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Abstract 

We discuss parameter and state estimation techniques for an elliptic 

system arising in a developmental model for the antenna surface in the Maypole 

Hoop/Column antenna. A computational algorithm based on spline approximations 

for the state and elastic parameters is given and numerical results obtained 

using this algorithm are summarized. 
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I. Introduction 

Proposed large space structures have many characteristics that make them 

difficult to analyze and control [1]. They are typically highly flexible--

-	 with components mathematically modeled by partial differential equations or 

very large systems of ordinary differential equations. They have many resonant 

frequencies--possible low and closel y spaced. Natural damping may be low and/or 

improperly modeled [2]. Coupled with stringent operational requirements of 

orientation, shape control, and vibration suppression, and the inability to 

perform adequate ground testing, these characteristics present an unconventional 

control design problem to the systems theorist. 

Frequently, linear multivariable control theory is applied to reduced 

order models obtained from finite element software with the goal of controlling 

the structure so as to meet the operational requirements without overly exciting 

higher order modes. Difficulties can arise essentially from the process of 

analyzing and designing controllers for flexible, inherently distributed systems 

employing lumped parameter models and finite dimensional control methodology. 

The effects of spillover, modeling error, and insufficient structural damping 

are well known [1, 3] and may force the designer into low authority control 

laws with compromised operational performance. 

An alternative approach would be to acknowledge the distributed nature 

of the problem and design the control system using distributed parameter 

-	 techniques. Many aspects of distributed parameter control theory analogous 

to multivariable theory exist or are currently being developed [1, 4-7, 7a, 7b, 

lc] . Unfortunately, control laws derived from distributed parameter theory 

usually are infinite-dimensional and often require significant simplification 

to be realized with current sensor and actuator technology. Although distributed



parameter control methodology may ultimately be applied to large space structures, 

it is doubtful that first generat3n lirge space structures will have sufficient 

hardware and computer capability to apply the resulting solutions. 

However, even at the present time, much can be gained from the distributed	 - 

parameter approach in the area of parameter estimation. Whether the lumped 

or distributed parameter control design approach is taken, there remains the 

underlying need for design models which adequately reflect the structural 

characteristics and which can be quickly and easily modified to carry out 

parametric studies [3] and to perform sensitivity and robustness analyses 

essential to control design [8]. There are also open questions in the under-

standing and modeling of damping [2, 3] which may be better treated within a 

distributed parameter formulation. Finally, a distributed model appears to have 

the potential of facilitating the parameter estimation problem for large scale 

systems since quantities to be estimated will usually appear explicitly within 

coefficient functions of the partial differential equations. 

This report summarizes some of the results from an ongoing Langley Research 

Center program directed towards developing parameter, estimation techniques for 

flexible systems modeled by partial differential equations with an emphasis on 

large space structures. The intent of the program is to produce general purpose 

techniques with a sound theoretical basis which are computationally efficient 

while contributing to Langley's technology development program in large space 

antennas [9]. Of the many techniques available for parameter estimation in 

distributed systems (for example, see [1O]) cne spline based estimation techniques
a 

of [11-15, 15a] appear well suited for large space structures applications and 

are currently being developed to treat this class of problems. Simultaneously, 

an estimation problem associated with the Maypole (Hoop/Column) antenna [16]
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is being formulated and will be solved as part of the developmental process. 

The next section of this paper describes the Hoop/Column antenna and presents 

the identification problem being considered. The parameter estimation approach 

is then outlined and discussed in the context of the Hoop/Column application. 

Subsequent sections include mathematical details of the antenna application 

and numerical results. 

II. The Maypole (Hoop/Column) Antenna 

One of the planned activities of the NASA's Space Transportation System 

is the placement in earth orbit of a variety of large space antennas. Potential 

large space missions for the next two decades will require antennas and structures 

ranging from 30m to 20km in size. Applications include communications (mobile, 

trunking, etc.), remote sensing (soil moisture, salinity, etc.), deep space 

network (orbital relays), astronomy (x-ray observatory, optical array, radio 

telescope, very long baseline interferometry, etc.), energy, and space platforms. 

For the purpose of technology development, the NASA Large Scale Systems 

Technology (LSST) program office has pinpointed focus missions and identified 

future requirements for large space antennas for communications, earth 

sensing, and radio astronomy [9]. In this study, particular emphasis is placed 

on mesh deployable antennas in the 50-120 meter diameter category. Communication 

satellites of this size will require a pointing accuracy of 0.0350 and surface 

accuracy of 4-8nun.	 One such antenna is the Maypole (Hoop/Column) antenna shown 

for the lOOm point-design in Figures 1, 2, and 6. 	 This antenna concept 

has been selected by the LSST office for development by the Harris Corporation, 

Melbourne, Florida, under contract to the Langley Research Center [16].
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The Hoop/Column antenna consists of a knitted gold-plated molybdenum 

wire reflective mesh stretched over a collapsible hoop that supplies the 

rigidity necessary to maintain a circular outer shape. The mesh grid can be 

varied to meet a given radio frequency reflectivity requirement. The annular 	 - 

membrane-like reflector surface surrounds a telescoping mast which provides 

anchoring locations for the mesh center section (Figure 2). The mast also 

provides anchoring for cables that connect the top end of the mast to the outer 

hoop and the bottom end of the mast to 48 equally spaced radial graphite cord 

truss systems woven through the mesh surface [16]. Tensions on the upper 

(quartz) cables and outer lower (graphite epoxy) cables are counter balanced 

to provide stiffness to the hoop structure. The inner lower cables produce, 

through the truss systems, distributed surface loading to control the shape 

of four circular reflective dishes (Figures 2 and 6) on the mesh surface. 

Flat, conical, parabolic, or spherical dish surfaces can be produced using this 

cable drawing technique. 

After deployment or after a long period of operation, the reflector surface 

may require adjustment. Optical sensors are to be located on the upper mast 

which measure angles of retroreflective targets placed on the truss radial 

cord edges on the antenna surface. This information can then be processed 

using a ground-based computer to determine a data set of values of mesh surface 

location at selected target points. If necessary, a new set of shaping (control) 

cord tensions can be fed back to the antenna for adjustment. 	 - 

It is desirable to have an identification procedure which allows one to 

estimate the antenna mesh shape at arbitrary surface points and the distributed 

loading from data set observations. It can also be anticipated that environ-

mental stresses and the effects of aging will alter the mesh material properties. 

The identification procedure must also allow one to address this issue.
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It is the intention of the authors to develop identification procedures 

for use in distributed parameter models of the mesh surface. Considering the 

antenna to be fully deployed and in static equilibrium, we are currently 

deriving a mathematical model which describes the antenna surface deviation 

from a curved equilibrium configuration (for preliminary findings, see [16a]). 

Using a cylindrical coordinate system with the z axis along the mast, it is 

expected that the resulting model will entail a system of coupled second order 

linear partial differential equations in two spatial variables. The coefficients 

of these equations are functions of the material properties of the stretched 

mesh. The derivation and computer software for this model are still under 

development. In the meantime, a simpler developmental (prototype) problem 

has been solved which is descriptive of the original problem and for which the 

software produced will hopefully be readily extended for use in the more general 

case.

For the developmental problem, the loading is assumed to be normal to the 

plane containing the hoop rim and the mesh surface is assumed to be described 

by the static two-dimensional stretched membrane equation [17] with variable 

stiffness (elastic) coefficients and appropriate boundary conditions for the 

Hoop/Column geometry. (We note that there is ample precedent in the literature 

[17a, 17b] for use of a scalar Poisson's equation for the two-dimensional 

stretched membrane as a prototype or developmental model in the study of large 

space antennas.) Mathematically, in polar coordinates, we have 

-	 --[rE(r,e) -] -	 .. [E(r,o)	 ] = f(r,)	 (1)
ao 

where u(r,e) is the vertical displacement of the mesh from the hoop plane,
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f(r,o) is the distributed loading force per unit area, and E(r,e) > 0 is the 

distributed stiffness (elastic) coefficient of the mesh surface (force/unit 

length). Equation (1) is to be solved over the annular region n = Ic,R]x [0,2n]. 

Appropriate boundary conditions are 

u(c,o) = 

u(R,e) = 0
	

(2) 

u(r,0) = 

where R is the radius from the mast center to the circular out 	 hoop, c is the 

radius from the mast to the beginning of the mesh surface (see Figure 6), and u0 

is the coordinate at r = c of the mesh surface below the outer hoop plane. For the 

100-meter point design antenna, one finds 

R = 50m
S 

= 8.235m	
(3) 

U0 = - 7.5m. 

We further assume that the distributed loading along with a data set of 

vertical displacements, u 1 ( re ). at selected points (re ) on the mesh 

surface is known. Given this information, the developmental problem is to 

estimate the material properties of the mesh as represented by E(r,o) and 

produce estimates of the surface represented by u(r,e) at arbitrary (r,e) 

points within c. The procedure applied to solve this problem is discussed 

in the next section.
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III. The ParameterEstimation Approximation Scheme 

The first two authors and their' colleagues have derived techniques for 

approximating the solutions to systems identification and control problems 

-	 involving delay equation models and partial differential equation models in 

one spatial variable and have used them in a variety of applications [18, 18a]. 

