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DYNAMICS OF SPACECRAFT CONTROL LABORATORY
EXPERIMENT (SCOLE) SLEW MANEUVERS

Y. P. Kakad

Dept. of Electrical Engineering
University of North Carolina at Charlotte
Charlotte, NC 28223

SUMMARY

This is the first report of a set of two reports on the dynamics and control of
slewing maneuvers of NASA Spacecraft Control Laboratory Experiment (SCOLE)
article. In this report, the dynamics of slewing maneuvers of SCOLE are developed
in terms of an arbitrary maneuver about any given axis. The set of dynamical
equations incorporate rigid-body slew maneuver and three-dimensional vibrations
of the complete assembly comprising the rigid shuttle, the flexible beam, and the
reflector with an offset mass. The analysis also includes kinematic nonlinearities of
the entire assembly during the maneuver and the dynamics of the interaction
between the rigid shuttle and the flexible appendage. The final set of dynamical
equations obtained for slewing maneuvers are highly nonlinear and coupled in
terms of the flexible modes and the rigid-body modes.

The equations are further simplified and evaluated numerically to include the
first ten flexible modes and the SCOLE data to yield a model for designing control
systems to perform slew maneuvers.



1. INTRODUCTION

The primary control objective of the Spacecraft Control Laboratory Experi-
ment (SCOLE) is to direct the RF Line-Of-Sight (LOS) of the antenna-like
configuration towards a fixed target under the conditions of minimum time and
limited control authority [1]. This problem of directing the LOS of antenna- like
configuration involves both the slewing maneuver of the entire assembly and the
vibration suppression of the flexible antenna-like beam. The study of ordinary
rigid-body slew maneuvers has received considerable attention in the literature
[2,3] due to the fact that any arbitrary large-angle slew maneuver involves
kinematic nonlinearities. This is further complicated in the case of SCOLE by vir-
tue of a flexible appendage deployed from the rigid space shuttle. The dynamics of
arbitrary large-angle slew maneuvers of SCOLE model are derived in this report as
a set of coupled equations with the rigid-body motions including the nonlinear

kinematics and the vibratory equations of the flexible appendage.

The dynamical equations of slewing maneuvers of this large flexible spacecraft
are developed by writing the total kinetic and potential energy expressions for the
entire system. The energy expressions are further utilized in formulating
Lagrange’s equations which are expressed in terms of non-generalized co-ordinates
using an inertial co-ordinate system and a body-fixed co-ordinate system at the
point of attachment of the flexible beam to the shuttle. The generic model used for
this analysis consists of a distributed parameter beam with two end masses. The
three dimensional linear vibration analysis of this free-free beam model with end
masses [4] is incorporated together with rigid-slewing maneuver dynamics which
are written in terms of four Euler parameters [5] and angular rotation about an
arbitrary axis of rotation to yield the final set of highly nonlinear and coupled
equations. In the derivation of the equations, it is assumed that the vibratory

analysis is for small motions.
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2. LIST OF SYMBOLS

Position vector of mass element on the beam from the point
of attachment

Damping matrix

Inertial frame to body-fixed frame transformation

Position vector from the point of attachment to the mass center
of the beam

Mass density of the beam
Displacement vector of mass element in the body-fixed frame
Modulus of Elasticity
Force applied at the orbiter mass center
Force applied at the reflector mass center
Moment applied about the orbiter mass center
Modulus of rigidity for the beam
Beam cross section moment of inertia
Beam cross section moment of inertia, roll bending
Beam cross section moment of inertia, pitch bending
Mass moment of inertia matrix of the shuttle
Mass moment of inertia matrix of the reflector
Mass moment of inertia matrix of the beam
The Length of the beam
Angular velocity vector transformation
Total mass of the flexible beam
Mass of the orbiter
Mass of the reflector
The maximum number of modes considered

Generalized coordinates
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Position vector of the mass center of the orbiter in the inertial
frame

