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[a] material compliance coefficients
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{Oi} particular solution for eigenvector derivative from
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t time

{u} displacements

{u} velocities
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{1} approximate nodal displacements
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Uc component of the functional I, complementary strain energy

ﬁc component of discretized functional T



dependent design variable
component of the functional I
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independent design variable
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component of discretized functional T
eigenvector, displacement components

approximate full eigenvector from reduction method

matrix containing normalized iteration vectors for
generalized dynamic reduction

matrix containing unnormalized iteration vectors for
generalized dynamic reduction

steepest descent direction in preconditioned conjugate
gradient method

matrix containing normalized iteration vectors for
generalized dynamic reduction in mixed formulation

matrix containing unnormalized iteration vectors for
generalized dynamic reduction in mixed formulation
conjugate gradient search direction

normalization constant for iteration vectors in generalized
dynamic reduction

normalization constant for iteration vectors in mixed
formulation generalized dynamic reduction

reduction matrix with basis vectors as columns

stress basis vectors

displacement basis vectors

infinitesimal strains
exact error norm for approximate vectors
residuval error norm for approximate eigenvectors

residual error norm for approximate eigenvector derivatives
particular solution for derivative of reduced eigenvector

eigenvalue

approximate eigenvalue

eigenvalue shift parameter
functional used in the development of the mixed model

discretized functional
density

stresses

reduced unknowns
reduced eigenvector

volume

Superscript T denotes transposition
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SUMMARY

Computational procedures are presented for evaluating the
sensitivity derivatives of the vibration frequencies and eigenmodes of
framed structures. Both a displacement and a mixed formulation are used.
The two key elements of the computational procedure are: a) Use of dynamic
reduction techniques to substantially reduce the number of degrees of
freedom; and b) Application of iterative techniques to improve the accuracy
of the derivatives of the eigenmodes. The two reduction techniques
considered in the study are the static condensation (Guyan’s reduction) and
a generalized dynamic reduction technique.

Error norms are introduced to assess the accuracy of the eigenvalue
and eigenvector derivatives obtained by the reduction techniques. The two
iterative procedures used in improving the accuracy of the resulting
eigenvector derivatives are based on the inverse power method and the
preconditioned conjugate gradient technique.

The effectiveness of the methods presented is demonstrated by three
numerical examples. The structures considered are composed of beam elements
and derivatives are taken with respect to cross-sectional areas and moments
of inertia. An elastic line representation of a helicopter structure is
also investigated and some of the concentrated masses are used as design
variables.



I. INTRODUCTION

1.1 Structural Sensitivity Analysis and Dynamic Reduction Methods

There are an ever increasing number of fields where the ability to
calculate the change in the response of a system due to a small change in a
particular system parameter is making important contributions. A recent
survey [1] reviews applications in such diverse disciplines as physiology,
thermodynamics, physical chemistry and aerodynamics. Consequently the
branch of science, known as sensitivity analysis, is the object of a great
deal of research 1looking for better and more efficient ways to calculate
sensitivity derivatives.

The application of sensitivity analysis to structural response
quantities, which has its roots in the development of gradient based
automated structural optimization in the 1960’s [2], is finding many new
applications and gaining recognition as a powerful design tool [3].
Derivatives of static response, eigenvalues and eigenvectors, and transient
response are being used in approximate analysis, for guidance in design
modification and for improving analytical models. For extremely large and
complex structures the calculation of the response and its derivatives can
become prohibitively expensive unless some type of approximations are
introduced.

Today almost all dynamic response calculations of large structures
are carried out using finite element methods. Due to the complex topology
it is generally convenient to include much more detail in the model than is
required to accurately predict the dynamic response [4]. This has resulted
in the development of dynamic reduction methods that allow the number of
degrees of freedom to be reduced without sacrificing accuracy. While quite
a few methods have been developed for calculating eigenvalues and
eigenvectors, no general and efficient method exists for calculating the
derivatives from a reduced set of equations. The need to reduce the cost of
calculating free vibration sensitivity derivatives is a strong motivation
for applying dynamic reduction methods to this problem.

1.2 Derivatives of Vibration Eigenvalues and Eigenvectors

Free vibration eigenvalues and eigenvectors of large dynamic
structures are frequently used in evaluating the response. Accordingly,
their derivatives with respect to design variables provide useful
information to the designer and analyst. For example, the approximate
dynamic response of a structure that has been changed only slightly can be
calculated quickly and easily. Also, derivatives of eigenvectors can be
used as a guide to alter the response of a structure to minimize
displacements at certain locations. Another application occurs in the
development of analytical models where the derivatives of eigenvalues and
eigenvectors can be invaluable for improving the model characterization to
agree better with experimental results.

The most straightforward method of calculating eigenvalue and
eigenvector derivatives is by finite difference approximations. While this
method is easy to implement, sensitivity to perturbation step sizes and the
expense of analyzing the structure for at least one perturbation of each
design variable are major drawbacks. Although recent progress has been made
in the selection of step sizes [5], in many cases the method is
computationally more expensive than other direct analytical methods.




The derivatives of eigenvalues can be calculated using a very simple
analytical expression [6] that involves the eigenvalue being differentiated
and its corresponding eigenvector. This 1is generally accepted as the
preferred method. In contradistinction, the derivatives of eigenvectors can
be calculated by several methods with the best choice being somewhat problem
dependent. The modal method [6] calculates the derivatives as a linear
superposition of the eigenvectors. While it is frequently possible to
obtain accurate results using a truncated subset of eigenvectors, it is
still computationally expensive and requires convergence checks. Other
methods attempt to solve for the derivatives directly but must deal with the
singularity of the governing differential equations. One procedure [6]
performs algebraic manipulations that unfortunately destroy the banded form
of the coefficient matrix; a major drawback when large matrices are
involved. Another method [7] maintains the banded form of the coefficient
matrix by calculating the derivative as the sum of a complementary and
particular solution. In a majority of cases this method provides the best
results; however, it does require the decomposition of a coefficient matrix
for each distinct eigenvalue. A comparison of a number of methods for
calculating vibration eigenvector derivatives is given in reference [8].

All the aforementioned methods for determining eigenvector
derivatives provide direct finite-number-of-step formulae. Reference [9]
presents an iterative scheme that converges to the derivative of the
eigenvector associated with the largest eigenvalue and suggests
modifications that allow derivatives of additional eigenvectors to be
calculated. The present study focuses on the efficient calculation of the
derivatives of the eigenvectors associated with the smallest eigenvalues.
However, the procedure is easily modified to converge to these vectors.

1.3 Dynamic Reduction Methods

There are practical engineering problems for which it is necessary
to perform a dynamic analysis of very large structures by developing
analytical models in terms of motions or forces at discrete points. A few
examples include aircraft, rotorcraft, skyscrapers and nuclear power plants
[4]. Before developing the model a decision must be made about the level of
discretization desired. Models can be very coarse and lump many structural
components together or extremely fine and include each structural component
separately. The former case has the advantage of resulting in a much
smaller number of degrees of freedom (hundreds as compared to thousands for
the latter) and usually provides acceptable accuracy but masks much of the
detailed information required about the behavior of the actual structural
components. To get complete information on the dynamic stresses and
displacements occurring in the structural components a very fine model is
needed but this results in an extremely large number of degrees of freedom
and high computational costs. This dilemma has resulted in the development
of dynamic reduction methods which allow the size of the equations to be
decreased without losing the fine detail of the model.

The crux of dynamic reduction methods is the relationship between
the small number of degrees of freedom defining the reduced model and the
vector of unknowns of the original (full) model. This is accomplished by
approximating the full vector of unknowns as a linear combination of a small
number of global approximation (or basis) vectors, the amplitudes of which
constitute the unknowns of the reduced equations. There have been a number
of methods proposed for determining the basis vectors and a few of those
will be described subsequently.



One of the first and most popular methods of dynamic reduction is
known as static condensation or Guyan’s reduction [10]. The procedure is to
subdivide the vector of unknowns into two sets. One set contains the
degrees of freedom considered most important that will be retained while the
other contains those of lesser importance that will be eliminated. The two
sets of degrees of freedom are usually referred to as free and constrained.
The basis vectors are determined from the static relationship between the
two sets and neglect the effects of the dynamic terms. This method is very
easy to implement, however it requires some experience in choosing the free
degrees of freedom, and in most cases only a moderate reduction is possible
without sacrificing accuracy [4].

Dynamic condensation [11] 1is similar to static condensation but
includes the dynamic terms in the relation between the free and constrained
unknowns by wusing an iterative procedure. The method offers substantial
improvements in accuracy, however because the equations must be reduced for
each eigenvalue a great reduction in efficiency results (compared with
static condensation).