The Hoop/Column application requires an extension of the theory and numerical 

algorithms to elliptic distributed systems in several spatial variables. The 

approach, when specialized to the parameter estimation problem, may be summarized 

as follows. (1) Select a distributed parameter formulation containing unknown 

parameters for a specific system. (2) Mathematically "project the formulation 

down onto a finite dimensional subspace through some approximation procedure 

such as finite differences, finite elements, etc. (3) Solve the parameter 

estimation problem within the finite dimensional subspace obtaining a parameter 

estimate dependent upon the order of the approximation embodied in the subspace. 

(4) Successively increase the order of the approximation and, in each case, 

solve the parameter estimation problem so as to construct a sequence of parameter 

estimates ordered with increasing refinement of the approximation scheme. (5) 

Seek a mathematical theory which provides conditions under which the sequence 

of approximate solutions approaches the distributed solution as the subspace 

dimension increases with a convergent underlying sequence of parameter estimates. 

In applying this approach to the developmental problem described in this 

report, the stiffness function is parametrized in terms of cubic splines 

which converts the estimation of E(r,e) into a finite dimensional parameter 

estimation problem. After writing the energy functional generic to the 

membrane equation, we use the Galerkin procedure to project the distributed
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formulation onto a finite dimensional state subspace spanned by tensor products 

of linear spline functions defined over c. The approximate displacement thus 

obtained is expressible in terms of the spline basis functions. The Galerkin	 - 

procedure in this case yields algebraic equations which define the displacement 

approximation coordinates in terms of the unknown parameters. in order to 

solve the approximating parameter estimation problem, the parameters defining 

E(r,O) are chosen so that a least squares measure of the fit error between the 

observed and predicted (by the approximate state) data set is minimized. Finally, 

following steps (4) and (5) an algorithm is constructed to determine the 

order of the linear spline approximation above which little or no further 

improvement is obtained in the unknown parameters as one increases the dimension 

of the subspaces. 

Following this procedure, a one-dimensional version of the developmental 

problem has been solved [19] in which the schemes proposed were successfully

iw 
tested. Further details of the two-dimensional case follow. 

IV. Finite Dimensional Approximations 

We choose a Galerkin procedure [20, 20a] with linear spline basis functions 

to perform the finite dimensional approximation for the developmental problem 

in which E(r,o) and u(r,e) of equation (1) are to be estimated. The boundary 

conditions (2) are first converted to homogeneous form by introducing the new 

dependent variable 

y(r,o) = u(r,e) - ( 
ITI ) 

u0
	

(4) 

whereby equation (1) becomes



	

a	
rE(r,e)u 

J-- [rE(r,e) .1] - I - [ E(r,o)	 ] = f(r,o) + - ________
.10 r ar	 E - R O 

1	 j	
(5) 

r ar	 0r	 r2 ae

with boundary conditions 

y(c,o) = 0 

y(R,o) = 0	 (6) 

y(r,0) = y(r, 2ir). 

Following the standard formulation (see [20, 20a]) for the weak or 

variational form of (5), the energy functional E associated with (5) is 

2ii R( 

E(z) = f	 f	 . E(r,o)vz	 vz - P(ro)z) rdrdO,	 (7) 

e L 0  

where v is the gradient in polar coordinates which, in the form used here, 

is equivalent to 

,a	 la	 T (8) 

The function f is given by

rE(r,o)u 

f(r,o) = f(r,o) + - L	 )	( 9).
ar 

and the vertical displacement z(r,o) of the mesh surface away from the hoop 

equilibrium plane is a function satisfying the boundary conditions (6) and 

possessing first derivatives on si in the mean square sense (we denote this by 

Z E Hper(1)	 Z).	 The first variation 6E of £ about the function y(r,e) 

is given by
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2IT R( 

	

E(y;v) = f	 f 4 E(r,o)vy • vv - (r,o)v rdrdo 

	

0	 c.	 ) 

2v	 ( R	 - 

	

= f	 f	 E(r,e)vy • vv - [f(r,e)v +E(r,o)k • vv] rdrdo
	

(10) 

	

0	 c¼.	 ) 

where 

U 
/k\

/ 

k = = 

0 0

and v is an arbitrary function in Z = H,per(c2). 

Under sufficient smoothness assumptions one can integrate by parts in 

the first terni in (10). Then,if one invokes the conditions that y provides a 

stationary value for E, the fact that 6E(y;v) vanishes for all v in Z yields 

equation (5). However, we shall not follow this course, but rather we shall 

apply the Galerkin procedure directly to the weak form of (5) given by 

E(y;v) = P. 

Given a finite dimensional subspace Z of Z, the Galerkin procedure delines 

the approximation y as the solution in Z of 

21r R	 2ir R 

f	 f (E(r,O)vy • vv)rdrdo = f	 f (f(ro)v +E(r,O)k • v)rdrcie (12) 

0	 0. 

for all v€ Z. 

For computational efficiency, the basis functions used for the representations 

of y in (12) are taken as tensor products of linear B-splines [20, p. 27; 20a, 

P. 1001. Thus v and y are in the space spannc'd by v 1 , where

p 



.

I  

v(r,o) = ci(r)(o),	 (1	 1, ..., M-1;	 j = 1, ..., N),	 (13) 

where a and a have the following form: On the interval [c,R] (subdivided by 

defining partition points r = c + (R-c)(j-l)/M, j = 1, ..., M+1), ci is the 

1th linear B-spline basis element, i = 1,2,...,M-1, given in the following graphical 

representation 

1

M	 M	 M c	 r	 r 1 f1 r. 2	 R 

Subdividing [0,2ii] into intervals of uniform length 2n/N, we define	 for 

N-1 by

__t\__ 
2it2n .	 2ir 
1T (j-i) -fl-- j -- (j+1)	 2 

and define s (e) as follows. 

0	 21T	 (- 1) 2 71	
2n 

N
	

N
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For y(r,o) within the subspace spanned by v.
M,N 

we can write 
13 

MIN	
M-1 N	

M	 M 
r,o) =	 a(r)w(o) 

i = 1 j=1 

Note that the coordinate w MIN is just the value of y 
MIN (r,e) at 

r = £ + 

o=j 

Replacing y(r,o)in (12) by yMI(r,g) from (14), (and letting v(r,e) =
ij 

for i = 1,	 , M-1; j = 1, .	 , N) we generate the following set of algebraic 

equations for' w MIN 

MN	 MN	 MN	 •MN 

i1	
w	 KkCij =	 +	

(k= 1, ..., M-1; e= 1,	 , N),	 (15) 

where

MN 
Kkjj

2 

= J f

R

E(r,e)v[(r)i(o)]. v[a(r)(e)]rdrdo 
o

271 

f J

R
E(r,0)	 0)B(0)[ -a(r)][ .	 ct( r )] rdrdo	 (16) 0. 

+ f
211 R	 a. 

M 
(r)ak 

M 

-----
 
---- f	 E(r,e)

(r)	 d	 N 
[	 e(o)][	 (e)]rdrdo 

MN 
F k	 =

271 

f	 f

R
f(r,e)c(c)	 (o)rdrdo, (17) 

0

(14) 

and
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M'	
21T R 

G k	 = f	 f E(r,e)k(e)[	 ctk(r)]rdrdo.	 (18)
 le	 dr

0	 c 

-	 We note here that 

- MN 	KMN MN	 _MN 
•	 Kkij - iC,kj - Kkji/ - Kjjk/ •

	 19 

The system (15) can be written in vector matrix notation as 

AMN MN = MN	 (20) 

where, in partitioned matrix form, 

AMN = (A),	 (p	 1, ..., M-1;	 q = 1, ..., M-1)	 (21) 
pq 

and, for fixed p and q, 

AMN = (KM	
)	 (22) 

pq	 pi,qj 

for (row) i = 1, ..	 N, and (column) j = 1, •.., N. 	 From properties (19), 

we also have that 

AMN 
1-

[A MN ] T  = AMN 	 (23) 
pq	 pq	 qp 

In addition, the vectors wMhi and c MN are given by
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MN 
Wi1 

I	 MN 
W12 

MN 
W1 N 

W21 

MN MN 
W	 = w22 

(MN 
MN 

w 2

(24) 

MN 
WM_1,1 

MN 
WM 1, 2 

MN 
WM1 ,N 

and



MN F 11 MN 
4 

MN 
112

MN 
4 

F!
IN

+	 G! 
IN 

15 

C 
MN

/	 MN 

I	 F 21 +	 GMN \ 21 

f MN 
F 22 MN 

b22 

MN 

\ F,

MN	
1 

+	 2N

(25) 

FN1 , 1 +
	 .1

MN 

MN	 SMN 
FM_ I , ?	 'M 1 .2 

F lN + GMIN 

For large values of the product MN, AMN is high order, ((M-l)Nx (M-1)N). 

It is a symmetric, sparse matrix which c3n t. partitioned as (M-1) 2	
N x N 

submatrices. Sparse matrix techniques can he avoided in solving (20) if we 

assume that E(r,) is separable. That is, 
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E(r,O) = E 1 (r) E2(o) 

where E 1 (r) > 0 and E2 (e)	 0; we may now write 

KM	 = a. bM + c. dM 
pi,qj	 31 qp	 31 qr 

where
2'u 

aji = a	 = I	 E2(e)(0)(0)do 
0 

M	 M	
R

d M	 d	 M b q p = bpq = I E 1 (r)[ Fr czq (r)][	 a(r)]rdr 
C

2 
N	 N	

ii
 

c	
= Cij = f	 E2(e)[

ji	
0 

and
M	 M 

R	 cx (r)a (r) 
M M	 _____ 

dqp = dpq = I E1(r) g
	 p	

dr. 
C 

Utilizing (27) and defining matrices 

	

= (a)	 (I = 1,	 , N;	 j = 1,  

	

(b)	 (q = 1,	 ., M-1;	 p	 1, ..., M-T) 

N 
C	 = (c)	 (i = 1,	 . , N;	 j	 1,	 . , N) 

M(dM)	 (p1,...,M-1;q=1,...,M-1), 
pq 

we are able to rewrite (21) and (22) as

(26)

(27)

(28) 

(29): 

(30)

(31) 

(32.)

