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Commercial transport aircraﬁt{fﬁelfconsumption can be significantly
reduced by decreasing the size of the horizontal tail. This report documents
work accomplished for the NASA Aircraft Energy Efficiency program by Lockheed
toward development of a reduced area horizontal tail for a commercial wide-

body transport.

A discussion of the work accomplished to reduce the horizontal tail area
of the L-1011 is given. The reduced area horizontal tail program consisted of '
design, fabrication, and wind tunnel testing of horizontal tails with reduced
planform areas of 30 to 38 percent relative to the standard L-1011 tail. Pro-
file changes evaluated included leading edge radius, camber, thickness to
chord ratio, and high 1ift devices. Planform changes evaluated were tip con-
figuration, leading edge sweep, aspect ratio, and taper ratio. Included in
the report are results of the high-speed and low-speed wind tunnel tests.

The total drag of the aircraft in cruise was reduced by approximately 2 per-
cent. However, it was necessary to impose a forward c.g. limiations on the
aircraft because the maximum lift goal of the reduced area tail was not
achieved and sufficient aircraft nose-up control authority was not available.
On a new design this problem could have been solved by moving the landing
gear aft and enlarging the cut-out in the aft fuselage to allow for larger
horizontal stabilizer deflections. However, since this is an existing design
these modifications were unfeasible and resulted in the c.g. restriction.




1. INTRODUCTION

In a conventional airplane design the horizontal tail is sized to provide
a specified level of static stability and the required longitudinal control
by having an adequate Cpyax in down lift. The requirement for a specific mar-
gin of static stability results in large stabilizer surfaces and a forward
center-of-gravity (c.g.) range both of which penalize performance in terms of
aerodynamic drag and vehicle weight. If an active control system were incor-
porated into the airplane in its initial design, to provide stability arti-
ficially, it is conceivable that the horizontal tail could be sized to provide
the required airplane control by using the tail's maximum 1lift capability in
both up and down lift. This would allow the size of the horizontal tail to
be significantly decreased, thus decreasing drag and weight. This is shown
conceptually in Figure 1.

Accepting the premise that large static margins are unmecessary with

the introduction of a stability augmentation system, the aerodynamic objective
of this program is to determine the maximum drag benefit that can be achieved
by reducing horizontal tail size consistent with the airplane controllability
requirements and by moving the airplane's c.g. range aft. This is accomplished
by redesigning the surface to increase the low-speed maximum lift capability
(thus maintaining longitudinal controllability) and simultaneously not increas-
ing the horizontal tail drag coefficient at the cruise trim lift coefficient.

The following aerodynamic objectives are postulated for the new L-1011
small tail design. First, for good high-speed drag characteristics to ensure
that a tail area reduction would result in a proportional drag decrease:

® Section drag characteristics similar to the standard L-1011 tail.

e No tail drag rise within the cruise Mach number region.

e Maximum tail lift-to-drag ratio occurring at nominal cruise

trim CL'

Second, at low speed to achieve a tail size with significantly reduced
area:

e Achieve nose wheel liftoff at forward c.g. for prescribed nose wheel
lift off speeds.

e Have sufficient control power to stall the aircraft at forward c.g.

e Have sufficient control power for stall recovery at aft c.g.
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2. SMALL TAIL INITIAL DESIGN

Early efforts to develop a small horizontal tail were performed under
Lockheed Independent Development funding and were aimed at incorporation of the
tail on a derivative L-1011 airplane. This work is summarized here, since it
provides a foundation for what became a part of the NASA program. Much of the
material presented here was previously documented in Reference 1.

In order to provide adequate longitudinal control power with a smaller
horizontal tail area, it was necessary to redesign the L-1011's stabilizer/
elevator surfaces and redefine their deflection limits to improve the aero-
dynamic effectiveness of the tail. It was premised that the smaller hori-
zontal tail would be mounted on the same pivot bearings as the original L-1011
tail and would be actuated by the same power actuator arrangement as is cur-
rently used. The new horizontal would be an all flying surface, as is the
original, and would also have a similar geared elevator revised to provide
increased lift, both up and down as a function of tail plane angle. The
smaller tail would have increased angular capability within the existing
L-1011 fuselage cutout. Elevator travel would be increased and stabilizer/
elevator gearing would be defined to achieve the design objectives.

2.1 Sizing Analysis

The goal of high 1lift production at low speed is in conflict with
attaining the good transonic aerodynamics vequired for meeting the principal
objective of low cruise drag. This conflict is similar in designing wings
and thus the approach taken in horizontal tail definition is analogous to the
method for wing design. The objective of the tail design definition was to
select an airfoil which is a satisfactory compromise between high-speed and
high 1ift objectives. A helicopter rotor blade airfoil section was chosen
as an initial approximation for the tail airfoil. The wide range of aero-
dynamic conditions during a single cycle of a helicopter rotor at high for-
ward speed and high Mach number on the advancing tip, and low speed/high
angle of attack on the retreating blade, place constraints on rotor airfoil
design similar to those faced in designing the relaxed stability tail. The
airfoil section for the tail was selected from several advanced rotor air-
foils, whose experimental characteristics are documented in Reference 2. The
chosen section was modified slightly on the tail lower surface (convex side)
to conform with thickness-to-chord ratio constraints for the tail. The air-
foil section and its ordinates are presented in Figure 2 along with a compari-
son to standard horizontal tail airfoil characteristics.

2.2 Tail Sizing

The small horizontal tail sizing analysis was performed using what have
been considered critical control criteria. With the center of gravity (c.g.)
at the forward limit, the critical requirements are to be able to rotate the
airplane for takeoff, and to control the airplane to stall in the landing
configuration. With the center of gravity at the aft limit, the tail size for
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with the standard tail airfoil.
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Figure 2. - New small horizontal tail airfoil compared




a relaxed stability airplame is determined by airplane nose-down stall recovery
requirements evolved from flight data. The aft c.g. stall recovery criterion
was obtained from a statistical study of stall time histories wherein less

than full throw was used for recovery. This tends to define a recovery
acceleration which feels comfortable to the pilot.

Specifically, the small horizontal tail was sized in accordance with the
following requirements:

® Takeoff nose wheel liftoff at forward c.g. with maximum takeoff flaps
at the lesser of 1.05 of the air minimum control speed or 1.1 of the
FAA stall speed.

e Control-to-stall at forward c.g. with maximum landing flaps (42 degrees)
and idle thrust.

e At least 4.58 deg/sec2 nose-down pitch acceleration for stall recovery
at aft c.g. and at the FAA stall speed for maximum landing weight.

® At least neutral stability at aft c.g.

e A c.g. range equal to that of the standard L-1011, 12 percent to
35 percent T (67.5 inches) for weights less than 338,000 1bs.

