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1) Preconditioning matrices for Chebyshev derivative operators in several space dimension.

We enclose a paper by E. Rothman explaining and summerising the problem. A joint paper
with D. Funaro is being completed.

2) The Jacobi matrix technique in computational fluid dynamics.

We enclose the Ph.D. thesis of T. Sharp that was completed under this grant.
3) Chebyshev techniques for periodic problems.

We have developed Chebyshev techniques for periodic problems. These techniques give rise
to differentiation matrices that have purely imaginary eigenvalues for odd number of derivatives
and rteal and negative for even derivatives. We have demonstrated that for flows with boundary
layer behaviour the periodic Chebyshev method is superior to Fourier methods.

Wai-Sun Don, a graduate student in the division, is applying those ideas to simulate flows around

a circular cylinder. Dr. D. Rudi of the Computational Method Branch provides supervision for
this project.
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PRECONDITIONING MATRICES FOR CHEBYSHEV DERIVATIVE OPERATORS

Emest E. Rothman



ABSTRACT:

The problem of preconditioning the matrices arising from pseudo-spectral Chebyshev
approximations of first order operators is considered in both one and two dimensions. In
one dimension a preconditioner represented by a full matirx which leads to preconditioned
eigenvalues that are real, positive and lie between 1 and 7/2, is already available. Since
there are cases in which it is not computationally convenient to work with such a
preconditioner, we study a large number of preconditioners which are "more sparse” (in
particular three and four diagonal matrices). The eigenvalues of such preconditioned
matrices are compared. In particular, the analysis is carried out for the quantity
max | M|/min|)il, where ), are the preconditioned eigenvalues.

We apply the results to the problem of finding the steady state solution to an
equation of the type u = u, + f, where Chebyshev collocation is used for the spatial
variable and time discretization is performed by the Richardson method.

In two dimensions different preconditioners are proposed for the matrix which arises
from the pseudo-spectral discretization of the steady state problem in the square

A = {(xy,): - 1sx€1, -1¢y<l}
U, + Uy =f
U, y, 0) = U
with boundary conditions at x = 1 and y = 1. Results are given for the CPU time and
the number of iterations using a Richardson iteration method for the unpreconditioned

and preconditioned cases.
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1. INTRODUCTION
To obtain the pseudo-spectral or collocation approximation let Py be an interpolation
operator. Let f(x) be a sufficiently smooth function defined in [-1,1] where f(x)=0 at the
Then Pyf is the

appropriate boundaries which yields a well-posed problem for (1.1).

interpolation of f at the collocation points X5 ie.
PNf(xj) = f(xj) and PyfeBy. j =0..N
To obtain a Chebyshev Gauss-Lobatto pseudo-spectal approximation in the interval

cos ja/N (j = 0,.,N), which when j # O,N are the extrema of the
In order to construct the

[-1,1] we choose X =

Nt order Chebyshev polynomials Tyx) = cos(N cos'lx).

interpolant of f(x) at x, we define the polynomials

(1- )T )(-1) *1
G = 0,..N)

gj(X) = —
chz(x - xj)

(15j€N-1).

G =cy=2 =1

One can easily see that gj(xk) = Sjk.
The N degree interpolation polynomial Pyf to f is given by

N .
Pf(x) = X f(xj)gj(x) xeR
j=0

(1.8)
We must now be able to express derivatives of Pyf in terms of f at the collocation
points x i Differentiating (1.8) we obtain
d“PNf(x) N gn
(1.9) = ¥ f(xj) g®
dx® j=0 dx®
so that
d"Pyf(x, ) N
(1.10) =X f(xj) (Dn)kj
dx" j=0



where
n

(1.11) O = —— 5®
jk dx k x:xj

The pseudo-spectral Chebyshev derivative operator can be represented by the N x N

mat[iX Sn = [Slj}’

where
¢ (- 1ik
Sjk R — k #j)
ck(xj - Xy
. " Xj 2NZ%+ 1
-y = —_—, SOO = —— = -SNN
! 201 - x2) 6

In particular the Chebyshev pseudo-spectral approximation for u, = u, ux0)=uyx)

N
is given by uy = ¥ u(x,t)g(x) and
AT

Buy N
— (x,8) = I ux;,t)s,. .
at (x] st) o ." kJ



2. OUTLINE OF THE PROBLEM

In the interval [-1,1] let

2j-1
E. = cos

n j = 1,2,...N
j 5N ] )

Ej lies between X; and X

The modes X; and Ej have the following properties:
Ty(E) = 0 i = L.N, and Tyx) = (-1)' i = 0,..N
Then consider the pseudo-spectral Chebyshev derivative operator with homogeneous
boundary conditions at x = 1. This operator can be represented by the N x N matrix

Sy = {sij}, where

2NZ% + 1 L
—_— ifi=j=N
6
ECVAL
Sy={ —— if i #j
G x;- xp)
-xj
ifi=j=1,.,N-1
L 20~ 1D t=

The matrix Sy is full. The condition number C(Sy) of Sy is large. We have the
following result which was obtained by Daniele Funaro.
Lemma 1-1: The condition number of Sy increases at least like N2,

Proof: Let §-1 denote the norm in EL(RNRN). Then the condition number
of Sy is given by

@21 oSy = ISyt ISt .
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It is known that IS I3p(S\)2C,N2, where p(S,) is the spectral radius of S,, and
N NIZ4 N P N

¢ is a constant independent of N. On the other hand, we have

(22) ISy = sup WS lgipN.
ol =1
, ? RN
Choose ¢, = [—,., —— |- Then “‘Ponmf 1 and (Sy ‘Po)j = ———(xj - 1), for
N VN VN

j = 1,.,N. Furthermore,

™Mz

R 1 n_ 1 ¢l
(2.3) 1S Mo, * - 12 - > = J' x - 1% wix = ¢,

R Wk N n

-1

where ¢, does not depend on N.

This implies HS&IKZNSE,IQOHRN%Z. Finally, using (2.1), we get C(SN)>C3N2. This
proves the claim.

Although the condition number is particularly meaningful for numerical applications,
its determination is generally very difficult. Another quantity which is meaningful for
practical application is o(M) = mz;xlxillmiinlxil where M is an N x N matrix and ),
1 = L..,N are its eigenvalues. It can be shown empirically that o(Sy) behaves like N.

We are interested in finding a “preconditioner” for S,. In particular we are
concerned with finding a matrix Ry such that the quantitity O(Ri\,ISN) is small. In
general this does not imply that the corresponding condition number will be small (so the
word "preconditioner'; is not correct).

In [DF ] Sy is preconditioned by Ry = Z Dy where the N x N matrix Dy = {dij}
is defined by

d; = -UE;;-x) i=1.N

i1 = Y(x;;- %) i=2.N

d. =0 otherwise
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Hence D is the upwind finite differences matrix relative to the grid x;. ZyPy Py is
the operator which maps the values of a polynomial in Py, at the staggered grid points
{il,...,gN} into the values at the mesh points {xl,...,xN}.

