the GetData program, which selects the

desired times and signals from the available data. The pest program recognizes signals by their names;

therefore the signal names on the file must match those expected by pest. The GetData program can

rename signals if required. The signal names expected by the standard user routines are documented

in section 6.2. The GetData program and th? file format are documented separately in reference 3.

3.2 Program Status File

The program uses a status file to store the operational status of the program. With the exception of
time history data, the status file stores the value of every program variable. Effective use of the status

file is cetltral to efficient use of the program. The status file serves three purposes. First, it can provide

initial values for program variables and options at program startup. Second, it can store the program
status to be used for later program recovery or restart. Third, it can store summary results at the
col,-lusion of a run.

Efficient production use of pest requires a status file at program startup. This file is not strictly

required, as all variables are initialized with default values, which you can then change interactively.

llowever, manually setting the many variables for each case is laborio,as if many cases are to be analyzed.

The ilfitial status file can be obtained from one of several sources. For a large project, you will

normally want to write a program tha_ automatically creates an initial status file for each case; this

program should get starting parameter estimates from the simulation data base. A status file (from
what,,ver source) for one case can be copied and used to initialize another case; any required modifi-

cations can be made interactively. Making the required modifications is likely to take less effort than
_tarti,g from scratch.

I'r,,gram status can be saved or recovered at any time during program use. This feature provides

a ._lr,,,g error-recovery capability. By saving the program status at appropriate intervals, you can

continue,sly maintain a fallback position. Should you reach a dead end in the analysis, you can simply
recover your previous program status and try a different approach to the problem.

Normal termination of pest saves a file that reflects the complete program status prior to termina-

ti,_. This file can be used by any program that analyzes or displays the results of pest. It can also be
,._,_1 with or without modifications as an initial _tatus file for later cases.

lly default, the program expects the file to be named current; other file names can be specified by
IlSel" cqmlnalld.

The format of the status file is documented in appendix A.

3.3 Computed Time History Data

A file of time history data computed by the program is available for use outside the pest program.
The c-reputed time history file is used by the thPlot program when plott!ng time history fits. It can
also hc used by sever',d other programs.

m_

m /
/

The format of the computed time history file is identical to that of the measured time history file.

The default name for the file is computed; other file names can be specified by user command.

3.4 Command Files

The pest program is an interactive program, with commands normally entered singly from the terminal

ko.yboaxd. Sometimes, however, you might have a sequence of commands that you will be executing

as a group more than once. The program provides a way of automating such repetitive tasks. If you
write the desired sequence of commands on a file, you can then instruct pest to execute the commands

from that file as though they were typed from the keyboard (see section 4.8.1). After executing all the
commands in the file, control is returned to the terminal.

There is no default name for the command file; any name can be specified by user command.

3.5 Plot Commands File

The pEst program runs the thPlot program when plotting time history fits. A temporary scratch file

is created to communicate information from pEst to thPlot whenever plotting. In normal operational

use, this file is deleted after the successful completion of the plotting, so you should never be aware of

its existence. In the event of catastrophic program failure, however, it is possible that this file, named
pl_t_thPlot.temp, might remain in existence.

4 HOW TO RUN THE PROGRAM

'l'he pest user interface is command driven; there is no menu. There is a single level of interaction

bctwc_m you and the program; all commands are available at any time. The program will accept com-

mands when it issues the prompt pest command. The program recognizes a large set of commands; it

is your responsibility to know the available command set and enter an appropriate command. Each

command starts with a simple English key word and is followed by optional specifications. An inter-

active help facility is available to help you find both the appropriate command and the proper syntax
of a command.

Each command controls a different aspect of the program; the applicable set of specifiers and their

synl._tx _re command dependent. Several specifiers, however, are used in the same syntax in several

commands; their usage and syntax axe documented in the following sections.

Several commands use switches to specify program options. A switch has one of two values;

it trims an option either on or off. Most switches have one or more synonyms and antonyms, which

are documented in the help files. Which name you use is a matter of personal preference and context;

some fit more naturally into a certain command context than others. An algebraic sign is part of the

switch specification; inverting the sign inverts the value of the switch. For example, -false is equivalen"
to +true.

Sev_,ral commands also use key word and value pairs to specify program options. A key word and

v;tht_, pair assigns a value to a program variable. The key word is a word or abbreviation recognized

by the program that corresponds to a variable in the program. The key word is delimited by a space
or an equalJ sign mad is followed by a value of the correct type.

All input to pEst is case insensitive; you can use any mixture of upper- and lower-ca_e letters.

Most key words, program variable names and values, and switches can be abbreviated. The minimum

6

I

recognizable abbreviations are indicated by the underlined letters of each key word, variable, or switch
as fir:,t described in the following sections. Many key words also have synonyms.

The followirlg sections document the individual commands of tile pest command set.

4.1 Help Command

'File hc/p command is the most important command in the program; the online help facility provides

co.kprehensive and detailed descriptions of program commands, variables, and subjects of interest.

There are three classes of information available: commands, variables, and topics. The commands

hclp commands, help variables, and help topics give you listings and short (one-line) descriptions of all

available commands, program variables, and topics, respectively. If vou use help with the name of a

specific command, program variable, or topic, you get a detailed help file listing giving information

on syntax and usage and a few examples. When using the help command with a specific command

or variable name, you must use the full primary name of the command or variable; synonyms and

abbreviations are not acceptable. If you use the help command with no arguments, you get a brief
description of the help facility.

All help file listings are included in appendix B.

The help command uses operating-system-specific software. Its implementation may differ depend-
ing on th, operating system, and it may not be implementable on some systems.

Examples of the help command are

HELP

Help variables

help iterate

HELP PARAMETERS

4.2 Program Startup Commands

TI,e program expects two files to be available at startup: a measured time history data file and an

i,itial status file. If they are available, pEst automatically reads th(. measured time history file from

the file mcas,,rd and the initial program status from the file c,rnent. Both are default file names for

the respective files. Two commands are available to get startup data from different files or to restart
with.,t exitiJlg the program.

4.2.1 Read eommand.--Use the neadcommand to read a measured time history data file into

I)r,,graln memory. At this time, the program checks to see if all sigzlals defined in the l)-ogram (see
s(,tio, 6.2) are found on the file. If a signal is not found on the file, a constant value of zero is

us,,,! for the time history of that signal. 5 me program variables, such ms maneuvers (see section 3.1)
"O

and windows (see section 4.7.8), are automatically reset whe,_ever a read command is executed. You

ca,) specify the name of the file to be read; if you omit the file name, the program uses the name last

Sl.'cilied in a read command. The program automatically attempts to read the file mea._ured at startup.

If the file does not exist or the program cannot successfully read the file for any reason, no

time history data are stored in memory, an error message is printed, and control is returned to thecommand line.

If thereare no measured time history data in progrmn memory, some commands will not be accepted

by the program. In particular, any command requiring integration of the equations of motion (such

as iterating) will not be accepted; if you attempt any such command, an error message is printed, and
control is returned to the command line.

Examples of read commands are

READ

Read meas_ed.case6

4.2.2 Restore command.--Use the res_._.ttorecommand to read the program status from a status

file. You can specify the name of the file to be read; if yon omit the file name, the program uses the

name last specified in a restore command. The program automatically attempts to read the file current
at startup.

If the file does not exL', when you attempt to read it, an error message is printed, and control is

returned to the command line. If the program fails when reading a file, all program variables successfjlly

read into program memory up to that point are retained, an error message is printed, and control is
returned to the command line.

Examples of restore commands are

_@store

RE,_T curront.flt18.man6

4.3 Program Termination Commands

Several ,:ommands are available for terminating the program. Program status can be saved at program
t,'r,,fi,lation if desired.

4.3.1 Save command._Use the save command to write the program status to a status file.

YoJl can specify the name of the file to be written; if you omit the file name, the program u_es the

name last specified in a restore command. The default file name at program startup is current. If a
lilt with the specified name exists, it is overwritten.

If the program fails when writing a status file, no status file is written, an error message is printed,
and control is returned to the command line.

l:;x;_ml,les of save commands are

Save

save curr._inal

"..3.2 Quit command._Use the qu/t command to write the current program status to a status

lih, and then terminate the program. This is exactly equivalent to running, in order, the save and abort

co,_ma,ds. Note that you cannot specify the name of the status file to be written; the program uses
the name last specificed in a restore command.

If the program fails when writing the status file, the file is not written, an error message is printed,
and the program terminates.

0

An example of the quit co_omaJad ie

quit

4.3.3 Abort command.--Use the abor._..._tcommand to terminate the program and return control

to the operating system. This commae.d does not save the current program status; any progress made
sil,ce you last ran a save command is lost.

An example of the abort command is

Abort

4.4 Plotting Commands

The pest program uses the thPlot program for plotting time histories of response variable fits and

other variables. The pest program communicates with thPlot through a file containing computed timehistory data.

The equations of motion are integrated to produce the time history of the computed variables. All

computed variables are first assigned constant default values for the entire time history. The program
then integrates the equations of motion using current program status, replacing the default values with

the computed values as the integration proceeds. If the integration fails for any reason, the computed

time histories up to the point of failure are stored, an error message is printed, and the integrationis terminated.

4.4.1 Write corn mand.--Use the u,r/t_...__ecommand to write the computed time history data from

program memory to an external file. Time histories for all computed state and response variables axe

written to the file. The time histories of all computed variables are made consistent with the current

progra_n status prior to writing the computed time history file by integrating the equations of motion

using the current program status. Time histories for all response residual variables, as well as measured

coJltrol, respollse, and extra variables, are also written to the file. You can specify the name of the file

to hc written; if you omit the file name, the program uses the name last specified in a write command.
The default file name at program staxtup is computed.

If a file with the specified name already exists, it is overwritten. If no measured time history data

are ila program memory, the computed time history file is not written, an error message is printed, and

cmJtrol is returned to the command line If the integration terminates prematurely for any reason, an

error message is printed, but the computed time history file is still written. If the program fails to
write the file, an error message is printed, and control is returned to the command line.

Examples of the write command are

4.4.2 Plot command.--Use the/_ command to plot time history fits for all active response

variahlcs (see. section 4.6.4) using the thPlot program. The compute_! time histories are first written

to al_ _,xternal file by automatically running a write command. The time histories are plotted four per

9

i

page; multiple pages are plotted if required. The measured response and computed response are both

plotted on the same axis; the axis is automatically scaled to accommodate both variables. You can

optionally request plots of additional time history variables (response residuals, states, controls, and

extras); the plots for these variables follow the plots of the time history fits of the response variables.

If no measured time history data exist in program memory, an error message is printed, and no

plots are made. If the integration terminates prematurely for any reason, an error message is printed,

b,Jt plots are still made. If the program fails to write the computed history file for any reason, an error
n,cssage is printed, and no plots are made.

Examples of the plot command are

Plot

plot +resids +states

4.4.3 thPlot command.--Use the _ command to run the thPlot program from within

pest. The computed tithe histories are first written to an external file by automatically executing the

write command. The pest program does not communicate with thPlot when using this command? you
have complete freedom to read any files and plot any signals desired. After thPlot terminates, control
is returned to pest.

An example of the thPlotcommand is

thplot

4.5 Iterate Command

Us,. the iterate command to start the iterative parameter estimation process. You can specify the

maximum number of iterations and the desired minimization algorithm. If you do not specify the

number of iterations, no iterations are done; the equations of motion are integrated, and the cost

function is evaluated. The three minimization algorithms available are gradient, Newton-Raphson, and

Oavidon-Fletcher-PoweU. If you omit the minimization algorithm, the algorithm last specified remains

in effect. The default algorithm at program startup is Newtoa-Raphson. All the iterations specified

with a single iterate command use the same minimization algorithm.

Before attempting to iterate, the program tests the validity of the current program status for

estimation; if the validity test fails, iterating is not allowed, and control is returned to the command

line. For example, if no measured time history data are in program memory, iterating will not be

allowed. If all validity tests succeed, the program iterates until either the specified number of iterationa

is completed or the convergence criterion (see section 4.7.4) is met. The iterative process may terminate
wilh one or several error messages if any of numerous problems is detected. If the estimation is

pr_'maturely terminated, all progress made up to the point of failure is retained and is reflected in the
c,_rrentprogram status.

Examples of the iterate command are

Iterate

it 3

IT

6 newton-raphson

I0

4.6 System Variable Commands

The equationsof motion definethe dynamicsystemanalyzedby the program. The equations of

mot ion contain numerous time history and parametric vaziables defining the specific characteristics of

tile dynamic system. The system variable commands allow you to display and to modify these variables

and therefore the characteristics of the dynamic system. The time history and parametric variables are

vector variables, and each vector element has several characteristics or attributes. Each system variable

command allows you to display and to modify the attributes of selected elements of a specified vector.

