
~~ ~~ - ~ ~ -~ ~~ 

- .  , 

NASA Technical Metdorandom 100022 

I 

. 

Contributions of Numerical 
Simulation Data Bases to the 
Physics, Modeling, and 
Measurement of Turbulence 
Pawiz Moin and Philippe R. Spalart 

(NASA-TH-100022) CONTRIBUTIONS OF W U f l E 3  ICAL 187- 294 23 
S I H U L A T I O I  DATA BASES TO THE PHYSICS, 
RODELING AND fiEASOREBENT O F  TURBULbNC& 
[ N A S A )  33 p A v a i l :  STIS HC A03/MP A31 unclas  

C S C L  Ola G3/02 0100125 

September 1987 

National Aeronautics and 
Space Ad mi n ist rat ion 



NASA Technicai iviemoranaum iOO622 

Contributions of Numerical 
airnularim uara mases tu tile 

Physics, Modeling, and 
Measurement of Turbulence 

n:--- -I-A:-- n - a -  n,,,, A- AL, 

Parviz Moin and Philippe R. Spalart, Ames Research Center, Moffett Field, California 

September 1987 

National Aeronautics and 
Space Administration 

Ames Research Center 
Moffett Field. California 94035 



CONTRIBUTIONS OF NUMERICAL SIMULATION DATA BASES 

TO THE 

. PHYSICS, MODELING, A N D  MEASUREMENT OF TURBULENCE] 

PARVIZ MOIN 
Departpent of Mechanical Engineering 

Stanford University, Stanford, CA 94305 
and NASA Ames Research Center, Moffett Field, CA 94035 

PHILIPPE R. SPALART 
Computational Fluid Dynamics Branch 

NASA Ames Research Center, Moffett Field, CA 94035 

1. Introduction 

The use of siniulation data bases for the detailed exanination of turbulent flows 
has proved to be an effective research tool. In the past, studies of the structure of 
turbulence have been hampered by the limited number of probes and the impossibility 
of nieasuring all the desired quantities. Also, flow visualizations are confined to the 
observation of passive markers with limited field of view and contamination caused by 
time-history effects. Computed flow fields are a new resomce for turbulence research, 
providing all the instantaneous flow variables in three-dimensional space. An essent.ia1 
part of the analysis of turbulence phenomena and the creation of physical models 
to describe them is a full account of all the velocity components and the pressure. 
Until now it has not been uncommon for the data on one velocity component to be 
extrapolated to model the behavior of all the velocity components and the vorticity 
vector. Numerical-simulation data bases permit analysis of the flow without any 
extrapolations from incomplete data. These data bases can also be used for the 
calibration of experimental measurement techniques, particularly in the near-wall 
region. As an example, the response of a hot-wire probe in a turbulent boundary 
layer will be computed. 

Simulation data bases also provide much-needed information for phenomenological 
turbulence modeling. Even for simple shear flows, most of the terms in the Reynolds- 
stress transport equations have not been measured experimentally. To test a model 
for one of the terms in the transport equations, a model developer inserts the model 
into a computer code together with models for the other terms and makes an evalu- 
ation based on comparison of prominent quantities such as mean velocity profile or 

'Some of the material in this paper was presented at the AIAA 25'h Aerospace Science Meeting, 
January 12-15, 1987, Reno, Nevada. 



pressure coefficient with the experimental data. This is clearly an indirect method, 
and it can be misleading unless the models for the other terms are “correct”. The 
test is much more informative if data for the quantity being modeled are available. 
Three-dimensional velocity and pressure fields from direct simulations can be used 
to compute all the terms in the transport equations for the Reynolds stresses and 
the dissipation rate. However only a few, geometrically-simple flows‘ have been com- 
puted by direct numerical simulations, and the inventory of simulation fields does not. 
fully address the current modeling needs in complex turbulent flows. Nevertheless, 
the available flow fields are sufficient for testing models in a number of important 
cases. These cases include turbulence near solid boundaries (flat or curved) where 
the available models are inadequate. 

The availability of three-dimensional flow fields also poses challenges in developing 
new techniques for their analysis. Most current techniques do not take advantage 
of the vast amount of data at the researcher’s disposal. They are often based on 
experimental methods, developed when limited data could be measured. Although 
some of these techniques are useful when comparing with experimental observations 
for code validation, new visualization and statistical techniques need to be developed 
to allow a comprehensive analysis of the simulation data. 

In this paper we shall describe some of the techniques that have been used for the 
analysis of direct-simulation data bases in our studies of the mechanics of turbulent 
flows. We will use examples in which original contributions were made to the under- 
standing of the physics of turbulent flows or to modeling efforts. These contributions 
have resulted from the availability of complete three-dimensional data. 

In section 2 the computed r m s  values of wall-shear-stress fluctuations are compared 
wit.h recent experimental data. In section 3, selected studies of the flow structures 
near the wall are presented. In section 4 it is shown that homogeneous turbulent 
shear flow is composed of organized structures similar to those in turbulent boundary 
layers. The application of statistical tools and of a stochastic-estimation algorithm 
to the identification of organized structures is discussed in section 5. The calibration 
of a hot-wire probe in a simulated boundary-layer flow field is presented in section 6. 
In section 7, the use of simulation data for phenomenological turbulence modeling is 
briefly discussed. 

2. Code Verification a n d  Issues Concerning Turbulence Statistics Near a 
Wall 

Extensive comparison of the simulation results with experimental data is necessary 
to establish the physical realism of the simulated flow fields. The most comprehensive 
verification of large-eddy- and direct-simulation results has been in the fully-developed 
channel flow. This is in part due to the availability of a large set of measurements 
in this flow. Recently, a direct simulation of channel flow was performed with up to 
4 x 10‘ grid points (Kim, Moin & Moser 1987). The Reynolds number based on the 
centerline mean velocity and channel half-width was 3300. All essential turbulence 
scales appear t o  have been resolved on the computational grid. The grid resolution 
ranged from Ays = 0.05 in the vicinity of the wall to 4.4 at the channel centerline. 
The streamwise and spanwise grid resolutions were Az+ = 12 and Az+ = 7 respec- 
tively. The superscript + indicates nondimensionalization in “wall units”, using the 
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Figure 1. Turbulence intensities near the wall (normalized by the local mean 

a v , , , /U,  + wrms/U from Kreplin & Eckelmann (1979); 0 urma/U, 
x w,,,,,/U from Hanratty, Chorn & Hatziavramidis (1977). 

velocity): - urma/u, ---- v,,, /u, --- W r r n a / u ;  0 U r m a l u ,  

shear velocity u, and the kinematic viscosity u. 