Within the physical constraints of the airplane geometry and actuating
mechanisms, the stabilizer/elevator deflection limits were increased to
expand the useable 1ift capability of the tail. By reducing the horizontal
tail size, it was initially assumed that there would be sufficient space in
the existing structure to expand the negative stabilizer deflection limit
from -14 degrees to -18 degrees and the positive deflection limit from
+1 degrees to 2 degrees. It was further assumed that the stabilizer/elevator
gearing could be modified to widen the elevator deflection limits so that
when the stabilizer deflected is -18 degrees the corresponding elevator angle
is -30 degrees and at the positive stabilizer limit of +2 degrees the elevator
is deflected +10 degrees.

Results of the initial tail sizing analysis are shown in Figure 1b,
which shows the horizontal tail volume coefficient needed to satisfy the
stability and control requirements for a specified c.g. range. This figure
shows that the minimum size horizontal tail for an L-1011 is 800 square feet
(23 percent of the wing area) compared to the standard L-1011 horizontal tail
area of 1282 square feet (37 percent of the wing area). This represents a
reduction in horizontal tail area of 38 percent.

What is surprising in Figure 1, is that the aft c.g. limit has not moved
afty; it is still at 35 percent ¢ due to the upthrow authority restrictions of
the L-1011 tail. Thus this modification would be applicable to a derivative
airplane. However, the tail 1lift coefficient to trim the airplane is going
to be increased by the tail area ratio.



2.3 H16 Small Horizontal Tail

The following characteristics of the tail were assumed to differ from
the standard L-1011 configuration to improve the low-speed lift capability
of the surface:

® Cambered airfoil section

® Reduced planform sweep at mac/4

® Increased elevator chord ratio

® Increased tail incidence range

e Increased elevator'angle range relative to FRL

® No dihedral

e Taper ratio

Other characteristics of the tail which were not changed were:
@ Aspect ratio = 4.0

e Thickness/chord ratio = 9 percent

The new small horizontal tail planform is shown in Figure 3. The wind -

tunnel model designation for this tail is Hyg. For comparison the small tail
is shown as an overlay to an image of the standard horizontal tail, designated

Hge -

The new small horizontal tail was designed according to the geometric
specification in Table 1, which for comparison also lists characteristics of
the standard tail.

The total horizontal tail area includes the imaginary or carry-through
portion of the planform which is hidden within the fuselage. As a result,
as tail size is decreased, a smaller fraction of the tail is exposed, which
tends to degrade horizontal tail effectiveness somewhat.

2.4 Predicted Cruise Drag Reduction

The reduction in aerodynamic drag due to the smaller horizontal tail was
estimated by using standard handbook methods for lifting surfaces. The particu-
lar technique which was employed applies a form factor for airfoil thickness to
the planar surface compressible skin friction drag computed by the Sommer and
Short T' method. The form factor was determined by a special Lockheed cor-
relation of airfoil drag with thickness ratio.
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TABLE 1. - COMPARISON OF SMALL TAIL AND STANDARD TAIL CHARACTERISTICS.

Hg, Hig
Standard Small
Aspect ratio 4 4
Taper ratio 0.33 0.3
Leading-edge radius 0.0089c 0.006¢
Camber 0 0.013c
Thickness ratio 0.09 0.09
Quarter chord sweep 3590 28°
Area, ft2
Total 1282 800
Exposed 960 565
Exposed/Total 0.75 0.71
Elevator chord ratio 0.25 0.3
Stabilizer throw 15° 20°
(+1° to -149) {+2° to -18°)
Elevator throw 250 40°
(0° to -25°) (+10° to -30°)

Results of these computations are shown in Figure 4. These data illustrate
the potential drag advantages of the small tail compared to the standard con-
figuration. The small tail offers a drag reduction of 11 counts at wind-tunnel
test conditions and 7 counts at full-scale cruise conditions. This represents
a potential drag savings of 2.7 percent at nominal cruise conditiomns.

The net improvement in cruise efficiency would approach 3 percent due to
the slight weight reduction of the smaller horizontal tail.

2.5 Concept Verification

Initial concept verification wind-tunnel tests of the small horizontal
tail were conducted under Lockheed Independent Development funding in 1976.
Two sets were performed: in April, a high-speed test (N-307) in the Calspan
Corporation 8-Foot Transonic Facility for cruise drag evaluation; and in
November, a test (L-404) in the Lockheed-California Company Low Speed Wind
Tunnel to determine the high-lift characteristics of the small horizontal
tail.
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A convenient method of evaluating horizontal tail drag chatacteristics is
by a composite plot of tail-on and tail-off drag coefficient presented as a
function of pitching moment for various trimmed lift coefficients. This type
of plot for an L-1011 with Hjg small horizontal tail is presented in Figure 5.
This plot allows extraction of horizontal tail parasite drag, the drag at zero
net lift on the tail, by determining the drag at points of intersection of the
tail-off curve with tail-on drag for particular lift coefficients.

The technique illustrated by TFigure 5 was used to extract horizontal tail
zero-lift drag from the high-speed wind-tunnel test data. Zero lift drag is
the difference in drag between tail off and on at the same total airplane CJ,
and Cp & The results of this analysis show the potential drag reduction
of the'small tail compared to the standard tail L-1011. For a cruise Mach
number of 0.84, Figure 6 shows the zero trim drag polar characteristics of the
L-1011 with Hje small and Hg. standard horizontal tails. Thesc data, along
with similar data for Mach numbers 0.8 and 0.82, were used to extract the net,
zero-lift drag characteristics of the small and standard horizontal tails as
shown in Figure 7. The results show that there is a potential full scale drag
benefit of 5.1 counts. The data in Figure 8 show that this translates into
a net performance improvement of 2 percent, related to the cruise lift-to-drag
ration characteristics of the airplane. This is 25 percent below the predicted
drag reduction shown in Figure 4. The difference could be due to a number
of reasons such as the effects of fuselage boattail, wing wake, etc.

The 2 percent improvement in cruise lift-to-drag ratio coupled with the
estimated weight reduction of the smaller tail would result in about 2.5 per-
cent overall improvement in long-range-mission fuel efficiency. These results
were considered sufficiently promising to further pursue development of the
small horizontal tail.

Stability and control data from the preliminary high-speed tests showed
good agreement with predicted values of airplane neutral point and control
power.

The horizontal tail high-1lift characteristics from low-speed wind-tunnel
test results are shown in Figure 9. These data reveal serious deficiencies
in the initial airfoil choice at high angle of attack with the elevator deflected.
Tail stall angle without elevator deflection was approximately -18 degrees
tail angle of attack which was the expected angle for the test Reynolds number
(about 106 referred to tail © ). However, as the elevator angle was set
progressively higher, the stall angle dropped rapidly. Flow visualization by
tufts showed leading edge separation, and disturbed and separated flow behind
the elevator hinge. Appearance of leading-edge separation correlated well
with measured stall angle of attack. The result was a maximum lift coefficient
for the horizontal tail of -1.2, shown in Figure 9, 25 percent below the tar-
get value of -1.6 initially used to size the tail.