The first part of each system variable command selects elements of the _ector to be displayed or

modified. The syntax of this specification is common to all system variable commands. A generalized

list of vector elements follows the command name. The list can be a list of element names, delimited

by commas or blanks. It can also be one of two key words, a//or active; all selects all elements of

the vector, and active selects the vector elements with active status. The definition of active status is

dependent on the vector and is defined in each of the following command descriptions. If the list is

omitted, all active elements are selected by default. Whenever you execute a system variable command,
the values of the selected elements are displayed.

For each system variable command, several optional descriptors control the attributes to be

displayed or modified. The order in which they are specified on the command line is immaterial. The

descriptors and the syntax for using them are documented in each of the following
command descriptions.

4.6.1 Parameter command.--Use the parameter command to display and modify the at-

tributes of the parameters. The parameters are the variables that can be estimated by the program.
Earh parameter has five attributes: current value, estimation status, predicted value, Craxndr-Rao

bound, and change in value from previous iteration. The current values of the selected parameters are

always displayed after the command is entered. The estimation status of a parameter is active or inac-

tiw,; an active parameter is one that is currently being estimated, while an inactive parameter is one

that is not. You can modify the estimation status of the selected parameters with the :factive switch.

The predicted value of a para_neter is fixed and can only be displayed with the +predicted switch. The
Cramdr-Rao bound and the change in parameter value from the previous iteration are defined in the

estimation process and cannot be directly modified by the user; they can only be displayed with the

+bound and +delta switches, respectively. You can modify the current value of a parameter in one

of two ways. You can explicitly specify a value, and that value is assigned to all selected parameters.

AIterr_atively, you can turn on the -k_store switch, and each selected parameter will be reset to its
corresponding predicted value.

The parameters defined by the standard user routines are documented in section 6.2.1.

Examples of parameter commands are

PARANETER clp==0.25
par cna,cNorna cnde,cNozmde
Par Active ÷ResZore

parm +cr +delta

+on

4.6.2 Constant command._Use the £9__Jant command to display and modify the constants

in the program. The constants are program variables that cannot be estimated by the program. The

11

valueof each selected constant is always displayed after the command is entered. You can modify the

value of a constant; the specified value is assigned to all selected constants.

The constants defined by the standard user routines axe documented in section 6.2.2.

Examples of constant commands are

conscant aus=1056.0

COIST ixy,iyz 0.
Cons¢ all

4.6.3 State command.--Use the #_te command to display and modify the attributes of the

state variables in the program. A st&te variable has two attributes: its status and its integration limit. If

state is active, the state equation for the state is integrated, and this integrated v'_lue is used in the

equations of motion. If & state is inactive, the state equation is not integrated, and the equations of

motion are modified to remove the corresponding state equation. You can modify the status of the

selected state variables with the _active switch. The integration limit for a state variable is used to

avoid catastrophic program failure during integration of the equations of motion. If during integration

the value of a state variable exceeds its limit, an error message is printed, and the integration is

terminated. The integration limit is a floating-point value specified using the li....mmitkey word and
value pair.

The state variables defined by the standard user routines &re documented in section 6.2.3.

Examples of state commands are

scat@ v,alpha,an,q +on
STATE p r ifa=lO000.

4.6.4 Response command.--Use the response command to display and modify the attributes

of the response variables in the program. A response variable has two attributes: its status and its

weighting. The st&tus of a response variable determines whether or not the response variable time

history is computed. If a response is active, the response variable time history is computed and made

available for other uses. If a response is inactive, no response time history is computed. You can

modify the status of the selected response variables with the _active switch. The weighting of a

response variable specifies the variable's weighting in the cost function and is specified with the w_eight

key word and value pair. The key word _m{put is & synonym for response.

Note that making a response variable inactive is not equivalent to making its weighting zero. If a

response variable is made inactive, the equations of motion are modified to remove the corresponding
response equation. There may also be secondary changes in the equations of motion to remove all

usage of the response variable. These secondary changes depend on the equations of motion used. If

the response is active but has zero weighting, the response is computed and used in the equations of
motio, but does not directly influence the cost function.

The response variables defined by the standard user routines are documented in section 6.2.5.

Examples of response commands are

responsa beta p r *on

OUT alpha w=150.

12

4.6.5 Flag command.--Use the flag command to display and modify the flags in the program.

A flag is a logical variable used in the equations of motion. The flags typically select alternative forms

of the equations of motion or sources of data. You can modify the value of a flag with the +on switch;

the switch value is assigned to all selected flags.

The flags defined by the standard user routines are documented in section 6.2.7.

Examples of flag commands are

flag use_avg_qb_

Flag use.avg_alpha,uae_avg_beta
FLAG all +off

+ON

4.7 Program Variable Commands

Use tile se__ttand show commands to display and modify the program variables and options controlling

the estimation process.

The sot command sets the value of program variables. With one exception, the command syntax is

t he command key word followed by a key word and value pair specifying a program variable and setting

its value. The valid key words and the program features they control are described in the following

sc(tio,s. Each key word is given with its first few letters underlined; the underlined portion is the

mi,,imum abbreviation recognized by the program. The value type is dependent on tbe variable; for

ca_:lLvariable described, the range of legal values is specified. Any variable modified by the command

is displayed.

The show command allows you to display the values of program variables. The command syntax

is the command key word followed by a variable name or appropriate abbreviation. In addition to the

variables described by the set command, there is one variable that is only displayable.

4.7.1 Integration method variable._ The int_.nt_._eq_Methvariable specifies tee algorithm used

when integrating the equations of motion. The variable has two possible values, euler and runge-kutta;

the default value is runge.kutta.

Examples of the use of the integration method variable are

show ingagNeth

SET tnteg range

4.7.2 Gradient method variable._The _lradMeth variable specifies the algorithm used when

computing the finite-difference gradients. The variaLle has two possible values: _in_le-sidedspecifies the

for_vard difference algorithm, and double-sided specifies the central difference algorithm. The default

val,,e is singh,-sided.

Examples of the use of the gradient method variable are

sh gradme£hod
Set GradM 2

13

4.7.3 Gradient delta variable.--The gradDeita vsriable specifies the parameter increment

used in computing the finlte-difference gradients. The parameter increment used for each parameter is

defined by

d_ - gradDelta • max(_, 0.000001)

where _ is the parameter value and d_ is the parameter increment.

Valid values axe floating-point numbers; the program defan]t value'is 0.0000001.

Examples of the use of the gradient delta variable are

sh graddelta
SET GRADD=0.0001

4.7.4 Convergence bound variable.mThe bound variable defines the convergence criterion for

the estimation process. If the percentage change in cost between two successive iterations drops below

the value of the bound variable, convergence is declared, and the iterative process is terminated. Valid

whles for this variable are floating-point numbers; the program default value is 0.0001.

Examples of the use of the convergence bound variable are

SHOW BOUID

set bound 1.Oe-6

4.7.5 Message level variable.raThe msgLeve[variable controls the amount of output that the

program prints during use. Higher values produce l_rger amounts of output. Valid values for the

variable are integers between 0 and 100; the default value is 50. The help file lists the significance of
the various numerical values.

Examples of the use of the message level variable are

sho msg

Set MsgLsv=65

4.7.6 Plot title variable.--The title vari&ble specifies the title used on th_ time history plots

of response fits. Valid values are character strings of up to 40 characters. If there are blanks embedded

in the string, you must put the whole string inside quotes. The default value for the title is blank.

Examples of the use of the plot title variable are

Show Tit

SET titls 'Space Shu_tls Wlight 4 Maneuver 3b'

4.7.7 Statistics variable.--The statistics variable contains sample statistics of all measured

variables from the time history data file. The statistics are defined whenever a measured time history

file i, re_d and may not be modified during use; they may be displayed only with the show command.

A, example of the use of the statistics variable is

$ho Stats

14

4.?.8 Maneuver window varhble.--A window is a time subset of the measured time history

file. Each window must be wholly contained within a maneuver (see section 3.1). When the equations

of motion axe integrated, the integration is reinitiMized at the start of each window. Only the time

points whhin the windows are used in the analysis. Integration of the equations of motion defines values

for all computed variables for all time points in all maneuvers, regardless of whether the time points are

i,side or outside the windows. For time points outside the windows, the program uses a constant valuo

for each computed variable; the value depends on the variable type. For a state variable, the value is

zero; for a response variable, the value is the average value of the measured data for the variable. At

program staxtup, the default window or windows axe identical to the maneuver or maneuvers.

The win._dow variable specifies the window or windows used in the analysis. The window variable

specification has three elements: the window number, the maneuver number, and the time specification.

Whenever a window is referenced, all currently defined maneuvers and windows are displayed.

Examples of the use of the window variable are

Show windows

SET WINDOW TIME 0 - 10

set wind 2 man 2 time 0.5 7.5

4.8 Advanced Commands

4.8.1 Do corr_mand.--Use the d_oocommand to read a sequence of pest commands from an

exter,al command file and execute them. Upon successful completion of the command sequence,
control is returned to the command llne.

Examples of the do command are

do initialize

Do Startup.X29

4.8.2 System eommand.--Use the system command to execute an operating system command
from within pest. This command may not be implemented on some systems.

Examples of system commands are

SYSTEM FILES

sys help copy

sys Rename Current.init.f18 Current

5 ALGORITHMS

The pEst program gives you selective use of several different algorithms for various program functions.
The algorithms currently available are described in the following sections.

5.1 Minimization Algorithms

The pest program has three algorithms available for iteratively minimizing the cost function: gradient

(-r ste_,l.,st descent), modified Newton-Raphson, and Davidon-Fletcher-Powel]. The Newton-Raphson

15

®

algorithm is modified to eliminate an undesirable chaxa_teristic it has when used fax from the mini-
mum of the cost function (or in a_ty other case where the cost function is far from quadratic in the

parameter vector). It is not uncommon in such a case for a strict Newton-RAphson iteration to pro-
duce a higher cost value. To alleviate this problem, the Newton.Raphson algorithm is implemented

with an explicit line search; first, an initial parameter increment is computed using the Gauss-Newton

algorithm; then the parameter space is searched along the line defined by the parameter increment for
the minimizing cost value. The addition of the line search means that a Newton-Raphson iteration

is guaranteed to produce a cost value no larger thaJn the cost before the iteration. Both the gradient
and Davidon-Fletcher-Powell algorithms use implicit llne searches; an iteration using either algorithm

is also guaranteed to produce a nonincre_sing cost value.

Any or MI of the available minimization algorithms may be used on a single problem. The utility

of any algorithm depends on both the problem and the location in the parameter space with respect to

the minimum. It is commonly useful to start the minimization with one algorithm and to later switch

to • different algorithm to complete the solution. The different algorithms do not interact.

The gradient algorithm uses only first-gradient information and consequently performs best where

the cost function is very steep. It is useful for greatly reducing the cost when far from the minimum, as is

common when beginning work on the problem. However, its performance deteriorates as it approaches

the minimum, and the cost becomes flatter. In cases of high correlation between parameters, it may

even stall so completely _ to appear to have converged. We do not recommend using the gradient

algorithm for the final iteration.

The Newton-Raphson algorithm uses second-gradient information in addition to first gradient

information and consequently performs best where the cost function is approximately quadratic. This

approximation is generally most accurate near the minimum of the cost function; the algorithm
h_ excellent convergence characteristics once it is close to the minimum. However, the 1Newton-

Itaphson _lgorithm is sensitive to identifiability problems; the algorithm may fail if there are linear

dependencies among the parameters. The Newton-Raphson algorithm is the only algorithm that can

compute Cram_r-Rao bounds, which are defined for Mi active parameters following a successful Newton-

ltaphson iteration.

'rite Davidon-Fletcher-Powell algorithm, in some sense, combines the best features of the gradi-

ent and Newton-Raphson algorithms. This algorithm changes character from iteIation to iteration.

Initially, it performs much like the gradient algorithm; the first iteration is identical to a gradient itera-
tion. As the iterations proceed, the algorithm gains information on the second gradient and approaches

the Newton-Raphson algorithm in character. Thus, this algorithm combines the initially rapid cost

red uction characteristics of the gradient algorithm with the excellent convergence characteristics of the

Newton- Itaphson algorithm.

The itcrative process is automatically terminated if a convergence criterion is met. The convergence
critcrio_ is based on cost values for successive iterations; if the percentage change in the cost value

drops below a threshhold value (see section 4.7.4), convergence is declared, and the iterative process

is terminated.

