
Semi Annual Report 

Grant NAG-1-703 

.-f-  PO&/ o"l/Lf' 
Research on Computational Fluid Dynamics and Turbulence 



c 
e 
44 

1) Preconditioning matrices for Chebyshev derivative operators in several space dimension. 

We enclose a paper by E. Rothman explaining and summerising the problem. A joint paper 
with D. Funaro is being completed. 

2) The Jacobi matrix technique in computational fluid dynamics. 

We enclose the Ph.D. thesis of T. Sharp that was completed under this grant. 

3) Chebyshev techniques for periodic problems. 

We have developed Chebyshev techniques for periodic problems. These techniques give rise 
to differentiation matrices that have purely imaginary eigenvalues for odd number of derivatives 
and real and negative for even derivatives. We have demonstrated that for flows with boundary 
layer behaviour the periodic Chebyshev method is superior to Fourier methods. 

Wai-Sun Don, a graduate student in the division, is applying those ideas to simulate flows around 
a circular cylinder. Dr. D. Rudi of the Computational Method Branch provides supervision for 
this project. 
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ABSTRACT: 

The problem of preconditioning the matrices arising from pseudo-spectral Chebyshev 

approximations of first order operators is considered in both one and two dimensions. In 

one dimension a preconditioner represented by a full matirx which leads to preconditioned 

eigenvalues that are real, positive and lie between 1 and n/2, is already available. Since 

there are cases in which it is not computationally convenient to work with such a 

preconditioner, we study a large number of preconditioners which are "more sparse" (in 

particular three and four diagonal matrices). The eigenvalues of such preconditioned 

matrices are compared. In particular, the analysis is carried out for the quantity 

m a  1 Xi I /min I Xi I ,  where X i  are the preconditioned eigenvalues. 

We apply the results to the problem of finding the steady state solution to an 

equation of the type ut = 3 + f, where Chebyshev collocation is used for the spatial 

variable and time discretization is performed by the Richardson method. 

In two dimensions different preconditioners are proposed for the matrix which arises 

from the pseudo-spectral discretization of the steady state problem in the square 

A = {(x,Y,): - lsxbl ,  -1gy61) 

u, + uy = f 

U(X, Y, 0) = u, 
with boundary conditions at x = 1 and y = 1. Results are given for the CPU time and 

the number of iterations using a Richardson iteration method for the unpreconditioned 

and preconditioned cases. 
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1. INTRODUCTION 

To obtain the pseudo-spectral or collocation approximation let P, be an interpolation 

operator. Let f(x) be a sufficiently smooth function defined in [-1,1] where f(x)=O at the 

appropriate boundaries which yields a well-posed problem for (1.1). Then P,f is the 

interpolation of f at the collocation points xi' i.e. 

PNf(T) = f(x$ and PNfcB,. j = 0, ..., N 

To obtain a Chebyshev Gauss-Lobatto pseudo-spectal approximation in the interval 

[-1,1] we choose 5 = cos jn/N (i = 0, ..., N), which when j # O,N are the extrema of the 

N f h  order Chebyshev polynomials TN(x) = cos(N~os-~x). In order to construct the 

interpolant of f(x) at x, we define the polynomials 

(1- X2)TA(X)(-lj + 
1. 

(j = 0, ..., N) gj(X) = - 
cjN2(x - x] 

- -  - 
co = cN = 2, cj = 1 (1SjSN-1). 

One can easily see that gj@) = 6jk. 

The Nfh degree interpolation polynomial PNf to f is given by 

N 

We must now be able to express derivatives of PNf in terms of f at the collocation 

points x . . Differentiating (1.8) we obtain J 

so that 

d"P,f(x,) N 
(1.10) 
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where 

The pseudo-spectral Chebyshev derivative operator can be represented by the N x N 

matrix S, = [s$ 

where 

In particular the Chebyshev pseudo-spectral approximation for ut = ux , u(x,O) = uo( x) 
N 

k=O 
is given by uN = 1 u(T,t)g,.(x) and 

auN N 

at (Xj .t) = 1 u(x j,t)skj . 
k= 0 
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SN = ' 

2. OUTLINE OF THE PROBLEM 

In the interval [-l,l] let 

2 j -  1 
{. = cos - TI 6 = 42, ..., N) 

J 2N 

if i = j = N -2N2 + 1 
6 

- 
ci(-l)j + i  

c. (Xi' xo) 
i f i # j  - 

J 

if i = j = 1, ..., N-1 j - x  

t. lies between x j  and xj-l J 

{ 1  
0 0 0 0 1  01 -1 0 I I 

tN tj 

xN 'N- 1 X. 1 X. J-1 X1 xo 

The modes 5 and tj  have the following properties: 

TN(t,) = 0 j = 1 ,..., N, and TN(xi) = (-l)i i = 0 ,..., N 

Then consider the pseudo-spectral Chebyshev derivative operator with homogeneous 

boundary conditions at x = 1. This operator can be represented by the N x N matrix 

S, = {s..), where 'J 
r 

The matrix SN is full. The condition number C(SN) of S, is large. We have the 

following result which was obtained by Daniele Funaro. 

Lemma 1-1: 

Proof: 

The condition number of S, increases at least like NZ. 

Let U-li denote the norm in E(@,RN). 
of SN is given by 

Then the condition number 

(2.1) c(sN) = ISNU Isk'n - 
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It is known that ISN13p(SN)3ClN2, where p(SN) is the spectral radius of S, and 

c1 is a constant independent of N. On the other hand, we have 

1 Choose qo = [$, ..., 2 I. Then Ilqoll E =  1 and (SN 1+ 'po)j = - (7 - l),  for 

5 4  

j = 1 ,..., N. Furthermore, 

where c2 does not depend on N. 

This implies llS&'U21!S~1~o~N 2c2 Finally, using (2.1), we get C(S,)>C,N2. lh i s  

proves the claim. 

Although the condition number is particularly meaningful for numerical applications, 

its determination is generally very difficult. Another quantity which is meaningful for 

practical application is u(M) = maxl +l/minl A i l  where M is an N x N matrix and X i  

i = 1, ..., N are its eigenvalues. It can be shown empirically that a(SN) behaves like N. 
i 1 

We are interested in finding a "preconditioner" for S,. In particular we are 

In concerned with finding a matrix R, such that the quantitity a(RNISN) is small. 

general this does not imply that the corresponding condition number will be small (so the 

word "preconditioner" is not correct). 