In both static and dynamic condensation the reduced unknowns are
physical degrees of freedom. Another group of reduction methods uses a
reduced set of unknowns which have no direct physical significance, thereby
relieving the analyst of the task of choosing the free degrees of freedom.
The first method of this type [12] proposed the use of Lanczos vectors,
which are rich in the desired eigenvectors, for basis vectors. This has the
advantage of automatic selection of basis vectors and can allow very
substantial reductions in problem size. Subsequently, several variations on
this original algorithm have been proposed such as subspace iteration [13]
and generalized dynamic reduction [4]. These methods have become very
popular in recent years due to their simplicity, accuracy and efficiency.

1.4 Mixed Formulation Finite Elements

In recent years there have been a number of applications in which
the use of a mixed formulation in which the fundamental unknowns are both
stresses and displacements has shown advantages over the more common
displacement-based formulation. Studies in  approximate  structural
reanalysis [14,15] have shown that the use of a mixed method provided higher
accuracy for the predicted response, especially for stress quantities.
Also, work in nonlinear structural analysis [16] has indicated that the use
of reduction methods in conjunction with mixed finite element models can
considerably improve the accuracy.

When reduction methods are used in conjunction with the mixed
formulation, explicit approximations are made for both the stresses and
displacements. The stresses are allowed to be discontinuous across element
boundaries and eliminated on the element level. It has been shown [16] that
this improves the performance of the method and also avoids the
computational expense that would be associated with generating the basis
from the complete set of equations directly.

1.5 Review of Previous Pertinent Work

Vhile several examples of the current work being performed in the
fields of free vibration structural sensitivity analysis and dynamic
reduction methods have been discussed previously, there are surprisingly few
cases in which the two are considered jointly. A recent paper on the
calculation of eigenvalue sensitivity derivatives [17] proposes two new




solution techniques, one direct and the other iterative, and also addresses
the case of repeated eigenvalues. However, no reduction in problem size or
significant improvements in efficiency are suggested. Another study {18]
suggests improvements to increase the rate of convergence of the modal
method; however, it was found in [8] that even with these improvements the
method is computationally expensive.

A paper by Robinson [19] describes the implementation of a
systematic finite element modification technique in the program EAL for the
purpose of improving dynamic models to agree better with experimental
results. In this implementation the eigenvector derivatives are calculated
by the modal method and he suggests the use of a Rayleigh-Ritz type

reduction method to reduce the computational expense. In the described
implementation, the modification of the structure is performed in a reduced
space defined by the eigenvectors of the original structure. Large

reductions in computer execution times are reported.

Another important application of free vibration sensitivity
derivatives 1is in automated structural optimization. Kim and Anderson [20]
apply generalized dynamic reduction to automated redesign for frequency
changes. The optimization is performed in the reduced subspace and good
results are reported; however, changes in eigenvectors are not considered.
Also, the optimization equations are formulated in terms of perturbation
equations that do not require the calculation of gradients, but this study
does give an indication of the ability of the subspaces to accurately
represent the full dynamic space.

The calculation of approximate eigenvalue and eigenvector
derivatives for a modified system is addressed in a recent paper by WVang
[21]. For the special case in which the stiffness and mass terms are
homogeneous functions of the design variable he develops expressions using
cross mode energies to calculate the approximate derivatives. The results
that are reported show a mixed degree of success.

1.6 Objective and Scope of the Present Study

The objective of the present study is to develop an efficient
computational strategy for calculating the sensitivity derivatives of
vibration frequencies and eigenmodes of framed structures. The key elements
of the strategy are:

1. Use of dynamic reduction methods to substantially reduce
the number of degrees of freedom.

2. The application of a mixed method in conjunction with
reduction methods to the free wvibration derivative
calculations.

3. Use of iterative techniques for improving the accuracy of

the derivatives obtained by using the reduction technique.
The scope of this study includes:
1. Large frame-type structures modelled by finite elements.
2. Sensitivity derivatives of vibration eigenvalues and

eigenvectors with respect to cross-sectional design
variables and concentrated masses.



II. SENSITIVITY CALCULATIONS VIA REDUCTION METHODS

2.1 Introduction

Reduction methods is the name usually given to a class of hybrid
two-step computational procedures that attempt to reduce the dimension of a
given problem and permit the solution to be calculated more economically.
The first step is the spatial discretization of the system into a number of
finite domains within which interpolation functions are used to approximate
the unknown fields in terms of unknown nodal parameters. These nodal
parameters span wvhat will henceforth be referred to as the full space of the
system. The second step is to impose relationships between the degrees of
freedom of the full space to define a new coordinate system, usually of much
smaller dimension, called the reduced subspace. The transformation of the
governing equations from the full space to the reduced subspace is
accomplished by wusing a Rayleigh-Ritz (or Bubnov-Galerkin) procedure.
Throughout this report the words full and reduced are used as a prefix to
indicate the space in which the response quantities are defined. For
example, reduced equations refer to equations defined in the reduced
subspace.

In this section the derivation and solution of the reduced equations
for the derivatives of vibration eigenvalues and eigenvectors is discussed.
Since this is accomplished by a transformation of coordinates the full
equations are developed first and are then transformed into the reduced
subspace. :

2.2 Governing Equations

The free vibrations of structures modelled by displacement-based
finite elements are governed by the following system of equations:

C[K] - \IM1) (X} =0 (1a)
where
(K}

[(M]

A,
i

X}

global stiffness matrix
global mass matrix (consistent or lumped)
ith eigenvalue (square of the frequency of vibration)

it

ith eigenmode (vibration mode shape)

The eigenvectors satisfy the orthonormality relation

T
wvhere

sij = Kronecker delta

1 if i=j
0 if i#

"

Before assembling the stiffness and mass matrices the specific
properties of each element must be known. Changing any one of these
properties would change the resulting stiffness and mass matrices and thus
the eigenvalues and eigenvectors. To quantify the effect of this change the
equations (1) are differentiated with respect to the property, called a




design variable [6]. It is often more convenient to determine the effect of
the simultaneous change in the properties of several elements and this is
accomplished using design variable 1linking. The properties of each
individual element (dependent design variables v,) are related to a much

smaller number of parameters (independent design variables Vk) by a linking

relationship. For example, linear design variable linking is expressed by
the relation

n
ve = L ¢, V (2)
] kel jk 'k
vhere
n = the number of independent design variables
cjk = the linking coefficients

Differentiating equations (1) with respect to an independent design variable
V, results in

k
B{Xi} axi a[M] a[K]
CIRE =N =g = (gt g - ) o) (3a)
and
B{Xi} T a[M]

2 ()" ) )" 5 (X)) = 0 (3b)

W, * i v Vi

The unknowns in equations (3) are the derivatives of the eigenvalue and
I, 9{X.}

eigenvector, -2 and —>. It is noted that when using design variable
BVk BVk

linking the derivatives of the stiffness and mass matrices must be evaluated

using the chain rule of partial differentiation. For the linear design

variable linking in equations (2), this results in

9[K] m  3[K] avj m 9[K]

— = L == = I c, (4a)
8Vk 5=1 avj 8Vk 51 avj jk

o[M] m  9[M] avj m 3[M]

w5 = L == = z c. (4b)
BVk j=1 avj BVk j=1 avj jk

where m is the number of dependent design variables.
An examination of equations (3a) indicates that a direct solution is
not possible for two reasons:

1. The right hand side vector contains the derivative of the
eigenvalue which is, as yet, unknown.
2. The matrix on the left-hand side is singular.



Before solving equations (3) it is important to determine the multiplicity
of the eigenvalue Xi. Since the solution for nonrepeated eigenvalues is

simpler it is presented first and then generalized to the repeated case.
2.2.1 Nonrepeated Eigenvalues

The derivative of the eigenvalue is calculated through premultiplication of
equation (3a) by the transpose of the eigenvector and noting equations (1),
resulting in the following expression:

axi T 9[K] a[M]
= = {X.}70 (= - A, == ) {X.} (5
avk i 8Vk i SVk i
Nelson [7] solved the problem of a singular coefficient matrix by expressing
the derivative of the eigenvector as the sum of a particular and
complementary solution.

a{xi}
v, - (%) et (6)
The complementary solution {Xi} is the eigenvector and the particular

solution {Qi} is obtained by constraining one degree of freedom of the

solution vector in equation (3a) to zero (e.g. the one corresponding to the
largest component of the eigenvector) to eliminate the singularity in the

coefficient matrix. The unknown constant C is then determined by
substituting the assumed form of the solution (6) into equation (3b). This
leads to
3[M]
T 1 T
C = - {X;}7 M} {9} - 5 {¥;} 5V;f {x} (7)