Preconditioning by ZDy results in preconditioned eigenvalues that are real, positive
and lie between 1 and n/2. The ratio o(DhIZiIISN) is bounded by n/2 (see \[DF]).
This is particularly interesting when the solution of the system

(2.4) Su+f=20

has to be found. If an iterative method is used, iterating My = (ZNDN)'ISN instead of
Sy results in convergence in a few iterations. In the end of the computation the system
(Z\Dy)u + f = 0 has to be solved. So we require that the matrix Ry = ZyDy can be
inverted easily. Although Z is a full matrix, it can be inverted very inexpensively in N
log N operations. Thus the matrix Ry = ZDy can be inverted very inexpensively.
Nevertheless there are cases in which it is not computationally convenient to work with a

full preconditioner.

In particular when using an implicit method to find the solution at time T > 0 of

the equation

u = Su + f,
(2.5) u(x,0) = uyx),

u(Lt)

]
o
=)
n
Lol
"
=~

If the implicit Euler method is used, iterates of the matrix (I + AtSy) are considered. A
good preconditioner for this matrix turns out to be the matrix (I + BtZ Dyy)-
Unfortunately, due to the fact that Zy is a full matrix, (I + AtZDy) cannot be inverted
inexpensively. In this work we shall present a large number of preconditioners which can

be applied to the situations illustrated above.



3. ANALYSIS IN ONE DIMENSION

In order to have the matrix I+AtZ D, which can be easily inverted we substitute
Z, by some suitable matrix which has a simpler form and which has to be regarded as
an approximation of the operator related to Zy.

~

The first idea is the following. Take Zy = {Z;;} such that

(3.1 Z; =5
zii+l =5
Zyw = 1L

Then ZyDy is a tridiagonal matrix so tha I+ At Z\Dy is also a tridiagonal matrix. It

can be shown that the eigenvalues of My = (ZNDN)‘ISN take the following form.

Thus, the eigenvalues of the preconditioned matrix are real and positive. Hence we
have o(My) = N. The choice of ZN as in (3.1) corresponds to shifting the values from
the staggered mesh to the initial mesh by averaging the two neighbour values. Instead of
this we can choose EN = {Eij} corresponding to interpolation by first order polynomials.

This leads to the following definition of the matrix Zy = {Zij}

il .
zg = ——— i= 1.,N-1
§i - §i+1
Zig = ———— i =1..N-1
i+ 1 §l+l - El

We found emperically, that the eigenvalues of the preconditioned matrix are still real and
positive, but the quantity o(MN) is now worse than that of the previous case.

Another simple preconditioner which this time is not of the form Z Dy, is defined



by Ry = {rij} where
I = 0 i=1,.,N-1

N = Vg - Xy)

(33) i = V(g - Xyq) i=1.N-1

= 2,.,N-1

Tiq = Vg - %)

N = Vg - Xy

In this case we still get real and positive preconditioned eigenvalues. Namely, they take

the form:

N = ———— k = L.N-1{U{)},

where X\ is approximately equal to 246. We have o(M,) = N-1. This is the best we
tested using tridiagonal preconditioners. Up to now the improvements are poor so we
have to consider better approximations of the matrix Zy

We consider an approximation of the operator related to Zy by interpolation with a

~

polynomial of degree 2. One possible choice is the following: Z = {E'ij} where

- ~

in

Zyp = (Xl - El)/(EZ - El)

(Xl = 52)/(51 - Ez)

Zpa = O - D& - GGy - B - L) = 2N
(3-4) gii = (Xl - Ei-l)()g - §i+1)/((§i - §i-1)(§i - §i+1)) i=2,,N1

PN

Zite1 = (&g - &G - (R - 8 - &) i=2,N-1

2N,N-l = (xy - §/ENg - &

L Za = Gy - )y - 3%8))

~ -~

Now Z is a three-diagonal matrix, hence ZD is a four-diagonal matrix. The numerical

experiments performed up to N = 32 give the following results. The eigenvalues X\ of
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~

My = (ZNDN)’ISN are in general complex. The have positive real part greater than .98,

Most of them are concentrated at 1. Figure 3.1 shows the behavior of the )\'s for N =

12 and N = 20.
imx § imA °
o (o]
o
fe) o
o _030 -
0 © o rel
o] rel o
o
o
o o
(o]

Figure 3.1 - Location of the preconditioned eigenvalues in the complex plane.

The corresponding o(My) is represented in Table 3.1 for various N. This time

o(My) is bounded with respect to N.

N o(Myp)

s | 2o

16 2.724 ‘
24 2758

R 2.770

Table 3.1 - Case of Four-diagonal preconditioner



-10-

~

Other possibilities for the tridiagonal matrix Z were tested. For example one

-~

possible choice, analogous to that of the matrix in (3.1), is to take Zy = {gij} such that

Ziiq = 18
(3.5) z; = 3/4
Ziy = 38

Among all the experiments, the matrix proposed in (3.4) gives the best results.
Five-diagonal preconditioners were tested, through interpolation by third degree polynomials.
The results do not imporve those corresponding to Table 3.1.

Now, if the system of linear equations (1.5) is solved, for example, by the implicit

Richardson method, we are concerned with o(My), where My, = (I + At ZNDN)'l(I + At S

~

N)

and Z,; is the matrix in (3.4). The graph of o(My) versus At is reported in Figure 2.2
for some values of N. So, in addition to the fast convergence of the iterative scheme,

the preconditioning matrix can be inverted efficiently.

]

| ST

L]

w
E-N
W

Figure 3.2

ot
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Now, if the steady state solution of problem (2.5) has to be found (which
corresponds to the solution of problem (24), the explicit Richardson method can be used.

This leads to the iterative scheme

(3.6) u™! = (1« ASOUT , neN
If X\ denotes the general eigenvalue of Sy the scheme is stable provided we choose At

such that

-2Re)\
3.7 0 < At < inf[ ]
NN

Within the stability region we have p(I + AtSy) <1 where p denotes the spectral radius.
In order to speed up the convergence we experimentally find At* such that
p(l + At*Sy) attains its minimum inside the interval of stability. In general At* is not

available. 'We use it here only to compare preconditioners. The same experiments are

made for the preconditioned schemes, ie.:

(38) u™ = (1 AZ DY + AtSYu”
(3.9) u™l = (@ + AZ, DY + ASHu"

~

where Zy and Zy are respectively, the full matrix proposed in {DF] and the tridiagonal
matrix given by (3.4).
Both the schemes (3.8) and (3.9) converge to the same solution of (3.6). The

results of these experiments are reported in Tables 3-2, 3-3, and 3-4

N Maximum At for Stability At* p Corresponding to At*
§ 05461 02724 9817

16 .01836 009120 9919

24 .009232 .005244 9939

32 005138 002521 9966

Table 3-2 Minimum spectral radius of the unpreconditioned amplification matrix



-12—-

N Maximum At for Stability At* p Corresponding to At*
8 1.281 7810 2190
16 1.275 7787 2213
24 1.274 7783 2217
32 1.274 7782 2218

Table 3-3 Minimum spectral radius of the preconditioned matrix: case of Z,.