The results of this simulation have been extensively compared to the experimental 
data. In general, the agreement of various statistical correlations and instantaneous 
flow patterns with the data is good, but some discrepancies exist. Of particular 
interest is the limiting behavior of turbulent intensities near a wall. This behavior 
is related to the shear-stress and vorticity fluctuations, and the energy dissipation. 
By comparing the relative magnitudes of the rms streamwise-vorticity fluctuations 

112 
at. the wall (equal to ( g)2 ) and its peak value at  y+ = 20, Kim, Moin & Moser 
(1987) were able to d r a i  conclusions about the vortical structures in the wall region. 
Here, u and w are the streamwise and spanwise velocity components, respectively. 
The wall value of the dissipation is 

-- 

Turbulent intensities, normalized by the local mean velocity, are plotted in Fig. 
1. The general agreement between computed and measured profiles is good beyond 
the viscous sublayer (ys > 10). Very near the wall, large differences are discernible. 
In particular, the computed wall values of u,,,/U and wPma/U are 0.36 and 0.20, 
respectively, whereas the experimental values for both quantities are about 30 to 
50% lower (see Kreplin & Eckelmann 1979). Note that the values of rms wall-shear- 
stress fluctuations, normalized by the mean velocity gradient at  the wall, are equal 
to the limiting wall values of the turbulent intensities normalized by the local mean 
velocity. Essentially identical values of wall-shear-stress fluctuations (0.36 and 0.19) 
were reported earlier by Moser & Moin (1984) from numerical simulation of a mildly- 
curved channel flow. Recent boundary-layer simulations by Spalart (1986) reveal that 
the intensities are weakly dependent on the Reynolds number. A fourfold increase 
in Reynolds number resulted in a 10% increase in the rmd value of the streamwise 
shear-stress fluctuations at the wall. 
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Recently two experimental studies reexamined the previous measurements of wall- 
shear-stress fluctuations. Alfredsson, Johansson, Haritonidis & Eckelmann (1987) 
found that at the wall the rms streamwise fluctuating velocity gradient is about 0.40 
times the mean value. They point out that heat loss to  the probe substrate in flush- 
mounted probes causes a severe problem with air or oil as the flow medium, resulting 
in the low values reported previously. Although they did not directly measure the 

. spanwise velocity gradient, they speculated, based on their findings for the streamwise 
component, that the rms spanwise velocity gradient is about 0.2% I t 0  in agreement. 
with the results of simulations. Naqwi & Reynolds (1987) have also measured the wall- 
shear-stress fluctuations using a newly-developed laser wall-fan-fringe device. They 
reported an Tms streamwise fluctuating velocity gradient of 0.38 times the mean value, 
which is again in good agreement with the simulation results. Their measurement of 
the spanwise component was not conclusive because they were unable to measure the 
spanwise velocity component sufficiently close to the wall. They report that the rms 
spanwise velocity gradient at the wall is greater than or equal to 0 .13EIW.  BY 

This example is a case in which simulation results were used to critically examine 
laboratory measurements and were then confirmed by improved measurements. The 
quantities considered are of considerable importance in phenomenological and phys- 
ical modeling of wall-bounded turbulent flows. The interaction which occured is an 
example of how computational and experimental studies complement each other. 

3. Structure of Turbulence Near the Wall 

The region near the wall in turbulent boundary layers is dominated by intermittent 
events that make large local contributions to turbulence production. A time trace of 
the streamwise component of the velocity at  a point in the immediate vicinity of the 
wall (ys = 0.4) from a turbulent-channel-flow simulation is shown in Fig. 2. Large 
intermittent diversions from the mean value (U+ = 0.4) are evident. Significant ef- 
fort has been devoted to the detection of these (and other) events using cohditional- 
sampling techniques and flow visualization. However, the organized structures or 
eddies that are associated with or cause such events have not yet been unequivocally 
identified. For example, using flow visualization, Kline, Reynolds, Schraub & Rund- 
stadler (1967) observed that the low-speed streaks in the wall layer gradually lift up, 
oscillate, and break up leading to the bursting process with its large contribution 
to turbulence production. The focus of the research is the nature of the organized 
motions associated with regions of high Reynolds shear stress. Here, we will use the 
results of a direct turbulent-channel-flaw simulation (Kim, Moin & Moser 1987) to 
address this question. 

Contour plots of the three velocity components in a plane parallel to  the wall (2, z )  
at y+ = 10 are shown in Fig. 3. The patterns of the streamwise velocity component 
show the familiar elongated high- and low-speed streaky structures alternating in the 
spanwise direction. In contrast, the normal and spanwise velocity components do not 
exhibit streaky structures; rather they are dominated by small intermittent regions 
of intense fluctuations. In particular, most regions with a large normal velocity com- 
ponent are composed of sections with positive and negative values adjacent to each 
other. Of interest are the regions which make significant contributions to turbulence 
production, -Z%. Contours of instantaneous 210 in the same plane are shown in 
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Figure 2. Time history of u/uS at ys % 0.4. The abscissa spans 6.4 &/ti,. 

The data was obtained froiii a channel-flow calculation at  Reynolds 
number 1260 based on the nieaii centerline velocity and channel half- 
width. 

Fig. 4. As expected froin the contours of 1'. the ut' patterns also show intermittent. 
regions of intense fluctuations. 

To examine the structures associated with regions of high turbulence production, 
vortex lines traced from the vicinity of the boxed areas in Fig. 4 are shown in 
Fig. 5. The vortex lines generally display horseshoe- (or hairpin-) shaped vortices. 
Two kinds of horseshoe vortices can be identified, those with the tip above the legs 
and downstream and others with the tip near the wall and upstream of the legs 
(inverted horseshoes). The induced velocity of the former structures is away from 
the wall (ejection), and the induced velocity of the inverted structures is toward the 
wall (sweep). The upright horseshoes have been conjectured to exist in turbulent 
boundary layers by numerous investigators starting with Theodorsen (1952), (see 
also Moin & Kim 1985). The existence of the inverted horseshoes in turbulent flows 
was first demonstrated using numerical-simulation data bases (Kim & Moin 1986a). 