5.2 Gradient Computation

'rh_, minimization algorithms require computation of first or second, or both, gradients of the cost

function at each iteration. The complete generality in the nonlinear equations of motion precludes

using analytical differentiation to compute the gradients; finite.difference algorithms are used. The

16

parameterincrementusedin computingthegradientsisa fixedpercentageof theparametervalue(see
section4.7.3).

Both single-sidedand central differencealgorithmsare supported. Gradient computation using

the single-sided difference algorithm requires _ -t- 1 solutions of the equations of motion, where r_p is

tide number of parameters; the central difference algorithm requires 2up solutions of the equation_, of

motion. The gradient computation requires a large number of solutions of the equations of motion;

the computational time involved is typically the most significant percentage of the total time used in

an iteration. The single-sided difference algorithm is the faster of the two algorithmr., but it is also

the less accurate. The increased accuracy of the central difference algorithm, however, is not really

consequential until close to convergence; we generally find it most efficient to use single-sided differences

for all but tile last few iterations. The Gauss-Newton approximation (ref. 2) is used to compute the

second gladient, thus the computational burden of computing the second gradient in addition to the

first gradient is not significant.

5.3 Integrating the Equations of Motion

There _re two algorithms available for integrating the equations of motion: forward Euler and fourth-

order Runge-Kutta integration. The forward Euler integration requires one evaluation of the state

derivative function f for each time point of the solution, while the Itunge-Kutta algorithm requires

four such function evaluations per time point. Both algorithms require a single evaluation of the

response function g for each time point of the solution. Thus, the Euler algorithm is the faster of the

two. The Runge-Kutta algorithm, though slower, is more accurate and has a larger region of stability.

The nonlinear character of the functions f and g requires consideration of several issues that are

not relevant for linear equatior, s of motion. The in._lerent possibility of singularities in f and g means

that catastrophic termination of the program (with subsequent loss of anything done up to that point)

is a real consideration. Extreme caution (maybe even paranoia, as some have suggested) is necessary to

al_ticipatc alld eliminate these possibilities. Singularities, however, are just extreme and obvious c_es

of ill conditioning; the more subtle cases can also generate equally catastrophic errors. In the estimation

profess, it is not uncommon for an intermediate solution to diverge greatly from the final converged
solution. The large magnitudes of the state and observation variables in these intermediate solutions

ca|_ easily exceed the bounds of validity of intrinsic FORTRAN functions. We have implemented limit

checkit|g on the state variables (see section 4.6.3) to preclude catastrophic computational errors.

6 STANDARD USER ROUTINES

The pest program is supplied with a set of equations of motion to model a wide range of aircraft prob-

loins. The equations of motion are a fuji six-degree-of-freedom nonlinear set of differential equations.

Wc do not _sume that the aircraft is symmetric. We do assume fixed aircraft geometry and constant

lw_;_ssch_tracteri_tics. No propulsion or rotating-mass effects are included. We assume a fiat earth and

coi_._tal_t gravitational acceleration. We use English units throughout the equations.

6. I Equations of Motion

Tlse standard user routines define the equations of motion used by the program. The equations are

divided into the state equations and the response equations. All time history and parameteric variables

17

used in tile equations are described in section 6.2. There is no explicit division of the equations

into longitudinal and lateral-directional subsets. The state equation for airspeed is not implemented

in pest.

The standard user routines define 8 state equations, 5 feedback equations, and 14 response equa-

tions. Only in rare instances, however, will you use the complete set of equations. In practice you will

I_robably interactively define a subset that is dependent on the maneuver being analyzed.

You can independently activate the state equations and response equations. Each state equation

is integrated only if it is active (see section 4.6.3); inactive state equations are not integrated and are
removed from the equations of motion. Each response equation is evaluated only if it is active (see

section 4.6.4); inactive response equations ate removed from the equations.

Each state variable on the right-hand side of the state and response equations can come from one of

three sources. First, the computed time history of the state variable can be used, if available. Second,

the corresponding measured response variable can be used, if available. Third, for some state variables,

a constant value can be used. The program flags and the status of the state variables determine the

source of each state variable on the right-hand side of the equations. Five flags specify using average

wdues of measurement variables (V, _, B, 0, and _b) in the equations. If a flag is turned on, the value

of the corresponding constant variable is used in the equations. If the flag is not turned on (or if there

is no corresponding flag for the state variable), the status of the state variable determines the source.
If the state variable is active, the computed state time history is used. If the state variable is inactive,

the ct,rresponding measurement variable is used.

Two additional flags specify the source of the extra time history variables (such as q) on the right-

hand side of the equations. If the flag for an extra variable is turned on, the value of the corresponding

constant variable is used; otherwise the measured time history of the extra variable is used.

6.1.I State equations.--The predicted state variables _ are obtained by integrating the state

equations defined in the following equations.

_sR
& = q - tan/_(p cos t_ + r sin a) mV cos/3 CL

+ gR (cosOcos_cosa+sinOsina)
V cos B

qsR _
= p sin a - r cos a + _--_-U),

gR
+ -_-[cos/3 cos 0 sin 4>- sin B(cos 0 cos # sin _ - ._in 0 cos a)]

l_p - lx_(l - [xzi = qsbGR + [qr(l_ - Iz) + (q_ - r2)Iv+ + PqG. - pvlxu]/R

ly4 - I_.÷ - lz,p = (lscCmR + [pr(I+ - I_) + (r 2 .- p2)lx. + qrlxy - pqIv.]/R

It÷ - Ix,p - I_.4 = (lsbC,_R + [pq(l_ - Iv) + (p2 .. q2)l,, _ + prI,, - qrl_.]/R

= q cos¢_ - rsin _b

4p = p+ tanO(rcosck+ qsindp)

IJ is reference span,

c reference chord,

Ct, coefficient of lift,

_)

. ° . i I :.a_...._.

coefficient of rolling moment,

coefficient of pitching moment,

coefficient of yawing moment,

coefficient of lateral force,

gravitational acceleration,
are moments of inertia,

cross products of inertia,

is mass,

roU rate,

pitch rate,

dynaxnic pressure,

yaw rate,
conversion factor (57.2958),

reference area,

total velocity,

angle of attack,

angle of sideslip,

pitch attitude, and
roll attitude.

6.1.2

equations are defined as follows.

V(O) = V_--Vb+Vo

_(o) = (_o - _b)/kB + _o

p(o) = p o- +m

q(0) = q o-Co+qo

r(O) -- rzo--rb+ro

0(0) = O_o-Ob+Oo

=

Initial conditions.--The initial conditions of the state variables used in integrating the

where f(0) is tile value of the state variable at the beginning of the integration, subscript b denotes
the measurement bias for the corresponding observation variable, subscript 0 denotes the increment to

the initial state value, and subscript zo denotes the measured value of the corresponding observation

variable of the initial point.

6.1.3 Total force and moment coefficients._ The total force and moment coefficients used

in the state and response equations are defined as follows.

19

where

b
c_ = c,o + c't_ + 2-p_(ct..p + ct..') + ct,. 6. + ct,. 6, + c_,._3+ c,,. _4

c

C,,, = C,_ + C,.° a + 2--_-_C,,,,q+ C,,,, 6e+ C,,,,,61+ C,,,_62+ C,,,,s63
b

c. = c._ + c.n/_ + 2-p-_(C..p+ c..r) + c.,6. + c..,.5, + c.,._3 + c.,.6

CA

CN

_2

_3

_4

CAo, CA.., CA_, C Abo,

Casl , CAs_ , C/ts_

CN o , CNa, CN,, CNA, ,

CN6, ,CN62,CN_ 3

Cr0, Cy_, Cy_, Cr,.,

Cr,,, Cys,, Cy63 , Cy_,

c,0, c'_, c_,, c,,,
c,,..c,,..c,,_.c,,,

C,_o,c,..,, c,,,,, c,.,. ,
C,.,,, , C,.,.,s2, C_6 _

C. o,C,,_,C,,., C,,.,
C.,., C.,,, C%, C.,,

is coefficient of axialforce,

coefficient of normal force,
aileron deflection,

elevator deflection,

rudder deflection,
control

control

control

control

surface 1 deflection,

surface 2 deflection,

surf_e 3 deflection,

surface 4 deflection,

are axialforce parameters,

normal force parameters,

lateral force parameters,

rollingmoment parameters,

pitching moment p_rameters, and

yawing moment parameters.

All imraln(,ters are defined in section 6.2.

_.1.4 Response equations.--The computed response variables _ are obtained by evaluating
the response equations defined in the following equations.

_ = V+Vb

,_. = _:,_c,+ (x_ - _s) V + (t/o - w,) + _b

["]
P_ = P 4- Pb

q_ = q + qb

r: = r + rb

¢_ = ¢+¢b
e]s 1 1

a., - _g CA - _--_[(z.. - zCs)q + (yo. - yc,)÷] + _-_(_... _ z_g)(q_ + r_) + a.,

2O

÷

Xa_, y.., Za.

Xa v ,YQy, Zaw

ZQ. ,Ya. ,Za.

Zc$, Yc$, Zcg

k_, , x,_, yc,

k_ , x _, z;_

is roll acceleration,

pitch acceleration,

yaw acceleration,
are axial accelerometer position parameters,

lateral accelerometer position parameters,

normal accelerometer position parameters,

aircraft center-of-gravity position constants,

angle-of-attack measurement parameters,

angle-of-sideslip measurement parameters,

and the subscript ; denotes the computed response value.

6.1.5 State feedback equations._ The corrected state variables _ are obtained by evaluat-

i,g the discrete feedback equations (see section 1.2) defined by the following standard user routines.

Feedback is implemented for only five of the state variables.

t = 4 + gq(q - q,)

where g,,, g_,gp, gq, and .at are feedback gain parameters, the superscript- denotes the predicted state

val,o, and the superscript "denotes the corrected state value.

6.2 System Variables and Names

'l'h_ standard user routines define the names of all system variables: parameters, constants, states,

_:ontrols, responses, extras, and flags. In program use, all system variables are accessed by their

giv,,, names.

6.2.1 Parameters.--The standard user routines define 97 parameters. Parameter subsets are

d_,li,cd below. Each parameter is individually documented in the parameters help file.

6.2. I. t Stability and control derivatives: Any parameter whose name starts with the letter c is

a stability or control derivative. There are three classes of stability and control derivatives: aerody-

21

namicbiases,control derivatives, and stability derivatives. Each derivative is nondimensionalized; the

details of the nondimensionalization depend on the parameter. All aerodynamic biases are completely

normMized; they are dimensionless. All rotational rate derivatives are expressed in reciprocal radians.

All o, /3, and control derivatives are expressed in reciprocal degrees. The reason for the apparent
inconsistency in nondimensionalization is historical and follows existing conventions.

The stability and control derivatives can be divided into longitudinal and lateral-directional deriva-

tiv(,s, though there is some overlap in the control derivatives. Tables 1 and 2 tabulate the longitudinal

and the lateral-directional stability and control derivatives, respectively. (In the tables and text, math-

ematical variables in parentheses follow the corresponding program variable names.)

TABLE 1 --LONGITUDINAL STABILITY

AND CONTROL DERIVATIVES

Force or moment

Axial Normal Pitching
State or control force force moment

Aerodynamic bias

Angle of attack
Pitch rate

Elevator deflection

dl deflection

d2 deflection

d3 deflection

ca0 (CAo) cNorm0 (C_,o) cm0 (Cm0)

caa (CAo) cNorma (C/vo) cma (C,n_)

caq (CAq) cNormq (CNq) cmq (Cmq)

cade (CA,.) cNormde (C_6 ,) crude (C,_,.)

cadl (CAb,) cNormdl (CN6,) cmdl (C,_,)

cad2 (CA_2) cNormd2 (C_¢6_) cmd2 (C,,.62)

cad3 (CA6a) cNormd3 (C/v6a) cmd3 (C,_6_)

TABLE 2 -- LATERAL-DIRECTIONAl STABILITY

AND CONTROL DEPdVATIX ZS

Force or moment

Lateral Rolling Yawing
force moment momentState or control

Aerodynamic bias cyO (Cvo) clO (Cto) cnO (Cn0)

Angle of sideslip cyb (Cyt_) clb (Ct_) cab (Cna)

Roll rate cyp (Cyp) clp (Ctp) cnp (C,,p)
Yaw rate cyr (Cv.) clr (Ct.) cnr (Cn.)

Aileron deflection cyda (Cv6,) clda (Ct6.) cnda (Cn,.)