N Maximum At for Stability At* p Corresponding to At*
8 7685 5552 4448
16 6381 3190 7112
24 4258 2129 .8465
32 3210 1605 9043

~

Table 3-4 Minimum spectral spectral radius of the preconditioned matrix : case of Zy,

We also considered the second order Runge-Kutta scheme. This leads to the iterative

scheme

' a2
(3.10) u™l = (1 4 AtS + 3 Slzq)u“ , neN
In this case the stability restriction on At is given by

(3.11) ABIN4 + 4 APReN) N2 + 8At(Re))? + 8ReX < 0.

for all eigenvalues, \, of SN. We obtained results that were qualitatively analogous to

that of Tables 3-2, 3-3, and 3-4.
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4. ANALYSIS IN TWO DIMENSIONS

In two dimensions we will consider the following steady state problem on the square

A ={(xy): -1 € x €1, -1 €y ¢ 1} with homogeneous boundary conditions at x = 1,

and y = 1.

4.1) u +u = f
u(xy,0) = u, xy)eA
u(Ly,t) = ux,1,t) = 0. t2>0

The essential idea in obtaining a pseudo-spectral approximation to (4.1) is the same as it
was in 1l-dimension. That is, to approximate spacial derivatives by constructing a global
interpolant through discrete points. To obtain the Chebyshev pseudo-spectral approximation
we take as these points X =y = cos nj/N for j = 1,.2,.,N. This means that we must
interpolate at the N2 points (xi,yj) for ij = 12,.,N. Consequently, the Chebyshev
derivative operator for this problem can be represented by the N2 x N? matrix Sl(qz) +
P{SN(Z)P, where S&z) is a block diagonal matrix whose blocks are each equal to Sy and P
is a permutation matrix. If one orders the N? points (xi,yj) by rows then quz)
corresponds to ‘the derivative in the x-direction and P is constructed so that PtS&,z)P
corresponds to the derivative in the y-direction.  Without preconditioning Sg‘) + Pt S&Z)P
is ill-conditioned.

As we saw in section 3 ZD is a good preconditioner for Sy Thus, a natural
approach to finding a preconditioner for Sg,z) + P! Sg,z)P is to try Z@D@ + pzAOD@pP,
where Z® and D@ are N2 x N? block diagonal matrices whose blocks are the N x N
matrices Z and D, respectively.

To analyze the behavior of the eigenvalues of the preconditioning matrix, we define
as the generic eigenvalue of the preconditioned matrix, py = m?xlxi|/m}n|xi|(i =1,2,..N?),
Oy Is the maximum o such that Re)l»o, and ry is the minimum r such that |x-1]<r.
In particular, ry and oy give us an idea of the location of the eigenvalues. (See figure

4-1 below.)
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> Re X

Figure 4-1

Numerical experiments performed for N = 4,6,8 are summarized in Table 4-1

N AN N N

4 1.530 530 1.000

6 1.552 589 1.000

8 1.560 622 1.000
Table 4-1

Although the eigenvalues of this preconditioned matrix, (Z@p? s PtZ(Z)D(Z)P)'l(S(%I) +
P' S(?P), are well behaved the matrix is full and thus difficult to invert. Another
approach to constructing a preconditioner is to substitute in Z@Op®@ + ptzZADOPp the
tridiagonal matrix 2 defined by (24) in place of Z. We will denote this new N* x N
matrix by E(Z)D(z) + Pt é(Z)D(Z)P. This matrix represents a finite difference scheme

depending on seven points as illustrated by the stencil in Figure 4-2.
® (i+1))

. o o e
(132) (-1) Q) Gi+1)

® (1))
® (i-2j)

Figure 4-2
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Results similar to those presented in Table 4-1 are prsented in Table 4-2 for

Z®p®@ . ptz@p@p.

N pN rN ON

4 2.206 980 897

6 5_;'026 1.453 488

8 8.494 1.602 306
Table 4-2

Although py; corresponding to Z@p?D 4+ pt ZAODIP increases more quickly than Px
corresponding to yAC) DI P‘Z(Z)D(z)P, the matrix can be inverted more efficiently. This

is because 2(2)D(2) + P Z@D@P is a banded matrix (with N lower codiagonals and 2N
upper codiagonals).

Another preconditioner that we considered was of the form

ZAptzApd®@ + P'DOp).
As in the 1-dimensional case, if the steady-state solution is to be found, the explicit
Richardson method can be used. We experimentally find At* such that p(I + At*W,)
attains its minimum inside the region of stability. The same experiments are made for the

preconditioned matrices. The results of the experiments are reported in Tables 3-3, 3-4,

and 3-5.
N Maximum At for Stability At* p Corresponding to At*
4 1509563 07547812 95248009
6 05228855 02614427 9715761
8 0273053 01365251 9817108
10 01944351 009721750 9810511

Table 4-3 Minimum spectral radius of the unpreconditioned amplification matrix
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N Maximum At. for Stability At* p Corresponding to At*
4 9879928 7172827 6693591
6 9094622 6584506 8027519
8 7200746 4954113 8715243
10 6038381 3623029 .8995660

Table 4-4 Minimum spectral radius of the preconditioned matrix:
Case of ZP' Z P(Dy + P' DP)

N Maxiumum At for Stability At* p Corresponding to At*
4 1.009613 6946138 3763489
6 815170 6798409 6681257
8 7685055 6870439 37895085

Table 4-5 Minimum spectral radius of the preconditioned matrix:
Case of iNDN + Pt iNDNP

We also considered the second order Runge-Kutta scheme, and we obtained results
that were qualitatively analogous to those of Tables 4-3, 4-4, and 4-5.