Two typical horseshoe-shaped structures (one of them from Fig. 5 )  are shown 
enlarged in Fig. 6. Note that in Fig. 6b only one of the legs of the horseshoe appears 
to  have been formed from the convergence of vortex lines into a vortex rod, thus 
producing revolving fluid motion. The vortex lines near the other leg form a vortex 
sheet, rather than converge, and do not constitute a (revolving) vortical structure. 
Therefore, some of the horseshoe-shaped structures have only one identifiable vortex 
(leg) rather than a pair of counterrotating vortices. This observation is consistent with 
the contour plot of the normal velocity component in Fig. 3. In the plane shown, 
many of the regions of intense normal velocity are composed of a pair of negative 
and positive sections corresponding to a single vortex, and not a triplet as would be 
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Figure 3. Contours of the instantaneous velocity fluctuations at y+ e 10. (a) u; 
(b) V ;  (c)  W .  Dashed lines indicate negative contours. The streamwise 
extent of the figures is 2262 u/u,, and the spanwise extent is 1131 v/u,.  
In each figure, 10 contour levels are drawn spanning the maximum and 
minimum values of the quantity being plotted. 
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Figure 4. Contours of instantaneous uv. See caption of Fig. 3. The boxes mark 

some of the regions with intense shear stress. 
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Figure 5.  Vortex lines originating in the boxed areas of Fig. 4. 

expected from a vortex pair. In fact. in a random sampling of plots of velocity vectors 
projected onto (y, t) planes, normal to the flow direction, more solitary vortices than 
vortex pairs are observed. These vortices have a relatively short streamwise extent 
(100 to 200 wall units) and in all cases a region with high uv was located adjacent 
to one side of the vortex. These vortices were found to have long lifetimes, traveling 
downstream without losing their identity for at least several channel half-widths (see 
Moser & Moin 1984 and Kim & Moin 1986b). 

Tracing vortex lines in three-dimensional space is an effective means of visualizing 
However, in turbulent the vorticity field in a relatively small region of the flow. 
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Figure 6. Vortex lines. a), b), displaying typical horseshoe- (or hairpin-) shaped 
vortical structure; c) randomly chosen. 

flows, the random drawing of vortex lines can result in contorted pictures; see Fig. 
6c. In general, one should select the regions for drawing vortex lines by a physical 
criterion. In the above example, we used contours of uv to aid in the selection of the 
trace starting points. Another disadvantage of vortex lines for flow visualization is 
that they indicate only the direction of the vorticity vector, not its magnitude. For 
example, it is difficult to identify a relatively weak vortex imbedded in a shear flow 
with large mean vorticity. Even if vortex lines are initialized within the core of the 
vortex, they will soon follow the direction of the mean shear rather than the vortex 
axis. 

3.1 Skin-friction lines and pressure fleld near the wall 

A patch of a turbulent boundary layer, with Re (the Reynolds number based on 
freestream velocity and momentum thickness) equal to 670, was explored in detail. 
The simulation is described by Spalart (1986). The size of the patch is about 550 by 
235 wall units in the x and z directions, respectively. Figure 7 shows the skin-friction 
lines. Notice the large deviations of the shear-stress direction from the direction of 
the mean shear, and the strong convergence and divergence of the lines; positive and 
negative bifurcation lines can be identified (Hornung & Perry 1984). 
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Figure 7. Skin-friction lines. The flow is froin left to right. 

z 

T 
Figure 8. Normal-velocity contours. y+ x 0.03. - positive, v+ = 0.002, 

0.006, 0.01; * * - negative, v+ = -0.002, -0.006, -0.01. 

Figure 8 shows the normal velocity component v+ in a plane very near the wall. 
As expected, convergence of the skin-friction lines is associated with positive v + ,  lift- 
up of near-wall fluid, and therefore "separation". Conversely, diverging friction lines 
indicate reattachment. In the continuity equation u, + v,, + zu, = 0, it appears that 
large local values of v,, are often balanced by opposite values of w,, rather than of 
uz.  Figure 9 shows contours of the streamwise vorticity in a plane in the buffer layer. 
The deviations of the friction lines in Fig. 7 are generally related to the high-vorticity 
regions seen in Fig. 9 (Perry & Hornung 1984), although the correlation is not as 
strong as with those of Fig. 8. 
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Figure 9. Streamwise-vorticity contours. y' z 15. - positive, w: = 0.2, 0.6, 
1.; . . . , negative, w: = -0.2, -0.6, -1. 

Figure 10. Wall-pressure contours. - high'pressure, p' = 2, 6, 10; low 
pressure, p' = -2, -6, -10. 

Figure 10 shows pressure contours at  the wall and Fig. 11 shows pressure contours 
in three dimensions. The rms of ps at the wall is about 2.35; the skewness- and 
flatness factors are very moderate: about -0.04 and 4.25, respectively. At the wall, low 

, pressure is strongly correlated with friction-line convergence, and high pressure with 
divergence. Also, elongated low-pressure regions are seen, whereas the high-pressure 
regions are more circular. These elongated regions are below the high-vorticity regions 
of Fig. 9. In Fig. l l a  the low-pressure regions are again elongated. When comparing 
pressure and vorticity plots the low-pressure regions generally coincide with the cores 
of vortices. In contrast, the high-pressure regions in Fig. I l b  are shaped more like 
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Figure 11. Three-dimensional pressure contours. (a) low pressure, p+ = -6. 
(b) high pressure, p+ = +6 (referred to the mean wall pressure). 
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hemispheres or columns. The high-pressure regions are strongly correlated in the 
normal direction, and hence with the outer-layer motions. 

4. Organized Structures in Homogeneous Turbulent Shear Flow 

. One of the contributions of direct simulations has been the demonstration of the 
existence of organized structures in homogeneous flows similar to those found in tur- 
bulent boundary layers and mixing layers. These findings reaffirm the relevance of 
homogeneous "building-block flows" and of their detailed study en route to under- 
standing more complex flows. 