In [DF ] S, is preconditioned by R, = G D N  where the N x N matrix D, = {dij} 

is defined by 

dii = -U(X~-~- xi) i = 1, ..., N 

dii-i = V(X~-~- xi) i = 2, ... N 
d.. = 0 otherwise 'I 
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Hence D is the upwind finite differences matrix relative to the grid xi' ZN:PN-l+PN-l is 

the operator which maps the values of a polynomial in PN-l at the staggered grid points 

{ F,l,...,F,N} into the values at the mesh points { x ~ ,  ...,x,). 

Preconditioning by ZND, results in preconditioned eigenvalues that are real, positive 

The ratio U(D~~Z&~S, )  is bounded by n/2 (see [DF]). and lie between 1 and n/2. 

This is particularly interesting when the solution of the system 

(2.4) s,u + f = 0 

has to be found. If an iterative method is used, iterating M, = (Z,D,)-'S, instead of 

S, results in convergence in a few iterations In the end of the computation the system 

(ZNDN)U + f = 0 has to be solved. So we require that the matrix R, = ZNDN can be 

inverted easily. Although 2 is a full matrix, it can be inverted very inexpensively in N 

log N operations. Thus the matrix R, = G D N  can be inverted very inexpensively. 

Nevertheless there are cases in which it is not computationally convenient to work with a 

full preconditioner. 

In particular when using an implicit method to find the solution at time T > 0 of 

the equation 

If the implicit Euler method is used, iterates of the matrix (I + AtS,) are considered. A 

good preconditioner for this matrix turns out to be the matrix (I + AtZ,D,). 

Unfortunately, due to the fact that is a full matrix, (I + AtZ,D,) cannot be inverted 

inexpensively. In this work we shall present a large number of preconditioners which can 

be applied to the situations illustrated above. 
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3. ANALYSIS IN ONE DIMENSION 

In order to have the matrix I +At %DN which can be easily inverted we substitute 

2, by some suitable matrix which has a simpler form and which has to be re, Oarded as 

an approximation of the operator related to G. 
+ 

The first idea is the following. Take G = {z..] such that ‘I 

n. (3.1) z i i  = .5 

n. 
= .5 ‘ii+l 

‘c 

Z” = 1. 

+ cv 

Then ZND, is a tridiagonal matrix so tha I + At G D N  is also a tridiagonal matrix. It 

can be shown that the eigenvalues of M, = (%DN)-’SN take the following form. 
cu 

k-1 
X k  = k 1 xj k = 1, ..., N 

j =O 

Thus, the eigenvalues of the preconditioned matrix are real and positive. Hence we 

have a(MN) = N. as in (3.1) corresponds to shifting the values from 

the staggered mesh to the initial mesh by avera,oing the two neighbour values. Instead of 

this we can choose ZN = {ZY) corresponding to interpolation by first order polynomials. 

Tlus leads to the following definition of the matrix ZN = {Z4} 

.w 

The choice of 

* + 

- + 

We found emperically, that the eigenvalues of the preconditioned matrix are still real and 

positive, but the quantity NMN) is now worse than that of the previous case. 

Another simple preconditioner which this time is not of the form ZNDN is defined 
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by R, = (rr} where 

rii = 0 
J 

i = 1, ..., N-1 

In this case we still get real and positive preconditioned eigenvalues. Namely, they take 

the form: 

k sin TIIN 
k = 1, ..., N-1 

v'1 - x; 

where X N  is approximately equal to 2.46. We have a(MN) = N-1. This is the best we 

tested using tridiagonal preconditioners. Up to now the improvements are poor so we 

have to consider better approximations of the matrix Zw 

We consider an approximation of the operator related to by interpolation with a 
.c. 

polynomial of degree 2. One possible choice is the following: Z = {zij} where 

(3-4) 

.% h 

Now Z is a three-diagonal matrix, hence ZD is a four-diagonal matrix. The numerical 

experiments performed up to N = 32 give the following results. The eigenvalues X of 
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a 

M N  = (ZNDN)"SN are in general complex. The have positive rcal part greater than .99. 

Most of them are concentrated at 1. Figure 3.1 shows the behavior of the X's for N = 

12 and N = 20. 

N=12 
0 

0 

0 

0 
w - 

re X 
0 

0 

0 

N=20 
0 

0 

0 
0 

-3 - - 
0 

0 

0 

0 

0 

r e %  

Figure 3.1 - Location of the preconditioned eigenvalues in the complex plane. 

The corresponding u(MN) is represented in Table 3.1 for various N. This time 

c(MN) is bounded with respect to N. 

, 

Table 3.1 - Case of Four-diagonal preconditioner 



. 
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,. 
Other possibilities for the tridiagonal matrix Z were tested. For example one 

possible choice, analogous to that of the matrix in (3.1), is to take Z, = (2,) such that 
,. 

A 

,. 
z~,~-, = -1/8 
h 

(3.5) zii = 3/4 
h 

zi,i+l = 318 

Among all the experiments, the matrix proposed in (3.4) gives the best results. 

Five-diagonal preconditioners were tested, through interpolation by third degree polynonials. 

The results do not impowe those corresponding to Table 3.1. 

Now, if the system of linear equations (1.5) is solved, for example, by the implicit 

Richardson method, we are concerned with a(MN), where M, = (I + At ZNDN)-'(1 + At S x )  

and Z, is the matrix in (3.4). The graph of a(MN) versus At is reported in Figure 2.2 

for some values of N. So, in addition to the fast convergence of the iterative scheme, 

,. 
h 

t k  preconditioning matrix can be inverted efficiently. 

Figure 3.2 

8 
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N 

8 

16 

24 

32 

Now, if the steady state solution of problem (2.5) has to be found (which 

Maximum At for Stability At* p Corresponding to At* 

-05461 .02724 -9817 

-01836 .009120 .9919 

.009232 .005244 .9939 

.005138 -002521 -9966 

corresponds to the solution of problem (2.4), the explicit Richardson method can be used. 

This leads to the iterative scheme 

(3-6) 

If X denotes the general eigenvalue of S,, the scheme is stable provided we choose At 

un+* = (I + AtSN)Un , ncN 

such that 

-2Re X 
(3.7) 0 < At < inf[ ___ 1. 

X i l l 2  

Within the stability region we have p(1 + AtSN) < 1 where p denotes the spectral radius. 