We applied the Richardson schemes in the unpreconditioned version and in the
preconditioned versions using the preconditioners :’\ZNDN + PtAZNII\)NP and
Z\P'ZP(Dy + PDGP), to find the solution of the model problem

U=+ - osin(e(x+1)) + osin(o(y+1)
u(xy,0) = sin(y-1)sin(x-1)
u(-Ly,t) = ux,-1,t) = 0
of the type in (4.1). We used the optimal At* listed in tables 4-3, 4-4, and 4-5. Using

the L, norm we considered the scheme to converge when the exact error stabilized. We

also calculated global CPU times. The experiments were performed on the IBM 3081 and

the results are reported in Tables 4-6,4-7, and 4-8.
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N No. of Iteration Error CPU Time for Convergence
for Convergence (in seconds)

4 122 12405 x 107 21

6 400 104182 x 1073 1.33

8 900 47112 x 10 582

Table 4-6 Unpreconditional Euler

No. of Interation Error CPU Time for

CPU Time for Construction
for Convergence

Convergence of Preconditioner and
Finding LU Decomposition
of Preconditioner

11 1246626 x 1071 03 .00
34 10400 x 1073 26 04
69 4709596 x 107 1.17 11

~

Table 4-7 Preconditioned Richardson Case of ZD + P Z,,DP

No. of . Interations Error CPU Time for CPU Time for
for Convergence Convergence Construction of
. Precondtioner and
Finding LU
Decomposition of
Preconditioner
32 12468 x 101 .09 00
173 .104255 x 1073 1.10 00
263 4709613 x 107 331 00

Table 4-8 Precondition Richardson Case of ZP' Z P(D + P* DP).
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[DF] D. Funaro, "A preconditioning matrix for the Chebyshev differencing operator”,
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INTRODUCTION

Flow past a body is, in general, specified by a variety of parameters such as
thickness, angle of attack, camber, Mach number etc. A particular flow is, therefore,
characterized by a single point in the corresponding parameter space. Conversely, the
numerical calculation of a particular flow field yields information at just one point of
the parameter space. However, the nature of a continuous range of nearby flow fields
is of fundamental significance in the design and performance of aircraft. To treat this
generally, one can consider the variational equations (which are linear) obtained by
differentiating the exact equations with respect to each of the relevant parameters. The
resulting matrix of derivatives of flow quantities is referred to as the Jacobi matrix.

The subsequent procedure is, in principle, straightforward. One integrates the
nonlinear governing equations -- which results in the determination of just one point in
parameter space -- and simultanecously the variational equations governing the Jacobi
matrix. The last is then used to describe the neighborhood of the already determined
point of the parameter space. A method is presented herein which allows efficient
generation of solutions in the neighborhood of a base solution. Since the variational
equations are linear, the additional computational time required for their integration is

modest.

We have applied the Jacobi matrix technique to the direct calculation of
inviscid supersonic flow about

o two dimensional airfoils of varying thickness, angle of attack and camber

o axisymmetric bodies of varying thickness and taper
and the design (inverse) calculation of inviscid supersonic flow past

o airfoils described by a given family of pressure distributions

o axisymmetric bodies described by a given family of pressure distributions.

Also we applied the method to subsonic potential flow about two dimensional



airfoils by modifying Jameson’s FLO36.

Results of our calculations show that the Jacobi method allows for the
efficient and accurate generation of parametric solutions in the neighborhood of a
known solution. In general terms, we consider a system of nonlinear partial differential
equations

E (u(x;e)x¢) =0 (L1)

in the flow variables u, dependent variables x, and parameters ¢. For purposes of
exposition we regard u(x;e) as known and seek the solution at a neighboring point in
parameter space. The parametrically differentiated dependent variables are governed by

the equations obtained by differentiating (1), viz.

d 8 Bu , OFi

F, (uxe)= ] =0 (12)
de, ! <'5‘uj e, O
The, in general, non-square matrix iu‘l is known as the Jacobi matrix and the above
€
k

procedure provides a linear system of equations governing the Jacobi matrix. The term
aFi/auj actually represents an operator, the details of which are best left to the
individual cases. If u= u(x;e,) represents a known solution of the flow then any

neighboring flow at some fixed point x is determined by

8u®
u@e) 2 ul+ —(g - €,) 13)
Be

In what follows we will be somewhat loose in not distinguishing between the two sides
of (I3). A basic difficulty with what has been just said, in particular to the use of
(I.3), is the fact that the conditions on the problem occur at locations which vary with
€. Specifically, both the boundary locations (and shock locations) may vary with changes
in the parameters €. We first present a method that avoids the difficulties implicit in
such spatial variations with €, and later treat directly the formulation implicit in

(1.1-3).



Chapter 1
The Jacobi Matrix Technique and
It’s Application to Two-Dimen sional

Supersonic Flow

The White Rabbit put on his spectacles. "Where shall I begin, please your
Majesty?" he asked.

"Begin at the beginning," the King said, very gravely, "and go on till you come to
the end: then stop."

- Alice’s Adventures in Wonderland
Lewis Carroll



APPLICATION TO 2D SUPERSONIC FLOW

To illustrate this method we consider stea_dy, inviscid, supersonic flows past two
dimensional airfoils. For this purpose and in order to be specific, consider a family
of profiles depending on three parameters (thickness, camber, and angle of attack). For
completeness, we summarize the methods used in solving such flows [1], [2]. The

equations are written in characteristic form as follows:

SB =0 (11)
+ - Sin2g o @ .
(8 + P() )g zy () (12)

X8 ¢
(8 - P(u) )g = (1-tan6 tanp) X o (13)

Here the coordinates (a,8) correspond to the streamlines, « = constant, and the C*
characteristics, B = constant (Figure 1).  is the flow deflection angle, i is the Mach

angle and s is the entropy. P(u) is the Prandtl function given by
P(y) = X! tan™ ! (x% tanp) - g, N = (Y+1)/ (7-1). (14)

An advantage to solving the above characteristic form of the equations is that it
generates a body fit, shock fit coordinate system. We mention in passing that since the
equations are exact, they are valid in the hypersonic flow regime so long as such real
gas effects as disassociation and ionization can be ignored.

The physical coordinates xy satisfy the relations [1], [2]
Y o = Xotan (8+p), y g=xgtan® (1.5)

The transformation to («,B) coordinates leaves open two arbitrary functions and these
are fixed so that the shock is along « = B and the airfoil is positioned along the line

o = 0 (Figure 2). Appropriate boundary conditions at the body are



X(0.8) =B, Y(0B) = f(Be), B(08) = tan"l(ig(8,€)). (16)
The Rankine-Hugoniot conditions govern the jumps in 6, g and s at the shock.

Written in terms of the shock angle n, they are given by

1 (M2 1)tan?n - 1
tan8 = —
tanh (g, 7;—1M2) + (1+Z:2_1 M?) tan?n (1.7)

02(1+Zwy1+ 1 w)
6 6
sin®y = . (1.8)
(1+w) (1+02M°) - (1+ 16w) 1+ %w)

s=25In (1+%w)+3.5 In (1+ %w) - 35 In (1+w) (1.9)
where

w = MZsin®n - 1 (1.10)

The shock angle is related to the coordinates as follows

Yo ¥ V8
tann = dy/dx | = — (1.11)
shock Xo * X shock
In the above we have assumed a perfect gas with constant specific heats and
hence that
p=p’exp [(7- Ds] (1.12)
It should be noted that this formulation eliminates the difficulty mentioned in the

Introduction. Namely, by using the («B) - coordinate system, a quantity such as

a—p—(oc,B;g)
e

signifies the variation with ¢ at fixed « and B. In particular it gives the variation of
pressure say fixed at the body, « = 0, or at the shock, « = B. This makes the

integration of the differential equations significantly simpler.