2.2.2 Repeated Eigenvalues

WVhen eigenvalues of multiplicity greater than one are present the
solution of equations (3) becomes much more complex due to the nonuniqueness
of the associated eigenvectors and the decreased rank of the coefficient
matrix. For simplicity an eigenvalue of multiplicity two is assumed in the
subsequent discussion however, the method is easily generalized to cases of
higher multiplicity (see for example Reference [17]). The free vibration
equations for the repeated eigenvalue can be written

(K1 = XM (%) = 0 (8a)
(K] = X, [MD) (X 4} = 0 (8b)
vhere
A= A,
i i+l




The eigenvectors satisfy the orthonormality relation (1b). Since any linear
combination of eigenvectors is also an eigenvector the free vibration
equation can also be expressed as

(K] - X\ [M}) {XI} =0 (9

wvhere
(X3} =[x, X, 41 {a;} (10)

The matrix [Xi Xi+1] stores the eigenvectors columnwise and {X{} also

satisfies the orthonormality relation (1b). Differentiating (9) with
respect to an independent design variable Vk results in

9{X!} 3N, 9[M] 9[K]

i i ,
(K] - N [H)) 7= - (Wk[m N, Wk) (x1) (11)

Premultiplication of (11) by [Xi Xi+1]T and noting equations (8) and (10)
leads to the following:

T 3[K] 3[M] axi
%y %1 (- M) B %l @) - 5y Gap) (12)

k k k
Equation (12) is an eigenvalue problem of dimension two and has the two

N, oA,
. i i+l . c s

solutions EV;’ {ai} and 3Vk , {ai+1} which indicates that the repeated
eigenvalue may follow two separate paths with the continuous variation of Vk
and also leads to two separate right hand side vectors for equation (11)
(and thus two eigenvector derivatives). Differentiation of the

orthonormality relations for the vectors {Xi} and {X£+1} (obtained from {ai}

and {ai+1} respectively) results in the following equations:

{X!} a[M]
T i 1 .,.\T ,
X: .} o[M]

, T i+l 1 , 1T ,

Xi,,) M) v, T2 Xi,1 v, X5 ,4} (13b)
T

(X7} 3[M] X! )
1 , T , Ty i+l

v, [MI{X, 13 + {X{} _EV;{X1+1} + {X3)[M] W, - 0 (13c)

As in the previous subsection, solutions to equation (11) are assumed of the
form

S{Xi}

—57;* = {Qi} + [X§ Xi+1] {c} (14a)



3{X£+1}
T, Q) + ¥ X1 ) (14b)

In equations (14), {Qi} and {Qi+1} are particular solutions to (11) obtained

by constraining two degrees of freedom (those associated with the largest
degree of freedom of each eigenvector) in the solution vector and the
eigenvectors are complementary solutions. Substitution of the solutions
(14) into equations (13) leads to the following expressions for the wunknown
constants:

3[M]

s d o - et
1 oM T
dp = =7 i) g i) - B0 TG ) (15b)
T T oM
ey = - 0T - pTIte ) - Ty (5o

It is noted from equation (15c) that the nonuniqueness of the eigenvectors
extends to their derivatives.

Equations (3) or (11) can be solved by several alternate methods
(see subsection 1.2) but the solution presented herein has the advantage of
providing essentially exact results without the need for convergence checks.
Its major disadvantage is that the coefficient matrix must be decomposed for
each distinct eigenvalue. However, it is shown subsequently that reduction
methods can substantially reduce the size of this matrix and the cost of
decomposition.

2.3 Dynamic Reduction Methodds

Dynamic reduction methods approximate a vector in the full space by
a linear combination of a small number of linearly independent basis vectors
that define a reduced subspace. The accuracy of the method depends on the
degree to which the full vector lies within the reduced subspace and, as
such, the determination of the basis vectors is a crucial step that depends
strongly on the nature of the full vectors. Since the current work focuses
on the derivatives of the eigenvectors, a logical starting point is methods
developed for approximating the eigenvectors. The approximation is
expressed by the following equation:

where
{Xi} = the full eigenvector
[Xi} = the approximate full eigenvector
[T] = matrix with basis vectors as columns
{¥.} = reduced eigenvector

10




The reduced eigenvector {¢i} consists of generalized coordinates that are

amplitudes of the basis vectors.

Using equation (16) the free vibration equations (1) are transformed
into the reduced subspace resulting in the following reduced equations:

CIR] - X (M) (w3} = 0 (17a)
and

(0;}° [H] {wy) = &, (17b)
where

(r1* (K] [T]
(r1* M1 [T]

approximate eigenvalue

]
1]

reduced stiffness matrix

[M]

reduced mass matrix

i
{wi} = reduced eigenvector

Since equations (17) represent a much smaller system of equations than (1),
their solution requires substantially less effort and provides
approximations to the lower eigenvalues and, through the use of equation
(16), the eigenvectors. Several methods have been developed for performing
reduced eigenvalue analysis (see for example [4] and [11]) and two of these
are discussed in the following subsections.

2.3.1 Static Condensation

One of the first and most popular methods of determining the basis
vectors used in equations (16) and (17) is known as static condensation or
Guyan'’s reductions [10]. The procedure begins with the choice of
constrained degrees of freedom (a subset of the degrees of freedom of the
full space that are assumed massless). Then the equations (1) are
partitioned in the form

[ [ Kff Kfc ] { Mff Mfc ] ] { X
- AL
ch gCe i Mcf MeC X

where the superscript f denotes the free (retained) degrees of freedom and
the superscript ¢ denotes the constrained degrees of freedom. Expanding the

ke ) H- Hh

} = 0 (18)

equation in the lower partition of (18) and solving for {Xg} results in
- f f f
6 - - R - e oo ety &b aw

If the mass matrices [MCC] and [MCf] are neglected, equation (19) reduces to
the following static relation:

x5y = - k7 ey ) (20)

11



Equations (20) are wused to eliminate the constrained degrees of freedom.
The matrix of basis vectors of the static condensation procedure can then be
expressed by the equation

(1]
R T (21)

The approximation results from neglecting the mass matrices [Mcc] and [MCf].
The accuracy of the approximation depends on the selection of free and

constrained degrees of freedom. There is obviously a certain amount of
talent or experience required for the proper selection of the free and
constrained degrees of freedom. Also, looking at equation (19) it is

apparent that the effect of the neglected masses increases with increasing
eigenvalue and therefore, the accuracy of the method decreases with
increasing eigenvalue.

With static condensation it 1is generally possible to perform a
moderate amount of reduction and still obtain good results for the lowest
few eigenvalues and eigenvectors. However, the desire to obtain an even
higher degree of reduction and also to eliminate the need for choosing
massless degrees of freedom has led to the development of another group of
methods that generate the basis vectors automatically. These are discussed
in the succeeding subsection.

2.3.2 Generalized Dynamic Reduction

Since the main purpose of the dynamic reduction methods is the
accurate calculation of eigenvectors, procedures have been developed that
start with arbitrarily chosen vectors and then attempt to enrich the content
therein of a selected group of eigenvectors (see for example [12] and [13]).
The enriched vectors, called Lanczos vectors, are then used as basis
vectors. In generalized dynamic reduction [4], the Lanczos vectors are
generated by performing a required number of iterations through the
recursion relation

C Ikl - vl (05D 2 g ) (22a)
where
(r) _
(Y197 = 1) (9,0 ... (Y] (22b)
and
{Yi}(r+1) _ 0L§r+1) {?i}(r+1) (22¢)
In equations (22), the constant a§r+1) is used to normalize {Ti](r+1). As

mentioned previously, the initial iteration vectors [Y](O) are chosen
arbitrarily. Experience has shown that the use of a pseudorandom number
generator (e.g. generated by the multiplicative congruential method, see

Reference [22]) in initializing [Y](O) helps insure that all eigenvectors
are represented and increases the chances that a mode will not be missed.
In addition, if a structure contains large concentrated masses it has been
found advantageous to include unit vectors to excite these masses. Since
eigenvectors other than the ones associated with the smallest eigenvalues
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are sometimes of interest, a nonzero value for the shift parameter v allows
equation (22) to converge to the eigenvectors desired.

In addition to being rich in the eigenvectors of interest the basis
vectors must also be linearly independent. The final iteration vectors from
equation (22) are orthonormalized by performing the Gram-Schmidt
orthogonalization procedure. Often this must be performed several times to
achieve the high degree of linear independence required to insure the
solvability of equation (17). The orthogonalization also helps to amplify
the content of eigenvectors slightly further away form the shift value v, in
the basis vectors.

Generalized dynamic reduction usually allows a greater reduction in
the number of degrees of freedom than static condensation and at the same
time provides greater accuracy. The number of modes that can be obtained
accurately from the reduced equations is wusually less than one-half the
number of basis vectors. With static condensation this limits the number of
modes that can be calculated, but generalized dynamic reduction wused with
multiple shift wvalues v and multiple reductions can be used in calculating
many more eigenvectors than the number of basis vectors used.