Position vector from the orbiter mass center to the point of
attachment

x co-ordinate of the reflector mass center in the body-fixed
frame

y co-ordinate of the reflector mass center in the body-fixed
frame

Total Kinetic Energy
Total Potential Energy

The beam deflection in x direction referred to the body-
fixed frame

The beam deflection in y direction referred to the body-
fixed frame

The torsional deflection about z axis in the body-
fixed frame

Velocity vector of the mass center of the orbiter in the body-
fixed frame

Velocity vector of the point of attachment in the body-
fixed frame

Mass per unit length of the flexible beam

Vector representing the axis rotation during the slew
maneuver

i th Eigenfunction corresponding to u,

i th Eigenfunction corresponding to u,

i th Eigenfunction corrsponding to u
The attitude of the orbiter in the inertial frame
Slew Angle

The angular velocity of the orbiter in the inertial
frame

The angular velocity of the reflector in the inertial
frame

Damping ratio



-5-

3. ANALYTICS
Co-ordinate Systems

The motion of SCOLE assembly when considered as a rigid body in space has
six dynarhic degrees of freedom: three of these define the location of the mass
center, and three define the orientation (attitude) of the body. The motion of this
rigid body is goverened by newtonion laws of motion expressed in terms of
changes in linear momentum and angular momentum. These relationships are
valid only when the axes along which the motion is resolved are an inertial frame
of reference [9,10). To define the orientation of the orbiter in space, a set of orthog-
onal axes fixed in the body is utilized. Then the attitude of the orbiter is defined in
terms of the angles (6,,0,,0;) between the body- fixed axes and the inertial co-
ordinate axes. The body-fixed frame origin is located at the point of attachment of

the flexible appendage with the rigid shuttle for this analysis (Fig. 1).

The transformation from the inertial frame to the body-fixed frame is given
by the matrix, C as developed in figure 2 where if 7, 7, kK represent the dexteral
set of orthogonal unit vectors fixed in the body- fixed frame and 0, is the rotation
about 7, 0, is the rotation about 7 and 0, is the rotation about k . These rotations

are carried out successively as shown in figure 1 and the matrix C is given as

cosf; sinB; Of |cosB, O —sinf,||1 0O 0
C = |—sinf3 cosf3 O 0O 1 oO 0 cosf; sinf, (1
0 0 1|[sinf; O cosBy | |0 —sin; cosh,

Thus CT is obtained as

cosf ,cos03 —cosf,sinf, sinf,
CT= sinf,sinf,cos0;+sinf3cos0; —sind;sinf,sinfs+cosbscos; —sinb;cos6,(2)
—cos9,sinf,cos0 3+sinf 3sinf; cosb,sinf,sind3+cosH3sinb;  cosb;cosh,
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In order to completely define the attitude (orientation), it is needed to relate
the rotation angles 8,, 0,, and 65 to the angular velocity components (@;, @, ©3)
of the orbiter. One way of obtaining the required relations is via body-three angles
method [5] which was utilized in developing C matrix in equation (1) and these

relations are

0, = (w;cos0; — w,sinf3)/cosh,
0, = (©,sinf3+0,c0s0 ;) 3)
03 = (—©,c080 3+ ,sind ;)tand -+ 5
Thus, the angular velocity of the orbiter can be obtained in the inertial frame

by means of the following transformation

o=MTH (4)

where the transformation M7 is given as

cosf,cos0; sinf; O
MT = |—cosf,sinf; cosf; O (5)
Sin92 0 1

Although the body-three angles method is used here for obtaining the
transformations C and M, there are three other methods which can be used to
obtain the same trainsformations. A detailed discussion of all the methods is given
in reference [5] and a summary of the transformations using the remaining three

methods is given in the Appendix.

Kinetic Energy
If the position vector of the mass center of the orbiter in the inertial frame

(Fig. 3), R, is given as



R = |Ry (6)

Viit)= |Ry (7

This velocity can be transformed in the body-fixed frame as

Ry
v(i)= C |Ry (8)
Rz

The velocity of the point of attachment in the body-fixed frame is

V, = V+oXx 9)

where r_is the vector from orbiter mass center to the point of attachment.