VARIATIONAL EQUATIONS

We are interested in solutions to these equations at points near a known solution.
To pursue this we differentiate all of the above equations with respect to a typical
parameter of interest. In keeping with the remarks at the close of the previous

section, we emphasize that differentiation is with respect to € with « and B held

fixed.

The mechanics of the differentiation are straightforward but tedious. We represent

by capitalized variables the differentiated variables;

e=___’S=___) X: ’Y:_"*‘:- (1.13)

Sg = 0 (1.14)

cos 2
7

s i .
O * Puy ) bty _& 1¥4+P,(u) ¥ . S1 n22u Se= 0 (1.15)

X X

X 0
eg + [—Msecze tanu] © - (1 - tan @ tanu) *B o -
[0 4
o

[¢ 4
XBB 2 eo: X
P (g + [By,(wug~ X sec’y tanB]Y¥ + (1- tan® tanp) — (Xg- — X)) (L16)
XC! Xoc XCI
Y, = X, tan( 0+ )+ X sec?(8+ )@ + ¥) : (1.17)
Yg = Xg tan 0 + Xg sec’® (1.18)

It should be noted that we have dropped the specification that € be a vector. This
has been done for ease of exposition. This can be done without loss of generality.
Variation with respect to each parameter can be treated separately, since only first

order variations are being considered.



At the shock the parametrically differentiated equations are

2
grl_ _ o8 ? Z[ch(x atXp)t YB(X oXp" X (Uat¥p)r Xpgla*yp) ] (1.19)
de (XQ+XB)
s 35 35 | dw (1.20)
T 16 +7w 6+w 1+w | de
4 1 7 1 2_1_17
0.2A[§ + fsw] - 0.2[1+3w] (2+ v ) (02M? - 3 18w] -
¥ = . — (121)
5 . de
A< sin2u
dw dn 2 7 1
where  go = MZsin 2n g ¢ A = 1+02M°(1+w) - (1+ %W) (1+ EW)
de dn 1 (M2-Dtan?n -1
rrallirriiis 9{' s
(1+ 3%1 M2)+ (1+12'—1M2) tan2n
(122)
2
* 2 [(M2- 1) secn(l+ 1;—1 M %)

[(1+7-;le) + (1Jé—1 M?tan’n]

-1 2 2 2 2 -1 g2 2
+ (1+ %—M ytan’n | - [ (M2-1)tan?n- 1] (1+12—M )sec n]}

In the actual integration (1.21-1.25) are applied at the shock

=8 (1.23)
At the body o = 0 the appropriate equations are
a8 of (B, €
X=0 Y=f—,8 _ BB 20 (1.24)
-9€. 3¢

In writing (1.24) we revert to the general case in which many parameters are

being considered. At this point we can simultaneously numerically integrate the



non-linear system and the variational equations. The calculation of the base flow is
second order accurate [2). The calculation of the new flow is first order in space,
second order in the parameters of interest. The calculation of the two flows is
interleaved in that after the flow along B = constant is computed by the base code,
the parametric code then calculates the exact derivatives in order to obtain the
variational flow.
RESULTS

As we have already mentioned the method applies generally to many independently

varying parameters. As a typical use of the variational quantities we use Taylor’s

theorem to consider the change in pressure,

Pnew ™ Ppase * L (Op/0¢;p)(e; €;0) (1.25)

where ¢, represents the various parameters with the differential coefficients calculated
holding « and B fixed and the zero subscript denotes a reference or base calculation.

For example, if just thickness is considered and denoted by say ¢, then at the

body
dp dp
pnew ~ pbase * [ge— ]a=0,B (€)= pbase+ ([ b?-]x,y=f
d of
55_ ]x, y=£\8e Je-ep) (1.26)

The second form exhibits the result obtained if variation in the physical plane is
considered.

In the numerical calculations that are discussed, we have taken for f a family of
shapes given by

y = 2ex(l-x) - x tan A + 10xe (x- 1) (X - % ) ¢ (1.27)

Thus, € is the thickness ratio based on chord, A the mean chord angle of attack, and
¢ a scaling factor for the camber (shape) function. Figure 3 shows the effect of

changing just the thickness (A,c = 0). Here we have plotted the pressure distribution



on the upper surface and the airfoil which, for aesthetic reasons, has the lower surface
plotted as a reflection of the upper surface. Note that the method gives good
agreement with the exact solution even when the new thickness is fifty percent greater

than the base thickness.

More generally we consider variations in all three parameters. Thus, the pressure

relation at the body is

dp 3p dp
pnew ~ pbase ¥ (_6; ] oz=0,B(€ T€ot [_G—A_ ] oz=0,8( ABg)+ [a—c— ]a=0,B(c o) (128)

Figures 4 through 6 show the effect of changing various combinations of thickness,
angle of attack, and camber. Here we see that, although the airfoil configurations are
markedly different, there is very good agreement between the parametrically generated

pressure distribution and the exact pressure distribution for the new airfoil.

INVERSE CASE

The method which has been presented also works as weli on the inverse or design
problem where the pressure on the body is known, but the shape of the body is to be

determined. Using the Bernoulli equation and the perfect gas law one may show [1]

7-1 .
K o= sin” 1 [[;1 op (—7 ¢ + Tnye) A
1+ —M - exp(— (s + lnyp))
2 4
This when differentiated, yields
212 2-1 2
o 00 T M) (7 1P(1457M) enm) d(np)
2 2 2 d
7 [1+Zi—1M 2- exp(w)] sin%y 7 [1+12'—1—M 2— exp(w)]zsinzu ¢
(1.30)
where

-1
w = Z-}r (s+lnp)



"

Obviously at the airfoil we can no longer use (1.6) since we are hoping to
determine the shape of the airfoil. Instead we must use (1.5) and (1.29). Therefore,
the parametrically differentiated equations (1.24) must be replaced by (1.17), (1.18) and
(1.30). The integration may now proceed as in the direct case [2]. The results of the
variational calculations are presented in Figures 7 through 9. Notice that even for a
20% change in the logarithm of the pressure (corresponding to a 50% increase in
thickness), the difference between the exact airfoil shape and the computed shape is

less than 4%.

-10-



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

FIGURE CAPTIONS

Body, C+ characteristics, streamlines and C  characteristics

(dashed) in physical (xy) plane, from [1].