In order to speed up the convergence we experimentally find At* such that 

p(1 + At*S,) attains its minimum inside the interval of stability. In general At* is not 

available. We use it here only to compare preconditioners. The same experiments are 

made for the preconditioned schemes, i.e.: 

A 

where ZN and Z, are respectively, the full matrix proposed in {DF] and the tridiagonal 

matrix given by (3.4). 

Both the schemes (3.8) and (3.9) converge to the same solution of (3.6). The 

results of these experiments are reported in Tables 3-2, 3-3, and 3-4 



N 

8 

16 

24 

32 

N 

8 

16 

24 

32 

I Maximum At for Stability 

Maximum At for Stability At* p Corresponding to At* 

.7685 55.52 -4448 

.6381 -3 190 .7112 

.4258 -2129 -8465 

.3210 .1605 .9043 
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At* 

1.281 

1.275 

1.274 

1.274 

1.281 

1.275 

1.274 

1.274 

-78 10 

.7787 

-7783 

-7782 

p Corresponding to At* 

-2190 

-2213 

.2217 

-2218 

Table 3-3 Minimum spectral radius of the preconditioned matrix: case of Z,. 

scheme 

(3.10) 
At2 
2 (I + AS, + - S;)U" , ncN un+l = 

In this case the stability restriction on A t  is given by 

(3.11) At? I X l 4  + 4 At2(ReX) I X I + 8At(ReX)2 + 8ReX c 0. 

for all eigenvalues, X, of S,. 

that of Tables 3-2, 3-3, and 3-4. 

We obtained results that were qualitatively analogous to 

, 
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4. ANALYSIS IN TWO DIMENSIONS 

In two dimensions we will consider the following steady state problem on the square 

A = {(x,y): -1 Q x < 1, -1 Q y Q 1) with homogeneous boundary conditions at I = 1, 

and y = 1. 

(4- 1) u x + y = f  

U(X,Y,O) = uo (X,Y)EA 

u(l,y,t) = u(x,l,t) = 0. t a o  

The essential idea in obtaining a pseudo-spectral approximation to (4.1) is the same as it 

was in 1-dimension. That is, to approximate spacial derivatives by constructing a global 

interpolant through discrete points. To obtain the Chebyshev pseudo-spectral approxjmation 

we take as these points 5 = yj = cos nj/N for j = l,Z, ..., N. This means that we must 

interpolate at the N2 points (%,y.) for i j  = 1,2, ..., N. Consequently, the Chebyshev 

derivative operator for this problem can be represented by the N2 x N2 matrix Sk2) + 

PtSN(2)P, where Sk2) is a block diagonal matrix whose blocks are each equal to S,, and P 

is a permutation matrix If one orders the N2 points (xpyj) by rows then S(N2) 

corresponds to the derivative in the x-direction and P is constructed so that PfS(,2)P 

corresponds to the derivative in the y-direction. Without preconditioning S(,2, + Pt Sk2)P 

is ill-conditioned. 

J 

As we saw in section 3 ZD is a good preconditioner for S,. Thus, a natural 

approach to finding a preconditioner for Sk2) + Pf Sk2)P is to try Z(2)D(2) + P‘Z(’)D(*)P, 

where Z(2) and D(2) are N2 x N2 block diagonal matrices whose blocks are the N x N 

matrices Z and D, respectively. 

To analyze the behavior of the eigenvalues of the preconditioning matrix, we define X 

as the generic eigenvalue of the preconditioned matrix, pN = max I Xi  I /min I X i  I (i =1,2, ... N2), 

aN is the maximum u such that ReX)a, and rN is the minimum r such that I X- 11 dr. 

In particular, rN and uN give us an idea of the location of the eigenvalues. (See figure 

4-1 below.) 

i 1 
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N 

4 

6 

8 

Re. x 

% rN *N 

1.530 .530 1.000 

1.552 -589 1.000 

1.560 .622 1.000 

I Figure 4-1 

Numerical experiments performed for N = 4,6,8 are summarized in Table 4-1 

Table 4-1 

Although the eigenvalues of this preconditioned matrix, (Z(2)D(2) + PfZ(2)D(2)P)-'(S(k) + 

Pt Sh2)P), are well behaved the matrix is full and thus difficult to invert. Another 

approach to constructing a preconditioner is to substitute in Z(2)D(2) + Pt Z(2)D(2)P the 

tridiagonal matrix Z defined by (2.4) in place of Z. We will denote this new N2 x N(2) 

matrix by Z(2)D(2) + Pt Z(2)D(2)P. This matrix represents a finite difference scheme 

A 

A A 

depending on seven points as illustrated by the stencil in Figure 4-2. 

(i + l j )  

(i-1,j) 

(i-2j) 

Figure 4-2 
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N 

4 

6 

8 

Results similar to those presented in Table 4-1 are prsented in Table 4-2 for 

Z(2)D(2) + pt Z(2)D(2)p. 

PN " uN 

2.206 .980 -897 

5.026 1.453 -488 

8.494 1.602 -306 

N 

4 

6 

8 

10 

Table 4-2 

Maximum At for Stability At* p Corresponding to At* 

SS09563 .07547812 .9248009 

.OS228855 -02614427 -9715761 

.0273053 -01365251 -9817108 

-01944351 .009721750 -98 105 11 

A ,. 
Although pN corresponding to Z(2)D(2) + Pt Z(2)D(2)P increases more quickly than ps 

corresponding to Z(2)D(2) + PtZ(2)D(2)P, the matrix can be inverted more efficiently. This 

is because Z(2)D(2) + Pt Z(')D(*)P is a banded matrix (with N lower codiagonals and 2N 
A A 

upper codiagonals). 

Another preconditioner that we considered was of the form 

Z{2pzc2>p@@) + PfD(3P). 

As in the l-dimensional case, if the steady-state solution is to be found, the explicit 

Richardson method can be used. 

attains its minimum inside the region of stability. 

We experimentally find At* such that p(1 + At*W,) 

The same experiments are made €or the 

preconditioned matrices. The results of the experiments are reported in Tables 3-3, 3-4, 

and 3-5. 