(33)

(34)

(35)
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AMN = bM	 N + dM	 N ,	 (36) pq	 qp	 pq 

-	 AMN = --M® N + ?5M ® N	
(37) 

where the symbol ® denotes matrix direct product [21]. 

Equation (20) now becomes 

+ MN]WMN = MN	 (38) 

which is equivalent [21, p. 261] to the matrix equation 

%M MN	 D w 
N	 'M 

+	 MN 
N = 'MN 

W	 A 
	

(39) 

where

wMN = (w i ) 	 M-l;	 j = 1, ..., N)	 (40) 

and

%MN = (F	 + G7)	 (I = 1, .. ., M-1; 	 j = 1, ..., N) .	 (41)
ij 

The coefficient matrices of w1N in (39) have numerically attractive properties: 

(i) all are symmetric, (ii) B 
"M , 

CN , and D are banded (tn-diagonal), and 

(iii) A"N and D are positive definite. 

Research to construct a numerical algorithm for solving (39) which 

utilizes these properties is planned. At present, (39) is rewritten in the 

equivalent form 

[(t4)M]wMN +	 N[N(?)] = (M)MN()1	 (42) 

and solved by the Bartels-Stewart algorithm [22].
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In order to estimate, via a numerical scheme, the functional coefficients 

E 1 and E2 we must further parametrize these functions so that identification 

is performed over a finite-dimensional (instead of an infinite-dimensional) 

parameter set. Our approach here is to consider a spline-based representation 

for each so that the shape of E 1 . E 2 is not assumed in advance (as would be 

the case if E.g , E 2 were assumed to be affine functions, for example). To this 

end, we let

M1 

E1(r) =	 ; vkkt'	 (43) 
k= 1 

N1 

E 2 (o) =	 V	 .(v)	 (44) 11	
j

3 j=l 

where v and 6 are scalar parameters and A and p j are cubic B-spline functions 

defined [20, p. 61] over [,R] and [0,27], respectively, whose orders are 

independent of M and N. The functions have been modified so that Pj satisfies 

periodic boundary conditions. Using (43) and (44), 

N 
1. 
AN= 1 6 k A k	 (45) 

K-1 

=	 'k B 	 (46) 
k=1 

N 
"N	 1 
C =	 k C k	 (47) 

k 1 

M 

=	 )kDk	 (48) 
k= 1
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where the following matrices have been defined: 

2 

(i P k (0 p (0 q (8)	 (p 1, ..., N; q = L ...	 N)	 (49) 

R 

(i x k ( r )[ .- ctM(r)][ .- c ( r )] rdr )	 (50) 
E

(p=1, ..., fl-i;	 q = 1, ..., M-1) 

1. = (271
(e )]de)	 (51) 

0

(p=l,...,N;	 q=1,...,N) 

M
 (	 q 

=	 R 'kr r	
- dr)	 (52) 

E.

(p= 1, ..., M-l;	 q = 1, ..., M-i). 

We also obtain, using (43) and (44) to characterize representations for E and 

E 
2t 

I 

IMN = ( F	 + k I 	 6kii 
I.	 Lk=i 

I	
[Ml I-	 V  1 A k (r)rd1(r) dr])	 (53) 

dM 

k=l

I = 1, . .. , M-1;	 j = 1, . .., N). 

"N 
A  

B 
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We turn next to implementation of the parameter estimation scheme, i.e., 

	

the numerical determination of v 
k2 

k	 1, ... , M 1 , and 5., j = 1 1 ...2 N1, 

that appear in (43) and (44) and correspond to "optimal" values of the parameters 

El''and E2.

V. The Parameter Estimation Algorithm 

Appealing to the ideas found in previous sections, we may now detail an 

algorithm for estimating the coefficients vk, k = 1, ..., M 1 ,and S, 

j = 1 1 ... , N,,for E(r,o) that provide the "best fit" between approximations 

for the state u and observed data Urn obtained from various sample points on 

the surface. We may equivalently consider data for y by making the trans-

formation

r.-R 
Y1(rO) = um( r i oj) -	 -R
	

(54) 

for i=l, ..., Lr, and j=l, •..,L0. 

We organize the parameter estimation algorithm into the following steps. 

1. Select an order of approximation for the cubic spline elements x  

k = 1, . .., M 1 , and p, j = 1, ..., N 1 , used to represent E 1 and E2. 

Set n = 1. 

2. Select M and N, the orders of the linear spline basis elements used 

to represent u M,N (and yMN) 

3. Assume a nominal set of values for 

= (vl, "2'	 ., VM)	 (55) 

and

=	 2'	 ' 6N1) .	 (56)
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4. Calculate the coeffic 

5. Calculate, from (14), 

Lr L0 

MN (a) =
1 = 1 j=l

lent matrices in (42) and solve for WMN(,o). 

and evaluate 

[yMN(re;va) - Y 11 (rO)]2 .	 (57) 

6. Proceed to step 8 if JMN(,a) is sufficiently small. Otherwise, 

through an optimization procedure, determine a new pair	 which 

decreases the value of 
JMN	

If no such pair can be found, go to 

step 8. 

7. Set (v,6) = (v,ó) and return to • step 4. 

8. Preserve the current values of J 
MN 

and the corresponding (v,6) pair 

as the n 
th 

entry in a sequence of these pairs, ordered with increasing 

M and N. 

9. Proceed to step 10 if sufficient data has been obtained to analyze 

the sequences. Otherwise, set n 	 n+1 and return to step 2 with 

increased M and N. The current values of (v,6) will be used as 

initial values for the next optimization process. 

10. From analysis of the numerical sequences, select the M, N entry 

which indicates the best numerical results. The corresponding (v,6) 

pair yields E(r,o) which determines the material properties of the 

antenna mesh. The matrix WMN(,.$), when used in conjunction with 

(14), determines an approximation 
yMN 

of the shape of the antenna 

surface. 

-	 For the examples reported in the next section, a Levenberg-Marquardt [23] 

(Damped Least Squares) nonlinear programming scheme was applied at step 6.
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A convergence theory has been developed for our parameter estimation 

algorithm and will be outlined in section VII below. We instead focus next 

on a comprehensive discussion of our numerical findings to date. 

VI. Numerical Results 

We present here our 'findings for a number of test examples. In Example 1 

and 2 we demonstrate the effectiveness of the scheme outlined in Section V 

as it is applied to representative model equations. We then turn to Example 3, 

which is constructed based on proposed physical characteristics of the antenna 

surface (such specifications are detailed in [16]). Lacking at present 

actual experimental data from the Hoop/Column antenna, we hope, in this 

example, to best emulate the type of data expected from the antenna. 

For each example, a Lrx L 0 grid Cy 1 (r,o), i = 1, ...	 L y	 = l .. . L0} 

of the data points is generated by choosing a desired shape u and evaluating 

(with noise added in some cases) at (re) 	 i = 1, .. . , L, j = 1, .. . , L0; 

the numerical package is then given the data and the distributed load f, where f 

is calculated by substituting the noise-free u and a choice of elastic parameter 

E into equation (1). For desired values of N and M, and an initial guess E 0 for E, 

we apply standard optimization schemes to minimize 
JMN 

(given in (57)). In 

each case, we take E(r,o) = E 1 (r)E 2 (o) where we approximate E and E 2 by 

linear combinations of cubic spline functions in r and o, respectively. 

Throughout, equations (43) and (44) are used to represent E and 
2' 

using 

= N 1 = 4.
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All numerical examples presented here were computed on the CDC 6600 at 

Southern Methodist University. We would like to express our sincere appreciation 

to David Krakosky at S.M.U. who assisted 

graphical display of these results. The

minimize J 
MN 

is the IMSL version (ZXSSQ) 

where we typically use default values of

For each example reported below, Va

in the preparation of data and 

optimization scheme employed to 

of the Levenberg-Marquardt algorithm, 

IMSL parameters. 

lues of M (or N) are specified; in 

order that M- 1 basis elements are used in both r and 0 directions, we take 

N = M- 1. Two measures of performance will be given in each case: (JMN)2 

(which provides a good measure of state approximation) and RM,N where, using 

J • J to denote the L 2 norm on [e,R]x [0,2ii], 

IEMN - 
RM,N =	 x 100% 

[I 

measures the relative error between the " true " parameter E and the "optimal" 

parameter EMN associated with the (M,N)th approximate parameter estimation 

problem. We also report CP time which can be reduced considerably by relaxing 

the convergence criteria for the IMSL package and by taking as initial guesses 

M 
(for the (M,N)th problem) the resultant E	 from an earlier run (M < M, fl < N). 

This procedure is used in Example 3. 