Body, C+ characteristics and streamlines in (e,B) plane.

Pressure distribution on 10% and 15% thick airfoils at M = 2 and
10% and 15% airfoils.

Pressure distribution on 10% thick airfoil, uncambered at (O degree
angle of attack and cambered (c=0.1) at 5 degrees angle of attack

at M = 2 along with respective bodies.

Pressure distribution on 10% thick airfoil, uncambered at 0 degree
angle of attack and canbered (c=0.2) at 5 degrees angle of attack

at M = 2 along with respective bodies.

Pressure distribution on 10% thick airfoil, uncambered at 0 degree
angle of attack and cambered (c=02) at 10 degrees angle of

attack at M = 2 along with respective bodies.

Inverse case: pressure distribution on 10% and 12% aircfoils, M = 2,
along with generated bodies. Dashed airfoil is computed shape.
Inverse case: pressure distribution on 10% and 15% airfoils, M = 2,
along with generated bodies. Dashed airfoil is computed shape.
Inverse case: pressure distribution on 10% and 12% airfoils, M = 4,

along with generated bodies. Dashed airfoil is computed shape.

-11-



PHYSICAL PLANE

Figure 1

COMPUTATIONAL PLANE

Figure 2
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Chapter 11
The Application of the Jacobi Matrix Technique

to Axisymmetric Supersonic Flow

"Curiouser and curiouser!" cried Alice (she was so much surprised, that for the
moment she quite forgot how to speak good English).

- Alice’s Adventures in Wonderland
Lewis Carroll
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APPLICATION TO AXISYMMETRIC SUPERSONIC FLOW

As another illustration of this method, we consider steady, inviscid, supersonic
flows past axisymmetric bodies. For this purpose consider a family of profiles
depending on two parameters, thickness and taper. As in Chapter 1, we shall
summarize the methods used in solving such flows [1], [2}. The equations are written

in characteristic form as follows:

sg = 0 1)
@ + P ) - S 5 (g 20 Pt T 22)
+ = S - —_— .

) D 2y * tan 8 + tanp T
Xg rg
(6 - P(1) )g = (1-tan® tang) » O + tanp — (23)
4 I

Here the coordinates (e,B) correspond to the streamlines, « = constant, and the C*
characteristics, B = constant (Figure 1). 8 is the flow deflection angle, p is the Mach

angle and s is the entropy. P(x) is the Prandtl function given by
P( _ % -1 % _ _ R
W= Ytan " (Vtanw) - o, X = (Y+D/ (-1 . (24)

As in the two-dimensional case, these equations are exact and are valid in the
hypersonic flow regime so long as such real gas effects as disassociation and ionization

can be ignored. The physical coordinates x,r satisfy the relations [1], [2]
I = Xtan (8+p), I g=xgtan (3] (2.5)

As with Chapter 1, the transformation to («B8) coordinates leaves open two
arbitrary functions; these are fixed so that the shock is along o« = B and the body is
positioned along the line « = (0 (Figure 2). Hence, we have a body fit, shock fit

coordinate system. The boundary conditions at the body are

%(08) = B, 1 (08)=f(B.e), © OB)= tan- (fg (B), €) . (2.6)
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The Rankine-Hugoniot conditions govern the jumps in 6, p and s at the shock.

Written in terms of the shock angle n, they are given by

1 (M2-1)tan®n - 1

tan@ = —
tan? (14 7;—1M2) + (1+1:21 M?) tan’n

Q@7

02(1+2w)1+ 1l w)
sin?y = 6 6 2.8)
2 7 1
(1+w) (1402M°) - (1+ EW) (1+ gw)

s =25 (1+%w)+3.5 In (1+ %w) - 35 In (1+w) (2.9)

where
w = MZsin?n - 1 (2.10)

The shock angle n is related to the coordinates as follows

I ¥ IB
tann = dr/dx | e — (2.11)
shock Xo * Xg shock

We have assumed a perfect gas with constant specific heats and hence that

p =p’ exp [(7- Ds] 2.12)

It should be noted that this formulation eliminates the difficulty mentioned in the

Introduction. For by using the («,8) - coordinate system, a quantity such as

épi—(ot,!3;§.)
de.

signifies the variation with ¢ at fixed « and B. In particular it gives the variation of
pressure say fixed at the body or at the shock. This makes the integration of the

differential equations significantly simpler.
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VARIATIONAL EQUATIONS

As in Chapter 1, we differentiate the governing equations with respect to the
parameter of interest, keeping the coordinates o« and B held fixed. The differentiation

although straightforward is tedious. If we write

"R=——¥= — (2.13)

and parametrically differentiate (2.1), (2.2), (2.3) and (2.5) we then obtain,
Sg =0 (2.14)

s _cos2u r anzeseczu
Oy + [Py (W) e _& d

+ ]‘P+Pu(u)‘l’a_5in2” S«
Y r(tan® + tan )2 2

rmsec2 Btan? i o I tan Btany
+ S — - =
r(tan® + tanu)Z rz(tane + tanp) (2.15)
op + X80 2 Xg
B ——%ec”6 tanu|©- (1- tan 6 tany) — 6 =
Xd Xd
P )Y+ [P (ua— BP sec?utang + —b sec?u ¥
- anf + — se
) i) 1g m 13 ug Xy 13 " K
(2.16)
2] Xg tan rgtanu
+ (1- tan® tanu)-a— Xg- — X ¢+ a Rg - — R
xa Xa I'z
R, = X, tan(8+p)+ X, sec?(8+ u)(® + ¥) (2.17)
Rg = Xg tan 8+ Xg sec’® (2.18)
At the shock the parametrically differentiated equations are
dn cosh
o - _(Xa_ﬂ(gz Ro(Zo + %g)+ Rglxy, + xg) - X (rg + 1g)
- XB(ra+ I'B)] (2.19)
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17.5 35 35]d
B P ericy it (2.20)
6+7w  6+w 1+w] de
4, 1y - 7 1 2. 1.1
0242+ Lw] - 02(1eZu] (1+ lw ) f02m?- 1- Zw)
¥= — (2.21)
p de
A“ sin2u
dw dn 5 . .
where de = M?sin 2n de A = 1+02M°(1+w) - (1+ -6w) (1+ gw)
de dn ) 1 (M2-Dtan?n -1
— = —— cos “0{-
de € { sin
(1+ 7%1 M?2)+ (1+72;1-M2) tan2n
(2.22)
- Y+l \p 2
* 72 (M2 1 n(1+ 21 M
(L) + WL Myt [0 1 sec (1 2 M 2

+(1+ 12_1 M2)tan2’7] - [(M 2-1)tan2n-1] (1+ 12—1 M2 )sec 2n] }

In the actual integration (2.18-2.22) are applied at the shock
a=8 (2.23)
At the body o = ( the appropriate equations are

3B afB (B,G)
X=0, R=f_— ,8=— cos’® (224)

In writing (2.24) we revert to the general case in which many parameters are being
considered. Now we simultaneously numerically integrate the non-linear system and the
variational equations. The calculation of the base flow is second order accurate [2]. The
calculation of the new flow is first order in space, second order in the parameters of
interest. The calculation of the two flows is interleaved in that after the flow along
B = 0 constant is computed by the base code, the parametric code then calculates the

exact derivatives in order to obtain the variational flow.
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RESULTS
In the numerical calculations discussed, we have taken for f a family of shapes
given by

r=2ex(1-x) + 10xe (x- 1) (X - %Z) c (2.25)

Here we have taken € to be the thickness ratio based on chord, and ¢ as a scaling
factor for the taper function.