Table 4-3 Minimum spectral radius of the unpreconditioned amplification matrix 



N 

4 

6 

8 

10 

Maximum At for Stability 

-9879928 

.9094622 

.7200746 

.6038381 
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At* 

-7172827 

.6584506 

.4954 113 

-3623029 

p Corresponding to At* 

-6693591 

3027519 

A715243 

-8995660 

Table 4-4 Minimum spectral radius of the preconditioned matrix: 
Ca~e of Z$'ZNP(DN + Pf DNP) 

N 

4 

6 

8 

Maxiumum At for Stability 

1.009613 

-815170 

.7685055 

At* 

.6946138 

-6798409 

.6870439 

p Corresponding to At* 

-3763489 

.6681257 

37895085 

Table 4-5 Minimum spectral radius of the preconditioned matrix: 

Case of %DN + Pt Z,D,P 
A A 

We also considered the second order Runge-Kutta scheme, and we obtained results 

that were qualitatively analogous to those of Tables 4-3, 4-4, and 4-5. 

We applied the Richardson schemes in the unpreconditioned version and in the 
A A A  

preconditioned versions using the preconditioners ZNDN + Pf ZNDNP and 

ZNPt%P(DN + PtDNP), to find the solution of the model problem 

ut = y + uy - asin(a(x+l)) + asin(a(y+l) 

u(x,y,O) = sin(y-l)sin(x-1) 

u(-l,y,t) = u(x,-1,t) = 0 

of the type in (4.1). 

the L, norm we considered the scheme to converge when the exact error stabilized. 

also calculated global CPU times. 

the results are reported in Tables 4-6,4-7, and 4-8. 

We used the optimal At* listed in t a k s  4--, 4-4, and 4-5. Using 

We 

The experiments were performed on the IBM 3081 and 
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for Convergence 

4 122 

6 

8 

(in seconds) 

.12405 x lo-* .2 1 

Convergence 

400 I .lo4182 x I 

.1246626 x lo-' 

.io400 x 1 0 - ~  

.4709596 x 10- 

.47112 x lo6 I I 900 

Table 4-6 Unpreconditional Euler 

-03 

-26 

1.17 

No. of hiration 
for Convergence 

11 

34 

69 

CPI Time €or Construction 
of Preconditioner and 
Finding LU Decomposition 
of Preconditioner 

.oo 
-04 

.ll 

A A 

Table 4-7 Preconditioned Richardson Case of G D  + P' ZNDP 

Table 4-8 Precondition Richardson Case of Z,Pt ZNP(D 

CPU Time €or 
Construction of 
Precondtioner and 
Finding LU 
Decomposition of 
Preconditioner 

.oo 
-00 

.oo 

+ Pt DP). 
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1 

INTRODUCTION 

Flow past a body is, in general, specified by a variety of parameters such as 

thickness, angle of attack, camber, Mach number etc. A particular flow is, therefore, 

characterized by a single point in the corresponding parameter space. Conversely, the 

numerical calculation of a particular flow field yields information at just one point of 

the parameter space. However, the nature of a continuous range of nearby flow fields 

is of fundamental significance in the design and performance of aircraft. To treat this 

generally, one can consider the variational equations (which are linear) obtained by 

differentiating the exact equations with respect to each of the relevant parameters. The 

resulting matrix of derivatives of flow quantities is referred to as the Jacobi matrix. 

The subsequent procedure is, in principle, straightforward. One integrates the 

nonlinear governing equations -- which results in the determination of just one point in 

parameter space -- and simultaneously the variational equations governing the Jacobi 

matrix. The last is then used to describe the neighborhood of the already determined 

point of the parameter space. A method is presented herein which allows efficient 

generation of solutions in the neighborhood of a base solution. Since the variational 

equations are linear, the additional computational time required for their integration is 

modest. 

We have applied the Jacobi matrix technique to the direct calculation of 

inviscid supersonic flow about 

o two dimensional airfoils of varying thickness, angle of attack and camber 

o axisymmetric bodies of varying thickness and taper 

and the design (inverse) calculation of inviscid supersonic flow past 

o 

o axisymmetric bodies described by a given family of pressure distributions. 

Also we applied the method to subsonic potential flow about two dimensional 

airfoils described by a given family of pressure distributions 
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airfoils by modifying Jameson’s FL036. 

Results of our calculations show that the Jacobi method allows for the 

efficient and accurate generation of parametric solutions in the neighborhood of a 

known solution. In general terms, we consider a system of nonlinear partial differential 

equations 

E &(z;Q,z;d = 0 (1.1) 

in the flow variables dependent variables z, and parameters g. For purposes of 

exposition we regard g@;d as known and seek the solution at a neighboring point in 

parameter space. The parametrically differentiated dependent variables are governed by 

the equations obtained by differentiating (l), viz. 

The, in general, non-square matrix I au is known as the Jacobi matrix and the above 
k 

procedure provides a linear system of equations governing the Jacobi matrix. The term 

aFilduj actually represents an operator, the details of which are best left to the 

individual cases. If go= &;e+,) represents a known solution of the flow then any 

neighboring flow at some k e d  point x_ is determined by 

In what follows we will be somewhat loose in not distinguishing between the two sides 

of (1.3). A basic difficulty with what has been just said, in particular to the use of 

(L3), is the fact that the conditions on the problem occur at locations which vary with 

- E .  Specifically, both the boundary locations (and shock locations) may vary with changes 

in the parameters 5. We first present a method that avoids the difficulties implicit in 

such spatial variations with f, and later treat directly the formulation implicit in 

(I. 1-3). 
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Chapter I 

The Jacobi Matrix Technique and 

It's Application to Two-Dimen sional 

Supersonic Flow 

The White Rabbit put on his spectacles. "Where shall I begin, please your 

"Begin at the beginning," the King said, very gravely, "and go on till you come to 
Majesty?" he asked. 

the end: then stop." 

- Alice's Adventures in Wonderland 
L e w i s  Carroll 
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APPLICATION TO 2D SUPERSONIC FLOW 

To illustrate this method we consider steady, inviscid, supersonic flows past two 

dimensional airfoils. For this purpose and in order to be specific, consider a family 

of profiles depending on three parameters (thickness, camber, and angle of attack). For 

completeness, we summarize the methods used in solving such flows [l], [2]. The 

equations are written in characteristic form as follows: 

SB = 0 (1.1) 

Here the coordinates ( ~ 1 3 )  correspond to the streamlines, a = constant, and the C' 

characteristics, B = constant (Figure 1). 8 is the flow deflection angle, p is the Mach 

angle and s is the entropy. P(B) is the Prandtl function given by 

(1.4) ~ ( p ) =  x H tan-' (X 34 tanp) - p , x = (y+I)/  (7-1)  . 