10




CL - -30 v

ORIGINAL PAGE ig
OF POOR QUALITY

M - 0.84

ANGyygyp = 1.66 X 108

TAIL OFF

——————— -

35 o 038 -

- ---o--

9

(=3

w

&
——t- - -~

>

o

Q

927 y.40
! !
I —T1
i Alp § 1AL
3 —_—
028
1 A L [ i L 1 1 _1_ 1 g
20 .16 .12 08 .04 0 -04 .08 -12 .16 -20
CM.25¢
Figure 5. - Total airplane drag with and without the

Hie small horizontal tail.

11



MACH NO. - .84
ORIGINAL PAGE i<

8 OF POOR QUALITY
PNCHxp:
Hig ~ 1.6 X 10
Hge ~ 2.0 X 106
5
CL
4 +
3
i } 1 1 | ]
.028 .032 .036 .040 .044 .048
DRAG COEFFICIENT
Figure 6. - Zero trim drag polar characteristics of the L-1011 with
H16 small and H8C standard horizontal tails.

In an attempt to improve these lift characteristics, three lift-enhancement
devices were prepared for a second low-speed test entry. These were: a plain
leading edge flap (or drooped leading edge), a Kreuger flap, and a second ele-
vator hinge at the mid-point of the elevator chord allowing a double articu-
lated motion to be simulated. The leading edge flap provided no benefit for
this airfoil, but the Krueger flap effectively delayed leading edge stall,

The combined Krueger and double elevator produced a maximum lift coefficient
of -1.4 at 16 degrees angle of attack, as shown in Figure 10. If this value
were scaled from wind-tunnel to flight Reynolds numbers (about 20 times
higher), the design value of -1.6 might very well be realized.
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The potential for significant cruise drag reduction was shown by the
initial concept verification wind-tunnel tests of a 38 percent smaller hori-
zontal tail. However, the smaller tail was found deficient in low-speed con-
trol capability without the introduction of complex high-lift devices. It
was concluded that the design of a system with high-1ift devices was too com-
plex for production consideration, and further development of this initial
tail design was abandoned in favor of a new design with improved airfoil
characteristics.
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3. SMALL TAIL REDESIGN

Advanced airfoil technology was utilized in the new design effort in an
attempt to design a relatively thick section with large leading-edge radius
to provide high 1lift at low speed for controllability while not significantly
degrading high speed drag characteristics. Restated, the new tail redesign
was to meet the specified design objectives for low-speed performance while
duplicating the good high-speed characteristics demonstrated in wind-tunnel
tests of the initial design. Undesirable separation and stall characteristics
observed in preliminary tests of the initial tail design would be eliminated
with minimal reliance on complex lift-enhancement devices.

3.1 RSS2 Airfoil Development

The RSS2 airfoil was developed by evolving a better trade-off between
low-speed download capability, M = 0.2, tail Cy, = -1.6, and low cruise drag,
M = 0.84, tail Cp, = -0.2, than the compromise offered by the helicopter blade
section used in the initial work. This analysis at the initial section pro-
perties, the methods that have been used to improve the results, and the
sequence of design evolution.

Pressure distribution on the tail surface was the primary evaluation
basis in the design process. The pressure data were produced with the
Jameson-Caughey exact potential inviscid flow analysis code, FLO-22 (Refer-
ence 1 and 2). This program solves the full potential flow equations for a
wing (or tail panel) mounted on an infinite plate. Good operational reli-
ability, ease of operation, and sound theoretical basis prompted the choice
of this program. Force and moment coefficients were also obtained from the
integrated pressure data.

Theoretically developed cruise and low-speed pressure profiles for the
initial small horizontal tail airfoil section (Figure 1) are shown in
Figures 11 and 12. These data were computed at a horizontal tail station
of about 3/4 span. The cruise pressure distribution, Figure 11, is quite
acceptable, showing a relatively weak shock. However, the sample low-speed
case plot, Figure 12, shows a very peaky leading edge suction on the lower
surface (as installed on the airplane) which will lead to separatiom and a
leading edge type stall, as was discovered in the wind-tunnel test.

To start design evolution, a first redesign consisted of the initial
airfoil upper surface (which performed well in wind tunnel tests) and a
highly cambered lower surface to enhance low-speed download capability. This
combination was fitted with an analytic description.

The results of the blend for the cruise condition, as analyzed with FLO-22
showed the lower surface pressure distribution clearly unacceptable due to a
continuous supercritical expansion which terminated in a strong shock. The
low-speed pressure distribution was not quite as peaky as Figure 12, but this
section favors the low-speed case too strongly. Iterations to find a com-
promise used the Curvature Airfoil Shaping (CAS) tool described below.

17
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The analytic description of the combination airfoil described above was
produced using part of the iterative wing design CAS system which is depicted
in the flow diagram given in Figure 13. This design system has been fully
automated, as implied by the flow diagram. The cornerstone of the system is
the ability to define the whole surface geometry by specifying a few key
parameters at the surface control stations. The surface geometry generated by
the CAS package satisfies a series of curvature conditions which tend to gen-
erate good transonic shapes. Thus, even though some amount of iteration may
be required to arrive at the proper combination of parameters that will result
in the desired type of pressure distribution, the actual number of iterations
is usually very low. The rapid convergence rate is due to the inherent geo-
metric properties of the CAS definition, as well as to the fact that the
designer only has to operate with a relatively low number of parameters to
describe the entire wing surface. This greatly helps the designer in quickly
developing a feel for how to perturb these parameters in order to arrive at
the desired type of pressure distribution while satisfying whatever constraints
might have been imposed upon the design.

The analysis module of the system is the FLO-22 transonic swept wing full
potential code. In addition to the automatic display of pressure distributions
and other computed aerodynamic characteristics, the design system automatically
generates, at the option of the user, data sets for air loads/structural
analyses and comprehensive lofting of the wing including all required drawings
for wind tunnel model fabrication.

The CAS program was used to improve the cruise pressure distribution while
holding the low-speed/high-download case leading edge suction peakiness from
going to excessive values. The first iteration using this tool reduced the
airfoil thickness. Cruise performance was better, as shown by the data in
Figure 14, but still exhibited shocked flow on the upper surface. The next
iteration increased the radius of the leading edge to reduce peakiness. The
results in Figure 15 show a reduced leading edge pressure gradient. However,
the peak is into supercritical flow pressure coefficient values. On the third
iteration, the thickness was further reduced, and the leading edge radius was
reduced back to a prior iteration. These changes improved the upper surface
pressure profile, but unfavorably affected the lower surface pressures
(Figure 16).

The fourth change used the upper surface of the third iteration section
for the inboard span stations. The outboard span stations used the lower sur-
face of the first iteration section. The upper surfaces were modified for both
locations to give a smaller leading edge radius. These changes resulted in an
improved cruise performance as shown in Figure 17. Figure 18 shows that the
low-speed suction recompression gradient was too high. More curvature was
introduced into the upper surface of both outboard and inboard airfoil sections
to help this problem by reducing the recompression rate. A reduction in the
low-speed suction peakiness was accomplished with the fifth iteration as shown
in Figure 19.