Rudder deflection cydr (C1%) cldr (Ct6,) cndr (Cn6,)

d3 deflection cyd3 (C1%) old3 (Ct63) end3 (Cn6_)

d4 deflection cyd4 (Cv6,) cld4 (Ct6 ,) end4 (Cn64)

6.2. 1.2 State initial conditions: Each state variable has a corresponding state initial condition
i,_'remorlt parameter. The initial condition increment is added to each measured initial condition. The

dim(,nsions of each initiM condition parameter are the same as those of its corresponding state variable.

Start(, i,itial condition parameters are vO (Vo), alphaO (oo), qO (%), thetaO (0o), betaO (fl0), pO (p0), rO
(r.), and phiO (4)o).

!(

6.2.1.3 Instrumentation parameters: Numerous p_rameters characterize instrumentation installa-

tion a,fl calibration. Each response variable h_ a corresponding response bi_s pararneter. The bias

value is added to the computed response variable value at each time point. The dimensions of each

response bias parameter are the same as the dimensions of the corresponding response vaxiable. Re-

sponse bias parameters _re vBias (Vb), alphaBias (or,), qBias (qb), thetaBi_ (0b), a_Bias (a,_b), a.xBias

(a_,). qdotBias (_), betaBias (/_b), pBias (Pb), rBia_ (rb), pkiBias (_), ayBias (a_.), pdotBias (/_,),

and rdotBias (/_).

Several response-measuring instruments have pazameters describing their location in the aircraft.

Each instrument-position parameter specifies the location of a response-measuring instrument aft of,

to the right of, or above the alrcr_ft reference point. Instrument-position parameters correct comput,_d

response values for instruments not located at the aircr_t center of gravity. In operation, the program
determines the distance from the instrument to the center of gravity by subtracting the instrument

position from the center-of-gravity position (see section 6.2.2.1). The dimensions of all instrument-

position parameters are feet. Table 3 gives the instrument-position parameter names.

TABLE 3 -- INSTRUMENT POSITION PARAMETEI_S

Aircraft a_xis

Response variable X Y Z

Velocity xv (xv) yv (Ire) zv (zv)

Angle of attact_ xa (zo) ya (_to) za (z_)

Angle of sideslip xb (z_) yb (y#) zb (za)
Axial acceleration xax (zo.) yax (y_.) za_x (z_.)

Lateral acceleration xay (x_,) yay (!/,.,) zay (z_)

Normal acceleration xan(zo,) yah(It,.) zan(z,.)

Two parameters define the flow amplification factors for the aircraft flow angle sensors. The upwash

fartor for the angle-of-attack sensor is ka (ka), and the sidewash factor for the a_gle-of-sideslip sensor

is kb (.('_). Both parameters are dimensionless.

6. '2.I.,t l_.edback gains: Five parameters define feedback gains for five of the state equations. Valid

val,es for feedback gains are between 0 and 1; a value of tr :,replies no feedback. While the teedback gains

at,, parameters and can therefore be estimated, such use is experimental. Feedback g_in parameters

are g;Alpha (go), gBeta (g_), gP (gp), gQ (gq), and gR (g,).

6.2.2 Constants.--The standard user routines define several constants. The use and dimensions

of _.ach ronstant are defined as follows.

r;.2. :'. 1 Aircraft physical characteristics: Constants defining the mass characteristics of the aircraft

aw mass (m), ix (It), iy (Iv), iz (I,), ixy (lxu), ixz (l_z), and iyz (I_). The mass is in slugs and all

in0rti,_s in slug-feet squared. Constants defining the reference dimensions of the aircraft are area (s),

sl_;_, (b), and chord (c); the area is in feet squared and the span _nd chord are in feet. Constants

23

definingthe location of the aircraft center of gravity are xcg (zcs), ycg (llcs), and zcg (Zcs); they are

measured in feet aft of, to the right of, and above the aircraft reference point, respectively.

6. 2. 2. P, Time historll variable averages: Several constants specify average values of measured time

history variables. The avg_v, avg alpha, avg.beta, avg_theta, and avg_phi constants contain average

values for the corresponding response variables. The avg.qbar constant contains the average value of

the dynamic pressure. Whenever a measured time history file is read (see section 4.2.1), the average

value of each time history variable is computed, and values are assigned to the corresponding constants.

Of course, at any point in the program, you can modify the value of a constant (see section 4.6.2).

The equations of motion use the value of the constant variable containing the time history average of

a response v_riable if its corresponding flag is turned on (see section 6.2.7).

6.2.3 States.--The standard user routines define eight state vaxiables. All state variables are

used internally in the program in English units. The wind-relative velocity is defined in spherical

coordinates by three states: airspeed, angle of attack, and angle of sideslip. Airspeed is measured in

feet per second, and its state name is v (V). Angles of attack and sideslip are both measured in degrees

and are named alpha (o) and beta (_), respectively. The aircraft rotational velocities are defined in

the aircraft body axes and are all measured in degrees per second. The roll, pitch, and yaw rate states

are named p (p), q (q), aad r (r), respectively. The aircraft attitude is defined by the the aircraft Euler

angles, measured in degrees. The pitch and bank angles are named theta (0) and phi (_b), respectively.

tleading angle is not used in the aircraft equations of motion.

6.2.4 Controls.--The standard user routines define seven control variables. All control variables

Are measured in degrees. The three conventional aircraft control surface deflections, elevator, aileron,

and rudder deflection, are named de (6e), da (6_), and dr (6r). The program defines four additional

controls, dl (61), d2 (62), d3 (83), and d4 (64).

6.2.5 l{esponses.--The standard user routines define 14 response variables. Each of the eight

st;tte variables (see section 6.2.3) has a corresponding response variable; the name and dimensions of

each response variable are identical. Six additional response variables have no corresponding states.
The aircraft rotational accelerations are defined in the aircraft body axes and are measured in degrees

per second squared. The roll, pitch, and yaw accelerations are named pdot (/5), qdot (q), and rdot (÷),

re_p_,ctively. The aircraft linear accelerations are defined in the aircraft body axes and are measured

in g. The axial, lateral, and longitudinal accelerations are named ax (a_), ay (au), and an (an),

respectively.

6.2.6 Extras.--The standard user routines define three extra signals: Mach number, dynamic

pr_.ssure, and altitude, named roach (M), qbar (t)), and alt (h), respectively.

0.2.7 Flags .--T he standard user routines define seven flag variables. The flags select alternative

forms of the equations or sources of data. Each flag specifies using the average value of a measured

time history variable in the equations of motions in place of a time-varying quantity. This option is

particularly useful when you do not have a measurement time history for a particular variable. In
surh a case, you can input an average value using the appropriate constant (see section 6.2.2) and then

24

activatetheflag to usethe average value in the equations. The flags are named use.avg_v, use.avg_beta,

use._vgtheta, use._vg_phi, use_avg.m_w-h, and use._vg.qbar.

National Aeronautics and Space Administration

Ames Research Center

Dryden Flight Research Facility
Edwards, California, September 9, 1986

25

APPENDIX A--PROGRAM STATUS FILE FORMAT

The program statusfileisa FORTRAN formattedfilethatstoresthe statusofeveryprogram variable.

Each recordon the statusfilecorrespondsto azlindividualprogram variableor option;the recordsare

grouped togetherintocommon recordtypes.When the fileiswrittenby the program, a complete file

iswritten;allrecordsdefinedforthe fileare written.Ifyou createthe fileoutsidethe pEst program,

itis not necessaryto fillin allfieldson the file.At startup,the program assignsa defaultvalueto

e_tchprogram variable;the valueisretainedunlessitisredefinedby rea_Iinga correspondingrecordon

the statusfile.Except for the firstrecord,which specifiesthe fileformat,the order of the recordsis

immaterial.AP.yrecordcan be repeated;ifrepeated,thelastrecordread overrides_ previousrecords.

Allfieldsare caseinsensitive;upper and lower casecan be mixed.

Each record type isdefinedby itskey word; the key word isthe firstfieldof each record and is

left-justifiedin the firsteightcolumns of the record.Each key word can be followedby severalfields;

the content and format of the fields,of course,depend on the record type. However, allfieldsof a

common type have identicalformat,independentofthe recordtype. There are no spacesbetween fields.

Auy fieldspecifyinga system or program variablename is16 characterswide; the name isleft-justified

in the field.Any floating-pointfieldisalso16 characterswide and isread with a FORTI_AN g16.10

format. Any logicalfieldis2 characterswide,and containseithera tor an f,right-justified.Allother

fieldsare recorddependent and are describedin the individualsectionsthat follow.All key words and

lit_,ralphrases used in the statusfileare italicizedin the followingsectionsto distinguishthem from

other text.

A.1 Version Record

The file has a single version record. The version record specifies the format used when reading the
lile, he,ce the version record must'be the first record on the file. The key word for the version record

is torsion. Four fields follow: The first is a character string with the phrase pest-current left-justified

in a field of 16 characters. The program recognizes the file by this phrase, and it is required. The

s(,cond field specifies the version number of the current file as a character string, left-justified in _ field

8 characters wide. The current value is 2.1. The third and fourth fields specify the date and time when

the ill,,, is written by the program; these fields are not read by the program.

An example of a version record is

version pest-current 2.1 31-Mar-86 15:33:30

A.2 Title Record

Tl,, file typirally has a single title record. The key word for the title rec_)rd is title. A character field

40 rharacters wide specifying the title follows the key word.

A, example of a title rerord is

title F18 FLIGHT 11 LONG NAN 3

26

A.3 Parameter Record

The file can have several parameter records; typically there is one for each parameter defined in the

program. Tile key word for a parameter record is param. Five fields follow: The first is the parameter

name. The second and third are floating-point fields specifying the predicted and current values of the

parameter, respectively. The fourth is a logical field specifying the estimation status of the parameter.

The last is a floating-point field specifying the Cram_r-Rao bound for the parameter.

Examples of parameter records are

parma cNormde

parma clp

.7798399770E-02 .8341009928E-02 T .0001045977

-.3680106990 -.3680106990 F .0000000000

A.4 Constant Record

'FILe file can have several constant records; typically there is one for each constant defined in the

program. The key word for a constant record is const. Two fields follow: The first is the constant

n_me. The second is a floating-point field specifying the value of the constant.

Examples of constant records are

const avg_alpha 8.165277248

const ixz 1870.199950

const zcg 5.317500110

A.5 Flag Record

TI," file can have several flag records; typically there is one for each flag defined in the program. The

key word for a flag record is flag. Two fields follow: The first is the flag name. The second is the value

of the flag, in a logical field.

An example of a flag record is

flag use_avg_alpha F

A.6 State Record

The file can have several state records; typically there is one for each state variable defined in the

pr,gram. The key word for a state record is state. Three fields follow: The first is the state name. The

second is a logical field specifying the status of the state equation. The third is a floating-point field

specifying the integration limit for the state.

Exam ples of state records are

state alpha t 100000.0000

mtate p F 10000.00000

27

A.7 Response Record

The file can have several response records; typically there is one for each response variable defined

in tile program. The key word for a response record is output. Four fields follow: The first is the

response name. The second is a floating-point field specifying the average value of the measured

response variable. The third is a logic_ field specifying the st_tue of the response equation. The last

is a floating-point field specifying the response weighting in the cost function.

Examples of response records are

output alpha 8.165277248 T 500.0000000

output phi -.3456887850 f 10.00000^00

A.8 Control Record

The file can have several control records; typically there is one for each control variable defined in the

program. The key word for a control record is input. Two fields follow: The first is the control name.
Tile second is a fioating-point field specifying the average value of the measured control variable.

Examples of control records are

input de -2.275935836

input d3 .0000000000

A.9 Extra Record

The file can have several extra records; typically ttere is one for each extra variable defined in the

program. The key word for a extra record is eztra. Two fields follow: The first is the name of

the extra signal. The second is a floating-point field specifying the average value of the measured

extra variable.

An example of an extra record is

extra qbar 112.4635873

A.IO Maneuver and Window Records

'i'lw file can have several maneuver or window records, or both; typically there is one fol each maneuver

c)r wi.dow defined in the program. The formats of the two records are identical; the only difference

is the key word. The key word for a maneuver record is maneuver, while that for window record

is window. Two fields specifying the start and end times follow the key word. The format for each

time is identical. There are two blank spaces, followed by a two-digit hours specifier, a period, a

two-digit minutes specifier, a period, a two-digit seconds specifier, a period, and a three-digit milli-

,q_conds specifier.