Example 1.1:	 Here we take c = 1, R = 6, u 0 = -50, i(r,o) = 

	

-(6-r)[(r-1)(sin(20+2) + 10] and	 (r,o) = .25(r-3) 2 + 2, for 1 < r < 6 

and 0 < 0	 2n. A 7x 7 grid of sample data is computed; throughout E 2 is 

fixed at E 2	 1 so that we identify E 1 only, starting from an initial guess 

of E a .001. Our findings are summarized in Table 1 and Figure 3.
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Example 1.2:	 We repeat the same example but now add random noise (distributed 

normally with mean 0 and variance .75) to the data, resulting in approximately 

5% relative error. Numerical and graphical results are found in Table 2 and 	 - 

Figure 4. 

Example 1.3:	 We repeat Example 1.1 (i.e., noise-free data) except that now 

we estimate	 as well. We initially set E	 .1 and E(e) = .359(2- sin(-)) 

and hold fixed the leading coefficient (in the spline expansion (44)) for 

E 2 (0). The results for NI = 25 are found in Table 3 and Figures 5(a) and (b). 

Example 2:	 In this example, we choose u0 = -24, c = 2, R = 6, 

(r,o) = -(6-r)[(r-2)(cos2o+4)+6] and (r,e) = (-r + 7)(2 -sin 20), for 

r C [2,6] and e € [0,2rr]. Again a 7x 7 grid of data is used in the optimization 

procedure. As an initial guess for E(r,o) = E 1 (r)E 2 (e), we let E?(r)E(e) 

and search for both E 1 and E 2 , holding the first coefficient fixed in the 

cubic spline representation for E 2 . A summary of our findings for Example 2 

may be found in Table 4 below.

EXAMPLE 1

Table 1: Results for Example 1.1 

NI 1MN (J MN)
CP time	 (Sec.) 

4 4.75% 19.86 8.52 

8 19.64% 3.61 23.97 

16 4.662, 0.44 89.43 

24 2.257, 0.23 284.03 

32 0.68% 0.11 655.49
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Table 2: Results for Example	 1.2 

M RMN (JMN)
CP time (Sec.) 

4 21.83% 21.26 6.78 

8 18.92% 6.82 20.80 

16 4.44% 5.73 104.97 

24 2.34% 5.65 410.51 

32 1.17% 5.64 815.85 

Table 3: Results for Example 1.3 

	

M	 R MN
	 (JMN)	

--	 CP time (Sec.) 

	

25	 9.16%	 0.17	 370.87 

Table 4: Results for Example 2 

MN MN 
(J	 )2 CP time	 (Sec.) 

4 6.86% 2.40 11.03 

8 3.41% 1.58 34.21 

16 0.99% 0.38 313.68 

24 0.48% 0.10 1200.00
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Example 3:	 We present here our efforts to construct functions ü and E that 

follow many of the specifications of the Hoop/Column antenna surface found in 

[16].

As shown in Figure 6, the parent reflector has four separate areas of 

illumination or aperture on its surface. Each separate area is assumed to 

have the same parabolic shape given, for 0 < o < 	 and c < r < R, by 

u (R-r) 
-	 - [k (-) q2 (o) + 11 ,	 0 < 0 

0	
u (R-r)	

17 Tr 

	

u (r,o) =
	

R - — [k(rj) q 1 (o) + 1]	 (59) 

u (R-r) 

-	 [k 
(rj) q 3 (o) + 1],	 ]11 < 0 < 

where

	

q 1 (o) = sine + coso , 	 (60) 

d2 q 1	 dq 
q2(o) = a 2( o -

-1-)3/6 +
	

(o - 11)2 

do 	 + °-*	 () +

(61) 

2 d2q	 dq 

	

a 2 -	 3	 -	
do2	

1)) , 
- - 279936	

q1(0)	
iT	 1	 n 	 -!-	 1 (-!-)   - q (	 (62) 

11

1711	 + 1	 . - 1711)2 d2q1 071	 1711 
dq1 

17it 

	

2	 36 

	

q 3 (o)	 a 3 (0 -	
d '-
	 + ( e - --)	 j—. 

17IT + q 1 (--)	 (63)
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2 d2q 
- 279936 (q( it )	 ii	 1	 l7'n	

, dq.	
17n 

a3 -
	 3	 - - 2592 do2
	

-	 (--) - q(--)) .	 (64) 

The parameter k > 0 is a stretch factor used to perturb the surface below the 

conic (k = 0) shape. 

For the complete surface, we define, for 	 r < R, 

u°(r,o) 

•	 0 it	 ii 
u (r,e -.) 	 <Ti 

(r,o) =	 .	 (65) 

u0(r,e <4- 

u 0 (r,e- 4-) ,	 - < 0	 27 

The cubic polynomial fits (61) and (63) are used to ensure smoothness in a, 

in regions near 0 = , ii, 4-, 2-n. 

We turn now to equations for (r,o) = 1 (r) 2 (o). It is expected that 

the mesh will be stiffest near the outer hoop (r 	 R) and around the inner 

radius (r = c). For this reason we choose 

E 1 (r) = 2i - T si n[it-f-J14] 	 (ccr<R)	 (66) 

where T is a constant dependent on the mesh material. Stiffness in the angular 

direction is expected to be uniform, given here by 

1-	 E2(e)	 .	 (67)
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From data provided in [ 1 6], it appears that a reasonable value for ; (given 

in units /i7ii ) is 

= 3.391
	

(68) 

similarly, other parameters are estimated to be u 0 = -7.5m , c	 8.235ni ,.and 

R = 50m. For the example reported here, we take k = .25. 

For each example below, a 24x 24 grid of data points is calculated by 

determining u at (r 1 , o) where e are equally spaced in [O,2ir], j = 1, ..., 24, 

and the r i are spaced in a non-uniform manner, with more data points concentrated 

near r = R. 

Example 3.1:	 In an effort to determine how well the state approximation 

scheme performs when E is fixed at the "true" value E = , we solved the 

"forward" problem initially to ass.ess what values of JMN to expect in later 

"inverse" problem runs. To this end, we compare in Table 5 below JMN for 

various values of M (N = M-'). To interpret Table 5, it is helpful to calculate 

	

the average error at each 	 of the 576 sampling locations: In the case of M	 4 we 

compute the average difference 	 (r1o) - uMN ( r j ,o j )I = ( J/576)12 = .056. 

Table 5: Example 3.1 

	

N	
(JMN)½ 

	

4	 1.82 

	

8	 1.88 

	

16	 1.92 

	

24	 1.94 

	

30	 1.94 

We note that a little reflection leads to the conclusion that the values 

of J reported in Table 5 are not lower bounds for the values of J obtained in
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the minimization procedures detailed below (here we are using the approximate 

states and a spline approximation to the "true" E). This is evident in the 

subsequent tables for this example. 

Example 3.2:	 We estimate E 1 (r) 3ily, holding E 2 (6) fixed at the true value, 

E2 (o). For each N, the initial guess for E 1 is 
E?(r)	

1. Our results are 

summarized in Table 6, and graphs comparing E! 1N to f are found in Figure 7. 

Example 3.3:	 We now hold E 1 (r) fixed. E 1 (r)	 1(r), and estimate E 2 from 

the starting guess of E(e) = 1 + .5 cose (in the case of N = 4). For 

N = 8, 16, 24, and 30, we use the earlier converged value of EMN as the 

MN 
initial guess (e.g., E for N = 8 is E, N = 4). Findings for this example 

are summarized in Table 7; graphs of EN, plotted against E 2 , may be found 

in Figure 8. 

Example 3.4:	 We estimate both E 1 (r) and E2 (e). Initial guesses for N = 4 

are given by E(r) = 5 and E(o) = 1 -- sine; for N = 8,16,24, and 30, 

previous estimates (E!, EN) are used. In each case, the first coefficient 

for E2 is held fixed. The convergence results for this example may be found 

in Table 8. 

Example 3.5:	 This example is identical to that of Example 3.2, except that 

random noise has been added to the data. The new data u(re) is computed 

I .
	 by setting

= flu	 °ku'°J + 

where n ij is a zero mean normally distributed random number with unit variance 

and

u(r1o)	 .025u(r 1 6) i
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EXAMPLE 3 

Table 6: Example 3.2 

M N 

37. 38 

7.50k 

4. 06 

4.64 

4.87°

PAGE IS 
ZF POOR QWLffY 

4 

8 

16 

24 

30

CP time (Sec.) 

25.06 

	

0.679	 33.73 

	

0.678	 168.08 

	

0.668	 226.67 

440.79 

Tei:	 Exinp1e3.3 

N R M,N (3 ININ) 

4 7.74 0.983 

8 620. 

16 6.24'. 0.763 

24 6.26 0.758 

30 6.25. 0.765 

CP time (Sec.) 

14.37 

19.31 

56.40 

73.68 

133.07 

L]c B: E x ample 34 

N R M, (JNtN)
CP	 time	 (Sec.) 

4 43.2T. 0.903 26.88 

8 5.67 0.635 127.31 

16 5.78. 0.636 129.81 

24 6.60 C. 0.627 139.19 

30 7.00: 0.634 378.21
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Thus, with probability of .95, the new data will satisfy 

Iu(r 1 ,e.) - 
-	 <.05 
Iu(r 1 e)I	 - 

so that data with, roughly, 5% noise level is used here. 