20
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A final iteration used the inboard section from the fifth iteration design
at all spanwise stations with a minor change to cusp the trailing edge to give
more aft loading of the airfoil. The resulting final design RSS2 airfoil is
shown in Figure 20. This airfoil section has a maximum thickness/chord ratio
of 10.45 percent compared to 9 percent for the initial section (Wortman air-
foil) and for the standard tail (NASA 0009). The leading-edge radius is
3.6 percent chord compared to 0.6 percent for the Wortman airfoil and
0.89 percent for the NACA 0009.

The pressure distribution characteristics of the RSS2 airfoil are shown
in Figure 21. The data for cruise (Figure 21) show a relatively smooth lower
surface pressure gradient, although the rooftop extent is short, and a weak
shock recompression. The low-speed pressure data (Figure 22) show an accept-
able suction peakiness. Also, from a low-speed standpoint, the generous
leading-edge radius and lower surface development of the airfoil lends itself
well to a leading-edge camber high-lift modification, if so desired. The
lower surface curvature can be easily maintained when so modified, thus mini-
mizing any adverse pressure gradient trends.

3.2 Modified Small Horizontal Tail - Hl7

The small horizontal tail planform was modified slightly, based on the
results of the RSS2 airfoil analysis, by reducing planform sweep from
28 degrees to 25 degrees. The wind-tunnel model designation for the modified
small tail is Hyy. Characteristics of this tail compare with the previous
small tail and standard tail as shown in Table 2.

The Hy7 modified small horizontal tail planform is shown in Figure 23.
A pressure instrumented model of the Hj7 small tail was constructed for low-
speed wind-tunnel tests. Approximately 150 orifices were arranged in chord-
wise strips on both upper and lower surfaces at four spanwise stations.

Wind-tunnel measured pressure data were compared with the foregoing theo-
retically computed results. There was generally good correlation on these
results as shown in Figure 24. This is particularly true for the section
without elevator deflection. For the condition of 30 degrees up elevator
(Figure 25), the inviscid potential theory predicts a suction peak somewhat
higher than measured. Also, the low pressure recovery at the trailing edge
was thought to be caused by the low test Reynolds number,

The force data from these tests for the Hyy tail (Figure 26) show a
maximum lift coefficient capability of -1.25, compared to a value of -1.2 for
the Hjg tail (Figure 9). The modest improvement in maximum lift capability
of the modified tail leaves too large a deficiency to be made up by any other
means than high-1ift devices.

The conclusion once again was that a design with high-1lift devices would
be too complex for near-term production consideration. Therefore, in order
to achieve the control requirements specified in Section 1.2, the size of the
small horizontal tail was increased.
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TABLE 2. - Hjyy SMALL TAIL COMPARATIVE DATA

Hae Hig Hy7
Standard Small Small
Aspect ratio 4 4 4
Taper ratio 0.33 033 0.33
Camber 0 0.013c 0.016¢c
Leading-edge radius 0.0089¢ 0.006¢ 0.036¢c
Thickness ratio 0.09 0.09 0.1045
Quarter chord sweep 35° 28° 25°
Area, ft2
Total 1282 800 800
Exposed 960 552 552
Exposed/Total
Elevator chord ratio 0.25 03 0.3
Stabilizer throw 15° 20° 20°

Elevator throw

(+1° to -149)
250
{0° to -259)

(+2° to -18%)
40°
{(+10° to -30°)

(+2° to -189)
40°
(+10° t0 -309)
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Figure 24. - Theory to experiment pressure distribution comparison.
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Figure 25. - Theory to experiment pressure distribution
comparison - 30° up elevator.

Calculations were based on the same c.g. range used in the previous

analysis:

0.12 to 0.35 © for weights less than 338,000 pounds.
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4., COMMON-SIZE/NEAR-TERM SMALL TAIL

From the outset of the small tail development program, it was assumed
that this sort of improvement would be incorporated into next generation
derivative aircraft, which were expected to be of the long-body L-1011-1 type.
Initial tail sizing was based on this assumption and also that it would be
possible to employ leading-edge high 1ift devices on the small tail. This
premise implied production application at an undetermined time sufficiently
far downstream to allow development through flight testing of the smallest
on limit condition tail. However, as the study progressed, the worsening
economic environment made it more important for airlines to operate at a
profit, thus increasing the urgency for incorporating major performance
improvements into new derivative aircraft. Consequently, the objective was
established to incorporate a small horizontal tail in near-term L-1011 deriv-
ative aircraft; and in order to accommodate all L-1011 derivatives, it
became necessary to design a common-size small horizontal tail for both short-
body and long-body derivatives.

4.1 Final Sizing Analysis

In resizing the small horizontal tail, a number of new requirements
were recognized:

® Possible future use of the small horizontal tail on L-1011-500
short-body derivatives.

® Decreased stabilizer/elevator throw limits for the increased area
tail with fixed fuselage cutout available; Sy/8, = +2 deg/+5 deg
to =15 deg/-~30 deg.

e An 0.12c forward c.g. limit was used in conjunction with the
takeoff and landing flaps deflection limits defined for the dash
500 airplanes: 27 degrees and 33 degrees, respectively. A
landing flaps deflection of 42 degrees was used in the initial
tail sizing analysis (Section 1.2).

The small horizontal tail resizing analysis was based on a maximum lift
coefficient capability of -1.4 This value was selected based on the premise
that the Hjp; tail low-speed CLypy of -1.25 at wind-tunnel scale Reynolds
number would grow to -1.4 at full scale flight conditions.

Calculations were based on the same c.g. range used in the previous
analysis: 0.12 to 0.35 T for weights less than 338,000 pounds.

Results of the resizing analysis are illustrated in Figures 27 and 28.
These figures show that a tail size of 898 square feet is required to achieve
nosewheel liftoff (Figure 27) and control-to-stall (Figure 28) at the forward
c.g. limit. Figure 28 also shows that this tail area satisfies the stall
recovery and stability requirements at aft c.g. This final small tail size
still represents an area reduction of 30 percent from the standard tail.
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4.2 Common-8Size Small Tail Design - H18
A layout of the small horizontal tail suitable for all L-10l11l derivatives
is shown in Figure 29. The wind-tunnel model designation for this tail is Hj1g.
In designing this tail the aspect ratio was increased from 4.0 to 4.5 to further
enhance the lift slope characteristics of the surface. The design also features
a hyperbolic tip which is intended to benefit high-speed drag characteristics.
The design retains the quarter chord sweep angle and RSS2 airfoil section of
the previous tail (Hy7). Characteristics of the Hjg tail compare with the
previous designs as shown in Table 3.