Defining the position vector (Fig. 4), @, of a mass element on the beam from

the point of attachment (origin of the body-fixed frame) before deformation as

0
a= |0 (10)
z
and the displacement vector of this mass element as
u,(z,t)
dzzt)= |u(z2) (11)

0



the position vector after deflection is given as a+d . The kinetic energy in the

beam [6] is

Ty = (1/2) myIV, + (1/2) o7 U Jo—mVoT [Elo+(1/2) [d7ddm

u,'

+ VI [dam+eT [adam+112) [ i, dy iy | a1 oy’ (12)
u
"

where the vector ¢ is from the point of attachment to the mass center of the beam

and if it is assumed that the beam is a thin rod, then it is given as

Cx
£ = 1%
CZ
o
= (1/m) fgdm = 0 (13)
—L|/2

and using the skew symmetric form for the vector cross product for any two vec-

tors ¢ and o (in the same reference frame) as

cxe = [Clo
0 —c ¢
é = ¢ 0 —Cx (14)
—Cy Cg 0

also, the moment of inertia matrix is given as

1
J=(1/3)pL3 |0 (15)
0

o = O
©c OO

where p is the mass per unit length of the beam. The last term in the equation

(12) corresponding to torsional motion is given as



| w2 [

=2 [|a g a, || o
0

where

Uy

D1

Pai

D3

Dai

1/2(pds )s?

T, = (1/2) pLVIV, +(1/6) pL* |w12+m22]—pLyfg

+VIa+eT B+(1/4) p

L
P5i=f
P6i=1[

u,’
dl u),'

de gy iy
u
¥
0o o

1/2(pds )s? O
0 0

(16)

The kinetic energy equation (12) can be simplified as

n .2
w+pL 3 g
1

i=

c <2, .2
le’si g;"+ 1P6i<11 (17)
i= i=

i

¥ b (s)g, @)
i=1

T by (s g, (1)
i=1

L ¢5.'(s)g;(2)

i=1

i ¢yi ‘(s )qi @)
i=1

R IMCDIAD
i=1

L

0

L
= [ by (s )ds

L
f5 6. (s )ds
0

L

!:s'cbyi (s )ds (18)

2
ds

s¢xil

0
L

2
s¢>yi’l ds




and

n L]
ZPudi
i=1

@6)=p | L rud (19)
0

n .
LPudi
i=1

Be)=p | Tpud| . (20)
i=1
0

The expressions for py;, pa;» P3i» Pais Psi» and pg; are developed as follows. Note

that
¢, (s) = A,;sinB;s+B,;cosB;s +C,;sinhB; s +D,; coshB; s
©2p 1/4
where 8, = | —
B, i

Since for SCOLE configuration EI, = El, and B;; = B, , EI and B; are used

for both ¢,(s) and ¢,(s). However, this may not be true for other

configurations.
L
Pu = f¢xz (s )ds
0
L
Pu = f¢yi(s )ds
0
Pu= E.lz.z. —A,;cosB; L +B,,;sina; +C,;coshfB; L
i

+D,;sinhB; L +A,; —C,, (21A)

Defining o; = B; L
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P = ;}Z[—Axi cosa; +By; sina; +C,; cosha; + D, sinhor; + A, —Cyy (21B)
4

similarly,

i

+Cy; coshB; L +Dy;sinhB; L +A,,—Cy, (22A)
Doy = ﬁ l—Ayl CoS« ; +Byi Sin(xi +Cyz COShozi +Dyi Sinhai +Ayi _Cyi I (22B)
l
L