An advantage to solving the above characteristic form of the equations is that it 

generates a body fit, shock fit coordinate system. We mention in passing that since the 

equations are exact, they are valid in the hypersonic flow regime so long as such real 

gas effects as disassociation and ionization can be ignored. 

The physical coordinates x,y satis@ the relations [l], [2] 

The transformation to (a$) coordinates leaves open two arbitrary functions and these 

are fixed so that the shock is along a = B and the airfoil is positioned along the line 

a = 0 (Figure 2). Appropriate boundary conditions at the body are 
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x((o,B) =B, ~(o ,B)  = f(B,g,  e(o,s) = tan-'(fs(D,g)). (1.6) 

The Rankine-Hugoniot conditions govern the jumps in 8, cr and s at the shock. 

Written in terms of the shock angle n, they are given by 

1 0.2(1+2w)(l+ 6 - w )  6 
sinLu = 

1 (l+w) (1t0.2M ) - (1+zw) (1+ -w) 
6 6 

2 

7 
6 6 

s = 2.5 In (1+ -w) + 3.5 In (1+ lw) - 3.5 In (l+w) 

where 

w = M2sin2s - 1 

The shock angle is related to the coordinates as follows 

Y a  + YS 

shock 'a +'@ 
- tan0 = dy/dx I - 

(1.9) 

(1.10) 

(1.11) 
shock 

In the above we have assumed a perfect gas with constant specific heats and 

hence that 

P =pyexp [tr- 1)Sl (1.12) 

It should be noted that this formulation eliminates the difficulty mentioned in the 

Introduction. Namely, by using the (a,@ - coordinate system, a quantity such as 

signifies the variation with g at fixed a and B. In particular it gives the variation of 

pressure say fxed at the body, a = 0, or at the shock, a = 13. This makes the 

integration of the differential equations significantly simpler. 
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VARIATIONAL EOUATIONS 

We are interested in solutions to these equations at points near a known solution. 

To pursue this we differentiate all of the above equations with respect to a typical 

parameter of interest. 

section, we emphasize 

fixed. 

The mechanics of 

by capitalized variables 

e =  

In keeping with the remarks at the close of the previous 

that differentiation is with respect to g with a and B held 

the differentiation are straightforward but tedious. We represent 

the differentiated variables; 

when (1.4), (lS), (1.6), and (1.8) are parametrically differentiated we obtain, 

SD = 0 (1.14) 

(1.15) 

'a '13 

'a 'a 'a 
P,(p) 'ys + pKp(p)pcB- * xc2p tan81Y + (1- tan0 tanK)- ($ - -Xa) (1.16) 

YB = XB tan 0 + % sec20 (1.18) 

It should be noted that we have dropped the specification that E be a vector. This 

has been done for ease of exposition. This can be done without loss of generality. 

Variation with respect to each parameter can be treated separately, since only first 

order variations are being considered. 
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, 

At the shock the parametrically differentiated equations are 

s = [ g w  +-&- 3.5 - ;;w] - “d‘: 
(1.19) 

(1.20) 

0.2A[g + z W] - 0.2[1+ zw) [I+ 1, ] [0.2M2 - 1. - 2 w) 
dw 
dc 
_. (1.2 1) 

3 18 6 6 3 18 
I =  

A2 sin2p 

dw dt, 
, A = 1+0.2M2(l+w) - (1+2w) (1+ Iw) 

where &- = M2sin 2v 6 6 

(1.22) 

+ ( 1+ y-l M2)tan2r) ] - [ (M 2-l)tan2+ 11 (1+ M2 )sec2v] 
2 

In the actual integration (1.21-1.25) are applied at the shock 

a = B  

At the body a = 0 the appropriate equations are 

(1.23) 

(1.23) 

In writing (1.24) we revert to the general case in which many parameters are 

being considered. At this point we can simultaneously numerically integrate the 

-7- 



. 

non-linear system and the variational equations. The calculation of the base flow is 

second order accurate [2]. The calculation of the new flow is first order in space, 

second order in the parameters of interest. The calculation of the two flows is 
b 

interleaved in that after the flow along B = constant is computed by the base code, 

the parametric code then calculates the exact derivatives in order to obtain the 

variational flow. 

RESULTS 

As we have already mentioned the method applies generally to many independently 

varying parameters. As a typical use of the variational quantities we use Taylor's 

theorem to consider the change in pressure, 

(1.25) 

where E represents the various parameters with the differential coefficients calculated 

holding a and B fixed and the zero subscript denotes a reference or base calculation. 

For example, if just thickness is considered and denoted by say E, then at the 

body 

(1.26) 

The second form exhibits the result obtained if variation in the physical plane is 

considered. 

In the numerical calculations that are discussed, we have taken for f a family of 

shapes given by 

y = 2Ex(1-x) - x tan A + 10xc  (x- 1) (x - 1. 
2 

c (1.27) 

Thus, E is the thickness ratio based on chord, A the mean chord angle of attack, and 

c a scaling factor for the camber (shape) function. Figure 3 shows the effect of 

changing just the thickness (A,c = 0). Here we have plotted the pressure distribution 
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on the upper surface and the airfoil which, for aesthetic reasons, has the lower surface 

plotted as a reflection of the upper surface. Note that the method gives good 

agreement with the exact solution even when the new thickness is fifty percent greater 

than the base thickness 

More generally we consider variations in all three parameters. Thus, the pressure 

relation at the body is 

Figures 4 through 6 show the effect of changing various combinations of thickness, 

angle of attack, and camber. Here we see that, although the airfoil configurations are 

markedly different, there is very good agreement between the parametrically generated 

pressure distribution and the exact pressure distribution for the new airfoil. 

INVEIISE CASE 

The method which has'been presented also works as weli on the inverse or design 

problem where the pressure on the body is known, but the shape of the body is to be 

determined. Using the Bernoulli equation and the perfect gas law one may show [l] 

(1.29) 

This when differentiated, yields 

(1.30) 
where 

7-1 w = (s+lnp) 
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Obviously at the airfoil we can no longer use (1.6) since we are hoping to 

determine the shape of the airfoil. Instead we must use (1.5) and (1.29). Therefore, 

the parametrically differentiated equations (1.24) must be replaced by (1.17), (1.18) and 

(1.30). The integration may now proceed as in the direct case [2]. The results of the 

variational calculations are presented in Figures 7 through 9. Notice that even for a 

20% change in the logarithm of the pressure (corresponding to a 50% increase in 

thickness), the difference between the exact airfoil shape and the computed shape is 

less than 4%. 
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FIGURE CAPTIONS 

Fig. 1. 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Body, C+ characteristics, streamlines and C characteristics 

(dashed) in physical (x,y) plane, from [l]. 