4,3 Estimated Cruise Drag Reduction

Existing handbook methods do not accurately predict the drag character-
istics of advanced technology airfoils. In fact, preliminary estimates for the
original small tail (Hjg) were found to be 27 percent too low, while estimates
for the standard tail (Hgc) were accurate. Recognizing these deficiencies, a
standard handbook estimates of the Hig drag was not made. Instead, since there
was no airfoil change from the Hj7 tail, the potential cruise drag reduction
for the Hyg tail was estimated by applying an exposed area correction to pre-
vious wind-tunnel test results. Recall the H;y; tail was designed to have
essentially the same cruise drag characteristics as the Hlg tail, but a
quantitative evaluation of the H17 tail cruise drag was not performed due to
its low speed lift deficiencies. Therefore, the Hjg drag benefit was
estimated based on data for the Hjg tail in Figure 5. By applying an exposed
area correction factor to data in Figure 5, it was estimated that the H;g small
horizontal tail would reduce the drag of the L-10l11 about 6 counts at wind-
tunnel conditions for an overall cruise L/D benefit of about 2 percent,
including the weight reduction of the smaller tail.

4.4 Wind-Tunnel Test Results

4.4.1 Low speed.- A model of the Hjg small horizontal tail was constructed
for an existing 1/20th scale model of an L-1011 for testing in the NASA/Ames
Research Laboratory 12 foot Pressure Tunnel. The purpose of the test
was to determine the effects of the Hjg tail on the low-speed longitudinal
stability and control characteristics of an L-1011-1, with emphasis on defining
small horizontal tail control capability. The primary objective was to obtain
low~-speed, high Reynolds number data for the configuration with flap deflec-
tion angle at the maximum takeoff setting, which defines the tail size
requirement for takeoff rotation.

Testing was conducted during the period from 15 through 22 January 1980.

Complete configuration six-component forces and moments were measured with
horizontal tail on and off.
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. wind-tunnel entry.

TABLE 3. - Hjg8 SMALL TAIL COMPARATIVE DATA

H .
St swi
Aspect ratio 4 4 4 45
Taper ratio 0.33 0.33 0.33 0.33
Camber 0 0.013¢ 0.016¢ 0.016¢
Leading-edge radius 0.0089c 0.006¢c 0.036¢ 0.036¢
Thickness ratio 0.09 0.09 0.1045 0.1045
Quarter chord sweep 350 28° 259 25°
Area,ft2
Total 1282 800 800 898
Exposed 960 552 552 652
Exposed/Total 0.75 0.69 0.69 0.73
Elevator chord ratio 0.25¢ 0.3c 0.3¢c 0.3¢
Stabilizer throw 15° 20° 20° 17°
+1% 10 -14%) (+2° 10 -18%) (+2° t0 189) (+2° t0 -15%)
Elevator throw 25° 40° 40° 359
(0° to -25°) (+10° to -309) (+10° 10 -30°) (+5° to -30°)

The lift and pitching moment data obtained during the test exhibited a
"bubble" characteristic which had not been observed in any previous L-1011
The problem was encountered only at high Reynolds number
5.6 x 106/ft. and only with the wing flaps and slats deployed.

During a brief investigation of the problem, wind-tunnel balance, instru-
mentation, and data reduction were eliminated as possible causes. This led
to the conclusion that the phenomenon was related to the wing high-lift system,
since the problem did not occur with the clean wing. Insufficient test time
to explore this problem led to the decision to remove the wing to determine
the small horizontal tail control effectiveness. The problem did not occur
with the wing off.

The incremental difference between horizontal tail on and off pitching
moment data were used as a basis for extracting the lift characteristics of the
the Hy1g tail. This was done both with wing-on and wing-off data. A geometric
tail arm from the wing-to-tail 0.25C was used in the data reduction.
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The wind-tunnel extracted lift characteristics of the Hjg tail are shown
in Figure 30. This figure shows excellent correlation of the wing-on and
wing-off data for the horizontal tail, adding credibility to the wing-on data.
Most importantly, these data show that the Hjg tail achieved a maximum 1lift
coefficient of -1.4, which was the design target value used in the Hjg tail
sizing exercise.

It was thus established bhat the low-speed design objectives of the Hjg
tail had been achieved. However, some doubt was cast on this favorable result
when it was later discovered that the bubble phenomenon was caused by a problem
with either the N1 balance gage or the balance conditioning instrumentation,
which caused the output to consistently jump from 4500 to 6300 counts. As
a result, NASA/Ames wind-tunnel personnel advised that the data were highly
questionable. All of this considered, it is believed that the data which
were extracted for the tail alone may still be realistic in view of the fact
that the problem did not occur with the wing off, yet the tail 1ift charac-—
teristics were essentially the same.

4.4.2 High speed.- A model of the Hi1g small horizontal tail was con-~
structed for the existing 1/30th scale high-speed model. This model was
designed for: 1) complete airplane model force tests to determine the
longitudinal stability and control characteristics of the L-1011 with small
tail, and 2) for horizontal tail pressure measurements to define the airloads
required for structural analysis and control system design. The right-hand
panel of the horizontal tail was instrumented with 102 pressure taps (51 top
and bottom) distributed along the chord at four spanwise locations as shown
in Figure 31. The left-hand panel of the small tail was equipped with a
strain gaged beam to measure elevator hinge moments.

The objective of the high-speed test were to:

e Determine the incremental drag of the Hyg small horizontal tail.

e Obtain pressure data on the exposed portion of the small horizontal
tail surface to determine airloads distributions, and obtain total
pivot moment characteristics of the stabilizer.

® Record strain gage measurements of total elevator hinge moments.

® Measure six-component forces and moments with the small tail on and
off to determine complete configuration lift, drag, and pitching
moment characteristics as well as the total control capability of the

small horizontal tail.

® Obtain six-component force and moment measurements with standard-size
tail on for comparison with the small tail results.
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The first high-speed wind-tunnel t

est was conducted in the NASA/Langley

: 8 ft Transonic Pressure Tunnel during the period 24 through 31 July 1979.
~ Figure 32 shows the L-1011 1/30th scale force model with pressure instrumented

! horizontal tail in the Langley 8 ft Transonic Pressure Tunnel.

centrated on the Mach number range 0.5

ing to the limit determined by model dynamics.

were as follows:

M = 0.5, 0.8, 0.83

the corresponding Reynolds number was 3 x 106 per foot.

The test con-
to 0.95 and at angles of attack extend-

, 0.86, 0.9, 0.95

The test angle of

attack range varied with Mach number generally as follows:

££ Test o

0.5 0, 2, 3, 4, 5, 6, 8, 10
0.8 0, 2, 3, 4, 5,,6, 7
0.83 0, 2, 3, 4, 5,,6, 7
0.86 0, 2, 3, 4, 5,,6, 7

0.9 0, 2, 3, 4, 5,,6

0.95 0, 2, 3, 4, 5,,6

’ b 3

-
-

A record of configurations and conditions tested is presented in Table 4.