Exa.sples of nlane.ver and window records are

maneuver 10.42.18.508 10.42.28.487

window 10.42.18.808 10.42.28.487

28

A.11 Option Records

The file can have several option records; typically there is one for e_ch program option defined. The

key word for an option record is option. Two fields follow: The first is the name of the option. There

are six program options, each corresponding to a program varia}-le. The second field is the value of the

program vsriable, so the format depends on the variable. For the integMeth, minMeth, and gradMeth

variables, the second field is a character string, left-justified in a field 16 characters wide. For the

gradDelt and bound vaxiables, the second field is a floating-point field. For the msgLevel variable, the

second ficld is is an integer value right-justified in a field 5 characters wide.

Examples of option records are

option integ runge-kutta

option min newton-raphson

option gradMeth single-sided

option gradVelt .I000000000E-06

option bound .1000000000E-03

option mogLevel 50

29

APPENDIX B--HELP FILES

The online help files used by pEst are _sted in the following sections as they appear in program use.

The hclp files detail the exact syntax of each command. The help files are _phabeticaUy ordered.

B.1 Abort

abort [cmd] -- exit pEst immedlately

USAGE

abort

DESCRIPTION

Exits pest without saving curren_ program status or writing

computed time history.

EXAMPLES

abort

SEE ALSO

quit, save, write

KEYWORDS

abort command,

abort/exit pest

AUTHOR James Murray - NASA Dryden

VERSION 2.1

DATE 11/19/85

B.2 Bound

bound [var] -- convergence bound

USAGE

show bound

set bo,md <convergence bound>

DESCRIPTION

Bound is the value used in the convergence test of the

minimization algorithm. If the percentage change in the cost

function betveen two successive iterations is less than this

number, then convergence is declared and the program stops
iterating.

Convergence tests may bscomA more complicated in future

3O

l

varalona, possibly rendering this variable obsolete.

The default is bound=.O001

EXAMPLES

shoe bound

set bound 0.00001

SEE ALSO

show, set

KEYWORDS

bound variable,

convergence bound/criterion

AUTHOR James Murray

VERSION 2.1

DATE 11/21/85

B.3Constant

const [cmd] -- display or set constants

USAGE

const <const_list> <value>

PARAMETERS

const_llst

List of const names, separated by c.mas or blanks.

alternatively be 'all' (for all constaDts). If not

specified, it defaults to all constants.

May

value

Floating point value for all referenced constants. If this

value is present, all referenced constants will be set to

the specified value. If value is omitted, the constant

values rill remain unchanged.

DESCRIPTION

Displays or sets value of selected constants.

EXAMPLES

const area 200.0

const all

SEE ALSO

pars=, flag [cmd]

31

constants [varY

KEYWORDS
CO_St comls_ld,

set/change/list/shov/display constants

AU-rHOR James Murray - NASA Dryden

VERSION 2.1

DATE 3/11/86

B.4 Constants

constants [vary -- user-defined constants

DESCRIPTION

The follouin g are the names and brief descriptions of the user

routine constants currently defined in pest. C.G positions

are positive aft, above, and right of the reference point.

NAME DESCRIPTION

avg_qbar

avg_mach

avg_v

avE_alpha

avg_theta

avE_beta

avE_phi

mass

ix

iy

iz

ixy

ixz

iyz

area

span
chord

xcg

ycg

zcg

average qbar, psf

average math

average velocity, fZ/se¢

average alpha, de E

average pitch attitude, de E

average beta , de E

average roll attitude , dee

mass, slues

ix, slug-ft**2

iy, slug-ft,,2

iz, slug-ft**2

ixy, slug--ft**2

ixz, slug-ft,,2

iyz, slug-ft**2

reference area, ft**2

reference spacn, ft

reference chord, ft

x-coordinate of cg, ft

y-coordinate of cg, ft

z-coordinate of cg, ft

SEE ALSO

const, parameters, flags, states, responses, controls, extras

KEYWORDS

32

constant names/descrlptlons

AUTHOR James Hurray
VERSION 2.1

DATE 11/22/85

B.5Controls

controls [var] -- control signals

DESCKIPTION

The following are the names and brief descriptions of the

control signals currently defined in pest.

NAME DESCRIPTION

de

dl

d2

da

dr

d3

d4

SEE ALSO

elevator deflection, deg

deflection of control surface I, dsg

deflection of control surface 2, deg

aileron deflection, deg

rudder deflection, deg

deflection of control surface 3, deg

deflection of control surface 4, deg

parameters, constants, flags, states, responses, extras

KEYWORDS

control/input signals/names/descriptions

AUTHOR James Hurray
VERSION 2.1

DATE tl/22/85

J

k

D.G Extras

extras [var] -- extra signals

DESCRIPTION

The following are the names and brief descriptions of the

extra signals currently defined in pest.

NAME DESCRIPTION

qbar dynamic pressure, psf
mach mach number

33

alt altituda, ft

SEE ALSO

parameters, constants, flags, states, responses, controls

KEYWORDS

extra signals/names/descriptions

AUTHOR James Murray

VERSION 2.1

DATE 11/22185

B.7 Flag

flag [cmd] -- display or set user-defined flags

USAGE

flag <flag_li_t> +active

PARAMETERS

flag_list

List of flag names, separated by commas or blanks. May

alternatively be 'all' (for all flags), 'active' (for the

active flags), or one of several synonyms for active. If

not specified, it defaults to all active flags.

+active (+on,+yes,+vary,+enable,+t,-inact,-_deact,-disable,

-no,-f)

Switch to set the value of the referenced flags to active or

inactive (or on/off, etc.) If this s,itch is present, all

referenced flags will be set to the specified value. If the

switch is omitted, the flag values remain unchanged.

DESCRIPTION

Displays or sets status of flags.

The flag values are boolean (true/false, etc.) There is no

distinction between +on, +true, +active, etc., except that

some of these synonyms may sound more sensible than others for

a specific flag. The interpretation of the flag values is

solely a function of the user routAnes. The coro pest program

does nothing with the _lags except handle the mechanics of

setting, displaying arLd storing them.

EXAMPLES

flag use_avg.qBar,use_avg_mach +no

flag all

:I.I

I

l

i
(

!

SEE ALSO

param, tenet [cad]

flags [var]

KEYWORDS

flag command,

.qet/cha_gelllst.lshowldisplay flags

AUTHOR James Nurray - NASA Dryden

VERSION 2.1

DATE 3/18/86

B.8 Flags

flags [vax] -- user-defined flags

DESCRIPTION

The following are the names and brief descriptions of the user

routine flags currently defined in pest.

NAME DESCRIPTION

use_avg.qbar use average qbar in if true

use_avg_mach use avex'ag@ mach if true

use_avg_v use average velocity if true

use_arK_alpha use average alpha if true

use_avg_thota use average pitch attitude if true

uso_avg_bota use average beta if true

use_avg_phi use averse roll attltude if true

SEE ALSO

flag, parameters, constants, scares, responses, controls,

extras, state

KEYWORDS

flag names/descrlptions

AUTHOR James Murray

VERSION 2.1

DATE 1112218S

35

B.9 GradDelta

gradDelta [var] -- parameter incruent to use for computing

gradients

USAGE

show gradDelta

set 5radDelta <value>

DESCRIPTION

GradDelta is the relative step size used for computing finite

difference gradients. The step size used for each unknown

parameter is gradDelta times the current estimate of the

parameter.

To avoid problems near zero, there is a fixed minimum

parameter value in the step size computation. If a parameter

estimate is smaller than this limit (currently .000001), the

step size for that parameter is gradDelta times the limit.

The default is gradDelta=.O000001

EXAMPLES

show gradDelta

set gradDelta 0.00001

SEE ALSO

show, set, gradMeth

KEYWgRDS

gradDelta variable,

deltalincrementl(step size) for computing _radients,

sensitivity matrix

AUTHOR James Murray

VERSION 2.1

DATE 11/21/85

B.IO GradMeth

gradMeth [var] -- method of computing gradients

USAGE

show gradMeth

set gradMeth <method>

DESCRIPTION

GradMeth is the method used by the program for computing

gradients. Tee options are available. Both are finite

difference methods. Pest has no provision for analytical
differentiation.

If gradMeth is set to '1' or 's[ingle-sided],, a foreard

difference method will be used. This is the fastest method,

requiring only n+l integrations to compute ann-dimensional

gradient. It sacrifices some accu_ac), however.

If gradMeth is set to '2' or 'd[ouble-sided],, a central

difference method will be used. This is the most accurate

method implemented, but requires 2n integrations to compute an

n-dimensional gradient. Since the integrations in the

gradient cumputation dominate the computational time of pest,

the central difference method takes about twice the time of
the fcrward difference method.

For most efficient use of computer time (when it is worth the

trouble), you might want to use forward difference computation

most of the time, switching to central difference for the last
few critical iterations.

The default is gradMsth='single-sided,

EXAMPLES

show gr_dMeth

set gradMeth single

SEE ALSO

show, set, gradDelta

KEYWORDS

gradMeth variable,

forward/central difference method,

gradient/sensitivity computation

AUTHOK James Murray

VEP_I,}N 2.1

DATE 11/21/85

I|.II llltegMeth

integMeth [var] -- integration method

USAGE

:}7

show integMeth

set intsgMeth <method>

DESCRIPTION

IntegMeth is the method used by the program for integrating

the equations of motion. There are currently two valid
values.

If integMeth is E[uler], a first order Euler method is used.

This simple method uses only I state derivative evaluation and

I response evaluation per time point. Although fast, this

method is quite innaccurate. It is fete,--ended only for rough

approximations when computer time is of critical importance.

If integMeth is R[unge-Kutta] a 4¢h order Runge-Kutta method

is used. This method requires 4 state derivative evaluations

and i response evaluation per time point. Although moderately

expensive, its accuracy is good and it is recommended for most

applications.

The default is integMeth-'Runge-Kutta,

EXAMPLES

show integMeth

set inte_Meth rungs

KEYWORDS

integMeth variable,

Euler integration method/algorithm,

Runge-Kutta/(Runge Kutta)/RK integration method/algoritbun

AUTHOR James Murray

VERSION 2.1

DATE 11/21185

i|.12 Iterate

iterate [cmd]

USAGE

iterate

PARAMETERS

niter

-- perform parameter estimation iterations

[<niter>] C<min_meth>]

Maximum numbsr of iterations to do; if omitted or zero, the

equations of motion rill only be integrated and the cost

function evaluated; no parmaeter update will be performed.

min_meth

Optional specification of the minimization method to be

used. If this parameter is included, the minMeth variable

is set accordingly and the specified method is used. If

this parameter is not specified the current value of the

minMeth variable is used. T_e minNeth variable can also be

set with the set command. 1"ae 3 currently valid values are

n[ewton-raphson] g[radlent] and d[avidon-fletcher-powell].

The initial default for min_merh is ne_Ycon-raphson. See the

minMeth helpFile for details.

DESCRIPTION

The iterate command initiates the parameter estimation.

Anything beginning with Pit _ will be accepted as an

abbreviation.

EXAMPLES

iterate

iter 3 grad

SEE ALSO

set, show, minNeth, integMeth, g%adMeth, bound, msgLevel,

param, state, response, flag

KEYWORDS

itorate/iter/it command,

set minMeth/(minimization method) variable,

estimate parameters, integrate equations, minimize cost

function

AUTHOR James Murray - NASA Dryden

VERSION 2.1

DATE 11/21/85

I_.13 MinMelh

minMeth [var] -- cost function minimization method

USAGE

show minMeth

set minMsth <minimization method>

DESCRIPTION

= '£_ _

MinNeth is the algorithm used by the program for minimizing
the cost function. There are currently three valid values:

n [ewton-raphson], g[radlent], and d[avidon-fletcher_powell].

Newzon-Raphson is recommended for most situations. It is

actually implemented as a Gauss-Newton algorithm. Cramer-Rao

bounds are available only when Me_on-Raphson is used. The

algorithm is modified by the addition of a line search in the

Gauss-Newton direction. With this line search, the cost

function is guaranteed never to increase from one iteration to

the next; it may not decrease much (or at all), but it will

never increase. Any violations of this principle should be
reported as program bugs.

Gradient (also known as steepest descent) is in general less

efficient than Newton-Raphson. The gradient algorithm is the

most conservative of those implemented in that it has the

least chance of failing. This is because the _pradient method

involves no matrix inversions. Tote, however, that matrix

inversion difficulties are usually a sign of more serious

intrinsic identifiability problems and should not be lightly

ignored. Like the pEst implementation of Gauss-Neutron, the

gradient method should never give a cost increase from one

iteration to the next. Convergence of the gradient method is
often extremely slow.