Figure 12. Projection of instantaneous vorticity vectors on a plane inclined at 
45" to the flow direction. Tick marks represent the locations of the 
computational grid. 

Rogers & Moin (1987) found that hairpin- or horseshoe-type vortices are generated 
from mean vorticity in homogeneous shear flow. They concluded that such vortices 
are not peculiar to  turbulent boundary layers; they are present in all shear flows. 
The calculation was started from an initially-random velocity field with a prescribed 
energy spectrum. At the early stages of the flow development, the vortices are aligned 
with the expansive principal ax is  of the mean strain-rate tensor of the imposed shear. 
Eventually the rotation component of the mean shear reduces the inclination angle 
of these vortices and also causes the development of strong coherent spanwise vortex 
filaments. The projection of vorticity vectors onto a plane inclined at 45" to the flow 
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direction is shown in Fig. 12. Organized vortical structures, many of them hairpin- 
shaped, are clearly discernible. In this study, i t  was also shown that the structures of 
the Reynolds-stress tensor and heat-flux vector are very similar to those in the outer 
regions of turbulent boundary layers. We believe that this similarity in statistical 
parameters is due to  the dominance of identical organized structures (hairpins) in 
both flows. 

4 x  
Figure 13. Contours of the instantaneous velocity fluctuations in homogeneous 

turbulence with high shear rate. Dashed lines indicate negative con- 
tours. 

In Rogers & Moin's simulations, we did not detect any siinilarity between the 
contours of the velocity fluctuations in the homogeneous-shear-flaw calculations and 
those in the wall region of turbulent channel flow (Fig. 3). In particular, the streaky 
patterns in the streamwise component of the velocity near the wall were absent in the 
homogeneous flow field. It was conjectured that the presence of a Jfrong mean shear 
in the channel causes the formation of streaks. Lee, Kim & Moin (1986) simulated a 
homogeneous shear flow with a nondimensional shear parameter, Sq2/e, comparable 
to that in the wall region of turbulent channel flow. Here S is the shear rate and 
q2 and c are the turbulent kinetic energy and dissipation rate, respectively. The 
velocity contours from these simulations (Fig. 13) are strikingly similar to those in 
Fig. 3. Moreover, the structure of the Reynolds-stress tensor and several other non- 
dimensional statistical parameters are in good agreement with those in the near-wall 
region of turbulent channel flow. Again, the similarity of the organized structures in 
both flows leads to statistical similarity as well. 
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5 .  Sta t i s t ica l  Analysis of Organieed  S t r u c t u r e s  

Methods based on long-time averaged correlations have been largely abandoned in 
studies of the structure of turbulence since it is generally believed that  time-averaging 
suppresses information on the underlying time-dependent flow structures. Instead, 
conditional or phase-averaging techniques have been adopted which describe the av- 
erage behavior of the velocity field in the neighborhood of points where conditions 
(or data) about the field are given. I t  will be shown in section 5.2 that conditional 
eddies can be obtained, to a first-order approzimation, from the time-averaged two- 
point correlations. The advantage of statistical techniques for the study of coherent 
structures is that a large number of flow realizations are taken into account, which 
reduces the influence of the user's prejudices and the risk of detecting rare, nonrep- 
resentative events. These techniques also provide quantitative information about the 
flow structures. Their main disadvantage is their imposition of artificial symmetries 
and the effect of jitter or smearing on the shape of the averaged structure. This effect 
is especially pronounced if the flow is not dominated by a single kind of structure 
occurring randomly in space, but by several equally important kinds of structures. 
The jitter problem is not peculiar to long-time averaged statistics; i t  is also present 
in conditional averaging. The jitter can be reduced by increasing the number of con- 
ditions at a point or prescribing conditions at  more that one point; however this also 
reduces the statistical sample. 

1 = 100 y/a= 0.030 9 

a 

- 0- I 

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 

+ 
Figure 14. Two-point correlations with 

T = 1.00 y/6= 0.130 

b 

s 
I 
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 

. .  

4 6  

separations in the streamwise, 2 ,  direc- 
tion. - R,,, ---- RV,, 
(b)  yt = 23. 

Rww. (a) y/S = 0.03, y+ = 5.4; 

In our studies of the structure of wdl-layer turbulence, long-term statistical cor- 
relations have played an important role (Moin & Kim 1982, 1985). Higher-order 
statistical correlations have been used to examine the flow structures and to estab- 
lish whether the observed structures occur frequently. In particular, we have used 
two-point velocity and vorticity correlations to  infer the form of coherent structures 
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in shear flows and to obtain their averaged length scales. In examining two-point 
correlation profiles, the value of the information is highly dependent on the direction 
of 'probe' separation. It is much more informative to obtain two-point correlation 
functions with the direction of probe separation along the eddy axis rather than along 
the Cartesian coordinate axes. In Moin & Kim (1985), vorticity and velocity corre- 
lations with the probe separation along lines inclined to the flow direction were used 
to demonstrate the existence of inclined vortical structures. 

a 

Two-point correlations of the velocity components with streamwise and spanwise 
separations are shown in Figs. 14 and 15, respectively. In the wall region, it can be 
seen that the streamwise-velocity correlation shows significant elongation, consistent 
with the existence of streaks and with Fig. 3a. The normal- and spanwise-velocity 
correlations do not show nearly as large a streamwise elongation. This is also consis- 
tent with the velocity patterns shown in Fig. 3. Near the wall, all correlations in the 
spanwise directions have negative minima. In particular, the location of the negative 
minimum in R,,,,(T,) is at z+ z 50 corresponding to the mean spacing of the low- 
and high-speed streaks of 100 wall units as observed experimentally. The correlation 
R,,, has a sharp minimum consistent with the adjacent positive and negative regions 
shown in Fig. 3. The negative minimum of R,, persists at larger y values, albeit 
at  somewhat larger T.'s. However, R,, does not have a negative minimum beyond 
y+ = 18. The absence of a minimum in R,, implies that vortex pairs are not a 
dominant feature of near-wall turbulence, although the patterns shown in Fig. 3 do 
not rule out the presence of vortex pairs. The existence of solitary vortices discussed 
in conjunction with Fig. 3 are consistent with the behavior of R, , ( z )  in Fig. 15 and 
with normal two-point correlations, R,,(y,y') (Moin & Kim 1985). 