This record shows a total of 84 actual

Tail Configuration

Small
Off
Standard

data runs subdivided as follows:

Runs

62
6
16

Total 84

The Langley high-speed wind tunnel test data revealed some unexpected

results pertaining to the longitudinal
trol effectiveness derivative, and the

The longitudinal static stability
tail showed some sharp variations from
seen in previous wind-tunnel or flight
Figure 33A. The sharp increase of the
M = 0.90 show the neutral point moving

from M = 0.90 to M = 0.95 show the neutral point moving swiftly aft.

static stability derivative, the con-
drag polar.

data for the 1L-1011 with standard-size
Mach 0.86 to 0.95 that had not been
tests. These data are presented in
stability derivative from M = 0.86 to
swiftly forward and the sharp decrease
A simi-

lar variation in stability occurred for the small horizontal tail model as

shown in Figure 33B,

The control effectiveness derivative extracted from the wind-tunnel test
for the standard-size tail showed the tail effectiveness to be less than pre-

vious wind-tunnel and flight test data
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as shown in Figure 34A., However, the
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TABLE 4. - NASA/LANGLEY 8-FOOT TRANSONIC PRESSURE TUNNEL TEST RUN RECORD

Tait Angles M Series
Configuration oy 8q 5 8 .83 .86 90 95 Remarks
2
SysVgHyg € 2 0 6 | 5 4 3 | 2 1 | Ioverted
12 | n 10 9 8 7 Upright
e2 2 17 | 16 15 14 | 13
Hi2 o* 12 | 45 27 |26 | 25 | 2 |2
o0 0 2 | 2 20 19 | 18
YD oF 35 | 3t {30 | 20 | 28
g 0
HS e £ 10 35 | 34 33 32
o 0 a0 | 39 38 37 | 36 Model Fouling
Hig 0 0 a9 | a8 47 46 | 45 44
+Fillet a3 42 41
.10 ' Tail Fillet On
o 10 53 | 52 51 50
et +5 59 | 58 57 56
ed 5
o2 , ) 62 61 60
off Off off | off 68 | 67 66 65 | 64 63
Had o A o 2 |1 | 10 | 69 Tail Off
Std. Tail
Kl 0 18 | 77 76 75 | 74 73
8C
Hgt 1 8 | 83 | 8 | 8 |8 | 79

S5 — L-1011-1 model with standard wing (w/o ext. tips) and with tails off

Vg — Vertical tail

H8c‘H18‘ Horizontal tail — e — Horizontal tail elevator.
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small tail effectiveness shown in Figure 34B was greater than and had a much
sharper peak in the cruise Mach number range than the estimated effectiveness
for the L-1011. Note that at a Mach number of 0.86 the test results show the
small tail to be as effective as the standard tail,

The small incremental difference between the small and standard-size
tails test results is shown in Figure 35. This difference was smaller than
expected.

A review of the differences in the Langley wind-tunnel data and previous
test data led to the conclusion that wall interference or blockage effects
occurred in the Langley tunnel because of the relative size of the model to
the tunnel test section. The 1/30th scale test model had a 62 inch wing span,
and the tunnel width was 85 inches. The previous L-101l1l wind tunnel tests
had been performed in the Calspan Corporation transonic facility which had a
slightly larger width (96 inches). Consequently, a brief test was scheduled
in the Calspan tunnel to resolve the model wing span versus tunnel width
question and obtain test data for some additional flight conditiomns.

The additional wind-tunnel testing in the Calspan 8 foot Transonic Facility
was performed from 26 through 28 September, 1979. A record of configurations
and conditions tested is presented in Table 5. This record shows a total of
108 actual data runs subdivided as follows:

Tail Configuration Runs
Small 87

Off 12
Standard 9

Total 108

This test differed from the previous test in that force and moment data and
horizontal tail pressures were obtained with the wing off, and with boundary
layer transition grit on and off the horizontal tail to determine the effect of
grit on shock wave location. The model was also tested with boundary layer
transition grit on and off the wing, both with horizontal tail on and off.

Because of the larger dimensions of the Carlspan wind tunnel relative to

the Langley wind tunnel, it was possible to add the L-1011 wing tip extension
to the model; the wing span was 65.6 inches instead of 62 inches.
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A comparison of the NASA Langley and Calspan high-speed wind-tunnel tests
results shows:

Longitudinal static stability data from the Langley and Calspan tests
(Figure 36) are in generally good agreement for Mach numbers less

than 0.86. Between Mach 0.86 and 0.90 the Langley stability deriva-
tives increase and decrease as was shown in Figure 33, whereas the
Calspan derivatives fall below the predicted values., Further investi-
gations are required to explain the descrepancy between predictions
and test results in the Mach number range from 0.86 to 0.90.

A comparison of the Langley and Calspan longitudinal control effec-
tiveness for the Hjg horizontal tail stabilizer and elevator are shown
in Figures 37 and 38 respectively. The test results from the two
tunnels was in excellent agreement. However, control effectiveness of
the stabilizer was considerably more effective than predicted in the
cruise Mach number range. This is due to higher than predicted lift
slope characteristics of the surface. The elevator effectiveness was
slightly less than predicted.

O  LANGLEY 8 ft T.P.T

Sy - 898 F2 WITHOUT WING TIPS
Ly A CALSPAN 8 ft TUNNEL
— - 278 WITH WING TIPS
1 (FILLED SYMBOLS DENOTE TAIL OFF)
TAIL OFF - ———
0 1 1 1 -ﬁ"‘;‘ —_—J M
. 6 .
M e 2 4 A% R 1.0
by |CI. -3 PREDICTED Y Y\
WITH WING A 0:?:“: LNG‘
-1f TIPS VA
A' 1) RESEARCH
| AFTc.g.
i TAIL ON
-2
sl
Figure 36. - Longitudinal static stability derivatives with
the H small tail.
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0 L | | L |
0 2 4 .6 8 1.0

Figure 37. - Longitudinal control effectiveness of the H18 stabilizer.

SH = 898 FT2
03 2y O LANGLEY 8 ft TP.T,
= - 2476 A\ CALSPAN 8 ft TUNNEL

02 - . = - 88841

che ~ deg -1
PREDICTED
0 1 1 [ H J
i 0 2 4 .6 1.0
M
Figure 38. - Longitudinal control effectiveness of H18 elevator.
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® A comparison of Figures 35 and 39 shows the difference in the Langley
and Calspan tests drag data. The Langley data shows a good match at
low lift coefficients, but the Calspan data show less drag at high
lift coefficients due to the effect of extended wing-tips (lower
induced drag). The significant finding from the Calspan test, which
confirmed the Langley test results, was that there is very little
drag benefit due to the smaller tail,

Pressure distributions.~ The pressure distribution data were used to inte-
grate stabilizer pivot moments. These data were also compared with theo-
retically computed pressures to show the accuracy of current analytical
techniques, Pressure data from the Calspan test were used for this
comparison, since wing-off, horizontal tail pressure data were not
obtained from the Langley test; it was not possible to compare wing-on
horizontal tail pressures with theory because of the unknown spanwise
distribution of downwash from the wing onto the tail. For a cruise

Mach number of 0.83, Figure 40 shows a comparison of wind-tunnel mea-
sured pressure data on the tail compared with viscous Jameson-Caughey

FLO 22.5 theory. Data in Figure 40 for a tail angle of attack of

-3.36 degrees with elevator undeflected show pretty good agreement,
particularly at the outboard stations away from the influence of the
boattail which is difficult to model. Figure 41 for -2 degrees tail
angle of attack with elevator deflected -10 degrees show similarly good
agreement except in the region of the elevator where it is difficult to
model the turbulent boundary layer separation characteristics.