We take 
E?	 1.0 for N = 4 and 8, and previous estimates are used as 

initial guesses for N = 16, 24, and 30. Graphical representations of E1 MN vs 

are found in Figure 9; our findings are summarized in Table 9. 

Table 9: Example 3.5 

N
fl M I N (JMN)

CP time	 (Sec.) 

4 148.86% 2.669 41.57 

8 5.05% 2.616 46.73 

16 6.76% 2.612 45.72 

24 4.99% 2.610 169.22 

30 5.33% 2.611 255.90

0-
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VII. Theoretical Convergence Results 

We present here a theoretical framework for the approximation scheme out-

lined in Section IV. We shall first formulate the variational equation of state 

and investigate some of its properties; spline-based approximating equations 

(based on either linear or cubic spline elements) will then be constructed so 

that we may argue the convergence of approximate states and parameters to the 

"true" state and "optimal" value of the unknown parameter. 

Appealing to the notalion of Section Il, we may write the total energy of 

the antenna surface as 

E(u) =	 1f (. E 
IVU12 - 

uf)d 

where the elastic coefficient E and distributed loading f are written in terms of 

Cartesian coordinates in ? = {(x 1 x2 ) 6 R2 	 c2 < x + x < R 2 ,	 } and 

u C H)	 {u £ H1(?) 
I u = y + U, y	 H)}; here 

U 

U(x 1) x 2 ) 
= c-R 

((x
1 
2 + x)2 - R) ,	 (x1,x2)€ (69) 

From minimum energy considerations, we know that the state variable u is a 

stationary point of E. That is, E'(u;v) = 0 for all v £ H(?), 	 where E' denotes 

the Frechet derivative of E. We thus write, for any ye 

0 = E'(u;v) 

= fJ' (Evu • vv - fvjdSQ,

l' 
which yields the state equation for u 6 H B61



aE(U,V) = <f,v>,	 v £ H(?) 

Here <.,-> is the usual L 2 () inner product and 

-	 aE(u,v)	 ff Evu	 vv d. 

We remark that if u and E are sufficiently smooth, we actually may use Green's 

Theorem, ([ 27 ], P . 342) 

ff Ev	 vp	 f E	 ds - Jf	 (Ev'4) 

(for e H',	 E H 2 ) to rewrite (70) as 

- f 	 vv . (Evu)d? = f  vfd? 

li 
since v  H0(c2).	 Thus, for sufficiently smooth E and u, the state equation in u 

becomes Poisson's Equation with variable coefficient, 

- V	 (Evu) = f on c
	

(71) 

Before we consider various properties of the state equation (70), it is 

natural to first transform the state variable u into a new variable y satisfying 

homogeneous boundary conditions. To this end we define 

y = u - U 

33

(70) 

and note that equation (70) may be rewritten in terms of y, v € H() as 

a(y,v) = cf,v> -	 E (IJ , v ) ;	 (72)
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further, if E €	 an integration by parts yields 

a(yv) = <F,v>	 (73) 

where F = f + v• (EvU). 

Throughout we shall assume that f 	 L 2 (?) and EE Q l , where the set 

is a given set satisfying 

Q1 € (E€ C 
l 

(
"
cz) I 0 < m < E(x) < in ,	 1E1 1 . W. 

These conditions on E ensure that, for any y E H(?), 

m I y I	 8E(Y,Y) , flyI	 (74) 

(I-I j denotes the usual H3 (c' ) norm) so that we may apply Theorem 6, p. 295 of [24], 

to state the following existence theorem. 

Theorem 1:	 There exists a unique solution u e H(?) to the generalized 

Dirichiet problem (70) (and thus there exists a unique solution y £ H(?) to 

(72)). 

In addition, we obtain the following regularity result, for E, f sufficiently 

smooth.

Corollary 1: Let E€ Q and f C L2(?D. 

y €H2 (?) and 

The solution y to (72) satisfies 

(75) 1 y 1 2 : c0 (I f I + 1E1 1 + II) 

for some constant
co"

If,	 in addition,	 f £ H2 and E € C 3 , then y € H4 (?) 	 and, 

for some constant c1,

1 y 1 4	 c 1 (I f I 2 + 1 E 1 3 + jyl)
	

(76) 
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Proof:	 Theorem 17.2, p. 67, of [25] may be applied to (73) to obtain 

IYI 2+ 	 < c (J F I	 + III) 

-	 <c(IfI.
J	 J 
+ I. (EvU). +	 yl) 

for j = 0, 2, and some constant c, from which (75) and (76) follow. 

Clearly, statements analogous to (75), (76) may be made for the solution u 

to (70) since u	 y + U. In fact, although all results reported below involve 

y, it is easy to see that the same findings hold for u. We first establish some 

a priori bounds for y. 

Lemma 1:	 Let E E Q 1 9 f 	 F12 F 1 bounded in L 2 (), and let y be the solution 

to (72). There exist constants K09 K 1 (depending on Q 1 and F l
only) such that 

y(E,f)j	 K0	 (77) 

and

Ivy(E,f)l - K1
	

(78) 

uniformly in E E Q 1 , f€ F.1. 

Proof:	 For v £ H and y = y(E,f), 

Ia [ (y,v)I	 Fly 

so that, letting y = v, 

m I vy l 2	 8E(y,y)
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where IF' is bounded uniformly in E EQ 1 and fE F.1 . It thus follows that 

1vy12 < k0jy	
(79) 

for some constant k 0 and, applying Poincare's inequality (given by 

II < k1vy	 (80) 

for some constant k 1 and y €	 see for example, pp. 158-159 of [26]) we obtain 

(78),

Ivy l < k0k 1	 K1. 

Combining (80) and (78), inequality (77) also obtains, where K0 and K1 are 

determined independently of f 	 F 19 LE Q1. 

We turn now to the problem of approximating the state variable y for 

given values of E and f. As our goal is to build a parameter estimation scheme 

based on linear or cubic spline approximations for the state, we first transform 

the domain	 into a new domain o where spline basis elements are more easily 

constructed. In this case it is natural to transform from Cartesian to polar 

coordinates so that ci is the rectangle (c,R) ' (0,2n); spline elements are easily 

defined on ci, whereas on ci one must handle the problem of defining such elements 

on the circular boundary of the annulus. 

We transform from Cartesian to polar coordinates in the usual way; appealing 

to Theorem 3.35, p. 63 of [26], we note that properties of this transformation 

guarantee the existence of a bounded operator I: H 1 (?) - H 1 (ci) that is merely 

the composition map 

(Ty)(r,(i) = y((x1,x2))	
k8l)
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where 4 :	 -	 is the Cartesian to polar coordinate transformation. From [26], 

we also have that T- 1 exists and is bounded.. In polar coordinates, the state 
equation (73) becomes an equation on c?, 

a E(y,v ) =
	

(82) 

where aE(y,v) E ff (TE)v(Ty) • v(Tv)dc 

and <F,v>	 ff (IF) . (Tv)dQ,(d = rdrde).	 Henceforth we shall not 

distinguish between <,> and <,>. or a vector w and its transformed form 1w; 

however it should be kept in mind that in (73) both y and v are in H() while 

in (82) the transformed state Ty and associated vector Iv are in 

H per ()	 TH). It is worthwhile to note that for smooth yc H() (so that 

we actually have y = 0 on D ' ), the, transformed YE H p () satisfies 

y(c,o) = y(R,o)	 0 and the periodic condition y(r,O) = y(r,2n), (r,o)E c 

In addition, we remark that the gradient operator V in (82) is the polar 

coordinate transformation of the usual gradient in Cartesian coordinates; that 

is, in (82),

/ 
wrcoso - - W0siflO 

\

(83) 

W5iO +- W000SO 

for WE H 1 (c). It is interesting to note that although v in (83) is the correct 
form of the gradient in polar coordinates, one often sees in the literature the 

operator v given by 

/ w r 
Vw 1

	
(84)
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In fact V and V may be used interchangeably in some circumstances (and indeed 

the latter greatly simplifies calculations), largely due to the fact that 

vw	 vz	 iw Vz 	 (85) 

and

V • \7W = V • VW	 AW
	

(86) 

for w, z€ H 1 (c). One must be careful however to use V,and not ,in cases 

involving an integration by parts (Green's formula). 

We turn now to spline-based approximation for the state variable y in (82). 

For positive integers M and N we subdivide [c,R] and [0,2n] by defining partition 

points r =c + (R-c)(i-l)/M,	 i = 1, ..., M+l, and	 = 211(j-1)/fl, 

N+l. We then construct a k-th order spline approximation y 
MIN  

for 

y using Galerkin techniques. That is, we find y'6 s N	 span 

, 
1	 1, ..., M 1 , j = 1, ... , N} where the basis elements v  

M N 

ij
 are tensor 

products of the k-tb order spline elements, 

V MIN (r,e) - 
M	 N 

- k, 
am
	 (87) 

k,ij 

both a	 andare standard k-th order B-spline elements that have been 

modified to match the H per(Q) boundary conditions. That is, 

= cz(R) = 0,	 all i 

and

=	 (2ii)	 all i.
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We remark here that the dimension of SN depends on k as well as on M and N; 

in the case of linear splines (k = 1), M 1	 M- 1 and N 1 = N. 