The implementation of the D_ -don-Fletcher-Powoll algorithm in

the pest program is still somewhat experimental. The

algorithm is generally considered to be quite "powerful."

However, we have not yet spent much tile investlgating its
Performance in the pEst environment.

The default is mlnMeth='newton-raphson,

EXAMPLES

show min_meth

set min_meth newton

SEE ALSO

show, set, iterate

KEYWORDS

minMeth variable,

Newton-Raphson/Newton/(Gauss__e_on)/Gauss method/algorithm,

gradient/(steepest descent) method/algorithm,

Davidon-Fletcher-Powell/dfp method algorithm,

cost function minimization/min/optimization method/algorithm

AUTHOR3_e8 Murray
VERSION 2.1

DATE 11/21/85

t.

B.14 MsgLevel

msgLevel [var] -- auount of screen output

USAGE

shou nsgLevel

.st nsgLevsl <message_level>

DESCRIPTION

MsgLev_l is the anounr of screen ouZput displayed. The

following describes the output added at each value of

msgLevel. Higher values of msgLevel also include all of the

output for the lower levels. The numeric values assigned
leave lots of room for future finer control.

LEVEL DESCRIPTION

(levels 1-9 control output that occurs only on error
ternination)

5 Shov error specifics, detailing shore errors occur.

(levels 10-49 control output that occurs once per iteration)

10 Show cost function value each iteration.

15 Show cost per response signal each iteration.

20 Shoe estinated parameter values each iteration.

40 SumBarize each iteration.

(levels 50-99 mostly control output that can be many times
per iteration)

50 Summarlze each llna search.

52 Smmarize each stage of line search.

55 Shoe all integration failures, recoverable or not. At

loger message levels, some integration failures are

silently recovered, for instance by trying shallot step
sizes.

41

" • L "

$7

60

62

65

70

75

8O

Shoe correlation matrix every neeton-raphson iteration.

Detail each cost evaluation in line searches. This

tracks the convergence of the line search algorithm.

Mostly used in development of line search algorithms.

Detail integration failures. Shoe details of why

integration was terminated.

Shoe second gradient matrices every newton-raphson

iteration. Show approximate inverse second gradient

matrices every dfp iteration.

Show all gradient vectors.

Show cost function value whenever it is evaluated for

any purpose.

Shoe the cost per response sisual whenever the cost is

evaluated.

(levels I00-? control output that occurs every time point of

integration)

(Note that the volume of output caJ_ be extremely large)

100 Show the state vectoz every time point. (Unimplsmented)

The default is msgLevel-50

EXAMPLES

shoe msgLevel

set msgLsvel 60

SEE ALSO

set, show

KEYWORDS

msgLevel variable,

mSg,

level/amount of output messages

AUTHOR James Murray

VERSION 2.1

DATE 11/22/85

12

B.15 Parameter

param [cmd] -- display or set pLrameter values or status

USAGE

parA,, <paten_list> <value>

+active +reset

+predicted +crBound +delta

PARAMETEP_

param_list

List of parameter names, separated by commas or blanks. May

alternatively be 'all' (for all parameters), 'active' (for

the active parameters), or one of several synonyms for

active. If not specified, it defaults Zo all active

parameters. In this context, an 'active' parameter is one

being allowed to vary in the estJJaation (varying is one of

the acceptable synonyms).

value

Floating point value for all referenced parameters. If this

value is present, all referenced parameters will be set to

the specified value. If value is omitted, the parameter

values will remain unchanged.

+active (+on,+yes,+vary,+enable,+t,-inact,-deact,-disable,

-no,-f)

Switch to activate or deactivate estimation of all

referenced parameters. If +active is set, the referenced

parameters will be estimated. If -active is set, they will

not be estimated. If neither is set, the status of the

parameters will ramaln unchanged.

+reset

If +reset is specified, all parameters in the param_li_t

will be reset to their predicted values. Mote that it does

not make much sense to specify both • value and +reset; if

you do so, the +reset specification will override without

comment. The switch may be abbreviated to +r. The default

is -reset.

+predicted

If the +predicted svitch is specified, the predicted values

of the parameters wlll be included in the display resulting

from this command. The switch may be abbreviated to +pr.

The default is -predicted.

+crBound

43

If the +crBound switch is specified, the Cramer-Rao bounds

of the parameters will be included in the display resulting
from this command. Anything beginning vith +cr or +b is

accepted as a synonym. The default is -crBound.

+delta

If the +delta switch is specified, the the parameter value

changes in the previous iteration -ill be included in the

display. Anything begininE -ith +d ,ill be accepted as a

synonym (unless the second letter is i, which could cause

confusion ,ith +disable).

DESCRIPTION

Displays or sets value and estimation status of selected

parameters. Any command starting with 'par' will be accepted
as a synonym.

EXAMPLES

param cma,cmde,cmq +fix

paras cnp -0.25

parm vary

par all

SEE ALSO

const, flag [cmd]

parameters [var]

KEYWORDS

param command,

set/change/list/show/display Paramoter/param/parm values/
status

AUTHOR James Nurray - NASA Dryden
VFRSION 2.1

DATE 3118186

B. 16 Parameters

parameters [var] -- estimated parameters

DESCRIPTION

The following a,o the names and brief doscrlptlons of the

estimated parameters currently defined in pEst. Instrument

positions are posltlve aft, above, and right of the reference
point.

.14

®

NAME DESCRIPTION

cNormO

cNorma

cNormq

cNormde

cNormdl

cNormd2

cNormd3

cmO

cma

cmq
cmde

cmdl

cmd2

cmd3

caO

caa

caq

cads

cadl

cad2

cad3

vO

alphaO

qO

thetaO

vBias

alphaBias

qBias

thetaBias

anBias

axBias

qdotBias

ka

xa

ya

za

xan

yan

zan

normal force aerodynamic bias

normal force due to alpha, per deg

normal force due to pitch rate. per tad

normal force due to elevator deflection, per
deg

noxmal force due to dl deflection, per deg

normal force due to d2 deflection, per deE

normal force due to d3 deflection, per deg

pitching moment aerodynamic bias

pitching moment

pitching moment

pitching moment

per deg

pitching moment

pitching moment

pitching moment

axial force

axial force

axial force

axial force

deg

axial force

due to alpha, per deg

due to pitch rate. per rad

due to elevator deflection.

due to dl deflection, per deg

due to d2 deflection, per deE

due to d3 deflection, per deE
aerodynamic bias

due to alpha, per deE

due to pitch rate. per tad

due to elevator deflection, per

due to dl deflection, per de E

axial force due to d2 defection, per de E

axial force due to d3 deflection, per deg

increment to velocity initial condition,
ft/sec

increment to alpha

increment to pitch

doglsec

increment to pitch

de E

measurement bias on

measurement bias on

measurement bias on

measurement bias on

measurement bias on

measurement bias on

measurement bias on

deglsece*2

initial condition, deE

rate initial condition,

attitude initial condition,

velocity, ftlssc

alpha, dsg

pitch rate. deg/sec

pitch attitude, deE

normal acceleration, g

axial acceleration, g

pitch acceleration,

up,ash factor for alpha sensor

x-coordinate of alpha sensor, ft

y-coordinate of alpha sensor, ft

z-coordlnate of alpha sensor, ft

x-coordlnate of normal accelorometer, ft

y-coordinate of normal accelerometer, ft

z-coordinate of normal accelerometer, ft

4.5

xax

yax

zsx

xv

yv
z¥

cyO

cyb

cyp

cyr

cyda

cydr

cyd3

cyd4

clO

clb

clp
clr

clda

cldr

cld3

cld4

cnO

cnb

cnp
cnr

cnda

cndr

cnd3

cnd4

betaO

pO

rO

phiO

betaBias

pBias

rBias

phiBias

ayBias

pdotBias

rdotBias

x-coordinate of axial accelerometer, ft

z-coordinate of axial accelerometer, ft

z-coordinate of axial accelerometer, ft

x-coordinate of velocity sensor, ft

y-coordinate of velocity sensor, ft

z-coordinate of velocity sensor, ft

side force aerodynamic bias

due to beta, per de Eside force

side force due

side force due

side force due

side force due

side force due

side force due

rolling moment

rolling moment

rolling moment

rolling moment

rolling moment

deg

rolling moment

deg

to roll rat_, per rad

to yaw rate, per rad

to aileron deflection, per deg

to rudder deflection, per deE

to d3 deflection, per de E

to d4 deflection, per deg

aerod)-namic bias

due to beta, per deg

due to roll rate, per rad

due to yaw rate, per rad

due to aileron deflection, per

due to rudder deflection, per

rolling moment due

rolling moment due

yawing moment aerodynamic bias

yawing moment due to beta , per deg

yawing moment due to roll rate, per rad

yawing moment due to yaw rate, per rad

yawing moment due to aileron deflection, per

deg

yawing moment due to rudder deflection, per
deg

yawing moment due to d3 deflection, per deg

yawing moment du. to d4 deflection, per deg

increment to beta initial condition, deg

increment to roll rate initial condition,

deglsec

increment to yaw rate Initial condition,

deglsec

increment to bank angle initial condition,

measurement bias on beta, deg

measurement bias on roll rate, deg/sec

measurement bias on yaw rate, deglsec

measurement bias on bank angle, deg

measurement bias on lateral accelerometer, g

measurement bias on roll acceleration,
deg/sec**2

measurement bias

to d3 deflection, per deg

to d4 deflection, per deg

deg

on yaw acceleration,

,16

kb
xb
yb
zb
xay
yay
zay

gAlpha

gQ

gBeta

gP

gR

deg/sec**2

stdosash factor for beta sensor

x-coordinate of beta sensor, ft

y-coordlnate of beta sensor, ft

z-coordinate of beta sensor, ft

x-coordinate of lateral acceleromotor, ft

y-coordinate of lateral acceleromotor, ft

z-coordinate of later_l accelerometer, ft

feedback gain for alpha state

feedback gain for q state

feedback gain for beta state

feedback gain for p state

feedback gain for r state

SEE ALSO

param, constants, flags, states, responses, controls, extras

KEYWORDS

parameterlparamnamesldescriptions

AUTHOR James Murray

VERSION 2.1

DATE 3110186

13.17 pest

pest [cmd] -- parameter estl.aation program.

USAGE

[luserlmurray/co-mands/]pEst

DESCRIPTION

This program does parmater estimation. The program is

d_signed for interactive operation.

The program resides in the directory /user/murray/pEst,

aliases in /userlmurraylcomm_nds. The usePest command

facilitates access to pest.

There is a full internal help facillty vhlch covers the

commands within pest.

EXAMPLES

/user/murray/commands/usePsst

pEst

reed measured

restore current

with

.17

iter 3 newton

plot

quit

CAVEATS

Current dimensions limit the program to 200 parameters and

2000 time points. The limits are all checked, so that

accidentally exceeding thamwill not cause the program to
crash.

ERROR HANDLING

The program attempts to recover from all errors. Such mundane

errors as exceeding dimension limits, or givin E a non-existent

file name or signal name are all cauEht. The program should

not crash, regaxdlees of what junk you feed it for commands.

Infinite or NaN quantities in the data may crash it. If you

succeed in crashing the program in any other way, please let
me know.

SEE ALSO

bindPEst, thPlot, usePest, internal help

FILES

current current program status.

measured time history data file.

computed time history file of estimated variables.

pEst_thplot.temp scratch file for communicating eith thplot

IMPLEMENTATION

Fortran program.

The time history data file interface routines are used to read

the data files. See the help topic fileInterface for

discussions of the file interface subroutines. You must write

customized versions of these routines to use pest on data

files not supported by the standard ones.

KEYWORDS

program pest,

parameter estimation,

mmle

AUTHOR James Murray - NASA Dryden
VERSION 2.1

DATE 10128185

IX

B.I8 Plot

plot [cmd] -- plot fits of currently active responses, control,
and extras

USAGE

plot [+res[iduals]] [÷u [+c[ontrols] i ÷i[nputs]] [÷ex[tras]]

PARAMETERS

*res

If this flag is turned on,

plotZed. Default is -res.

the fit residuals are also

+u

If this flag is turned on, the contol signals are also
plotted. Default is -u,

÷ex

If this flag is turned on, the extra signals are also
plotted. Default is -ex.

DESCRIPTION

Enters thPloZ program and automatically plots time history

fits of all currently active response variables. Fit

residuals and other signals are selectively plotted. Upon

completion of the time history plots, control is returned to

pest.

This command differs from the zhplot command in that the

thplot command expects you to interactively enter any commands

to the thplot program. That allows more flexlbility in what

is plotted, but requires more input from the user. The plot

command, in contrast neither expects nor allows interactive

input during the plotting.