P3 = j:s b (s )ds
0

L

Da = ~[S¢yi (s dds

and these can be given as

sinB;L LcosB;L cosB;L LsinB;L 1
P3i = Ay 7 l xi >—+t l B
B B Bi Bi B
LcoshB;L sinhf3;L Lsinhf; L coshf; L
i Bl _ le i Bl gl + 12 (23A)
B i Bi Bi B i Bi
L%sino; LZ%coso; L%cosa; L3sine; 1.2
P3i = Ay 3 xi s—+ -—— |t
o o oF o o;
LZ%coshe; LZsinha; L3%inhoa; LZ2cosha; 1.2
xi 2 xi 2 2 (23B)
oy o oy o o
Similarly,
sinB; L LcosB; L |- cosB;L Lsin;L 1
Py = Ayi 2: l +Byi 2l + l 7 |t
Bi Bi Bi Bi Bi
LcoshB; L sinf;L LsinhB;L coshB;L 1 (24A)
. Bi Biz » Bi B 12 3 i2
A L%inw; L%cosa; L2%cosw; N L3sina; 12 N
P ai yi 0‘;'2 o yi aiz o 01,-2
L2coshe; LZsinho; L%sinho;  LZcosho; 2
i oy zaz +Dyi oy _ . oy +L2 (24B)
% o ¥y o o




|

-12 -

s, '(s) 2ds

L
P5i=2[

Pei = Z[S%g'(S)]ZdS

and these can be shown to be

Bi2L3
6

LZB:’ 1

2 48,
| L2,

ag;, 2

—éiCOSZBiL +(

psi = Ad )sin2B; L

1
+=
2

cosZB,-L——i—

4B,

B; L2{(cosB; LsinhB; L )+(sinB; L coshB; L)

LsinZBiL +

_sz sz 2

+A;; Cy

—2L SinBi L SinhBi L

- L (cosB; L sinhB; L )—(sinB; L coshB; L)

4

+Axi Dxi Bi L 2 (COSBi L COSh,Bi L )+(SinBi L SinhBi L )

—2L{sinB; Lcoshf; L —El-_- (cosB; L coshB; L )—(sinB; L sinhB; L)

14

1
+—
B

Bi2L3

1| L
) =cos2B; L +(

2

L28,
B, —-1—)sin2[3,~L

2
+B] Ty

—B,;C,; |B;L?{(sinB; LsinhB; L )—(cosB; L coshB; L)

+2L{cosB; LsinhfB;L —BL (cosB; L coshB; L)
i
+(sinB; L sinhB; L) +BL
i

—B,; D,; |8;L*{(sinB; L coshB; L )—(cosB; L sinhfB; L)

+2L{cosB; L coshB; L —BL (cosB; LsinhB; L)
i
l—(sinBiLcoshBiL)
1 B.L% 1 . 8,23
+Cx% E BiLCOSh231L+( 12 +4Bi )smthiL—‘—
B, L? L. 1 1
+C,; Dy; ‘2 COS2B:‘L_?SthBiL+ECOSh23iL—ZB—;




-hpg

Pei = Ayzz_ 6

—A

+A,,C

2
yi“yi BzL

+Ay; Dy; |B;L?

~L (cosB; L coshB; L )—(sinB; LsinhfB;L)

+B,2

yi

—~ B, Cy; B;L?

— BL I(cosBi L coshB; L)+(sinf; L sinhB; L)

—By,; Dy, B;L?

2
Cy;

Cyi Dy,

2
Dy;

Bi2L3

-;— B;L cos2B;L+( B.L

-13 -

2
B;L cos2B; L+(B L +——)s nh?B;L +

Ty (25)

B 2L3
3

2
B;
- 4—B—l—)stB L
1

2
L L*B,
yi 2s1n23 L+(4—BT— 5 )C 23 L—4_B-t—

+ L1 LosoB, L+(

2

L,
2

yiB

(cosB; LsinhB; L )+(sinB; L coshB; L) {—2L!sinf; LsinhB; L

- -Bl— (cosB; LsinhB; L )—(sinB; L coshB; L)

i

(cosB; L coshB; L )+(sinB; LsinhB;L )}—2L {sinB; L coshB; L

1
4=
F

Bi
BiZL3
6

12
—L—COSQBiL+( B'