Figure 3 shows the effect of changing just the thickness (¢ = 0). Here we have
plotted the pressure distribution on the upper surface and the body which, for
aesthetics, has the lower surface plotted as a reflection of the upper surface. Note that
the method gives good agreement with the exact solution even when the new thickness

is 50% more than the base thickness.

Figure 4 shows the effect of changing a combination of thickness, and taper. Here
we see that, although the body configurations are markedly different, there is very good
agreement between the parametrically generated pressure distribution and the exact
pressure distribution for the new body.

INVERSE CASE

The method which has been presented also works quite well in the inverse or
design problem where the pressure on the body is known, but the shape of the body
shape is to be determined.

Using the Bernoulli equation and the perfect gas law one may show [1]

y-1
. exp ( (s + Inyp)) %
g = sin" 1 [[__1 7 (2.26)

2 1
1+ TM - CXP(T (s + Inyp))

This when differentiated, yields
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-1 -1
oL 02 (U MOemm (- 1?15 TM) enw) d(inp)
27 [1+ﬂM % exp(w)]zsinzu 2y [1+7'—1M 2 exp(w)] 2sinzu de
2 2 @27
Where

w = Z—;l (s+Inp)

At the body, equation (26) is no longer valid since we are attempting to
determine the shape of the body. Instead we must use (2.5) and (2.26). Therefore,
the parametrically differentiated equations (2.24) must be replaced by (2.17), (2.18) and
(2.27). The integration may now proceed as in the direct case [2]. The results of the
variational calculations are presented in Figures 5 and 6. Notice that even for a 10%
change in the logarithm of the pressure (corresponding to a 20% increase in thickness),

the difference between the exact body shape and the computed shape is less than 1%.
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Fig.

Fig.

Fig.

Fig.

Fig.

FIGURE CAPTIONS

Body, C+ characteristics, streamlines and C  characteristics (dashed) in
physical (xy) plane, from [1].

Body, C+ characteristics and streamlines in (e,8) plane.

Pressure distribution on 25% and 30% thick bodies at M = 6 and
the respective bodies.

Pressure distribution on untapered, 25% thick body and 0.10 taper,
30% thick bodies at M = 6 and the respective bodies.

Inverse case: Pressure distribution on 25% and 30% thick bodies,
M = 4 along with generated bodies. Dashed body is computed shape.

Inverse case: Pressure distribution on 25% and 30% thick bodies,
M = 6 along with generated bodies. Dashed body is computed shape.
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Chapter III

The Jacobi Matrix Method for General Flows

Here one of the guinea-pigs cheered, and was immediately suppressed by the
officers of the court.

- Alice’s Adventures in Wonderland
Lewis Carroii
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DIRECT DIFFERENCING

The procedure outlined in Chapters 1 and 2 holds in much greater generality than
we have considered. The Jacobi matrix technique could also be applied to unsteady
flows and to viscous flows in three dimensions. However, the method as presented so
far, has one possible drawback which was alluded to earlier - to obtain the Jacobi
matrix we must analytically differentiate the relevant equations and boundary conditions,
In this chapter we propose a procedure which will allow for the calculation of the
Jacobi matrix by the use of differential approximations. The goal is to obtain the
Jacobi matrix, and hence be able to calculate a range of solutions in parameter space,
using the results obtained from solving the nonlinear system (L.1) at only two distinct
values of ¢. This differential approach will be applied to the case of two dimensional
supersonic flow considered in Chapter 1 and to two dimensional subsonic potential flow.

In the Introduction we said that if u® = u(X ; €,) represented a known solution

of the base flow then any neighboring flow at some fixed point x is approximated by

au?
ume) * v’ + — (g - &) 3D
Bey
0
The obvious first order approximation for is
£
=k
0 . -0
du u(xe) - u (.2)
a €, - €
Ky, fixed kS0 g fized
0
What this says is that to compute ——— we can take the value of u at the location x
€
=~k

in the base flow and subtract it from the value of u found from the perturbed flow
(e = €g + A¢) at the same location. In practice, this may require interpolation on one
computational grid.

This approach requires special attention at a boundary. In our approach both

material boundaries and possible shocks are taken to be boundaries and both give rise
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to locations which change with €. This would certainly be the case if we chose to
vary the parameters of a body.

To be more specific, we would like to be able to use the calculation of pressure
in the base flow in order to compute the pressure on the new body. Thus the
formulas (1.25), (1.26) are no longer applicable since they apply at a fixed field point.
Therefore, to correct (1.26) we must include changes in location of the body due to
changes in €. In the interests of simplicity we specify a three dimensional body by

y = f(xz;€) (33)

A typical quantity, say pressure, at the new body, which we will specify by Xp 18

related to the old body x, in the following way

Op(Xy:€q) Op(xys€) 5t
PXpe) * plpey) + T Mgy + 5, 56 Aey (3.4)
where A¢ = ¢ - €, and
Xy = (%pfXpZp€0):2)) (35)
and
Xy = Fpf(®pzgr€)zp) ' (3.6)

Compare (3.4) with equation (1.26).
Note that we have related X, to x, by placing X, directly above X, in the x-z
plane. Other choices are possible and may be more appropriate in certain cases.
Equation (3.4) in fact gives us the ability to compute the pressure at the new
body, but requires knowledge of the differential coefficients Z_p . They can be

€
obtained from

pEyey) af

;€) - &) - ————— A
Op(Xy:€q) PEyie) - Pligi&) 9y, ey “
2 (.7)

agk Agy
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L vy

to first order, or
€

3¢ (o2 - 2) ot

2

k Agy

Bp(Xp€g) p(Xpi(e + €5)2) - pQxys
R
Je

(3.8)

It should be noted that the differential determination of the differential coefficient
3 dp

gp_ requires not only calculation of the different flow fields, but also of — .
€
= 0

Therefore, in the numerical calculation it is necessary to compute

at the body.
This we do by interpolation.