Stabilizer ﬁivot moments.— Stabilizer pivot moment data were integrated
from pressure data and reduced to fit the following linearized equation

C, =¢C

y ™ oy

+ Gy fay) oy + (G 15 8,

Reduced data from the two high-speed tests are shown in Figure 42. There
is excellent agreement between data for the two tests except at zero lift,
ChH , where the differences are significant. These differences are

0

attributed to the use of wing-on data from the Langley test and wing-off
data from the Calspan test.

Elevator hinge moments.- Elevator hinge moments were determined directly
from strain gage measurements. These data were also reduced to fit the
linearized equation.

c, = o + (ch /6e) Ge + (Ch /aH)aH
e eo e _ e .

S

Reduced data from the two high-speed tests are. shown in Figure 43. Here
, again the data show good agreement except for some differences between
' the tail hinge moment derivatives due to angle of attack, Ch /aH.
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Drag creep.- Upon closer examination of the Calspan data, a tail drag
creep problem was discovered going from M = 0.80 to 0.83. This is
illustrated by wind-tunnel extracted zero-lift tail drag characteristics
shown in Figure 44. This premature drag rise was attributed to premature
shock formation on the tail surface compared to that which was predicted
by the inviscid Jameson-Caughey transonic code FLO-22 method used to
design the airfoil.

Another brief high-speed wind-tunnel test was conducted for final con-

firmation of the drag characteristics of the Hjg tail. This test was performed

in the Lockheed (4 ft Trisonic Wind Tunnel. This test focused on the compara-
tive drag characteristics of the various tail configurations which had been
previously tested, In addition to the 898 ft2 tail model (H1g), the previous
800 ft2 models (Hjg and Hj7) were also tested and compared with the standard
1282 ft2 tail (ch). For this test the tails were mounted alone (i.e., with-
out wing) on a simple test body, so that drag differences between tails
represented a significant fraction of total model drag and therefore of
balance scale.

A simple wind-tunnel test model, requiring minimal new parts, was devised
to maximize the sensitivity to measurement of small differences between charac-
teristics of the various tail configurations. Existing L-1011 fuselage nose
and tail sections were attached by means of a short adapter. This test body
was mounted on the sting through a six component task balance located in the
tail section. The balance center was approximately at 0.25c of the horizontal
tail. Full span tail surfaces were then attached to their normal mounting
trunions on the precision incidence setting device. A tail fairing was added
to reduce overall drag level by lessening base drag. This model configuration
is shown in Figure 45.

Specific objectives of this test were to:
e Obtain timely verification of recent test results.

e Get comparative horizontal tail drag for all configurations from a
single wind-tunnel entry.

e Measure horizontal tail drag on a test configuration where tail incre-
ments were significant in terms of balance scale and sensitivity.

e Obtain data at higher Reynolds numbers than in previous tests.
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Results of this test confirmed the results from all previous tests.
These data are shown in Figure 46. The zero-tail-load drag characteristics of
the H1g small tail show no drag improvement compared to the standard tail .
(Hge) in the cruise Mach number range (0.80 to 0.83), despite being 30 percent
smaller in total area. These results generally agree with data from the
Langley and Calspan tests, although the drag levels are generally lower due
to the higher Reynolds numbers of the test. Data for the Hj7 and H)g tails
show that in terms of area differences there is a disproportionate increase
in drag going from the 800 to 898 square-foot tail; these tails both have the
same airfoil section and, aside from the increase in area, the only differences
in geometry were an increase in aspect ratio from 4 to 4.5 and a hyperbolic
tip instead of trapezoidal.

4.5 Reconciliation and New Directions

In an attempt to determine the cause for the disproportionate increase
in measured drag going from the Hj7 to Hyg tail, the wind~tunnel models were
reinspected to determine if the airfoil contours conformed to specifications.
This was done by using a digital height gage to measure actual airfoil ordi-
nates. Measurements were made at span stations where the chords of the two
tails were equal. The error from specified airfoil ordinates in terms of
height/chord fraction is shown in Figure 47. Overall, H;y is slightly thin

WIND-TUNNEL $-387
003 ZERO TAIL LOAD
002} H1g
>
ACD tail N /
001
0 L L 1 \ 1 1 1 i L d
.80 2. 8 86

Figure 46. A comparison of the zero-lift drag characteristics
of the various horizontal tail designs.
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‘ and Hjg slightly thick, however, not an amount that could affect form factor

. lower surfaces.

enough to cause a measurable difference in drag coefficient. The mean devia-
tion of ordinates over the whole chord of H;g is quite low on both upper and

Resolution of the drag discrepancy between Hy; and H1 tails was hindered

by the fact that the complete airplane model with H17 was not tested under

contract, and the brief testing that was done did not have a duplicate series
of runs with the standard tail (H8c) installed. Testing of H17 was performed
with limited Lockheed Independent Development funding in conjunction with the
L-~1011-500 development program. During this test, data for the standard tail
were obtained with a wing-body fillet installed, but it had been removed by
the time the small tail was tested. Therefore, it was impossible to determine
the absolute drag benefits of Hjy compared to the standard tail.

The Hjg small horizontal tail is simply an increased area version of the
Hy7 configuration for which the design basis was a detailed inviscid Jameson-
Caughey transonic flow code 22 analysis (Section 3.2.1).  The inviscid version
of this program was the only one available at the time for three-dimensional
analysis of lifting surfaces. In the meantime, a new viscous version of the
program was made available, called FLO 22.5, which incorporated the effects
of boundary layer including a separation criterion to flag the point of expec-
ted separation, although the effects of separation could not be computed.

With the availability of this improved program, some additional analysis
was performed. in an attempt to find a technique of predicting the unexpected
drag characteristics of the Hjg tail. This would then provide a method of
determining revisions to the tail design which would result in satisfactory
cruise drag characteristics.

In performing this analysis, it was found necessary to model the fuselage
effect on horizontal tail airflow, because of the significant boattail effect
on the inboard section pressures of the tail. Modeling of the fuselage/tail
combination is illustrated in Figure 48.