i 

2 

I ' I ' , ' , . , . ,  
I? 
I 

Figure 15. Two-point correlations with separations in the spanwise, z ,  direction. 
R,,, - - - -  Ruu,  --- Rw,. (a) y/S = 0.03, y+ = 5.4; 

(b) y+ = 23. 

s 

Two-point correlation data have also been used to identify energetic structures in 
the wall layer. The characteristic-eddy decomposition (Lumley 1967) was applied to 
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loth large-eddy-simulation data (Moin 1984) and direct-siniulation data i n  turbulent 
channel flow. One of the attractions of the characteristic-eddy deconiposition is that 
it provides a quantitative definition of coherent structures as well as an unambiguous 
measure of their contribution to second-order turbulence statistics. The dominant 
eddy is defined to be that eigenfunction of the two-point correlation tensor associated 
with the largest eigenvalue (recall that the energy contributed by each eigenfunction is 
equal to its eigenvalue). This is an ideal application of simulation data bases because 
of the large magnitude of the required input data. Laboratory measurement of the full 
two-point correlation tensor is at best a tedious task. Application to both large-eddy- 
and direct-sinidat ion data showed that the dominant eddy is indeed energetic and 
makes a significant contribution to turbulence production. As expected, the series 
expansion of turbulence stresses in terms of the eigenfunctions converges faster in the 
lower-ReynoldJ-number case (direct simulation). 

In the directions of flow homogeneity, this expansion is combined with the shot- 
noise expansion to yield the characteristic eddy that is “sprinkled” in the flow. Pre- 
scription of the sprinkling function represents an ad-hoc input to an otherwise non- 
prejudicial technique. The shape of the eddy is directly related to the nature of the 
sprinkling function. Given a physically-realistic stochastic sprinkling function, the 
characteristic eddy can be obtained to within a phase factor. The phase information 
cannot be obtained from second-order statistics, so must be recovered from third-order 
statistics (Lumley 1981). Recently, Moin computed the bispectrum of the coefficient 
of the dominant eigenfunction in the velocity expansion. The bispectrum was used to 
determine the phase angle, allowing the characteristic eddy to be constructed. The 
contours of vertical velocity and the streamlines in the wall-layer corresponding to 
this structure are shown in Fig. 16. The streamlines depict intense high-speed fluid 
impinging on the wall. The return motion with positive vertical velocity is signifi- 
cantly less intense and more diffuse. The corresponding velocity vectors reveal a pair 
of relatively weak streamwise vortices 75 wall units apart and centered at, y+ 33. 
However, the dominant structure appears to be the impingement flow. The intensity 
of the impinging flow rules out a causal relationship with the vortices. Thus, the 
dominant wall layer structure as determined from the characteristic-eddy decompo- 
sition appears to resemble an impingement flow rather than a pair of counterrotating 
vortices. Extension of the decomposition domain to larger yf values does not change 
this picture. 

It is interesting to compare the dominant eddy from the characteristic-eddy decom- 
position to the instantaneous contour plots in Fig. 3. The instantaneous patterns 
generally indicate adjacent regions of fluid moving towards and away from the wall, 
although in some cases there are three adjacent regions, the two outside sections with 
one sign of w and the inner region with the opposite sign. The resemblance of these 
latter structures to the dominant eddy from the characteristic-eddy decomposition is 
probably due to  the requirement of statistical symmetry of the normal and stream- 
wise components of the eigenfunctions in the z direction. The statistical symmetry 
requirements preclude the detection of structures that may be present in the flow but 
do not satisfy the symmetry. To emphasize the 77 component of the velocity rather 
than turbulent kinetic energy, (3 + 7 + >), we have also found the eigenfunctions 
of the two-point correlation of the normal velocity component, R, , ( y ,  y’, z ) .  The v 
contours of the resulting dominant eigenfunction are very similar to those in Fig. 16a. 
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Figure 16. Dominant eddy from the characteristic-eddy decomposition using a low- 
Reynolds-number direct simulation. In the y direction, the figures ex- 
tend from the wall to ys = 40. (a) Contours of v .  Positive values (flow 
away from the wall) are indicated by dashed lines. (t) streamlines. 
(c) velocity vectors. 

5.1 Stochastic estimation of conditional eddies 

Recently, the homogeneous-shear-flm data base was used to  evaluate the Stochastic 
Estimation Theory (Adrian 1979) used for detection of organized structures that 
satisfy certain conditions a t  a point. Given an ensemble of realizations of a flow, 
the problem is to find the average behavior of the velocity field near the points x 
at which prescribed conditions on the field are met. Given the conditions, E(x), at 
point x, an estimate of u(x + r)  is sought. This estimate is the conditional eddy, 
< U(X + r)lE(x) >. The aforementioned problem statement. describes the objectives 
in standard conditional-sampling studies. The VITA technique of Blackwelder & 
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E;aplan ( 1976), for example, is a popular corlditional-satnpling scheme used to detect 
bursting events and associated organized structures in turbulent boundary layers. 
The main criticis111 of conditional averaging and the interpretation of its results is 
that the prescribed conditions are usudly subjective and therefore the significance 
of the detected structures may be questionable. In addition, experiments must be 
repeated whenever new conditions are imposed. In this section, these issues will be 
addressed. 

Figure 17. Projection of the vorticity vectors of the conditional eddy corresponding 
to conditions at point (*) in Fig. 12. 

In stochastic estimation, one seeks an approximation of the conditional eddy, 
< u(x + r)lE(x) >, in terms of the data E(x). The simplest approximation is the 
linear representation 

i i (x  + r) = Lij(r)Ej(x) (1) 

where Lij is the unknown coefficient to be determined. The relevant condition at 
x is the velocity vector vi, or the prescription of both the velocity vector and the 
deformation tensor d;, E e. In the latter case, for homogeneous flows, Eq. (1) can 
be generalized to 

The coefficients Ai, and Bi,k are obtained by minimizing the mean-square error 

2 
el =< ( ~ ( x  + r) - i l (x  + r)) > 
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Figure 18. Weighted joint velocity probability density for homogeneous shear flow. 