To approximate the solution y to (82) for fixed k and EE Q 1 9 f 	 F.1 given, 

we look for a solution y M,N in s N to the Galerkin equations, 

aE(yk, vMt.) = <F, M,N 
k,ij	 k,ij	 (88) 

for i = 1, .. . ,	 and j = 1, ... , N 1 .	 In the case of linear splines (k = 1), 

substitution of (87) into (88) yields the algebraic equations found in (15) of 

Section IV. There is no difficulty in establishing existence and uniqueness of 

solutions to (88) given the properties of the inner product matrices that appear 

in the algebraic equations derived from (88). 

Our goal is to construct a sequence of parameters (E M,N, f	 ) EQ x F1 

and associated solutions yMN (MN rMN) to (88) and determine that 

(EM ) N	 MN) -* (E,f) and MN ( MN	 MN)	
y(,) in some sense; here 	 is 

an "optimal" parameter vector, in the sense that it minimizes a distributed least 

squares fit-to-data criterion of the form 

J(E,f) = If I y(E,f) - y	 d, nl 

where y is the interpolated form of the pointwise data (transformed to 

satisfy homogeneous boundary conditions, as defined in (54)). If we use the 

form of the cost functional given in (57) we must strengthen the convergence 

results given in this section which can be done, but at the expense of additional 

technical tedium. Given pointwise data, we can use the J just defined if we 

interpolate this data. The minimization of the cost functional is performed 

over some constraint set Q N F. In the case of linear splines, we choose
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Q x F =	 x F, and, as later results will show, we do obtain the desired 

parameter and state variable convergence as M,N 	 . If, instead, cubic splines 

are to be used, convergence results are obtained at the expense of the require-

ment that Q and F be smoother sets. In particular, we need Q = Q3 and F = F3 

where, for p = 2, 3, 

Q	 {E € C(c) I E € Q,
'
 I E I	 . in) 

{f€ H
P-1 

(Q) 1 f(F F 1 , I f 1 1 	 in) 

Before considering parameter and state convergence, we establish the con- 

tinuous dependence of y,	 on the parameters E and f. 

Lemma 2:	 Let k=lor3. 

(a) The mapping (E,f)	 y'(E,f) : Q1 x F 1 , H(c) is continuous in the 

L2 x L 2 topology on Q, x F1 

(b) The mapping (E,f) + y(E,f) : Q x F 1 -* H(l) is continuous in the 

L x L 2 topology on Q1 x F 1 . At (E,f) £ Q 2 x F2 , y is continuous in 

the L 2 x L 2 topology on Q1 x F1. 

Proof:	 We first consider the continuity of (E,f) - y(E,f). Let E, EC Q1, 

f, f6 F 1 and let y	 y(E,f), y = y(E,f). Then, 

fI Ev(y-y) • vvd = fJ(E-E)vy • ivd + Jf (Evy - Evy) .. vvdQ 

= ff (E-E)vy • vvdci + a(yv) - a(y,v) 

= ff (E-E)vy • vvdc + <F,v> -
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for all y E H(c) where we have used (82) in the last equality and 

F = f + v • (EvU), F = f + v	 (EvU). In particular, if we let v = y - y, 

we obtain 

If E Jv(y-Y)12dc2 = ff (E-E)vy. v(y-)dQ + <f-f, y-y> 

+ <V	 {(E-E)VU}, y-y> 

After an integration by parts and several applications of the Cauchy-Schwarz 

inequality, we have 

mv(y-y) 2 <.f(E-E)vJ Iv(y-y)I +• I f- f l J-1	 I(E-E)vuIIv(y-)I 

<K1 J(E-E)v 	 + K0 1 f- f I + K1 I VU I 	 IE-El	 89) 

where here j . 1 denotes the L 2 (c) norm, . l denotes the L(c) norm and K 09 K.1 

are given in Lemma 1. Thus 

l y-y	 <c (I( E - E ) v 1 + If-f! + JE-El)	 (90) 

for some constant c > 0. For (E,f) £ Q x 	 we have, since ye H2, 

<c(-EJ	 Iv;I + l-J + clE-El) 

c ( K 1 I E - E I 	 + I f-I +	 lE-EI)	 (91) 

so that (E,f) , y(E,f) is continuous in the L x 
12 topology. If in addition

00("')'eQ2 x
	 so that € H 3 (from the proof of Corollary 1), we obtain from 

the Sobolev Imbedding Theorem (see p. 97, [26])
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Ivy L ^.cIYi3 

where (I3 is In H 3 because	 (E,f) E	 x 2 (again see the proof of 

Corollary 1). The continuity of (E,f) + y(E,f) at (E,f) in the L 2 x L2 

topology is thus assured since (90) may now be rewritten as 

-Y1 1 c(IE-El Ivy'	 +	 + IE-El).	 (92) 

For k = 1 or 3, the continuity of (E,f) -'- yN(E,f) in the L 2 x L2 

topology is apparent from (88). (See, for example, the algebraic equations 

(15)-(20) in Section IV that replace (88). in the case of k = 1; we note that 

Pt ij	 I Pt — 
dEl andFMJ< G i f t	 for i,p = 1, ..., Fl-i and j,e = 1, ..., N, where 

C is a constant depending on M and N. A comparable statement may be made about 

the matrices involved in the algebraic equations derived for the case of k = 3.) 

Our later convergence arguments rely heavily on certain spline estimates 

that' are simple modifications of those found on pp. 83-84 of [20a]. (In particular, 

our calculations must take into account the fact that the spline basis elements 

a 1 on [c,R] and	 on [0,2n] satisfy zero and periodic boundary conditions 

respectively. This causes no difficulty since we will only use those elements 

to approximate functions that satisfy such boundary condtions. For example, 

in the case of linear splines, {c} contains all the standard B-spline "hat 

function" basis elements {} except the "half-hats",	 If g  H(c,R), 

then the linear interpolating spline for g at knots {r} is given by 

M+l M
	 M-1 M 

= j1 	
c 
i where necessarily C1 = CM+i = 0. Therefore, z Lg

= 	 i 
ciC1. 

j  

Similarly, {} contains all the standard B-spline basis elements {} defined 

on [0,211] except that	 and	 are combied to form
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one element given by	 +  WN  we thus qet, for	 :?;'-perioJi: funct i on g, 

N	
N-i 

=	 =	 2	
d 1 # ( d 1 +	 The spline estimates needed 	 f'w 

later convergence proofs are given below. 

Lemma 3:	 Let 4, € hk+l(p) 1' Hper(1) for k = 1 or 3	 If P 
M!N 

denotes the 

canonical projection of L 2 (c) onto S' 1'1 () (in the L2(2) topology), then 

-	
Co(MN))Iok+L	 (93) 

IOr(tP -
	

< C 1 (MN)	 Io k !	 (9) 

	

- pMN 	
<C 1 (MN)	 I	 .	 os) 

Finally, we consider the existence of "optial' parameters dE, 7  

deter nati on of a sequence [ ( E ' ,'	 ) 1 of appro>imat I nq pa rueers nd the 

convergence, in an appropriate sense, of FE
(MN,MN) 

to ([,1) ar	 the corresponding 

state variable convergence, of 
y 1N(	 NJMN) 

Lemma 4:	 Let Q	 F1 be compact in the L 2 (:)	 L 2 U ) produ.t topoiojy and 

let k = 1 or 3. Then there exists a solution ( E Nf )F to the 

problem of mi nimi z i nq •J,N over Q 	 where 

-	 JMN(Ef) =

	
MN[f - y12dQ 

and yN(E,f) is the solution to (8) assocted with parameters (E,f). 

Proof:	 The result follows immediately from Lemma 2, which quarantes the 

M,N 
continuity of	 over the compact set Q	 F1.
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The sense in which (EN,_fMIN ) approximates (E,f), and in turn y M 

approximates	 is given in our final two results. 

Theorem 2:	 Let {(EMN,fMN)} be a sequence of parameters in Q x F 1 and let 

MN be the solution to (88) corresponding to EM,N,fM,N. 

(a) If there exists (E,f) E Q1 x F 1 such that (EMN,fMN)	 (E,f) in the 

L x L 2 topology, then	 - y([,f) in H
i
() as MIN 

(b) Suppose further that ( EMN ,f M I N ) 
E Q x F 1 , (E,f)€ Q 2 x F and 

that (EMN,fMM)	
(E,f) in the L 2 x L 2 topology. Then yM,N 4 y(E,f) 

in H) as M I N -	 .	 If (E,f) € Q 3	 F3 , then	 • y(Ef) in 

Ho OQI as M,N 

Proof:	 For parts (a) and (b) it suffices to show that 

I y (E,f) - y(E,f)j 1	 0	 as MIN 

uniformly in (E,f) (in the desired parameter set), because we may then use this 

result to demonstrate that 

- y(E,ffl 1 < IYMN (EM N fMN ) - y(EMN,fMIN)I1 

+ y(EMtN,fMN) - y(E,f)11 

where both terms converges to zero as M I N , . Here we have used the appropriate 

continuity result from Lemma 2 to argue the convergence of the second term above. 

Let (E,f)E Q1 x F 1 . For k = 1 or 3 we subtract (88) from (82) (with 

v =v M
	

H1	 (Q)) to obtain k,ij	 0,per
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aE(y(E,f) - yN(E,f), V 
M,N 
..)0 

k,ij 

for i = 1, ... , M, j = 1, ... , N 1 . That is,	 is the projection of yE Hper 

onto s N in the aE( . ,.) topology (equivalent to the H topology). We thus 

obtain, letting y	 y(E,f), yyMN(Ef) 

mv(y - MN)12 <a(y - MN 	 - MN) 

aE(y -
	 - pMNy) 

-
k	 11 

Plc(jP(y	
M1N	 2	 M,N	 2 
k	 'uI	 t' I D 	 - P	 Al i	 ( 96) 

where.P' 1 was defined in Lemma 3 and (83) was used to establish the last 

inequality. 