2.4 Reduction of the Governing Finite Element Equations

The preceding section has dealt with dynamic reduction methods for
calculating eigenvalues and eigenvectors. The next step is to apply these
to the calculation of the required derivatives. Differentiating equations
(16) and (17) with respect to an independent design variable results in

a(X,)  A(X,) - 3w} AT . )
= = —— + —— (¥,
3Vk 3Vk 8Vk SVk i
and
i o atyy) ax, 3a[A]  d[R]
( [K] - Xi [M] ) —5v;— = ( 57; [M] + Xi _SV; - —EVE ) {Wi} (24)
wvhere
°I¥] N - [T] + [T]7 [K] Ul amT[ ] [T]
—— = [T]" —— [T] + [T]" [K] —— + — [K] [T
avk 3Vk 3Vk BVk
and
o] " o (r] + (17 [u) ik a[r]T[ ] [T]
—— = [T]" —=— [T] + [T} [M] —— + —o— [M] [T
3Vk BVk BVk 3Vk

The matrix a[r]/avk in equations (23) and (24) represents the changes in the

basis vectors due to changes in the design variables. It is not desirable
to calculate this matrix since it would be at least as computationally
expensive as calculating the derivatives of the eigenvectors from the full
equations. The purpose of this procedure is to reduce the expense and the
contribution of the derivatives of the basis vectors must be neglected to
retain the desired efficiency. With this assumption the reduced derivative
of the mass and stiffness matrices from equation (24) become

13



3R] 7 3K
—av = [T]" —5 [T] (25a)
3Vk avk
and
a[M] T a[M]
—g = [T]" —g IT] (25b)
BVk SVk
and the derivative of the eigenvector is approximated as
3{X,} B{Xi} 3wy}
= = [T] (26)
avk avk avk

It is noted that neglecting the derivative of the basis vectors is
equivalent to assuming the derivative of the eigenvector 1lies in the
subspace defined by the basis vectors.

Since the form of equation (24) is identical to that of equation (3)
only of much smaller order, it can be solved by the same method. For
eigenvalues of multiplicity one the approximate derivative of the eigenvalue
is calculated from

BXi T 3[K] 3[M]
EV; = {Wi} ( _SV; - Xi _SV; ) {Wi} (27)

The reduced derivative of the eigenvector is assumed to be of the form

o) (0.} + ¢ {v,) (28)
W, - i ¥i

wvhere the reduced eigenvector {wi} is a complementary solution and {ei} is a

particular solution to equation (24) obtained by constraining one component
of the solution vector. In the reduced equations the degree of freedom
associated with the smallest term on the diagonal of the coefficient matrix
is constrained to zero. The constant ¢ is then calculated from

1] ‘
¢ - - (w7 1A) (9 - 5 tu” - ) (29)

For repeated eigenvalues a procedure analogous to that used above, but using
the method described in subsection 2.2.2 can be used.

The foregoing procedure for calculating approximate derivatives of
eigenvalues and eigenvectors with respect to design variables greatly
reduces the computational effort compared to the solution of the full
equations. The performance of these methods on several finite element
models is discussed in section five in conjunction with the numerical
studies.
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IITI. APPLICATION OF A MIXED FINITE ELEMENT MODEL
TO SENSITIVITY CALCULATIONS

3.1 Introduction

In the preceeding section reduced equations are developed for
calculating the derivatives of free vibration eigenvalues and eigenvectors
based on a displacement formulation. The displacement formulation is the
most commonly used; however, in some applications a mixed formulation, which
takes both stresses and displacements as unknowns, has several advantages
(see subsection 1.4 for references). Studies in nonlinear analysis have
shown that the use of a mixed model in conjunction with reduction methods
can provide improved accuracy over reduction methods used with a
displacement formulation [23]. Also, in several types of structures (e.g.
trusses, plates, membranes) approximate reanalysis is improved by taking the
inverse of the sizing quantities as design variables [24]. In the mixed
formulation this is a natural choice.

3.2 Element Formulation

The mixed finite element formulation is based on the Hellinger-
Reissner variational principle [25]. The following functional, which
represents a modified version of Hamilton’s principle, is wused in the
development of the governing equations:

t

H=J2(W—(V—Uc)]dt (30)
Y
where
V=J (g1t (1 de
Q
U, =3 | (@' 1al (0 de
c 2
Q
and
w=%J o {(u}l {u} de
Q@
The integrations are performed over the volume of the structure Q. The

infinitesimal strains {e&} correspond to the displacements {u} of the
structure from its undeformed state and the stresses {t} result from these
'strains. The matrix [a] contains the material compliance coefficients. It
is noted that no external forces are included in the functional since the
present study is considering only free vibrations. If considered, body
forces, surface tractions and point loads would be added to the term W.

The functional in equation (30) is discretized by subdividing the
structure into finite elements and approximating the fundamental wunknowns
within each element using Lagrangian interpolation functions. The

displacements and stresses of the jth element are given by the relations
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Iy =y @y (31)

It

{u
()
where {U} are the nodal displacements and {H} are stress parameters. It was

shown in [23] that better accuracy is obtained from mixed elements when the
interpolation functions for the stresses are one degree lower than those

] mdy (32)

1

used for approximating the displacements. Accordingly, [N] represents a
matrix of lower degree shape functions than [N]. Also, the stress field is
allowed to be discontinuous across element boundaries so that the stress
parameters can be eliminated on the elemental level.

Applying the aforementioned finite element approximation results in
the following discretized functional:

t
- 2 (- -
n=jt [w-(v-uc))dt (33)
1
where
L )
7-1z J it 81T [N] (H) d
j=1 ¢
L A )
_ 1 T =T
U =2 5 | . {H}" [N]" [a] [N] {H} d®
c 5-1 2 JQJ
and
L X )
_ 1 T T
W=1I 5| . e (U}  [N]" [N] {U} dR
j=1 2 fsﬂ

The summations are over the number of elements L, and [B] is the discrete
strain-displacement matrix.

Varying the displacement and stress parameters independently and
simultaneously results in discrete governing equations which consist of both
constitutive relations and equilibrium equations. For the jth element these
equations are cast in the following form:

F s uyd o o1 (uy
E R N R o
sT 0 U 0 M U

The submatrices in these equations are:

[F]J = I Qj [N]T [a] [N] d® = -elemental flexibility matrix
[S]J = I gj [N]T [B] d? = elemental generalized stiffness matrix
[M]J = I Qj p [N]T [N] d? = elemental consistent mass matrix

For free vibrations the nodal displacements {U} are of the form
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W0y = e xe,N) (35)

and equations (34) become
- A, -~ = 0 (36)
sT o X, Y lo ow X,

Since the stress field is allowed to be discontinuous across interelement

boundaries, the upper partition of (36) can be solved for {HJ} at the
element level. This allows the elimination of the stress parameters from
the lower partition. The resulting elemental equations can then be
assembled in the form

([K] - A M) (%) = 0O (37)
where

A . .
kK] = £ (917 (777 [s9) - global stiffness matrix
j=1

and

=

[M] = £ [MJ] = global consistent mass matrix
j=1

The above system of equations 1is of the same order as a corresponding
displacement model.

3.3 Derivatives of Eigenvalues and Eigenvectors

Equation (37) is similar in form to the governing equations of the
displacement formulation (equation(l)) and the sensitivity derivatives of
the eigenvalues and eigenvectors can be calculated as outlined in equations
(3)-(7). The only difference is the derivative of stiffness matrix which in
this case is

a((F 1Y
3Vk

3[K]

BVk

L ,
-z s3]t
j=1

[s] (38)

This approach will work, but has no advantage over the displacement
formulation since it requires the differentiation of the inverse of the
flexibility matrix (essentially a stiffness matrix). In cases where it is
advantageous to choose the inverse of the sizing variables as design
variables (discussed at the beginning of this section) it would be more
efficient to differentiate the flexibility matrix and thus an alternate
formulation of the derivative equation is required. Differentiation of
equation (36) with respect to an independent design variable Vk results in

the following:
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1
-F S 0 0 V.
- X k
T i - 3X1
S 0 0 M W
k
j h| oF j h|
axi 0 0 0 0 —svk 0 Hi
= W— ~ + )\i ai - j (39)
k10 M 0 v, 0 0 X

The solution of the upper partition of (39) for the derivative of the stress
parameters, again on the element 1level, and the solution of the upper
partition of (36) for the stress parameters can be used to eliminate all
stress quantities from the lower partition of (39). The assembled global
equations then take the form

- - S{Xi}
([K] - A, [MD) —5
k ~ ~
( A - 3[M]  9[K] ]
= | =-IM] + \\—— + = | {X.} (40)
v, i3V, v, i
wvhere _ .
3Kl L ..o . 18[FJ] 1
—— = [P T P SY)
v, 5-1 v,

The right hand side vector contains the derivative of the flexibility matrix
as desired. Equation (40) is in the general form of equation (3) and can be
solved by any of the several methods developed for calculating eigenvalue
and eigenvector derivatives.