To illustrate these remarks we return to the case treated in Chapter 1. We
consider two dimensional supersonic flow at thicknesses of 10% and 10.1% to calculate

dx dy de dp ds ) . . L
—— . Using equation (3.8) the resulting derivatives were

de ’ de * de ’ de ° de

then used to compute the pressue distribution on a 15% thick airfoil (Figure 1). Note
that this pressure distributuion compares favorably with that computed from using the
Jacobi matrix generated by solving the differential equations (Chapter 1, Figure 3). The

error between the two computations is less then 1%.

2D SUBSONIC FLOW

As a second illustration we apply the Jacobi matrix technique to the potential
equation for two dimensional compressible flow. The potential equation is derived by
assuming inviscid, irrotational flow and is valid for subsonic flows and for low transonic
flows when boundary layer effects can be neglected.

Since we have implemented the Jacobi technique by modifying Jameson’s
computer code FLO36 we will summarize the derivation of the relevant equations and
their solution [1],{2].

Under the assumption of irrotational flow we may introduce a velocity potential

¢ such that
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u=¢ v = ¢y 39
The potential satisfies the quasilinear equation
2 2 2 _ 2 -
@ - u) ¢, - 2uv d)xy + (a° - v°) d)yy =0 (3.10)

where a is the local speed of sound. When given the ratio of specific heats 7, the
stagnation speed of sound a, and the local speed q = v;Z . 2 the speed of sound is

determined by

a?=a - —— ¢ (3.11)

We will consider (3.10) for subsonic flows. (But see Figure 9 for a transonic

case).

At the body the flow must satisfy the tangentcy conditionn

a
on

=0 (3.12)

where n is the normal derivative and the Kutta condition - that the tangential velocity
is bounded at the trailing edge. In the far field the potential approaches the potential

of a vortex in compressible flow and a uniform stream. The density and pressure are

determined by relations

p')"l = M2°° a2 (3.13)
and
Y4
p = P (3.14)
M

The coordinate system used for computation is generated by conformally mapping
the exterior of the airfoil to the interior of the unit circle. The airfoil itself becomes
the coordinate line r = 1 (Figure 2).

Since the far field boundary condition must now be applied at r = 0, where the
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potential becomes infinite, a reduced potential which removes this singularity is

introduced by

G=¢- _____°°Sr ®*) , EE+a (3.15)

Here o is the angle of attack and 2mE is the circulation.
If the modulus of the transformation from the physical plane to the circle plane

is denoted by H then (3.10) becomes
2 2 2 9
(@® - u)Ggg - 2uvtGg + (a° - vAr —B_(IG)
r
u
- 2uv(Gg - E) + (® - VG, + @? + v®) (—Hg + VH) = 0 (3.16)
r

The u and v are the velocity components in the 8 and r directions, respectively and
are given by
1(Gg- E)- sin(8+a) 12G - cos(8 + o)

u = , V= 3.17)
H H

The Neumann boundary condition (3.12) becomes

G =cos(B+a) atr =1 (3.18)
while the far field condition is
G =E6+o«-tan’ [ pZ tan(® + @) ] }atr =0 (3.19)

The circulation is determined by the Kutta condition which requires that the velocity be
finite at the trailing edge of the airfoil. ~Here we have H = 0 and ¢g = 0 so (3.15)

reduces to

E=Gg-sina at r=106 =20 3:20)

The details of the calculation of H and of the multigrid solution of (3.16)-3.20)
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are not essential for our purposes and are discussed in references [1], [3], [4], [S]- The
important point is that the transformation to the circle plane is conformal so that every
airfoil in the physical plane is mapped to a circle and every physical flow is mapped to

the interior of the circle.

CALCULATION OF THE JACOBI MATRIX

The equations for computing the Jacobi matrix by finite differences were given by
equations (3.4)-(3.8). In the subsonic case the only parameter changed was the
airfoil thickness based on chord. Due to the construction of equation (3.16) the
quantities which are of interest are the reduced potential G, and the metric H. To
define the locations x in equation (3.2) we note that in the circle plane the points are
spaced angularly (8) as 2m/(the number of grid points about airfoil) and radially (r) as
1/(the number of grid points from airfoil to far field). Therefore, it is natural to
define the location x by the intersection of these lines.

The variational flow was computed using essentially the same procedure which was
used to calculate the pressure in the two dimensional supersonic flow case. In the
transformed plane we first compute the flow about an airfoil of thickness €, and save
the converged values of G and H. Next we compute the flow about an airfoil of
thickness €, We use these computed values of G and H along with those from the

dG

~dH
run at thickness ¢, to compute 1 and 3 using (3.7). G and H for the
€ €

variational flow at thickness ¢ is computed using equation (3.4).
RESULTS
Figure 3 shows the results of a parametric calculation using a base airfoil of
10% thickness based on chord and a second airfoil of 10.1% thickness to predict the
pressure distribution on a 14% thick airfoil. It should be noted that there is very
close agreement between the parametric calculation and the solution given by FLO36.

Figure 4 uses a 10% thick airfoil and 10.1% thick airfoil to calculate the flow
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over 15% thick profile - that is, a profile which is 50% more than the base airfoil.
Again the agreement is quite good. Figures 5 through 8 show the same calculations
for flows at different Mach numbers. All show close agreement between the
parametrically generated solutions and those given by FLO36.

The method breaks down when there is a drastic change in the behavior of the
solution in the parameter space. This is illustrated in Figure 9. Here the flows about
the 10% and 10.1% thick airfoils are subsonic but the flow about the 15% thick airfoil

is supercritical.  The method is unable to account for the shock.
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FIGURE CAPTIONS

Pressure distribution on 10% and 15% thick airfoils at M = 4
calculated by direct differencing along with respective bodies.

Computational plane, from [2].

Pressure distribution on 14% thick airfoil, M = 0.75. Solid curve is
FLO36 result, dashed is parametricc. Base and new airfoils are also
shown.

Pressure distribution on 15% thick airfoil, M = 0.75. Solid curve is
FLO36 result, dashed is parametricc Base and new airfoils are also
shown.

Pressure distribution on 14% thick airfoil, M = 0.60. Solid curve is
FLO36 result, dashed is parametric. Base and new airfoils are also
shown.

Pressure distribution on 15% thich airfoil, M = 0.60. Solid curve if
FLO36 result, dashed is parametricc. Base and new airfoils are also
shown.

Pressure distribution on 14% thick airfoil, M = 0.45. Solid curve is
FLO36 result, dashed is parametricc. Base and new airfoils are also
shown.

Pressure distribution on 15% thick airfoil, M = 0.45. Solic curve is
FLO36 result, dashed is parametricc. Base and new airfoils are also
shown.

Pressure distribution on 15% thick airfoil, M = 0.80. Solid curve is
FLO36 results, dashed is parametricc. Base and new airfoils are also
shown.
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