We thus require 
-- - 0  ae1 
8A;j ( 3 4  

and 

( 3 b )  -- - 0  ae1 
a B i j k  

for i ,  j ,  I C ,  1 =, 1,2,3. Equation 3 leads to the following system of algebraic equations 
for the unknowns Aij and B i j k  

Aij(r)&j(O) + B i j k ( r ) R l j , k ( O )  = Rli(r) 

Aij(r)&j,m(O) - B i j k ( r ) & j , k m ( O )  = -&i ,m(r )  

where Rij(r) z< ui(x)uj(x + r) > is the two-point correlation tensor. Inclusion of 
the continuity equation leaves an 11 x 11 system of equations for each i and every 
r. The matrix elements are independent of i and r, and the matrix is inverted only 
once. Note that the coefficients Aij and B i j k  are functions only of the two-point 
correlation tensor (and its derivatives). Thus, for each flow, the two-point correlation 
tensor must be computed, and from it we can obtain the coefficients in Eq. (2). The 
conditional eddies can then be obtained by simply using the corresponding conditions 
in Eq. ( 2 ) .  Note that we have shown that the conditional eddy, at least to a first- 
order approzimation, can be obtained from the two-point correlation tensor, which is 
a long- time - aue raged s t  at is tical correlation. 

The conditional eddy satisfies the continuity equation, matches the data at point 
x, and decays to zero far away from x. The mean-square error of the representation, 
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cl(r), railges from zero at x to its maximuin value, u:, at large distances from x. The 
conditional velocity field has a number of other useful properties (see Adrian & Moin 
1987 for details). 
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Figure 19. Velocity vectors of the conditional eddy corresponding to conditions at 
the second-quadrant peak of the probability-density function in homo- 
geneous shear flow. 

The estimation algorithm was applied to a velocity field in homogeneous turbulent 
shear flow generated by direct numerical simulation (Adrian & Moin 1987). To verify 
the accuracy of the algorithm the exact v j  and d j k  data (conditions) at a point in the 
instantaneous field were used as input into Eq. (2). The resulting conditional eddy 
corresponding to the data at the point marked (*) in Fig. 12 is shown in Fig. 17. 
Note that point (*) is located on the tip of a hairpin vortex in the instantaneous field. 
Figure 17 shows the projection of vorticity vectors onto a plane inclined at 45" to the 
flow direction and passing through the data point. The agreement oi the detected 
structure and the structure in the neighborhood of the point (*) in the instantaneous 
field is good. The conditional eddy resembles a compact hairpin vortex. As expected 
the algorithm is most accurate near the detection point (at the center of the figure). 
Portions of the hairpin legs far away from x are not captured. 

The issue of objectivity in the selection of the conditions is addressed by using 
the probability-density function of all possible conditions. The probability-density 
function provides information about the frequency of occurrence of the conditions, 
and can be used to select the conditions corresponding to events of interest. For 
example, if we seek structures associated with regions of high turbulence production, 
the appropriate conditions correspond to  the maximum of the weighted probability- 
density function uvP( u, d ) .  This weighted probability-density function has also been 
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measured and analyzed by Perry & Hoffinann (1976) and others. The Reynolds shear 
stress is given by 

uv = 

where d is the deformation tensor. 

uv P( U, d )  du dd - J  

a 
Y 

T 

Figure 20. Velocity vectors of the conditional eddy corresponding to conditions at. 
the fourth-quadrant peak of the probahi1it.y-density function in channel 
flow. (a) y+ e 5 ,  (b) ys z 19. 

The weighted joint probability-density function, uvP(u,  IY),  is shown in Fig. 18 
for the homogeneous-shear-flaw field used in the present study. We find that at the 
point(s) of maximum uvP(u ,d ) ,  d = 0, w = 0. The conditional eddy corresponding 
to the u and v values of the peak in the second quadrant in Fig. 18 was computed. 
The velocity vectors in a ( y , z )  plane upstream of the detection point are shown in 
Fig. 19. This cross-section of the conditional eddy displays a pair of roller eddies with 
intense induced vertical velocity. Examination of other ( y, z )  cross-sections indicate 
that the centers of the rollers are located along lines inclined at 45" to the flow 
direction. The corresponding vortex lines display a hairpin-shaped structure. 

The stochastic-estimation algorithm was also applied to the channel flow (Moin, 
Adrian & Kim 1987). A two-dimensional variant of the algorithm (y - z planes) with 
only velocity conditions specified was considered. Thus equation (2) was replaced by 

where (y, z )  is the fixed point where the data (condition) is satisfied. Conditions corre- 
sponding to the peak in the fourth quadrant of the weighted joint velocity probability 
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distribution in the channel flow at  y+ FZ 5 and y+ 19 resulted in the conditional ed- 
dies shown in Figs. 20a and 20b, respectively. Observe the strong similarity between 
these figures (particularly Fig. 20b for which the detection point is at the center of 
the domain) and Fig. 16c. 
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Figure 21. Measured quantities in a boundary layer, using basic probe. 
_- exact values; - - - using (5 ) ,  but with w and k1 set to 0; 
_- - -  using ( 5 ) ,  w not set to 0; - - - using ( 5 ) ,  k; = 0.04 

6. Evaluation of hot-wire response in a turbulent boundary layer 

One of the promising applications of numerical data bases is to help design labora- 
tory probes. In this section a fairly complete model of an X-wire probe is considered, 
and its response is computed using a turbulent-boundary-layer flow field obtained by 
direct simulation. This allows one to estimate quantitatively the accuracy of X-wire 
measurements, how this accuracy depends on the distance from the wall, and also to 
isolate the various sources of error, e. g., axial cooling of the wires and neglect of 
the velocity component normal to the plane of the wires (Li, Henbest & Perry 1986 
for a discussion of these effects). All of these errors depend on the joint probability 
distribution of u, v ,  and w .  