3.4 Reduction Methods

The basic idea behind the use of reduction methods in conjunction
with mixed models is to define a small number of parameters related to both
the displacement and stress degrees of freedom of the full model and reduce
the equations to these coordinates. This is accomplished by defining a
basis vector representing each reduced coordinate. The stresses and
displacements are then approximated as a linear combination of the linearly
independent basis vectors. In partitioned matrix format this approximation

o}

(41)

[t = o
N —r
L]
—
-
o T= ]
—_—
-
-
Aemyat
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where [FH] and [PX] are matrices with the stress and displacement basis

vectors as columns, respectively, and {$} are the reduced unknowns. A major

advantage of the mixed model is the direct approximation of the stresses.
The basis vectors are determined in a two-step procedure. The

displacement basis vectors [rX] are determined first by one of the methods

used in section two. In static condensation, some of the displacement
degrees of freedom are assumed massless and eliminated (see section 2.3.1).
For the mixed model this leads to the following basis vectors:

rae [-o 8]
r,] = - - (42)
X _[ch]—lchf]
where _ _
[ﬁ] i [ Ifff Efc }
ch ch

is a partitioned form of the stiffness matrix defined in equation (37). The
superscript f denotes degrees of freedom with mass and the superscript c
those without.

Generalized dynamic reduction can also be wused to determine the
displacement basis vectors (see section 2.3.2). Initial iteration vectors

are chosen arbitrarily and placed as columns in the matrix [Z](O). A
required number of iterations is performed through the recursion relations

k) - v o) 21 g 0 (43a)
where
(r) (r)
(219= (123 2, ... (23] (43b)
and
(r+l) (r+l1) .5 ,(r+l)

where the matrices [K] and [M] are defined in equations (34) and (37) and

B§r+l) }(r+l). The

is used to normalize {Zi final iterates are

orthonormalized to form a linearly independent set.

The second step is the determination of the stress basis vectors.
As mentioned previously, for efficiency the matrices [F] and [S] in equation
(34) are only calculated at the element level and never assembled globally
except for an element by element contribution to the stiffness matrix as
defined in equation (37). For this reason the stress basis vectors are also
calculated only at the element level. The stress and displacement degrees
of freedom in the jth element are related by the equation

(P ) - 189 ) (44)

Using the approximation given in equation (41) the above relation can be
solved for the stress basis vectors to yield
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J NRE S R
[Ty = [F7] "[sT1IIg] (45)

wvhere [T%] is a matrix containing the rows of [TX] corresponding to the

displacement degrees of freedom of the jth element.

Equation (41) is substituted into the discretized functional
(equation(33)) and the resulting Rayleigh-Ritz analysis leads to the reduced
equations

(IRT - X, [M]) {w;} =0 (46)

The reduced matrices are given by

L . . . . . . . . .
(®1 - = ety - i - st

j=1
= reduced stiffness matrix (47)
[M] = [TX]T[M][TX] = reduced mass matrix (48)

where [FJ], [SJ] and [M] are defined in equations (34) and (37) and it is

noted that [K] is formed from element contributions. Also, for free
vibration, the reduced unknowns {¢} are assumed to be of the form

iVt
{o(T, 1)} = e {w(T,2)} (49)
The reduced equation for the eigenvalues and eigenvectors (46) looks very
similar to the reduced equation (17) from the displacement formulation with
the exception of the reduced stiffness matrix which has a very different
form.
A reduced equation for the derivative of the -eigenvalues and
eigenvectors can be developed by differentiating the reduced equation (46)
with respect to an independent design variable Vk’ resulting in the

following:
_ _ 3V,
([K] - N IMD) § 57
k -~
OV 7o[M] 3[K]
- (W[M] * N1y Ty a—vk)(‘”i] (50)

where

3[R] L . 3[F]

— -t D1

v, = H' v, 'H

The basis vectors in equation (42) are assumed to be invariant with respect
to the design variable which, as discussed previously, 1is necessary to
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obtain the desired efficiency. The advantage of this formulation over the
displacement formulation results from the use of the derivatives of the
flexibility coefficients on the right hand side (as opposed to the
derivatives of the stiffness coefficients in (24)). Equations (46) and (50)
can be solved by any of the methods described previously, and the
eigenvector derivatives recovered from the relation

oH, oH,

1 1

BVk avk
Numerical results obtained by using the mixed formulation are discussed in

section five and compared with those from the displacement formulation.
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IV. ACCURACY AND ITERATIVE REFINEMENT

4.1 Introduction

Methods for calculating the derivatives of eigenvalues and
eigenvectors from reduced equations are developed in the preceding two
sections. The usefulness of the proposed procedure requires the ability to
assess the accuracy of the eigenvector derivatives and a method for
improving the accuracy of the derivatives that do not meet the required
tolerance. In order to accomplish these two objectives it is necessary to
return to the full equations. Two methods are presented that use iterative
techniques involving a shifted stiffness matrix to improve the eigenvector
derivatives. As a by-product of the performance of generalized dynamic
reduction this shifted stiffness matrix is decomposed and as such, the
implementation of these methods adds minimal computational expense.

4.2 Solution Errors

A key element of approximate solution methods is the ability to
evaluate the accuracy of the approximate solution without knowing the exact
solution. In the present study this 1is accomplished by calculating a
normalized residual error from the full equations. For example, the
accuracy of the approximate eigenvalues and eigenvectors is evaluated using
the following error norm [13]:

I (KT - XMDE |,
I KICRY 1,

€

1 (52)

The numerator is the Euclidean norm of the residual vector from equation
(la) and the denominator is a normalization factor (the norm of the internal
force vector). Although this does not provide a pointwise error measure, it
does gives a good indication of the overall accuracy. Similarly, the
accuracy of the derivatives of the eigenvalues and eigenvectors can be
evaluated using the following norm:

| cxr - mpey 250 (P 3202 gy ]
2

e, = oV oV v aV (53)

| G+ 202w |

v oV v

The numerator is the norm of the residual from equation (3) and the
denominator is the norm of the right hand side. If either of the error
tolerances, € or g, is not met then the corresponding approximate solution

must be improved.
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4.3 Improvement of the Eigensolution

The error norm g gives an indication of the accuracy of an

eigenvalue and its corresponding eigenvector. If the required tolerance is
not met then two possibilities are considered for improving the accuracy.
The first is to improve the characterization of the reduced basis and solve
for a new eigensolution (this results in increased accuracy for all the
eigenmodes) or alternately, the particular eigenmodes not meeting the
tolerance can be individually improved. When using static condensation, the
former approach essentially involves starting over but with the benefit of
additional knowledge. Improving the basis requires including the mass
associated with more and/or different degrees of freedom. The approximate
eigenvectors from the previous attempt are useful in this choice. 1In
contradistinction, generalized dynamic reduction is much more amenable to
improvement. The characterization of the reduced basis is augmented by
performing more iterations on the existing basis vectors (or on the
approximate eigenvectors) and also with additional vectors. In either case
none of the information in the current basis is discarded. In addition, if
only a few of the modes are found to be inaccurate, they alone are improved
by cycling through the relations

(k1 - v KD 2oy g (54)

T T
X(k+1) - {X}(k+1) [K]{i}(k+l)/ (X}(k+1) [M]{X}(k+1) (55)

which represent the inverse power method. Since the coefficient matrix in
(54) has been decomposed previously, these  procedures add little
computational expense. The previous discussion brings forth some of the
advantages of generalized dynamic reduction over static condensation. Due
to its adaptability to the type of analysis being performed only generalized
dynamic reduction is considered in the remainder of this section.

Before turning to methods for improving the accuracy of the
derivatives of the eigenvectors it is useful to identify the major time
consuming operations in the calculation of the eigensolution. The largest
percentage results from the decomposition of the shifted stiffness matrix
used in the generation of the basis vectors. Two other items that account
for a large percentage of the computer time are the back substitutions
performed in the generation of the basis vectors (equation (22a)) and the
formation of the reduced matrices (equation (17)). Also, the back
substitutions and formation of new reduced matrices required for augmenting
the basis, or the back substitutions required to improve individual
eigenmodes can represent significant contributions.

4.4 Improvement of the Eigenvector Derivatives

The eigenvalue and eigenvector derivatives are calculated from the
reduced equations (24) to (29). Since the reduced basis is developed for
representing the eigenvectors (and not their derivatives) and also since the
reduced eigenvectors may not be accurate (the accuracy of the full
eigenvector may have been improved), the eigenvector derivatives generally
require some improvement. As discussed previously, one option would be to
increase the characterization of the reduced basis. However, for the
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eigenvector derivatives this is not considered viable for the following
reasons:

1. The reduced eigenvalues and eigenvectors have to be
recalculated.

2. In addition to reforming the reduced stiffness and mass
matrices the derivatives of these matrices must also be
calculated.