Body, C+ characteristics and streamlines in (a,@ plane. 

Pressure distribution on 10% and 15% thick airfoils at M = 2 and 
10% and 15% airfoils, 

Pressure distribution on 10% thick airfoil, uncambered at 0 degree 

angle of attack and cambered (c=O.l) at 5 degrees angle of attack 

at M = 2 along with respective bodies. 

Pressure distribution on 10% thick airfoil, uncambered at 0 degree 

angle of attack and canbered (c=0.2) at 5 degrees angle of attack 

at M = 2 along with respective bodies. 

Pressure distribution on 10% thick airfoil, uncambered at 0 degree 

angle of attack and cambered (c=0.2) at 10 degrees angle of 

attack at M = 2 along with respective bodies. 

Inverse case: pressure distribution on 10% and 12% airfoils, M = 2, 

along with generated bodies. Dashed airfoil is computed shape. 

Inverse case: pressure distribution on 10% and IS% airfoils, M = 2, 

along with generated bodies. Dashed airfoil is computed shape. 

Inverse case: pressure distribution on 10% and 12% airfoils, M = 4, 

along with generated bodies. Dashed airfoil is computed shape. 
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Chapter I1 

The Application of the Jacobi Matrix Technique 

to Axisymmetric Supersonic Flow 

"Curiouser and curiouser!" cried Alice (she was so much surprised, that for the 
moment she quite forgot how to speak good English). 

- Alice's Adventures in Wonderland 
Lewis Carroll 
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APPLICATION TO AXISYMhETRlC SUPERSONIC FLOW 

As another illustration of this method, we consider steady, inviscid, supersonic 

flows past axisymmetric bodies. For this purpose consider a family of profiles 

depending on two parameters, thickness and taper. As in Chapter 1, we shall 

summarize the methods used in solving such flows [l], [2]. The equations are written 

in characteristic form as follows: 

S E  = 0 (2.1) 

tan 8 tanp 'a 

tan 8 + tanp r 
sin2u st (a) - 

x13 '13 
'a + tanp - 

(e + P(p> )a = 2y 

(8 - P(p) )13 = (1 - tan8 tanp) 
'a r 

Here the coordinates (a$) correspond to the streamlines, a = constant, and the C 

characteristics, 13 = constant (Figure 1). 8 is the flow deflection angle, p is the Mach 

angle and s is the entropy. P(p) is the Prandtl function given by 

As in the two-dimensional case, these equations are exact and are valid in the 

hypersonic flow regime so long as such real gas effects as disassociation and ionization 

can be ignored. The physical coordinates x,r satisfy the relations [l], [2] 

r a'= xatan (O+p), r B=xBtane  (2.5) 

As with Chapter 1, the transformation to (a&) coordinates leaves open two 

arbitrary functions; these are k e d  so that the shock is along a = E and the body is 

positioned along the line a = 0 (Figure 2). Hence, we have a body fit, shock fit 

coordinate system. The boundary conditions at the body are 
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The Rankine-Hugoniot conditions govern the jumps in 9, and s at the shock. 

Written in terms of the shock angle ‘1, they are given by 

where 

0.2( 1 +-I w )( 1 + 1 w ) 
6 6 

sin‘p = 
2 

(l+w) (1t0.2M ) - ( l+Zw)  (1+ Iw) 6 
6 

s = 2.5 In (1 + lw)  + 3.5 In (1+ Lw) - 3.5 In (l+w) 
6 6 

w = M2sin2v - 1 

The shock angle 9 is related to the coordinates as follows 

I 
‘a + ‘B - tan0 = d r / d x  I - 

shock xCx + XB Shock 

(2.10) 

(2.11) 

We have assumed a perfect gas with constant specific heats and hence that 

P =p7exp K Y -  1)Sl (2.12) 

It should be noted that this formulation eliminates the difficulty mentioned in the 

Introduction. For by using the (a$) - coordinate system, a quantity such as 

signifies the variation with 5 at fKed a and B. In  particular it gives the variation of 

pressure say fured at the body or at the shock. This makes the integration of the 

differential equations significantly simpler. 
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VARIATIONAL EOUATIONS 

As in Chapter 1, we differentiate the governing equations with respect to the 

parameter of interest, keeping the coordinates a and B held fHed. The differentiation 

although straightforward is tedious. If we write 

(2.13) 

and parametrically differentiate (2.1), (2.2), (2.3) and (2.5) we then obtain, 

sg = 0 (2.14) 

r p c 2  e tan2 p 

r(tan0 + 

ratan 8 tanp 
+ 

e -  r2(tane + tanp) R = O  

tanp rstanp 
+ (1- tan0 tan&- (% - - Xa) + - 'a xB R 

r2 
RB - 'a 'a r 

= xa tan( e+ cc) + X, sec2 (e + p) (e  + Y )  

% = XB tan e + sec28 

At the shock the parametrically differentiated equations are 

RJXa + XB)+ RB(xa + XB) - XJra + r ~ )  

(2.15) 

(2.16) 

(2.17) 

(2.18) 

(2.19) 
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3.5 
6+w 

0.2A[4 + 1 W] - 0.2[1+2~] [I+ Iw 3 [0.2M2- 1- 2 w]  
3 18 6 6 3 18 dw 

de 
s i n 2 ~  

dw do 
= ~2 sin 20 , A = 1+0.2M2 (l+W) - (1+ W) (1+ I w )  

where 6 6 

(2.20) 

(2.21) 

(2.22) 
2 

[(MZ- 1) s ec v( I+ ‘y+1 M 2) + 
[ ( 1 + Y M 2 )  + (la 2 M2)tan2r,I2 2 

1 2  +( 1 + y- 2 M )tan2‘] - [(M 2-l)tan2n-1] (1+ y-l 2 M2 )sec20] ] 
In the actual integration (2.18-2.22) are applied at the shock 

a = B  

At the body a = 0 the appropriate equations are 

(2.23) 

(2.24) 

In writing (2.24) we revert to the general case in which many parameters are being 

considered. Now we simultaneously numerically integrate the non-linear system and the 

variational equations. The calculation of the base flow is second order accurate [2]. The 

calculation of the new flow is first order in space, second order in the parameters of 

interest. The calculation of the two flows is interleaved in that after the flow along 

i, = 0 constant is computed by the base code, the parametric code then calculates the 

exact derivatives in order to obtain the variational flow. 
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RESULTS 

In the numerical calculations discussed, we have taken for f a family of shapes 

given by 

(2.25) 

Here we have taken E to be the thickness ratio based on chord, and c as a scaling 

factor for the taper function. 