EXAMPLES

plot

plot ÷res

plot +u _extra

CAVEATS

As currently implemented, the plot command creates a file

called pEsc_thplot.tsmp, used for input to the thplot program.

Any pre-existing user file of that name will be overwritten

(and later deleted).

ERROR HANDLING

Automatically uses the write command to create the computed

49

.... _'_. __ __4 .̧...

time history file. 13erofors, all of the error handling

discussed under that command applies. If the write command

fails to wriSe a computed time history file, the plot command

will terminate and return to the pest command line eithout

doing any plots. If a bad flag is specified, the plot command

will terminate and return to the pest comand line without

doing any plots.

SEE ALSO

thplot, write

KEYWORDS

plot command,

plot response fits, residuals, controls/inputs, and extras

AUTHOR James Murray - NASA Dryden
VERSION 2.I

DATE 11/19/85

B.19 Quit

quit [cmd] -- save current status and exit pEst

USAGE

quit

DESCRIPTION

Writes current program status and computed time history files,

and exits pest. The effect is the same as doing a save

command with no parameter, followed by an aboI_ command.

EXAMPLES

quit

SEE ALSO

abort, write, save

KEYWORDS

quit command,

save current status and quit/exlt pest

AUTHOR James Murray - NASA Dryden
VERSION 2.1

DATE 11/19/85

5O

B.20 Read

read [cmd] -- read measured time history file

USAGE

read [fileName]

PARAMETERS

f il snares

filename (or pathname) of the file to be read. If not

specified, it defaults Zo the same name as last specified on

a read command. If no filegame has been specified by any

read command in the current run, the name defaults to

'measured' •

DESCRIPTION

Reads a measured time history data file. A measured time

history file must be rsad before pEst can do anything of

consequence. On initial startup, the program attempts to read

a time history file named 'measured'. If this attempt fails

for any reason, you will be unable to do much until you do a

successful read command. The read command c_z also be used,

after completing analysis of one maneuver, to switch to a new

data set for anslysis.

A few program variables are automatically reset whenever a

read command is successfully executed. These are variables

that are closely associated with the individual maneuver and

unlikely to be meaningfully carried over from one case to

another.

Prlmarily, all maneuver and window times are redefined. The

maneuver times are automatically determined by looking for

time dropouts of greater than I second (exact number subject

to future change). The window times are set to equal the

maneuver times by default.

The av E _ constants are also reset to the average of the

measured data for the maneuver. It is possible to manually

override these values if you want to (for instance if the

measured values are wrong), but it is unlikely that you want

such overrides to automatically carry over from one maneuver

to another (in fact it could cause great confusion if you were

not aware that such carryover was occuring). Therefore,

average values are reset each time a maneuver is read.

EXAMPLES

read

read measured.case13

ERROR HANDLING

The program gives error messages and returns to the command

line on encountering any error. Previously read data may be

overwritten by a failed attempt to read nee data; in this

case. the progrem sill clear out all of the corrupted data and

you viii have to execute a new successful read command before
doing much else constructive.

All commands that use tiae history data will recognize and

appropriately handle the case where no valid time history data

is available. (Appropriate handling usually means that the

command will give an error message and refuse to execute).

SEE ALSO

write, save, restore

KEYWORDS

read command,

read/load time history data file

AUTHOR James Murray
VERSION 2.1

DATE 11/19/85

1).2 1 Response

response/output [cmd] -- display or set response equation status

USAGE

response/output <resp_list) +active weight-<weighting>

resp_list

List of response variable names, separated by commas or

blanks. Hay alternatively be 'all' (for all responses),

'active' (for the active responses), or one of several

synonyms for active. If not specified, it defaults to all

active responses.

+active (+on,+yes,+vary,+enabls,+t,-Inact,-deact,-disable,
-no,-f)

Switch to activate or deactivate computation of the

referenced responses. If +active is set, the referenced

response equation(s) will be activated. If -active is set,

they will be deactivated. If neither is set, the status of

th, response equations will remain unchanged.

weighting

Floating point value for response error weighting. If this

parameter is specified, the cost function weightings of all

the referenced outputs ,ill be set to the specified value.

If it is not specified, the ,eightings will be left

unchanEed. The keyWord may be abbreviated to anything

startin E with w.

DESCRIPTION

Displays or sets status of response variable(s). Anythin E

beEinnin E with 'resp _ or 'out' will be accepted for this

command.

Note that the weighting is irrelevant for responses that are

inactive. An inactive response makes no contribution to the

cost function, making its effective weighting zero. The

differences between settin E the weightin_ to 0 and

deactivating the response are two: First, the responses are

still cozputed (just nor used in the cost function) if the

weighting is zero for an active response; if the response is

inactive, it is never computed. Obviously, if you need the

response computation for some reason other than its use in the

cost function (perhaps you want a plot of it), you must have

the response active. This may involve substantial computation

time, so if you don't need the response, it is preferrable to

deactivate it. The second difference is just one of

convenience: if you deactivate a response, the program still

remembers what its weighting was in case you later want to

re-activate it with the same weighting as before.

EXAMPLES

response

resp alpha +off

output beta +activate w-lO0.O

SEE ALSO

state [cmd]

responses [var]

KEYWORDS

response command,

set/list/show/display response/output equation/variable

status/weighting

AUTHOR James Murray - NASA Dryden

VERSION 2.1

DATE 3118186

B.22 Responses

responses [var] -- response signals

DESCRIPTION

The following are the names and brief descriptions of the

response signals currently defined in pest.

MA,'iE DESCRIPTION

v

alpha

q

theta

an

ax

qdot

beta

P

r

phi

ay

pdot

rdot

velocity, ftlsec

angle of attack, deg

pitch rate, deg/sec

pitch attitude, deg

norlal acceleration, g's

longitudinal acceleration, g's

pitch acceleration, deg/sec**2

angle of sideslip, deg

roll rate, deg/sec

yaw rate, deg/sec

bank angle, deg

lateral acceleration, g's

roll acceleration, deg/sec**2

yaw acceleration, deg/sec**2

SEE ALSO

response, parameters, constants, flags, states, controls,
extras

KEYWORDS

response/output signals/names/descriptions

AUTHOR James Murray
VERSION 2.1

DATE 11/22/85

I).23 Restore

restore [cmd] -- restore status from file

USAGE

restore [fileName]

PARAMETERS

filenams

filename (or pathname) of the file to be read. If not

specified, it defaults t_ the same name as last specified on

a restore comaand. If no fileNaae has been specified by any

restore command in the current run, the name defaults to

'current'

DESCRIPTION

Roads program status from the specified file. The program

status includes the values of all p_Lrameters and program

options, me file can be from either of two sources. _e

file may have been created by an independent program, usually

by looking up predicted derivative values from a data table;

this is often the case when starting a new case.

Alternat1_ely, the file cm_ have been created from a save

command; in this case, the program will be restored to the

same status as when the save coRmand was executed.

A file created while analyzing one case can be restored while

analyzing a different set of time history data. This allows,

for instance, a convenient way of starting the estimation from

converged values obtained from a case at a similar flight

condition. Some values, such as the parameter estimates, can

be meaningfully transfered from one case to another in this

manner. However, other values on the current status file are

unlikely to be useful (or legal) when applied to a different

time history data file.

In particular, the window definitions are closely tied to

specific maneuvers. Window times for one case are likely to

be outside of the maneuver times for a different case.

The avg_ constants are also closely tied to the specific

maneuvers; they usually equal the average measured values for

the maneuver. It is possible re manually override these

values if you want to (for instance if the measured values are

wrong), but it is unlikely that you want such overrides to

automatically carry over from one maneuver to another (in fact

it could cause grsat confusion if you were not aware that such

carryover was occuring).

To avoid these undesired carryovers, while allowlng carryover

of other pertinent parameters, the restore command checks for

Gonsistency between the status file and the time history data

t,eing analyzed. The status file includes a record of the

maneuver times and average measured signal values to

facilitate this comparison. If the data on the status file is

consistent with the time history data being analyzed, then all

parameters from the status file are accepted, including window

times and avg_ constants. If the data on the status file is

inconsistent with the maneuver being analyzed, then the vlndow

5.5

®

For similar reasons, the window times and avg_ constant values

are reset every time a read command is executed.

On initial startup, if the automatic read command works, the

program automatically attempts a restore command for the file

name 'current'

Unlike the read command, which aust succeed before you can

analyze any data, the restore command is technically optional.

It is possible to analyze a case without ever reading a status
file. All of the items set by th_ restore command have

default values. In some cases where no meaningful default is

possible, the default value is an illegal one (for instance

weight defaul_s to 0). Such values muse be reset either by a

restore command or by manual entry before estimation can

procede. The program.ill give an error message if you

attempt estimation without setting these variables to legal
values.

EXAMPLES

restore

restore current.case13

CAVEATS

Because of the interaction between the read and restore

commands, you must be cautious of the order in which you

execute them. If you want to do a read command and a restore

command to completely restore a previously saved status, the

read command must precede the restore command.

The data on the saved file is in ascii form, accurate to

'only' about 10 digits. For 'reasonable' situations, this

should be far more accuracy than you will need. For highly

unstable systems, it is possible for the rounding to I0 d_gits

to make the restored state noticably different than that

originally saved. The validity of the estimates for any case

in which this effect is notlcable is in serious doubt anyway.

SEE ALSO

save, read

restore/read/load current status

AUTHOR James Murray

VERSION 2.1

DATE 11/19/85

I].24 Save

save [cmd] -- save current status to a file.

USAGE

save [fileName]

PARAMETERS

filename

filename (or pathname) of the file to be written. If not

specified, it defaults to the same name as last specified on

a RESTORE command. If no fileName has been specified by any

restore command in the current run, the name defaults to
'current'

DESCRIPTION

Saves current program status to a file. The program status

includes the values of all parameters and program options.

The rosultlng file can be used for several purposes: The

program can later be restored to the saved point by using the

restore command. The file can be input to plotting programs

or o_her programs that use the parameter values estimated by

pEst. The file can also be printed (it is ascii) as a record
of the results.

EXAMPLES

Save

save current.case23.19Nov85

CAVEATS

Nots that the default filsName is taken from the last RESTORE

command, rather than the last SAVE command. The logic behind

this is that a save command with no arguments is taken as a

request to save the current status in place of the file that

you started with; this is the most usual mode of operation.

save specifying a different filsRams is assumed to be asking

to save a specific statum to a specific file for special

purposes. All subsequent work reverts to the original file.

BUGS

By normal Fortran defaults, the file is created with the

+fortranCCTL flag set, in spite of the fact that th@ file does

not have fortran carriage control characters in column 1. In

order to correctly print the file, you sust explicitly specify

-fortranCCTL in the print co.and (or do a modifyFile to

correctly set the flag malntalned with the file).

SEE ALSO

restorem write

KEYWORDS

save collsIl_d.

write/save current status

AUTHOR James Nurray
VERSION 2.1

DATE 11/19/85

IL25 Set

set [cmd] -- set program variables.

USAGE

set <variable-name> <value>

PARAMETEKS

variable-name

Name of the variable to be set.

value

Value to be used for the variable. The syntax and legal

values may vary for different variables. In particular,

some variables have several components and the value syntax

must specify which component is being set.

DESCRIPTION

The set command sets the values of program variables. For a

list of the available variables, do "help variables". For

details about a specific variable, do help on the variable
n_le.

EXAMPLES

set msgLevel 80

set integNoth eul_r

set gradDelta 0.00001

set window time 0.5 9.6

SEE ALSO

58

show

KEYWORDS

set command,

set/change program variable values

AUTHOR James Murray - NASA Dryden

VERSION 2.1

DATE 11/20/85

B.26 Show

show/list/display [c_d] -- show values of program variables

USAGE

show/list/display <variable-name>

DESCKIPTION

Shows the value of the specified program variable. For a list

of the available variables, do "help variables". For details

about a specific varlable, do help on the variable name.

List and display are accepted as synonyms. Sh and disp are

acceptable abbreviations.

EXAMPLES

list integ

show bound

display window

show statistics

SEE ALSO

set

KEYWORDS

show/list/display command,

show/list/display pcogram variable values

AUTHOR James Murray - NASA Dryden
VERSION 2.1

DATE 11120185

!|.27 Stat,

state [cmd] -- display or set state equation status

59

USAGE

state <state_list> +active limit-<limit>

PARAMETERS

state_list

List of state names, separated by commas or blanks. May

alternatively be 'all' (for all states), 'active' (for the

active states), or one of several synonyms for active. If

not specified, it defaults to all active states.