3. Adding more vectors to the reduced basis increases the size
of the reduced equations and the cost of obtaining their
solution.

4, The methods discussed previously for augmenting the reduced
basis would not necessarily result in improved eigenvector
derivatives.

Two methods for improving the accuracy of the eigenvector derivatives are
presented subsequently.

4,4.1 Method Based on the Inverse Power Method

The well known inverse power method for the generalized eigenproblem
is given by the recursion relations

(k1 - vinD 3 9o A yprx (56)
T .

(3 (i) ))1/2

N a1y (xp ) e ) (57)

which results in the convergence of Xi to the eigenvalue closest in
magni tude to the shift parameter v and {Xi} to the corresponding

eigenvector. In the present study the eigenvalues and eigenvectors are
already known to a required level of accuracy and iterations through
equations (56) and (57) would result in very small changes. Noting this,
equation (56) 1is differentiated with respect to an independent design
variable Vk and the superscripts on the eigenvalue, eigenvector and

eigenvalue derivative (but not the derivative of the eigenvector) indicating
the iteration are discarded. The resulting recursion relation is

a{xi}(j+1) o a[M]  3[K]
([K] - \’[M])—Ev—k_ = WIQ[M] + )\iTI; - —av; {Xl}
a{xi}(J)

If the full eigenvector was improved by iteration through equation (54) it
is important that the derivative of the eigenvalue be calculated from the
full equation (5) instead of the reduced equation (27) since the reduced
eigenvector is less accurate.

A major advantage for the procedure defined by equation (58) is that
an existing decomposed coefficient matrix is wused to avoid the cost of
additional decompositions. This suggests an alternate development of
equation (58). Returning to the full equation for calculating the
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eigenvector derivatives (3a) it 1is noted that there is only a small
difference between the matrix on the 1left-hand side ([K]—ki[M]) and the

existing decomposed matrix ([K]-v[M]). The matrix on the left hand side can
be split resulting in

(X} 3{X,}
(IK] - V[M])—sv;— - (Xi—v)[M] QVk
A a[M]  3[K]
= 5‘71:“41 + *i‘av_k -, X} (59)

The second term on the left-hand side of (59) is then moved to the right-
hand side. Using the current estimate for the eigenvector derivative, the
right-hand side is evaluated and the equation solved for a new estimate of
the eigenvector derivative. This relation is identical to that given by
equation (58) and offers further insight into the procedure.

4.4,2 Method Using Preconditioned Conjugate Gradient Iteration

The preconditioned conjugate gradient (PCG) method for solving
symmetric positive definite linear systems has been studied for many years
[26,27]. 1In solving the system of equations

[A]{X} = (B} (60)

the PCG method attempts to accelerate the convergence of the iterative
process by choosing a preconditioning matrix [A]0 such that

[A] = [A] - [A] (61)

The matrix [A] is the difference between the coefficient matrix [A] and the
preconditioning matrix [A]O. At each iteration a system of equations with

coefficient matrix [A]o must be solved, so [A]o should be chosen such that
this system is easy to solve. In addition, the matrix [A]o should be chosen

to in some way approximate [A]. In the present study, the splitting shown
in (61) is motivated by the existence of a previously decomposed matrix.

The objective of the PCG iteration is to solve equation (3a) for the
derivative of the eigenvector using the approximate result obtained from
equation (24) as an initial estimate. The selection of the preconditioning
matrix ([K]-v[M]) as an existing decomposed matrix, results in the splitting

([K]-X, [M]) = (IK]-V[M]) - (X-V)[M]

The PCG algorithm as presented in [28] is as follows:
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a{Xi}(O)

1. The initial estimate . is obtained wusing the reduction
k
technique.
2. For j =0, 1, 2, ... compute the residual

@D @D a k@9, 5,

ax, 3[M]  AIK]Y
a5 M)+ X— - =5 X}
3Vk i aVk 3Vk i
3{Xi}(0)
- (KIS MD—— 5 = 0 (62)
k
3. Solve for the preconditioned residual {v}<3):
(K1-v (1) = w9 (63)
4, Compute the orthogonalization coefficient, bj’ using

T . R T .
b, = I (s P D (v G, 5 5 1,

~0,j5=-0 (64)
5. Update the cgnjugate search direction vector
6. Compute the step length along the search direction, aj, using
T . T .

a; = D (D @3 qrg-a 2y 9 (66)
7. Update_the solution

B S T (67)

avk avk j

Even though the PCG method is intended for solving positive definite systems
and the present equations are singular, the nonsingularity of the
preconditioning matrix allows the implementation of the procedure. The
effectiveness of this algorithm is discussed in the succeeding section.
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V. NUMERICAL STUDIES

5.1 General

This section describes the implementation of numerical algorithms
for calculating free vibration sensitivity derivatives from reduced finite
element equations. Their performance compared to the exact solution is
described subsequently. Henceforth, the term "exact solution" is used to
denote the solution obtained using the full system of equations of the
structure.

The structures considered in this study are composed of beam
elements. The following three structures are considered:

1. A non-symmetric triangular double-laced lattice beam ten
bays in length, supported at one end (Figure (1)).

2. An elastic line model of the Bell AH-1G Cobra helicopter
(Figure (2)).

3. An orthogonal tetrahedral lattice beam ten bays in length,
supported at one end. The dimensions of each bay

correspond to the current design of the keel beam of NASA’s
space station (Figure (3)).

A simple program was written for modelling frame type structures
using both displacement and mixed finite elements. The program was checked
by comparing the free vibration results with those from the commercial
finite element code EAL for the lattice beams and NASTRAN for the Cobra
elastic line model. The primary motivation for developing this specialized
code was to include the capability of assembling matrices of the derivatives
of stiffness and mass coefficients of the structure and also to include
mixed finite element models. Both of these tasks are not easy to implement
in commercial finite element codes.

The first structure considered, the triangular lattice beam, was
developed as a test bed to provide a quick means of evaluating the
algorithms presented. The cross-section is non-symmetric to further
simplify the problem by eliminating repeated eigenmodes. The design
variables are chosen to be the cross-sectional area (axial stiffness) and
moment of inertia (bending and torsional stiffness) of the longerons in the
last bay (next to the support, numbered 1, 2 and 3 in Figure(l)).

The two additional cases represent more practical problems. The
Cobra elastic line model is a simplified representation of the actual Cobra
helicopter structure that is being used for sensitivity studies [28]. In
addition to beam elements it contains linear spring and rigid body elements
and uses a lumped approach in modelling the mass of the structure. The
design variables are shown in Figure (2) and include the stiffness of linear
spring and beam elements and certain concentrated masses. The other case
considered 1is a ten bay section extracted from the support structure of the
current proposed configuration of the NASA space station. The design
variables are very similar to those chosen for the triangular lattice.

5.2 Comparisons of the Exact and Approximate Vectors
In comparing vectors obtained from the reduction method

(eigenvectors and their derivatives) to those obtained from the solution of
the full equations the following error norm is used [14}]:
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| (68)

{X} 1is the exact vector and {X} is the vector obtained from the reduction

method. |xmax| is the maximum absolute value of the exact vector and N is

the number of components. This norm is similar to the r.m.s. error norm but
is weighted to give less importance to the smaller components of {X} which
are usually of less practical importance.

It is important to distinguish between the norm presented here using
the exact solution and the one presented in the previous section using a
residual from the full equations. Experience in this study has shown that
values for the exact error norm of 0.001 or less indicates an accurate
approximate vector. This corresponds to an error for the largest component
of a few percent or less. Values for the residual error norm of 0.1 or less
show a similar accuracy. On the other hand, values for the exact error norm
of 0.01 or greater indicate that the approximate vector shows very little
resemblance to the exact. For the residual error norm values of 1.0 or
greater indicate poor accuracy.

In addition to the error norms, portions of the exact and
approximate vectors are plotted. The components and nodes for which the
vectors are plotted are chosen by examining the eigenvectors for the largest
displacement and rotation. These plots provide a better physical indication
of the accuracy of the vectors.