Figure 3 shows the effect of changing just the thickness (c = 0). Here we have 

plotted the pressure distribution on the upper surface and the body which, for 

aesthetics, has the lower surface plotted as a reflection of the upper surface. Note that 

the method gives good agreement with the exact solution even when the new thickness 

is 50% more than the base thickness. 

Figure 4 shows the effect of changing a combination of thickness, and taper. Here 

we see that, although the body configurations are markedly different, there is very good 

agreement between the parametrically generated pressure distribution and the exact 

pressure distribution for the new body. 

INVERSE CASE 

The method which has been presented also works quite well in the inverse or 

design problem where the pressure on the body is known, but the shape of the body 

shape is to be determined, 

Using the Bernoulli equation and the perfect gas law one may show [l] 

(2.26) 

This when differentiated, yields 
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Y-1 w = (s+lnp) 

At the body, equation (2.6) is no longer valid since we are attempting to 

determine the shape of the body. Instead we must use (2.5) and (2.26). Therefore, 

the parametrically differentiated equations (2.24) must be replaced by (2.17), (2.18) and 

(2.27). The results of the 

variational calculations are presented in Figures 5 and 6. Notice that even for a 10% 

change in the logarithm of the pressure (corresponding to a 20% increase in thickness), 

the difference between the exact body shape and the computed shape is less than 1%. 

The integration may now proceed as in the direct case [2]. 
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FIGURE CAPTIONS 

Fig. 1 

Fig. 2. 

Fig. 3. 

Fig. 4. 

Fig. 5. 

Fig. 6. 

Body, C+ characteristics, streamlines and C characteristics (dashed) in 
physical (x,y) plane, from [l]. 

Body, C+ characteristics and streamlines in (a,@ plane. 

Pressure distribution on 25% and 30% thick bodies at M = 6 and 
the respective bodies. 

Pressure distribution on untapered, 25% thick body and 0.10 taper, 
30% thick bodies at M = 6 and the respective bodies. 

Inverse case: Pressure distribution on 25% and 30% thick bodies, 
M = 4 along with generated bodies. Dashed body is computed shape. 

Inyerse case: Pressure distribution on 25% and 30% thick bodies, 
M = 6 along with generated bodies. Dashed body is computed shape. 
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Chapter I11 

The Jacobi Matrix Method for General Flows 

Here one of the guinea-pigs cheered, and was immediately suppressed by the 
officers of the court. 

- Alice's Adventures in Wonderland 
'Lewis Carroii 
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DJRECT DIFFERENCING 

The procedure outlined in Chapters 1 and 2 holds in much greater generality than 

we have considered. The Jacobi matrix technique could also be applied to unsteady 

flows and to viscous flows in three dimensions. However, the method as presented so 

far, has one possible drawback which was alluded to earlier - to obtain the Jacobi 

matrix we must analytically differentiate the relevant equations and boundary conditions. 

In this chapter we propose a procedure which will allow for the calculation of the 

Jacobi matrix by the use of differential approximations. The goal is to obtain the 

Jacobi matrix, and hence be able to calculate a range of solutions in parameter space, 

using the results obtained from solving the nonlinear system (1.1) at only two distinct 

values of f. This differential approach will be applied to the case of two dimensional 

supersonic flow considered in Chapter 1 and to two dimensional subsonic potential flow. 

In the Introduction we said that if go = g@ ; h) represented a known solution 

of the base flow then any neighboring flow at some fixed point x is approximated by 

auQ 
The obvious first order approximation for & is 

(3.2 j 

What this says is that to compute - *' we can take the value of g at the location 
a& 

in the base flow and subtract it from the value of g found from the perturbed flow 

(5 = E+ + Ag)  at the same location. In practice, this may require interpolation on one 

computational grid. 

This approach requires special attention at a boundary. In our approach both 

material boundaries and possible shocks are taken to be boundaries and both give rise 
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, 
I. 

r). 

to locations which change with 5. This would certainly be the case if we chose to 

vary the parameters of a body. 

To be more specific, we would like to be able to use the calculation of pressure 

in the base flow in order to compute the pressure on the new body. Thus the 

formulas (1.25), (1.26) are no longer applicable since they apply at a k e d  field point. 

Therefore, to correct (1.26) we must include changes in location of the body due to 

changes in g. In the interests of simplicity we specify a three dimensional body by 

y = f(x,z;€J (3.3) 

A typical quantity, say pressure, at the new body, which we will specify by %, is 

related to the old body % in the following way 

Compare (3.4) with equation (1.26). 

Note that we have related X+ to % by placing X+ directly above & in the x-z 

plane. Other choices are possible and may be more appropriate in certain cases, 

Equation (3.4) in fact gives us the ability to compute the pressure at the new 

. They can be body, but requires knowledge of the differential coefficients - aP 
a5 

obtained from 
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It should be noted that the differential determination of the differential coefficient 

requires not only calculation of the different flow fields, but also of - . aP aP - 
35. 3 0  

Therefore, in the numerical calculation it is necessary to compute - at the body. 
*O  

This we do by interpolation. 

To illustrate these remarks we return to the case treated in Chapter 1. We 

consider two dimensional supersonic flow at thicknesses of 10% and 10.1% to calculate 
dx dy d0 d p  ds - - - - -  . Using equation (3.8) the resulting derivatives were d e  ’ de ’ de ’ dE ’ de 
then used to compute the pressue distribution on a 15% thick airfoil (Figure 1). Note 

that this pressure distributuion compares favorably with that computed from using the 

Jacobi matrix generated by solving the differential equations (Chapter 1, Figure 3). The 

error between the two computations is less then 1%. 

2D SUBSONIC FLOW 

As a second illustration we apply the Jacobi matrix technique to the potential 

The potential equation is derived by equation for two dimensional compressible flow. 

assuming inviscid, irrotational flow and is valid for subsonic flows and for low transonic 

flows when boundary layer effects can be neglected. 