An 
Perry 
of his 
in an 

X-wire model and the value of the constants were provided by Professor A. E. 
(personal communication, see also Perry 1982). A slightly simplified version 
model is used here. The probe is used to measure u and v ;  its two wires are 
z - y plane. Let sl and s2 be unit vectors in the direction of the two wires. 
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By convention, their y-component is positive. Let u be the velocity vector. The 
“effective cooling ve1ocit.y” U , 1  on the first wire is given by 

with an equivalent formula for the second wire. The first term represents the primary 
contribution, cooling by the component of velocity orthogonal to the wire, while the 
second term represents axial cooling of the wire. The value of k: is taken as 0.04. 

One has access to only two cooling velocities, Uel and Ue2, which are always posi- 
tive. Thus it is not possible to measure w ,  or to  obtain the signs of both u and v. The 
standard procedure is to assume that u is positive and that v is much smaller than 
u, and to ignore w. Equation (4) is then linearized with v / u  as the small parameter. 
The result is 

The factors a1 and bl are associated with axial cooling: a1 z J1 + ( k 1 s ~ = / a 1 ~ ) ~  and 
bl s (1 - kf)/al. Equation ( 5 )  is a linear system and can be inverted easily to obtain 
u and v. 

A typical experimental procedure is to obtain a linear relation of the type given by 
(5) by calibration in a known flow, again assuming 21 << u. This eliminates the need 
to  know sl and s2 to a high accuracy; the calibration may also account for effects 
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ignored by the model that led to ( 5 ) ,  such as interference with the prongs that are 
holding the wires. 

The quantities that were “ineasuredn are the mean velocity ZI and the three 
Reynolds stresses < u2 >, < v 2  >, and - < uv >. The angle between the wires, 
a, is coinmonly go”, but larger angles such as 120” are advocated by Perry (1982). 
Computations will be done with a = 90” ( S I =  = sly = -SZ+ = sZy = m) and 
cy = 120” (SIT = - S z r  = 1/2, Sly = dZY = m). Another itnprovenient is obtained 
by “flying” the probe, which makes the assumptioxi 1) << u more valid. Also, the 
wires cannot be in the same z - y plane; the effect of the distance d between them 
will be investigated. 

a 

I 
I 1 I I I l  1 I 1 1 1  & I l l  I 1  

6 10 100 
Y+ 

d 

Y’ 
Figure 23. Relative errors in measured quantities, with a = 120”. - exact 

values; - - - - measured values (w not set to  0). 

We can test the sources of error one by one. The assumption u > 0 cannot lead to 
appreciable errors in the present flow. The siinulation results indicate that (at least 
at  Re = 670 and with zero pressure gradient) it is extremely rare for u to become 
negative. The “basic” probe (a = go”, d = 0, no flying) is considered first. We 
first isolate the effects of the linearization that led to ( 5 ) .  This is accomplished by 
artificially setting the w component. to  0 when computing U,1 and Uez .  The axial- 
cooling constant kl is also set to 0. In Fig. 21 the actual values of the velocities 
are shown, which makes the errors difficult to distinguish; in Fig. 22 and subsequent 
figures the ratio of the measured values to the exact values is plotted to emphasize the 
relative errors. Figure 22 shows that the errors caused by the linearization alone are 
small, at  most 1%. Thus a nonlinear (in terms of v / u )  calibration procedure seems 
unwarranted, a t  least in the present flow. 
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The errors caused by axial cooling are computed next; w is still set to 0 i n  (4) 
but k: = 0.04. We find that the axial-cooling effects are very well represented by 
the a.l and bl factors, as shown in Fig. 22. On the other hand the spanwise velocity 
component has a strong effect. When w is not artificially set to 0, large errors appear, 
of the order of 5% even for U ;  this is due to the nonlinearities in (4). The relative 
errors are roughly twice as large for u as they are for u. Unfortunately this would 

. be difficult to compensate for without resorting to assumptions about the correlation 
between u,  v, and 1 ~ 1 .  

a b 

. .  
4 s ;1 d 

I I I 1 I till I I  

5 10 * 100 

Figure 24. Relative errors in measured quantities, with probe flying at  U,/2. 
exact values; ---- measured values ( w  not set to 0). 

Figure 23 shows the results with wires at  120" and the w component is not set 
to 0. One finds that the error is reduced in all components by 25 to 50%. Thus 
an increase in the angle is helpful, but in practice one is also concerned about the 
signal-to-noise ratio, which decreases as a increases (in the limit of a 180" angle, Eq. 
(5) becomes singular). Figure 24 shows that flying the probe is very effective. The 
probe is translating upstream at half of the freestream velocity. The largest error is 
now only about 2%. As the flying velocity increases, the ratios v / u  and w / u  both 
tend to  0 and ( 5 )  becomes more accurate; on the other hand, the signal-to-noise ratio 
again decreases as the flying velocity increases. 

In Fig. 25 the effect of a separation between the two wires is shown. One of the 
wires is displaced by one wail unit in the z direction, and w and 61 are again set to 
0. The effect is very strong, even wit11 such a small separation. The reason is that 
when Eq. (5) is inverted 19 is to leading order given by the difference between Uel and 
U,,,. When the two wires are not in exactly the same place, Vel - U,,, is artificially 
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Figure 25. Relative errors in measured quantities, with wires one wall unit apart. 
exact values; - - -- measured values (w set to 0). 

enhanced, leading to a large overestimation of v .  The reason why exist.ing probes, for 
which dS is often 10 or more, work is that their finite-length wires filter out the small- 
scale motion which is predominantly responsible for the error. Obtaining accurate 
measurements may be a matter of balance between the dimensions of the probe, as 
well as a reduction of these dimensions. 

Overall, the results of the X-wire study show that the errors caused by the neglect of 
the spanwise component are much larger than those caused by linearized calibration 
or axial cooling. Increasing the wire angle to 120" and especially flying the probe 
improve the accuracy significantly. In the log layer, the relative errors are found to 
be of the order of a few percent. The errors caused by finite-length wires, which have 
not yet been computed, may be a t  least as large, depending on the value of yS. 