Results of the analysis with and without the fuselage boattail effect are
shown in Figure 49. These data show that a good correlation of analysis with
wind-tunnel data is obtained, including the drag 'creep' effect, by properly
modeling the fuselage boattail effect. This finding was significant in that
a method was now available for analytically determining modifications to the
Hj8 design to eliminate its undesirable drag characteristics.
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. 5. FINAL SMALL TAIL DESIGN

5.1 Planform/Airfoil Modification

After the disappointing results which emerged from the Hjg high-speed
test program, a review was held with NASA contract monitors and technical
specialists to decide upon an appropriate course of action for determining a
satisfactory small horizontal tail design. A review of the results of inde-
pendent development of small horizontal tail designs by NASA, including wind-
tunnel test data, revealed significant differences between NASA and Lockheed
designs. The following differences were identified:

NASA Lockheed
Sweep Angle (c/4) . 32.5° 25°
Aspect Ratio 3.0 4.5
Airfoil Sections NASA developed Lockheed Developed
inverse camber inverse camber

& symmetrical
Airfoil Thickness - 10% 10.5%

After reviewing the data it was concluded that the drag creep problem
encountered with the Lockheed configuration could be eliminated by:
1) increasing the sweep angle of the tail, 2) using one of the NASA airfoil
sections which is one-half percent thinner, and 3) retaining the 4.5 aspect
ratio planform. Of the two NASA airfoils, the symmetrical section was
selected because of its good low-speed properties. Ordinates of this air-
foil section are shown in Figure 50.

It was further decided to determine an appropriate sweep angle for the
horizontal tail by means of viscous Jameson-Caughey analysis, and based on
the results of that analysis to proceed with high-speed model construction and
testing at Calspan. A decision on low-speed model construction and wind-tunnel
testing was delayed until after the results of the high-speed test could be
reviewed.

Figure 51 shows the effect of sweep éngle on small horizontal tail zero-
1ift drag, as determined by viscous Jameson-Caughey FLO 22.5 analysis. Based
on these results, a sweep angle of 35 degrees was selected for the wind-tunnel !
model. |

5.2 H19 Design Layout

A layout of the final small horizontal tail design is shown in Figure 52.
The wind-tunnel model designation for this tail is Hig. Characteristics of the
Hjg tail compare with the previous designs as shown in Table 6.
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Figure 52. - Hjg small horizontal tail compared with the Hg. standard tail.
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Table 6. - Hyg SMALL TAIL COMPARATIVE DATA

Hge Hig Hy Hig Hig
Stapdard Small Small Small Small
Aspect ratio 4 4 4 45 4.5
Taper ratio 033 033 033 033 0.33
Camber 0 0.013c 0.016¢c 0.016¢c 0
L.eading-edge radius 0.0089c 0.006¢ 0.036¢c 0.036¢ 0.015¢
Thickness ratio 0.09 0.09 0.1045 0.1045 0.10
Quarter chord sweep 35° 28° 259 25° 35°
Area, (i)
Total 1282 800 800 898 898
Exposed 960 552 552 652 644
Exposed/Total 0.75 0.69 0.69 0.73 0.72
Elevator chord ratio 0.25¢ 0.3c 0.3c 0.3c 0.3
Stabilizer throw 159 20° 20° 17° 17°
Elevator throw 25° 40° 40° 35° 350

5.3 Wind-Tunnel Test Results

5.3.1 High speed. - High-speed force tests of the Hjg small horizontal
tail were performed during the period 20 to 26 August 1981 in the Calspan

8-Foot Transonic Wind Tunnel. Complete configuration six-component forces and
moments were obtained in the Mach number range of 0.70 to 0.95 at angles of
attack extending to the limit determined by model dynamics.

The primary purpose of this test was to define the zero trim drag polar
characteristics of the L-1011 with Hj9 small and Hg. standard horizontal
tails. Data for a Mach number of 0.83 are shown in Figure 53. Figure 54
shows the incremental drag characteristics of the Hjg and Hg,. tails cross-
plotted as a function of airplane 1lift coefficient. Generally these test
results confirm that the desired high-speed drag improvements of the Hjg small
tail were achieved; i.e., the drag was further reduced and the Mach number
creep eliminated, compared to previous results for the H;g tail (Figure 44).
For a cruise condition of 0.4 lift coefficient and 0.83 Mach number, the zero-
lift drag for the Hjg tail is 20 counts and for the standard tail (Hg.) 26
counts. The difference of 6 counts at wind-tunnel scale is equal to the drag
benefit that was originally predicted for the Hj;g (Section 3.3.3). This
translates into an overall cruise L/D benefit of about 2 percent, including
the weight reduction of the smaller tail.

Thus having achieved the long sought-after cruise drag benefits of a
smaller tail, its acceptability was now dependent on results of low-speed
control effectiveness tests.
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Figure 53. - Zero trim drag polar characteristics of the L-1011 with Hjg small
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Figure 54. - Zero lift drag characteristics of the Hyg small and
Hg. standard horizontal tails.
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5.3.2 Low speed. — The H g small horizontal tail configuration was
wind-tunnel tested in the NASA/Ames 12-Foot Pressure Tunnel during the period
from 4 through 15 January 1982. This was a low-speed, high Reynolds number
test designed to obtain the control effectiveness of the small horizontal tail
.with wing flaps at the maximum takeoff setting 26 degrees, which defines the
tail size requirement for takeoff rotation.

Results of this test were used to extract the maximum 1lift characteristics
in Figure 55 and 56 for the Hjg small and Hg. standard horizontal tails. These
data show that the Hjg tail achieved a lift coefficient of -1.26, which is
10 percent below the target value of -1.4. However, the data also show that
the small tail design was partially successful in that it obtained a CLmax
11 percent higher than the standard tail, even though a much higher percentage
of the tail is embedded in the fuselage. Still, the small tail design did not
meet the requirement of obtaining the same control power as the standard tail
for nose-wheel lift-off at the forward center-of-gravity limit, which implies
some restriction of c.g. range for this design to be usable.
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WIND-TUNNEL TEST N-337

C
MAX  TARGET

-14

-12

701y

SYM 8¢ Sy

04 v -30 0
VV -6

-10

06 OV ~15
0 -20 0
QO -6

—10

< —15

D -10 +2

O 0

(.3 -6

0 -10

ﬁb 0 —-15

2

O +0

do »

-6

Q -10

¥e) -15

Figure 55. ng small tail high-lift characteristics.
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Figure 56. H8C standard horizontal tail high-l1ift characteristics.




CONCLUSIONS

In addition to longitudinal stability requirements, horizontal tails are
sized to meet certain control requirements for a specified center-of-gravity
range. Therefore, in order to reduce tail size by using active controls to
provide stability /augmentation, it is necessary to proportionally enhance !
the aerodynamic effectiveness of the surface to retain the same control power
capability.

This study has shown that by designing the tail to achieve the desired
high-speed drag benefits, it was not possible to achieve the required low-speed
control capability without resorting to sophisticated high-1lift devices
(leading-edge flaps, slats, etc.). This introduces an unwanted additional
complexity in horizontal tail design which would require extensive development
and testing to ensure reliability and flight safety in the event of a system
failure.

The alternative would be to manage the center-of-gravity location of the
airplane more carefully, either by loading or fuel pumping, to reduce the range
of c.g. movement, thus decreasing the control requirements of the tail. If
this could be accomplished, and by adhering to the criterion that at least
neutral stability be retained, then the results of this study show that an
active control small horizontal tail could be designed for next generation
transport aircraft to reduce cruise drag by 2 to 3 percent.
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