5.3 Verification of the Results

To insure the reliability of the presented results they are checked

by independent programs using finite difference operators to evaluate the

derivatives. For the full equations, eigensolutions are calculated for a
positive and negative perturbation of each design variable from the
equations

([K](V&AV)_ XgViAV)[M](ViAV)) {Xi}(ViAV)= 0 (69)

where the superscript (VzAV) indicates the positive and negative
perturbation respectively. The eigenvalue and eigenvector derivatives are
then calculated from the first order central difference formulae:

ax, AV _\(V-00)
1.3 1 (70)
X 280
simy 1 VOV gy 0D
v - 20V 1)

In the development of the reduced equations it is assumed that the basis
vectors are invariant with respect to the design variables. Thus in the
finite difference approximations the basis vectors are determined for the

unperturbed structure and used to reduce the perturbed equations resulting
in
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&1V (0D g V=00 £ D)

(72a)
T
) [ﬁ](ViAV) - [r](V) [M](ViAV)[r](V) (72b)
an
([K](V¢AV)_ XgV*AV)[ﬁ](ViAV)) {wi}(ViAV) (73)

The approximate derivatives are then calculated from the relations

1 ~ 1 1 (74)

oV 28V
33 R R R (A At
v = 1] 26V (75)

In all cases very close agreement was found between the analytic and finite
difference results.

5.4 Accuracy of the Derivatives Predicted by the Reduction Methods

In the present study both static condensation and generalized
dynamic reduction are investigated as a means to reduce the governing
equations for the displacement model of the triangular lattice beam. The
results for the lowest eight vibration modes are presented in Tables (1) and
(2) and the first four eigenvectors and their derivatives are plotted in
Figure (4).

In the application of static condensation to the triangular lattice
beam, 36 out of the total 180 degrees of freedom are retained in the
analysis. These correspond to the six degrees of freedom at each of the
three nodes on the first and third cross-sections of the beam, numbered
sequentially from the free end. Only the lowest two eigenvalues and their
corresponding eigenvectors are reasonably accurate. For higher modes the
accuracy of the eigensolution falls off very rapidly. The derivatives of
the eigenvalues are less accurate than the eigenvalues themselves, but are
within ten percent of the exact value. Unfortunately, the derivatives of
the eigenvectors show very little or no resemblance to the exact solution,
even for the lowest two modes.

Vith generalized dynamic reduction a much higher degree of reduction
is possible. Several choices for the number of basis vectors and iterations
were tried and the results indicated that accurate modes could be obtained
with as few as six basis vectors. Attempts at using a larger number of
vectors resulted in slightly more accurate eigensolutions but had little
effect on the accuracy of the eigenvector derivatives. The cost of reducing
and solving the reduced equations increases rapidly with the number of basis
vectors so it is generally more efficient to use the smallest number of
basis vectors possible. Although fewer modes are obtained from the reduced
set of equations and more shifts are required, it is still generally more
efficient.

The results shown in Figure (4) and Tables (1) and (2) are obtained
by using six basis vectors that are generated with four iterations on the
initial random vectors. In each reduction the lowest four of the calculated
modes are retained. The shift value is initially chosen to be zero and
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calculated from the estimates of the higher eigenvalues on subsequent
reductions. Although only the first eight modes are shown, the first twelve
were calculated accurately. Even with such a high degree of reduction, the
eigensolution is obtained much more accurately than with static
condensation. The accuracy of the eigenvalue derivatives is also
considerably better although they are still 1less accurate than the
eigenvalues. The eigenvector derivatives in some cases resemble the exact
results but for the most part, the reduced basis does not adequately
characterize the eigenvector derivatives.

5.5 Implementation of the Mixed Method

In the previous section the triangular lattice is modelled with a
displacement beam element. This section investigates the modelling of an
identical structure with a mixed beam element. The element has 3
displacement nodes and 2 stress nodes resulting in quadratic approximation
of the displacement field and linear approximation of the stresses. In
contradistinction, the displacement element has two nodes and uses
interpolation functions developed from classical beam theory that result in
quadratic approximations for the axial displacements and cubic
approximations for the bending displacements [30]. Also, the mixed element
includes shear deformation and the displacement element does not. The
results for the lowest four modes of the mixed model are presented in Table
3 and Figure (5). Comparing these with those obtained for the
displacement model it is seen that the full equations yield almost identical
results.

The full mixed model contains 900 displacement and 240 stress
degrees of freedom. Through the use of generalized dynamic reduction the
total number of degrees of freedom is reduced to just 6. Again comparing
the results from the two formulations it is seen that the reduced mixed
model does not provide quite as accurate results as the reduced displacement
model of the previous section (reduced from 180 to 6 degrees of freedom) but
this is probably due to the large difference in the number of degrees of
freedom. However, the results are very similar in that the eigensolution
and the eigenvalue derivatives are determined fairly accurately but the
eigenvector derivatives are not. It is apparent from both the displacement
and mixed models that some type of improvement is necessary for the
eigenvector derivatives obtained from the reduction method.

The advantages of this method result from the simplified form of the
governing equations. As discussed in a preceding section, this simplifies
the calculation of the derivatives of the stiffness matrix when the design
variables are the inverse of a cross-sectional area or moment of inertia.
Also, shear deformation can be included in the formulation very easily.
This study shows that the mixed model is capable of providing the same
results as the displacement model.

5.6 Iterative Refinement of Eigenvector Derivatives

Two algorithms are implemented for improving the accuracy of the
eigenvector derivatives that were obtained using generalized dynamic
reduction on the displacement model of the triangular lattice beam. These
algorithms are presented in the preceding section. The first method is
based on the inverse power method and will be referred to as IPM while the
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second uses a preconditioned conjugate gradient algorithm and will be
referred to as PCG.

In the present implementation the IPM or PCG iterations can be
terminated by three separate criteria. A maximum of two iterations is
allowed, but if the residual error norm for the vector drops below 0.1 or is
greater than on the previous iteration the procedure terminates. The
results of wusing IPM and PCG iteration are shown in Tables (4) and (5)
respectively for the lowest eight modes. For both IPM and PCG, the results
are plotted in Figure (6). It is seen from these results that one iteration
with either method in most cases provides a dramatic improvement in the
accuracy of the approximate vector. In some cases a second iteration is
required to meet the convergence tolerance but in a few of these cases the
second iteration diverges (Table (5), PCG iteration, derivative of
eigenvectors 6-8 with respect to Vz; also, not shown, IPM iteration,

derivative of eigenvector 12 with respect to V2). This may be a result of

the near singularity of the matrix on the left-hand side of the governing

equations. Further investigation with more iterations shows an oscillatory
behavior for all the derivatives but this does not wusually occur in the
first two iterations. It is observed to occur after fewer iterations for

cases in which the approximate eigensolution is not quite as accurate, but
occurs for all modes after several iterations. Although the cases for which
oscillation occurs on the second iteration do not quite meet the convergence
tolerance, examination of the plots in Figure (6) show that the approximate
vectors are reasonably accurate.

From the examination of Tables (4) and (5), it appears that the IPM
jiterations are slightly more effective at improving the accuracy of the
eigenvector derivatives than PCG, since it generally leads to smaller values
of the error norm. However, the plots of the vector shown in Figure (6)
show the difference to be insignificant. In terms of efficiency, PCG has an
advantage since the residual needed for the convergence check is a by-
product, whereas in IPM iteration it must be calculated separately.

A topic of primary interest is the efficiency of the reduction
method as compared to the solution of the full system of equations. The
programs used in the current implementation are not optimized sufficiently
to make a comparison of execution times meaningful. Also, the structures
investigated are smaller than the intended application due to the central
storage limitation (130560 words) of the CYBER 175 computer used in the
analysis. In order to assess the efficiency, an accounting of operations is
performed. The comparison is made between the solution of the full system
of equations by Nelson’s method (equations (5)-(7)) and the solution of the
reduced equations with subsequent iterative refinement (1 iteration) by the
PCG method. With two major exceptions, the operations required in both
cases are almost identical. The exceptions are the decomposition of a
coefficient matrix for each eigenvalue in the solution of the full equations
and the reduction of the derivatives of the stiffness and mass matrices to
obtain the reduced equations. Both of these have no counterpart in the
other method. Considering the usual sparsity of the derivatives of the mass
and stiffness matrices, the latter is usually much less time consuming.
Since the decompositions usually account for a large percentage of the
computer time the reduction method can result in significant savings.
However, if the design variables affect large portions of the structure or
there are an unusually large number of design variables, the solution of the
full equations may be more attractive.
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5.7 AH-1G Cobra Elastic Line Model

The Cobra elastic line model (developed by Hanson and Murthy [29])
is a very coarse representation of the actual helicopter structure as shown

in Figure (2). The displacement model contains 336 degrees of freedom
before the inclusion of rigid body elements and the application of boundary
conditions. The rigid body elements reduce the number to 252 and the

boundary conditions (chosen to eliminate the rigid body modes) further
reduce the number to 246.