7. Application to  Turbulence  Model ing 

The use of simulation data for design and testing of phenomenological turbulence 
models began with the early large-eddy simulations (Moin, Reynolds & Ferziger 1978). 
Because of the coarse meshes and sub-grid-scale-model errors in these early simula- 
tions, the results could only be used qualitatively. The data from Rogallo's (1981) 
direct simulation of homogeneous turbulent flows was the first to be used €or com- 
prehensive evaluation of turbulence models. 

Moser & Moin (1984) computed the Reynolds-stress budget in curved channel flow. 
By comparing the concave and convex sides ofthe channel, it was found that curvature 
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had only a small effect on the terms in the balance of the normal stresses, but had a 
significant effect on the Reynolds-shear-stress budget. Recently, the Reynolds-stress 
budget in plane channel flow as well as the terms in the equation for turbulent-kinetic- 
energy dissipation rate have been computed (Mansour, Kim & Moin 1986) and the 
results were compared with the phenomenological models. 

Simulation data bases that contain passive scalar fields are also being used in model 
developtiie~it. Rogers, Moin & Reynolds (1986) coniputed several honiogeneous shear 
flows with passive scalar contaminant at, different molecular Prandtl xiumbers and 
with mean scalar gradients along all three coordinate directions. They found that 
scalar eddy-diffusivity formulations that assume that the scalar flux is aligned with 
the mean scalar gradient are inadequate. A physical explanation for this inadequacy 
was based on coherent structures found in the flow. It was found that hairpin vortices 
control the observed turbulent scalar flux. A gradient-transport model employing a 
turbulent diffusivity tensor was found to model the simulation results to within 20%. 
In addition, it was shown that the turbulent Prandtl number was a strong function 
of the direction of the mean scalar gradient (relative to the direction of the mean 
shear) and a weak function oi the molecular Prandtl number. The dependence on 
the molecular Prandtl number was also confirmed in channel-flow simulations with 
scalar contaminants. 

8. Summary 

Several examples were provided in which the use of simulation data bases has led 
to enhanced phenomenological turbulence modeling and to  a better physical under- 
st ariding of turbulent flows and of their measurement. 

In wall-bounded flows, direct numerical simulations and recent measurements ap- 
pear to have converged on accurate boundary values for the rms shear-stress fluc- 
tuations and the turbulent-kinetic-energy dissipation rate at the wall. The early 
measurements of these quantities had yielded significantly lower values. 

In the vicinity of the wall, the normal velocity component is highly intermittent 
and dominated by adjacent regions of fluid moving away from and towards the wall. 
Single vortices with a streamwise extent of 100 to 200 wall units appear to be the 
fundamental structures associated with regions of high turbulence production. These 
vortices sometimes occur in pairs constituting the legs of a horseshoe vortex. 

The flow structures were correlated with shear-stress and pressure patterns at the 
wall. Convergence of the friction lines is associated with upward motion and low 
pressure near the wall, and conversely the lines diverge in regions of downward motion 
and high pressure. The low-pressure regions tend to be elongated and to  coincide with 
the cores of vortices, whereas the high-pressure regions are more circular and extend 
farther in the y direction. 

It was found that the organized structures in homogeneous shear flow are similar 
to those in turbulent boundary layers. In the cases considered, similarity of organized 
structures results in similarity of statistical correlations as well. The data from ho- 
mogeneous shear flows with a passive scalar field were used in design and testing of 
phenomenological models for scalar flux. I t  was shown that eddy-diffusivity models, 
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wllicli assume that the scalar flux is aligned with the mean scalar gradient, are in;uI- 
equate. A physical explanation for the observed direction of tlie turbulent scalar ilux 
was provided, based on hairpin vortices found in the flow. 

The use of statistical correlations for the detection and analysis of organized struc- 
tures was discussed. The shape of the dominant eddy from the characteristic-eddy 
decomposition is affected by the stocliastic-eddy sprinkling function in the directions 
of flow homogeneity and by the inherent statistical syiiirrietries of the eigenfunctions. 
The st.ocliastic-estitilation algorithm was used to approximate conditional eddies in 
Iioniogeneous turbulent shear flow and in channel flow. A probability-density function 
provided conditions corresponding to high-Reynolds-shear-stress producing events. In 
homogeneous shear flow the corresponding conditional eddy is a hairpin vortex. In 
channel flow, there is a strong similarity between the dominant eddy in characteristic- 
eddy decomposition and the conditional eddy predicted by stochastic estimation. 

A study of the response of an X-wire probe in a turbulent boundary layer was 
presented. The magnitude of the errors that should be expected near the wall was 
computed. These errors are predominantly caused by the neglect of the spanwise 
velocity component, and the study confirmed that they can be reduced by setting the 
angle between the wires to 120” or “flying” the probe. 
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The use of simulation data bases for the detailed examination of turbulent flows has proved to be an effective research 
tool. In the past, studies of the structure of turbulence have been hampered by the limited number of probes and the 
impossibility of measuring all the desired quantities. Also, flow visualizations are confined to the observation of passive 
markers with limited field of view and contamination caused by time-history effects. Computed flow fields are a new resource 
for turbulence research, providing all the instantaneous flow variables in three-dimensional space. 

Simulation data bases also provide much-needed information for phenomenological turbulence modeling. Even for simple 
shear flows, most of the terms in the Reynoldsstress transport equations have not been measured experimentally. Three- 
dimensional velocity and pressure fields from direct simulations can be used to compute all the terms in the transport equa- 
tions for the Reynolds stresses and the dissipation rate. However, only a few, geometrically-simple flows have been computed 
by direct numerical simulations, and the inventory of simulation fields does not fully address the current modeling needs in 
complex turbulent flows. 

The availability of three-dimensional flow fields also poses challenges in developing new techniques for their analysis. 
Most current techniques do  not take advantage of the vast amount of data at the researcher's disposal. They are often based 
on experimental methods, developed when limited data could be measured. Although some of these techniques are useful 
when comparing with experimental observations for code validation, new visualization and statistical techniques need to be 
developed to allow a comprehensive analysis of the simulation data. 

In this paper we shall describe some of the techniques that have been used for the analysis of direct-simulation data bases 
in our studies of the mechanics of turbulent flows. We will use examples in which original contributions were made to the 
understanding of the physics of turbulent flows or to modeling efforts. These contributions have resulted from the availa- 
bility of complete three-dimensional data. 
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