We consider part (a). For k = 1 and (E,f)€ Q1 x F ,, we may use the fact 

that y€ H2 (Q) (Corollary 1) and estimates (94), (95) and (75) to claim that the 

bound in (96) becomes 

MY	 M,N 2 2C(MNi 2	 102y 1 2 - y 1	 )l

2 C ( MN ) -2 ( I f l + E l1 + 

for some constant C. From the definitions of Q 1 , F. and the a priori bound (77) 

on y (uniform in (E,f)) we thus have that 

IMY -
	 1)N)12	

C(IINY2 

for some constant C, where C is determined independent of M, N, E and f. 

M N	
2 Therefore,	 T(y -
	 )12	

O((MNY) so that (writing y, y!	 for T - Y,
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1_1N),	
- y in H(?) as M,N -	 , uniformly in (E,f) € Q1 x F. 1 . Hence 

part (a) obtains. 

To prove part (b), we repeat the above arguments for the case of k 

and similarly obtain the convergence of 	 to y in H(), for fixed 

(E,f)E Q2 x F2 . To consider the case of cubic spline approximations (k = 3), 

we note that (E,f)€ Q3 x F3 implies that YE H4(c) (Theorem 2) and that, 

following (96) and the arguments for part (a), 

Iv(Y - y3 	
2 - 

3	 2C(MN)6 ! 

<C ( MN ) -6 ( 1 f 1 2 + 1E1 3 + 

using (76) to obtain the second bound
	

Using (77) and the definitions of Q 3 , F3, 

we are able to claim that 

M,N 2	
C(MNY6 M y - y3 )I 

so that	 •> y in H(?) uniformly in (E,f) € Q. 3 x 3 . The proof of part (b) 

is then complete. 

Theorem 3:	 (a) Let Q1 x F 1 be compact in the L x L 2 topology. For each 

M,N there exists a solution (EMNJMN) to the problem of minimizing J 
M,N

over 

x F i . In addition, there exists (E,f) E Q1 x F 1 and a subsequence (relabelling) 

(EMjNj	 MiNi)} of {(EMN,fMN)} such that-(E Mj,Nj MjNj)
	

() in L x L2, 

y([,) in H(?), and. (E,f) is a solution to the original 

problem of minimizing J over Q, , F1.
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(b) Let k = 1 or 3. Let Q x F . be compact in the L 2 .. L 2 topology 

and (MN.MN) a solution to the problem of mini"mizing JN over Q1 x 
- -	 _M •,N .	 ,• There exists (E,f)€ Q1 xF and a subsequence t(E 	 J 

_M ,f	 N3)} 
such that 

•	 (EMjMiNi) + (E,f) 
in 12 x L 2 . If in addition (E,f)€ Q 2 x F2 , then 

•	 M,N. - M,N• M•,N .	 - -
	 - - y 1	 3(E	 J,f	 J) + y(E,f) in H0

1
() and (E,f) is a solution to the original 

parameter estimation problem of minimizing J over Q 1 x F 	 (E,f) € Q 3 X 

the same statement may be made in the case of k = 3 (cubic spline approximations). 

Proof:	 It is easy to argue, as in the proof of Lemma 2(a), that 

(E,f)	 yMN -	 (Ef) is continuous in the L x L 2 topology, so that	 is 

continuous over the compact set Q 1	 F 1 . Thus, for each M,N, there exists a 

solution (MN,MN) to the approximate parameter estimation problem. From 

-j -M,N the compactness of Q 	
P•1 

	

1 x 1 , there exists a subsequence {E ' 	 and 

	

- -	 -1.,N. -M N	 - - an element (E,f) € Q 1 x	 such that (E	 J,j	 '	 (E,f) in L x L 2 and, 

from Theorem 2, yiNi(EMiNJMi,Ni)	
y(E,) in H). Finally, 

-M .,_M.,N. 
J(E,f) =	 lim	

Ni,
Jf 3 3) 

N -* 

<	 lim
 -
	 JMjNj(Ef) 

= J(E,f) 

for any (E,f)€ Q 1 x F 1 , where we have used Theorem 2(a) and the fact that 

-M• 

	

',N - M,N•	 M•,N	 - 
(E	 3,f	 ) ) is a minimizer for	 over Q1 x F1 . Therefore, (E-,f) 

is a solution to the original parameter estimation problem.
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To prove part (b), we duplicate the above arguments for both linear and 

cubic spline approximations, applying Theorem 2(b) and the L 2 topology on 

Q2 (Q3 ) throughout. 

Before our theoretical justification of the spline-based estimation scheme 

is complete, we must indicate one final result that focuses on the means by which 

we solve the (M,N)-th approximate parameter estimation problem.. It is implicitly 

assumed, in the previous calculations that we are able to compute (EhIN,fMI), a 

solution to the problem of minimizing JN over a suitable parameter set Q x F. 

In fact, the sets Q x F considered here are infinite-dimensional so that we 

must perform the minimization over a function space. To implement the 

approximate estimation scheme, we actually parametrize E and f and minimize 

over a finite dimensional set Q1J x	 To see how 

( a solution to this problem) approximates (E,f), we are forced to consider the 

limit of such a sequence as M, N, I, J - co• That we actually obtain the theoretical 

convergence of such a sequence (or subsequence) is an easy extension of the ideas 

in [15a]; these techniques have already been successfully implemented and are 

described, for the case of the antenna problem, in section Iv.



HJf% 
:.. -	 I	 s

i 4w



FEED ASSEMBLY 
(4 REQUIRED) 

FEED MAST 

50

SURFACE

	

UPPER MAST. 	 /'4OOP SUPPORT CABLE 

,HUB 

100 mDIA HOOP 
(3937 IN.)

LOWER MAST 

	

SURFACE	 'HOOP SUPPORT CABLE 
CONTROL CABLES 

FIGURE 2. Side View of Maypole (Hoop/Column) Antenna



51	 ORrr,,L 

OF POOR QUALITY N

4 

3 

S 

I	 15	 1	 1$	 3	 3.8	 4	 4.5	 1	 51	 1	 ii	 a	 R.5	 a	 3.6	 $	 1.5	 G 
A*OXIT(	 S 

.rT3TTTH 
NPUO1P%*1C 5,11)	 - l*QK!4YC [(N) 

•••• T.L 511)	 S	 TRIJC C,( N) 

N14

pit	 3	 3 S _ I t	 •.I	 j	
•

N

1	 1.1	 5	 5.5	 3	 3.5	 4	 4•5	 5	 55	 5 
[fRi	 I	 APPRoxtMATC ((N)	 I I.... ,j	 (•) 

Figure 3: Example 1.1 

4 

H

S 

a 

—a 

-S



I 

4 

3 

. 

4 

3 

a 

a	 as	 a	 as	 a	 as	 4.s	 •	 t.i	 •	 $	 1.1	 1	 ii	 a	 as	 4	 4.1	 1	 5.5	 $ 

1I)	 S	 XIPt*YE £,cS) 
INflila. 1/I)	 -- T* 

5 

4 

a

52

S 

a

a

$	 $5	 5	 5.5	 3	 315	 4	 4.1	 5	 6.5	 6	 a.,	 a	 es	 3	 .5	 4	 4.5	 1	 5.5	 1 
- 4000X$P1*TC ç.	 I	 - ^PP*OX IMATC C(S) 	 S ?	 TIUt (I) 

e4
	 CORRUPTED Iv 110199 14.14	

4
	 C0N*LPYCD IV N05( P0.35 

a 

-	 a	
S 

$	 $ 

1	 1.1	 5	 5.1	 3	 3.1	 4	 4.5	 1	 51	 6	 .	 .:. 	 3.1	 4	 4.1	 S 
.pIo*1Pos?g 5,111	 APPROXIMATE 5,0*) 	 I ...• ?L* CS)	 TRUE (gIll 

Figure 4: Example 1.2	
ORGNAL PAGE IS 
OF POOR QUALITY 



F 
U 
N 
C 
7 
I 
0 
'1 

U 
A 
L 
U 
£ 
S

4 

3 

a

S 

4 

U 
N 
C 
T 
I 2 
N 

U 
A 
L 
U 
E 
S

53 

E1(R) 

-1 

-2 

•-.•	

2	 2.5	 3	 3.5	 4	 4.5	 5	 S.S 

true E l (R)
	 5 

initial E1(R) 

S

E1(R) 

N = 25 

I 

	

• ...••j	 I.	 I	 -	 .•.	 I.	 I 

	

1	 1.6	 2 • 2.5	 3	 3.6	 4	 4.5	 5	 5.5	 6 
- approximate E1(R)	

R 
true E1(R)

Figure 5(a): Example 1.3 



54 

E2(o) 

dq 

3 
F 
U 
N 
C

a 
0 
N 

U
I 

U 

S

0 

-s

_.._._. ___.......e.

INITIAL GUESS-FOR 
E2(e) 

I	 I	 I.. 

	

0	 1	 a 
true E2(e) 

Initial 

1.05. 