The lowest eight vibration modes (shown in Figure (7)) can be
divided into groups according to the portion of the helicopter to which they
correspond. Modes 1 and 2 represent rocking of the main rotor pylon
assembly; 3, 4, 7 and 8 correspond to modes of the aft fuselage, tailboom
and vertical fin; and modes 5 and 6 to the front fuselage section. Two
design variables are defined within each of these sections and are marked by
circled number in Figure (2). For the main rotor pylon the design variables
are the stiffness of the springs supporting the pylon in the vertical
direction_( ) and the bending stiffness of the upper section of the rotor
mast ( ). For the aft fuselage modes_the bending stiffness of a small
section is chosen as one design variable ( ) and the mass of the tail
rotor as the other ( (:) ). Likewvise for the front fugselage the bending
stiffness of one element is chosen as a design variable ((:)) and also the
mass of the gun turret ( ).

The results obtained from the full equations (exact) and using
generalized dynamic reduction with 12 basis vectors are presented in Figure
(7) and Table (6). The basis vectors are obtained by performing 4
iterations on 6 random and 6 wunit vectors. The unit vectors contain a
single unit component in one of the locations corresponding to the masses of
the main and tail rotors. This ensures that these masses are excited and
improves the accuracy of the associated vibration modes. The results show
that this provides good accuracy for the eigensolutions.

In examining the accuracy of the eigenvalue derivatives some very
large errors are discovered, however these correspond to modes that are
effectively invariant with respect to the particular design variable. Since
the reduction method does find the eigenvalue derivatives to be relatively
small, these large errors do not pose a problem. For efficiency logic
should be included in the program to avoid computation of the associated
eigenvector derivatives.

The eigenvalue derivatives of importance are predicted accurately.
In addition, a few of the eigenvector derivatives are also reasonably
accurate, but the majority are not. The application of PCG iteration proved
very effective at obtaining accurate eigenvector derivatives.

5.8 Orthogonal Tetrahedral Lattice Beam

In addition to the previously presented triangular lattice that
represents a specialized problem, it is desired to present a repetitive
beam-like lattice structure with some practical significance. The keel beam
of the proposed NASA space station consists of several orthogonal
tetrahedral lattice beams (see Figure (3)) and for this study a ten bay
length is investigated.

The beam is modelled with a displacement element and contains 240
degrees of freedom. The model is reduced using generalized dynamic
reduction with eight basis vectors. For the initial reduction (shift = 0.0)
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the basis vectors are obtained by performing 4 iterations on eight random
vectors and the 1lowest two eigenmodes are retained. On  subsequent
reductions 6 iterations are performed on the random vectors and two modes
are retained. The results for the first eight modes are presented in Figure
(8) and Table (7). It is observed that for both the present case and the
triangular lattice, the minimum number of basis vector required is 1/30th
the total _number of degrees of freedom, however the present case requires
more iterations and yields a smaller number of accurate modes per reduction.
The first twelve modes were calculated accurately. It is suspected that
more could be calculated, however this was not attempted.

The derivatives of the eigenvalues are obtained accurately from the
reduction method and PCG iteration is used to improve the eigenvector

derivatives. Using the same termination criteria discussed previously, no
cases are present in which the solution diverges in the first two
iterations. The PCG method again demonstrates good effectiveness at

improving the accuracy and in most cases only one iteration is required.
However, comparing the error norms in Table (7) with the plots in Figure
(8), one peculiarity is discovered. For the derivative of eigenvector 3
with respect to V2 the exact error norm is 0.0016 after PCG iteration which

indicates a reasonably accurate vector. The plot of the vector shows good
agreement for the rotations but poor agreement for the displacements. This
is most likely due to the difference in the size of the components
(approximately two orders of magnitude) and brings out a small weakness of
the procedure. In examining the remainder of the results a few more cases
are discovered in which the smaller terms are not calculated accurately.
However, in many practical applications these components are of 1little
importance.
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VI. CONCLUSIONS AND RECOMMENDATIONS

6.1 Summary

In the present study computational procedures are presented for
calculating the sensitivity derivatives of the vibration frequencies and

eigenmodes of framed structures. The procedures incorporate two key
elements. The first is the wuse of dynamic reduction techniques to
substantially reduce the number of degrees of freedom. The reduction

techniques considered are static condensation (Guyan’s reduction) and a
generalized dynamic reduction technique. The second key element 1is the
application of iterative techniques to improve the accuracy of the
derivatives of the eigenmodes. The two procedures presented are based on
the inverse power method and the preconditioned conjugate gradient
technique.

Numerical studies are performed on three frame type structures using
displacement and mixed finite element models. Error norms are introduced to
assess the accuracy of the eigenvalue and eigenvector derivatives obtained
by the reduction techniques.

6.2 Conclusions

On the basis of the numerical studies performed in this report the
following conclusions seem to be justified:

1) In the structures considered, generalized dynamic reduction -allowed
the reduction of the equations to a small number of degrees of
freedom and provided a decomposed coefficient matrix wuseful in
improving the accuracy of the eigenvector derivatives. Static
condensation was sensitive to the choice of the free degrees of
freedom. Neither method was capable of reliably predicting the
derivatives of the eigenvectors.

2) The mixed and displacement models used in the present study resulted
in eigensolutions and their derivatives that were in very close
agreement. Also, similar accuracy was obtained from the reduced
models in both formulations. The advantage of the mixed formulation
results from the simplified calculation of the derivatives of the
stiffness matrix with respect to design variables that are the
inverse of sizing quantities. Also, the simple form of the
governing equations allows shear deformation to be included easily.

3) Both the exact and residual vector error norms provide a good
indication of the accuracy of the approximate vectors. A good
correlation was observed between the two norms, the error of the
largest component and the plots of the vectors.

4) Both the PCG and IPM procedures for improving the accuracy of the
approximate eigenvector derivatives proved very effective. In most
cases one iteration was sufficient to obtain very accurate results.
The efficiency of these procedures compared with other solution
methods wusing the full equations depends on several factors. For
cases in which the decomposition of the coefficient matrices results
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in a large percentage of the full system solution time and the
derivatives of the stiffness and mass matrices are  sparsely
populated, significant savings can be realized.

6.3 Recommendations

The following recommendations are presented in the hope that they

will provide direction for future research in the topics investigated in
this study:

)

2)

3)

4)

The effectiveness of the proposed procedures should be investigated
for structures containing repeated or very closely spaced
eigenvalues. One possible way of doing this is discussed in section
two but numerical studies are not performed.

The procedures presented in this report should be implemented in a
commercial finite element code and numerical studies performed on
several very large and complex structures. The size of the
structures investigated in this study was limited by the central
storage capacity of 130,560 words for the CYBER 175 computer.

Detailed studies of the numerical behavior of the IPM and PCG
procedures should be performed. The methods showed a tendency to
oscillate after several iterations and the causes of this should be
identified.

The effectiveness of using static condensation to provide starting

iteration vectors for the generalized dynamic reduction should be
investigated.
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a) Undeformed Structure with Boundary Condition

I--0.525m--

0.225m —e=d

h=0.6495m

l-—— b=0.75m ——=

b) Repeating Module

|.__L=o.75m—-—|

Cross-Sectional Moment of Moment of Torsion
Area Inertia, Axis 1 Inertia, Axis 2 Constant
Longeron A I1 I2 J
Batten 0.5A 0.108311 0.108312 0.1083Y
Diagonal 0.5A 0.108311 0.108312 0.1083Y
A=3.0%X 105 p? E = 6.895 X 100 N/m?
I,=1,=6.0x10" a* 6 = 2.652 X 100 n/m?
y=1.2x10%* p = 2768 kg/m>

V1 = Cross—sectional area of menbers@.@and@

V2 = Moment of inertia and torsion comstant of membet@.@and@

c) Design Variables and Material Properties

Figure (1)

present study.
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V) = stiffness of linear elastic elements @ = 7.881X10° N/m
V, = moment of inertia of beam element @ - 4.995X107° n*
Il = I2 = V2

4

V, = moment of inertia of beam element (:) 4.162X107° o

I, =167V, , I, =139V

1 3 2 3
V4 = rigid mass (:) = 13,97 kg
V5 = moment of inertia of beam element (:) = 4.162}(10-3 m4
I1 = 1,471 V5 , 12 = 1.275 V5
V, = rigid mass (&) = 114.9 kg
9 2
E = 6.895X10° N/m2 G = 2.652X10° N/m

b) Design variables and material properties.

®—

o clamped
¢) Finite element model. boundary condition

Figure (2) Elastic line model of the Bell AH-1G Cobra used in the present
study.
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b) Undeformed structure with boundary condition.

Typical tubular member Material Properties
. -2
Inner radius = 5.08X10
N m E = 2.76x10'1 w/m?
uter radius = 5.46X10
mn G = 1.06X1011 N/m2
Design Variables p = 1880 kg/m3

V1 = Cross—-sectional area of members @, @, @, and @
V2 = Moment of inertia and torsion constant of members@,@,@, and @.

¢) Member and material properties, and design variables.

Figure (3) The orthogonal tetrahedral lattice beam used in the present study.
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