Since we have implemented the Jacobi technique by modifying Jameson’s 

computer code FL036 we will summarize the derivation of the relevant equations and 

their solution [ 1],[2]. 

Under the assumption of irrotational flow we may introduce a velocity potential 

Q such that 
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I 

The potential satisfies the quasilinear equation 

(a2 - u2) 4m - 2uv 4=, + (a2 - v2) 4yy = o (3.10) 

where a is the local speed of sound. When given the ratio of specific heats y, the 

stagnation speed of sound and the local speed q = dU2 + “2 the speed of sound is 

determined by 

(3.11) 

We will consider (3.10) for subsonic flows. (But see Figure 9 for a transonic 

case). 

At the body the flow must satis@ the tangentcy conditionn 

(3.12) 

where n is the normal derivative and the Kutta condition - that the tangential velocity 

is bounded at the trailing edge. In the far field the potential approaches the potential 

of a vortex in compressible flow and a uniform stream. The density and pressure are 

determined by relations 

pY-1 = 

and 

(3.13) 

(3.14) 

The coordinate system used for computation is generated by conformally mapping 

the exterior of the airfoil to the interior of the unit circle. The airfoil itself becomes 

the coordinate line r = 1 (Figure 2). 

Since the far field boundary condition must now be applied at r = 0, where the 
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potential becomes infinite, a reduced potential which removes this singularity is 

introduced by 

(3.15) 

Here a is the angle of attack and 2nE is the circulation. 

If the modulus of the transformation from the physical plane to the circle plane 

is denoted by H then (3.10) becomes 

a 
ar 

(a2 - u2)Gee - 2uvrG,o + (a2 - $)r -(rG) 

U - ~ u v ( G ~  - E) + (u' - v2)rG, + (u2 + v2> ( -  He + vH,) = 0 (3.16) 
r 

The u and v are the velocity components in the 8 and r directions, respectively and 

are given by 

r(Gg E) - sin(8 + a) r2G,- cos (8 + a) 
u =  , v =  

H H 

The Neumann boundary condition (3.12) becomes 

G = cos(8+a) at r = 1 

(3.17) 

(3.18) 

while the far field condition is 

G = E(8 + a - tan-' [+ MZ, tan@ + a) ] } at r = 0 (3.19) 

The circulation is determined by the Kutta condition which requires that the velocity be 

finite at the trailing edge of the airfoil. Here we have H = 0 and @e = 0 so (3.15) 

reduces to 

E = Go - sina at r = 1, 8 = 0 (3.20) 

The details of the calculation of H and of the multigrid solution of (3.16)-3.20) 
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are not essential for our purposes and are discussed in references [l], [3], [4], [SI. The 

important point is that the transformation to the circle plane is conformal so that every 

airfoil in the physical plane is mapped to a circle and every physical flow is mapped to 

the interior of the circle. 

CALCULATION OF THE JACOB1 MATRIX 

The equations for computing the Jacobi matrix by finite differences were given by 

equations (3.4)-(3.8). In the subsonic case the only parameter changed was the 

airfoil thickness based on chord. Due to the construction of equation (3.16) the 

quantities which are of interest are the reduced potential G, and the metric H. To 

define the locations x in equation (3.2) we note that in the circle plane the points are 

spaced angularly (6) as 2n/(the number of grid points about airfoil) and radially (r) as 

l/(the number of grid points from airfoil to far field). Therefore, it is natural to 

define the location x by the intersection of these lines. 

The variational flow was computed using essentially the same procedure which was 

used to calculate the pressure in the two dimensional supersonic flow case. In the 

transformed plane we first compute the flow about an airfoil of thickness and save 

the converged values of G and H. Next we compute the flow about an airfoil of 

thickness We use these computed values of G and H along with those from the 
dG dH 

run at thickness to compute - and - using (3.7). G and H for the 
de de 

variational flow at thickness c is computed using equation (3.4). 

RESULTS 

Figure 3 shows the results of a parametric calculation using a base airfoil of 

10% thickness based on chord and a second airfoil of 10.1% thickness to predict the 

pressure distribution on a 14% thick airfoil. It should be noted that there is very 

close agreement between the parametric calculation and the solution given by FL036. 

Figure 4 uses a 10% thick airfoil and 10.1% thick airfoil to calculate the flow 
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over 15% thick profile - that is, a profile which is 50% more than the base airfoil. 

Again the agreement is quite good. Figures 5 through 8 show the same calculations 

for flows at different Mach numbers. All show close agreement between the 

parametrically generated solutions and those given by FL036. 

The method breaks down when there is a drastic change in the behavior of the 

solution in the parameter space. Here the flows about 

the 10% and 10.1% thick airfoils are subsonic but the flow about the 15% thick airfoil 

is supercritical. 

This is illustrated in Figure 9. 

The method is unable to account for the shock. 
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FIGURE CAVrrONS 

Fig. 1. Pressure distribution on 10% and 15% thick airfoils at M = 4 
calculated by direct differencing along with respective bodies. 

Fig. 2. Computational plane, from [2]. 

Fig. 3. Pressure distribution on 14% thick airfoil, M = 0.75. Solid curve is 
FL036 result, dashed is parametric. Base and new airfoils are also 
shown. 

Fig. 4. Pressure distribution on 15% thick airfoil, M = 0.75. Solid curve is 
FL036 result, dashed is parametric. Base and new airfoils are also 
shown. 

Fig. 5. Pressure distribution on 14% thick airfoil, M = 0.60. Solid curve is 
K O 3 6  result, dashed is parametric. Base and new airfoils aie also 
shown. 

Fig. 6. 

Fig. 7. 

Fig. 8. 

Fig. 9. 

Pressure distribution on 15% thich airfoil, M = 0.60. Solid curve if 
FL036 result, dashed is parametric. Base and new airfoils are also 
shown. 

Pressure distribution on 14% thick airfoil, M = 0.45. Solid curve is 
FL036 result, dashed is parametric. Base and new airfoils are 2lso 
shown. 

Pressure distribution on 15% thick airfoil, M = 0.45. Solic curve is 
FL036 result, dashed is parametric. Base and new airfoils are also 
shown. 

Pressure distribution on 15% thick airfoil, M = 0.80. Solid curve is 
FL036 results, dashed is parametric. Base and new airfoils are also 
shown. 
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