1 . .... .............. ....... 
N 
C 
7	 6.9s.. 
I 
0

0.9. 
U 
* 
t	 0.85. 
U 

S.	 0.8. 

0.76 

	

0.7...	
I.

3	 4	 5 

THETA

N.25 

E2(o) 

e	 I	 a	 3	 4
	

S 

approximate E2 (o)
	 THETA 

true E2(o)

Figure 5(b): Example 1.3



/

ES) 

RADIAL CORD 

,CE OF 
INATION 

55 

ORAL PAGE IS 

QE POOR QUALITY 

FIGURE 6. Maypole Hoop/Column Antenna Reflector Surface 

.-

ri



I-.-
(U	 V	 N	 • o	 II	 I	 (U	 (U 

.4
(U	 N 
.4

______ - ------I---. • (A 

-IA 

ORIGINAL AC 

OF POOR - QUAL1TY\

'I

• I, 

to 

S	 I

mo 

U z

I

I 

/ (U 

/.4 

I. _e 
.4 

.4	
(U

- 

N	 (U

I -- -. - 

It

I	 -

A: 

N

a) 

N 
V

br 

fa

56 

N 
1 

0 
t 

' 
(1 

m 

(U 
(U 

UI 
.5

('4 

CL
E 

N	 S

LU 
(U	 (U	 t 

w 
IA 

VI 

(U 
$ 

(U 
(U 

N 
.4 

(U 
.5 



'S

It
I 

S It

It

ItI'

'I 

St It

I 
I-

I

(0 

Is

uJ 

If C., 

C., 

a) 
C 
I- 0. 
I E 

LU

LL-

led

.4 

0	 .4	 S

 
ma 

I ET 

I IS 
w 

It.

'I

I'

•\ 

I-. I' 

II 

I I 

I / 
It I. / 

/ 

I. 

I. 

'I I 

to	 .4	 0

'

It

1 
I 

I 
/ 

/	 (U 

/ 
/ 

F 
F 

/ 

I 

p	 0	 .4	 •.p

j) 

:

ra 

th 

*

I-
(Si 

tI, 

N

I-

I-,-

I- WI-
I--. 

I-

0 Iii X 

I-	 e 

a 

It

I-
W



58 

to

2 

w 

ii

lz 

2 

.4 

.4

o	 w 

to

-4 

- m

.1	 S. 

U

t. 

la

In 

Lo

I 

.0

0	 ID	 1	 (U .4 

0	 W  to	 It	 N 
.4

I 

IA

U, 

! 
: 2

0. 

ID
ci) 
s. 

•D 

I

fu

ri 

I I 

• .0 — 
it 

to lz Lqw 

-! rx 

— 

(U 0



59 

References 

[1] M. J. Balas, Trends in large space structure control theory: fondest 
hopes, wildest dreams. IEEE Trans. Auto. Control, Vol. AC-27, (June, 
1982),522-535. 

[2] P. C. Hughes, Passive dissipation of energy of large space structures, 
J. Guidance Contr., Vol. 3, (1980),380-382. 

[3] R. Gran and M. Rossi, A survey of the large structures control problem, 
Presented at IEEE Decision and Control Conference, Ft. Lauderdale, FL, 
1979. 

[4] J. L. Lions, Optimal Control of Systems Governed by Partial Differential 
Equations. Springer-Verlag, New York, 1971. 

[5] D. Russell, Controllability and stabilizability theory for linear PDEs: 
Recent progress and open questions. SIAM Rev., Vol. 20, (1978), 639-739. 

[6] A. V. Balakrishnan, Applied Functional Analysis. Springer-Verlag, 1976. 

[7] R. F. Curtain and A. J. Pritchard, Infinite Dimensional Linear System Theory. 
Springer-Verlag, 1978. 

[7a] W. H. Ray and D. G. Lainiotis, Eds., Distributed Parameter Systems: 
Identification, Estimation, and Control. Marcel Dekker, New York, 1978. 

[7b] J. S. Gibson, The Riccati integral equations for optimal control problems 
on Hubert spaces, SIAM J. Control Optimiz. 12 (1979), 537-565. 

[7c] J. S. Gibson, An analysis of optimal modal regulation: convergence 
and stability, SIAM J. Control Optirniz. 19 (1981), 686-707. 

[8] Special Issue on Linear Multivariable Control Systems. IEEE Trans. 
Auto. Control, AC-26, (February, 1981). 

[9] R. A. Russell, T. G. CambeR and R. E. Freeland, A technology development 
program for large space antennas. Paper No. IAF-80A33, presented at 
Thirty-First International Astronautical Congress of the International 
Astronautical Federation, Tokoyo, Japan, Sept. 21-28, 1980. 

[10] M. P. Polls and R. E. Goodson, Parameter identification in distributed 
systems: A synthesizing overview. Proceedings of the IEEE, 64, (January, 
1976), 45-60. 

[11] H. T. Banks, Algorithms for estimation in distributed models with 
applications to large space structures. Proc. Workshop on Applications 
of Distributed System Theory to the Control of Large Space Structures, 
JPL-Calif. Inst. Tech, Pasadena, CA, July 14-16, 1982.



60 

[12] H. T. Banks and J. M. Crowley, Parameter estimation in Timoshenko beam 
models. Lefschetz Center for Dynamical Systems Report No. 82-14, 
Brown University, Providence, RI, June, 1982; to appear in J. Astronautical 
Sci. 

[13] H. T. Banks, J. M. Crowley and K. Kunisch, Cubic spline approximation 
techniques for parameter estimation in distributed systems. Lefschetz 
Center for Dynamical Systems Report 81-25, Brown University, Providence, 
RI, 1981; to appear in IEEE Trans. Auto. Control. 

[14] H. T. Banks and P. L. Daniel, Parameter estimation of nonlinear non-
automous distributed systems. Proc. 20th IEEE Conf. on Decision and 
Control, San Diego, CA, Dec. 16-18, 1981. 228-232. 

[15] H. T. Banks and K. Kunisch, An approximation theory for nonlinear partial 
differential equations with applications to identification and control. 
Lefschetz Center for Dynamical Systems Report 81-7, Brown University, 
Providence, RI, 1981; SIAM J. Control and Optimization, 20 (1982) 815-849. 

[15a] H. T. Banks and P. L. Daniel, Estimation of variable coefficients in 
parabolic distributed systems, LCDS Rep. #82-22, Sept., 1982, Brown 
University. 

[16] M. R. Sullivan, LSST (Hoop/Column) Maypole Antenna Development Program, 
Parts I and II. NASA CR 3558, June, 1982. 

[16a] H. T. Banks and G. Majda, Modeling of flexible surfaces: a preliminary 
study, ICASE Rep., Hampton, VA, May, 1983. 

[17] H. Sagan, Boundary and Eigenvalue Problems in Mathematical Physics. 
John Wiley & Sons, Inc., 1966. 

[17a] G. Rodriquez, Optimal control of large structures modeled by partial 
differential equations, Proc. AIAA Guidance and Control Conf., August 
6-8, 1979, Boulder, CO. 

[17b] C. J. Weeks, Shape determination and control for large space structures, 
JPL Publication 81-71, October, 1981, Jet Propulsion Lab, Pasadena, CA. 

[18] H. T. Banks, Distributed system optimal control and parameter estimation: 
computational techniques using spline approximations. Lefschetz Center 
for Dynamical Systems Rep. 82-6, Brown University, Providence, RI, 1982; 
in Proc. 3rd IFAC Symposium on Control of Distributed Parameter Systems, 
Toulouse, France, June 29 - July 2, 1982, 

[18a] H. T. Banks, A survey of some problems and recent results for parameter 
estimation and optimal control in delay and distributed parameter 
systems, in Volterra and Functional Differential Equations, (K. B. 
Hannsgen, et al., eds.), Marcel Dekker, New York, 1982, 3-24.



61 

[19] H. T. Banks, P. L. Daniel and E. S. Armstrong, Parameter estimation for 
static models of the Maypole Hoop/Column antenna surface, Proceedings 
of IEEE Int'l Large Scale Systems Symposium, Va. Beach, VA, October 11-13, 
1982, 253-255. 

[20] G. Strang and G. J. Fix, An Analysis of the Finite Element Method, 
Prentice-Hall, Inc., 1973. 

[20a] M. H. Schultz, Spline Analysis, Prentice-Hall, Englewood Cliffs, N. J., 
1973. 

[21] P. Lancaster, Theory of Matrices. Academic Press, Inc., 1969. 

[22] R. H. Bartels and G. W. Stewart,Algorithm 432 - A solution of the matrix 
equation AX + XB = C. Conirnin. ACM, Vol. 15, (Sept. 1972), 820-826. 

[23] J. J. Mor, The Levenberg-Marquardt Algorithm, Implementation and Theory 
in Numerical Analysis, (G. A. Watson, ed.), Lecture Notes in Mathematics 
630, Springer-Verlag, 1977. 

[24] A. Friedman, Partial Differential Equations of Parabolic Type, Prentice-
Hall, Englewood Cliffs, N.J., 1964. 

[25] A Friedman, Partial Differential Equations, Robert E. Krieger Publishing 
Co., Huntington, N.Y., 1976. 

[26] R. A. Adams, Sobolev Spaces, Academic Press, N. Y., 1975. 

[27] W. Fleming, Functions of Several Variables, Springer-Verlag, N.Y. , 1977.


	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64