÷active (+on,÷yes,+vary,÷enable,÷t,-inact,-deact,-disable,

-no,-f)

Switch to activate or deactivate inteEration of the

referenced states. If +active i8 set, the referenced state

equation(s) will be integrated. If -active is set, they

,ill nor be integrated. If neither is set, the status of

the state equations will remain unchanged.

limit

The limit on the absolute value of the referenced states

allo,ed during integration. Any integration that exceeds

this limit will be abandoned. If this parameter is not

specified, the previous limits remain unchanged.

DESCRIPTION

Displays or sets status of state equation(s).

The system equations can change fairly significantly depending

on which states are active and which ones are inactive. If

the state i8 inactive, no computed value for that state

variable is defined; thus response equations or other state

equations that use the deleted state variable must be revised.

The revision done is to substitute some other quantity for the
unavailable state variable.

By default, if a state is deactivated, the corresponding

measured quantity is substituted. Any output bias on the

measured quantity is subtracted before subsZi_uting it. Also

the measured flow angles are corrected to the center of

gravity before substituting them.

The variables with names like use_avg_alpha can force

alternate substitutions. If uee_avg_alpha is true, then the

constant avg_alpha is substituted wherever the computed alpha

state would otherwise have been used. In this case, the

substitution occurs even if the alpha stats is actlvo.

Corresponding comments apply Zo the other states.

6()

EXAMPLES

state tho_a +on liait=lO00

state all

state phi -active

SEE ALSO

response [c_d]

states [var]

KEYWORDS

state command,

set/change/list/show/display state equation/variable status,

add/delete state equations

AUTHOR James Murray - JASA Dryden

VERSION 2.1

DATE 3/17/86

B.28 States

states [var] -- state variables

DESCRIPTION

The following are the naaes and brief description_ of the

state variables currently defined in pest.

NAME DESCKIPTIOW

v

alpha

q

theta

beta

P
r

phi

velocity, ftlsec

angle of attack, dee

pitch rate, deglsec

pitch attitude, de E

angle of sideslip, dee

roll rate, dsglsec

yae rate, dog/set

bank angle, dog

SEE ALSO

state, parameters, constants, flags, responses, controls, extras

KEYWORDS

state varlables/names/ducrlptlons

AUTHOR Jases Hurray
VERSIUM 2.1

DATE 11122/85

61

13.29 Statistics

stats [var] -- time history statistics

USAGE

show stat[istics]

DESCRIPTION

The 'show statistics' co--,and lists the average value of every

measured response, input, and extra signal for the time

history data currently loaded.

Statistics is not really a 'variable' as it can not be set; it

can only be displayed.

EXAMPLES

show state

show statistics

SEE ALSO

show

KEYWORDS

statistics variable,

maneuver/signal statistics/stats/averages

AUTHOR James Murray
VERSION 2.1

DATE 11/21/85

B.30 thPlot

thplot [cmd] -- execute thPlot program

USAGE

thplot

DESCRIPTION

Writes time histories of computed responses, then enters

thPlot program. Upon te_ination of the thPlot program,

control is returned to pest. The computed responses are

written by an automatic write co,mand with no arguments;

therefore the file nale is whatever such a write coRand would

use (usually the name 'computed')

This command differs from the plot coamand in that the thplot

command expects you Co intoractively enter any commands to the

• L. " T"

thplot progrNa. This allows more flexibility in what is

plotted, but requires more input from the user. The plot

conmand, in contrast neither expects nor allows interactive

input during the plotting.

EXAMPLES

thplot

ERROR HANDLING

Automatically uses the write command to create the computed

time history file. Therefore, all of the error handling

discussed under that comnand applles. If the vrlte command

fails to write a computed time history file, the plot command

will terBinate and return to the pEst command line without

doing any plots.

SEE ALSO

plot, write

KEYWORDS

thplot command,

time history plots

AUTHOR Jales Rurray - NASA Dryden

VER310N 2.1

DATE 1111918S

B.31 Title

title [var] -- title for current file and plots.

USAGE

show title

set title ',title>'

DESCRIPTION

Title is the title used on the current file and on the top of

each plot page. The length of the title is l_Ited to 40

characters; longer titles are truncated without colment. If

the title contains imbedded blanks (not uncommon), the title

must be enclosed in quotes; otherwise the title will be

truncated to the first word.

The default is title = ' '

EXANPLES

show title

63

see title 'x29 flight 20 case 10'

SEE ALSO

SHOW, set

KEYWORDS

title variable,

plot title

AUTHOR James Murray

VERSION 2.1

DATE 2119/86

B.32 Version

version [topic] -- changes in pEst with version 2.1

DESCRIPTION

pEst version 2.1 is now released. The following describes the

changes between version 2.1 and the previous release, version

2.0. Access to the new version is automatic when you use pest

normally. The previous version will be retained for an

interim period as a backup. To access the previous version,

use the command pE_t2.0.

COMPATABILITY

Version 2.1 has several small differences from version 2.0.

The exact syntax of a few of the commands has changed. This

will require getting used to the revised syntax and changing

any command files; the changes are all small.

If you have a customized set of user routines, you must make a

minor change to the arEument llst of dsfineNames; this change

is small and mostly involves deleting a few lines from the
routine.

There are several additions to the current file, but versi._n

any current files from version 1.6 or later will be accepted

without error. Any program that reads current files must be

able to accept the new fields.

USER ROUTINES

All the arguments have been removed from subroutine

defineNames. They were not being used for anythin E

constructive anyway and they caused excessive clutter in the

main program.

|

64

The semantics of the interface to subroutine coaputeZ have

changed. Wa now allow co_uteZ to change its xc (computed

state) argmaent. Any such change constitutes the correction

step of a predictor-correcter algoritlm such as a Kalman

filter. This change is solely one of establishlng an _xpanded

convention. It requires no code chan_es in old code, but just

liberalizes what new code is allowed re do.

USAGE

The paramconmand has been expanded to allow optional display

of or reset to the predicted values. See the paran helpFile

for details.

The title variable has been added to allow the title used on

the current file to be modified. The same title is now also

put on time history plots. See the title helpFile for

details.

The plot command uses thPlot's +expand option to expand scales

to the full screen width.

An extension to the state comand allows the state variable

limits to be displayed and changed. These limits are also nee

saved on the current file. The scats variable limits are what

stops the integration when it goes unstable.

There are S new parameters (gAlpha,gQ,gBata,gP,gR) in the

default user routines. These paraasters are gains in the

filter error fornulation. Among other things, they can be

used to stabilize chs esttJaation for unstable systems. Their

use at this time is still experlnontal.

DOCUMENTATION

The helpfiles mentioned in the following "SEE ALSO" section

have been nodlfied to reflect the changes. The helpFile

fornat for showing command syntax has been redone to be more

consistent with Elxsi helpFiles (also a little slnpler). This

file is included under "help version".

SEE AL30

parau,const,flag,state,response,

KEYWORDS

pEst version 2.1 cfiangss

65

B.33 Window

window [var] -- maneuver window descriptor

USAGE

show window

set window [<window number>]

[time[=] <start> <end>]

[man [=] <maneuver number>]

DESCRIPTION

A window is a time interval which is wholly contained _ithin a

maneuver time interval. A maneuver may contain multiple

windows.

When the _quations of motion are evaluated, _he computed time

history iu generated only for those time points contained

within the window(s). Outside of the window(s), the average

value for the output variables is used. Also, the cost

function for the estimation process depends only on those time

points within the window(s).

If, when a window is defined, Che window number is not

specified, all existing windows will be deleted and the new

window will be window i. The window number, if specified,

cannot exceed the current window count by more than I. If the

maneuver number is n_t specified, the default maneuver number

1 will be used. The window star_ and end times must be

specified and are given relative to the staFting time of the

maneuver.

The default is that the windows exactly equal the available

maneuvers.

EXAMPLES

show windows

set wind 1 time=0.5-9.5

set wind man=3 time 1.25 5.55

KEYWORDS

window variable,

multiple maneuvers,

start/stop times,

time segments/Intervals/wlndows

AUTHOR James Murray

b6

._t ",
...... •a.

VERSION 2.1

DATE 11/21/85

B.34 Write

write [cmd] -- write computed tlae history file

USAGE

write [fildame]

PARAMETERS

filoname

filen_e (or pathnaao) of the file to be rritton. =f not

specified, it defaults to the same name as last specified on

a write conand. If no fllaName has been specified by any
write command in the current run, the name defaults to

'computed'.

DESCRIPTIOM

Writes a computed time history data file. This file is most

often used for plotting, but can have numerous applications.

It could be input to programs to analyze the residual

statistics. It also allows pest to ba used as a slmpla batch

simulator for other purposes.

The signals wrltton to the file axe the calculated states

(-s-hat suffixes), the calculated responses (-hat suffixes),

and the residuals (-ras suffixes). The na-es of all signals

are derived by appending the indicated suffixes to the basic

state or response varlablo ames. The residual is defined to

be the measured response minus the calculated response.

EXAMPLES

write

write computed.case12

ERROR HAWDLING

If the outpu_ file can not ba opened or if Intagratlon of the

equatlors is dlsallosad for any reason, the write command will

give an error mass_o and return to the command 11no.

If the integration fails part way through (usually because It

goes unstable), the file is written normally up to the point

where the integration failed. The r_aatndor of the file is

written with average measured values subetltutlng for the

unavailable calculated responses. This is dana to acccmodato

the plotting program, which wants the ssao tlmo points In both

67

the measured and calculated data files in order to plot a fit.

SEE ALSO

read, plot, thplot

KEYWORDS

write/save command,

write/save computed time history data

AUTHOR James Murray

VERSION 2.1

DATE 11119/85

_ _._ _:_ ..- _.__ _ _ar_.._._.w...n_,___l_ _ ._ _ , : ._ r._ _t._:_

REFERENCES

I. Taylor, Lawrence W., Jr.; and lliff, Kenneth W.: A ModLq_I Newton-Raphson Method for

I),'termining St&bility Deriv_tivu From Flight Data. Second International Conference on

Computing Methods in Optimi_tion Problems, San Remo, Italy, Sept. 9-13, 1968,
Ac_tdemic Press, New York, 1969, pp. 353-364.

:_. Mai,,_,, Richard E.; gad lliff, Kenneth W.: User's Maaual for MMLE3, A General FORTRAN

Program for Maximum Likelihood Parameter Eatim&tioa. NASA TP-1563, 1980.

_| M_tine, itichard E.: Manual for GetD&ta Version 3.1--A Fortran Utility Program for Time History
Data. NASA TM-88288, 1987.

69

1 Rel_rt No.

NASA TM-88280

pest Version 2.1 User's Manual

7, Aumoris)

James E. Murray and Pdchard E. Maine

g I_fe, n_neOq_iut_ _ md
NASA Ames Research Center

Dryden Flight Research Facility

P.O. Box 273, Edwards, CA 935_3-5000

12. SOor4orin 0 A0incV _ N Addrlm

National Aeronautics aa_dSpace Administration
Washington, DC 20546

3. Recil_mt'sCatslollNo.

6. R_ O0m
September 1987

t _ O_m_on n._t No.
H-1390

10._,,,k U_ No.
RTOP 505-68-31

1i. coarser or Gnat No.

13. Type of Repo_ and Period Co.reel

Technical Memorandum

14. Spom_sn0ASmcVCod.

16 Abstract

This report is a user's manual for version 2.1 of pest, a FORTRAN 77 Computer program for
iateractive parameter estimation in nonlinear dynamic systems. The pest program allows the

.ser complete generality in defining the nonlinear equations of motion used in the analysis. The
,'quations of motion arc specified by a set of FORTRAN subroutines; a set of routines for a

general aircraft model is supplied with the program and is described in the report. The report

al_ briefly discusses the scope of the parameter estimation problem the program _Idresses. The

report gives detailed expl_.nations of the purpose and usage of all available program commands
and a description of the computational algorithms used in the program.

17 Key _O¢OS CSuggMtcKI by Autl_orlsl)

Parameter estimation

Stability and control derivatives

Iq _4Kurq_ Clalw,f (of ¢h*$ rCPDOrlf

II,,cb.smfied

18 Distrlbutio_ $t_I

Unclmmified -- UnJimited

"Jr,; sale

Subject category 61

20 s.c_,_ c_.f (o_t_,. pe.._ _ _ _,.
Unclassified _ 75 J A04

bM _he lgafional Tec_snleal InfoPmafion Service, Springj_eld, Vir_:,n_a £_161.