2

Jsin2f3, L

_1 1
2 4B,~

(sinB; L sinhB; L )—(cosB; L coshB; L ) }+2L }cosB; Lsinhf; L

1
ml

(sinB; L coshB; L )—(cosB; L sinhB; L ) }+2L{cosB; L coshf; L

(cosB; LsinhB; L )—(sinB; L coshB; L)

Bz

4B,

. B,L , B2L3
> B; L cosh2B; L +( 5 Jsinh B L—

2

iL L 1
cos28; L —=sinh2B; L + —cos2 L—
Bi 2 4B; B a8,

B2L?
2 i
431 Jsinh“B, L + 3

(26)

oy

The equations (25) and (26) can alternatively be derived by replacing 8; = —.

L

The kinetic energy of the reflector is
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Ty = (1/2) mVIV, —m, VI3 (L )o+m v 7d (L)—(1/2) m e’ &7 (L)3(L)e.
+m T3 (L) (L)+(1/2) mdT (L)d(L)+(1/2) Q71,0 (27)
where m , is the mass of the reflector and 7, is the mass moment of inertia matrix
of the reflector. The deflection vector d (L) at the mass center of the reflector is

given as -

u, (L) — ryuy(L)
d(L) = u, (L) + ryuy (28)
u, (L)ry + uy'(L)ry

and the position vector from the point of attachment to the reflector mass center is

given by
rx
alL)=|r . (29)
—-L
Thus,

zl,(L)— ryﬁ¢(L)
dL)=| i,(L)+reayL) | - (30)
u, (L), + ,"(L)ry

The angular velocity of the reflector in the inertial co-ordinate system  can be

shown to be
Q=0+ [g,°] - (31)

The equation (27) can be simplified as
T, = (1/2) m VIV, —m V& (L)e+m,V7d (L )+(1/2) m,L? |w12+m22]

+m TG I my| 3 F 6,0, (LIdid; +
i=1j=1
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T F 6, (L)by; (L)ird;

i=1j=1

+(1/2) BT1,P+(1/2) o7 1,0 (32)

where

BT =

U Uy Uy,

= l F b (L)) by (L), 3 by(L), )l , (33)
i=1 i=1 i=1
The kinetic energy of the shuttle, T, , is given as
T, = (1/2) m VTV +(1/2) o7 [Ill@_ (34)

where m, is the mass of the shuttle and I is the mass moment of inertia matrix

of the shuttle.

The total kinetic energy is given as
T = T°+T1+T2 (35)

This can be stnplified as

n
T=01/2)mVTV+aT [H]\_/’_+(1/2) ol |1, ]Q_+pLZq'iz+Y_TQ
i=1

+oTFa+ol B+m VT d (L)+m el Fd (L)+

m el @ (L) LI+ m,| 5

i=1

n P .2
lesi‘h + le6iqi
i= {=

q’

¢Z(LI)+o5(L)

+(1/2) PTI,P+(1/4) p (36)

where

m, = my+pL+m,
H= (pL+m2]f_+mzcl(L)+pL§
0
0
0

10
I, = I,+(1/3) pL3 |0 1 O|+I+J,—pLiF—pLi&—m it —m,ra(L)
00




-16 -
The term J, in this equation can be shown to be:

(r),2+L ) —rery r.L

Ja=my| —ryry (2+L% )L

r.L ryL  (r24+r?)
The total kinetic energy expression can be further simplified as
T =(1/2)mVIV+eT IH]z+(1/2) ol II,, o+V7 [A1 ]g'_
+o! [A2]i+(1l2) §7 [A3]_(2_

where

i
o
I
+
3
3
=~

|A3]= PL+m2'EP5i+Psi +[[¢'(L)]le[¢'(L)H
0

In this equation

¢, (L) O 0
0 ¢1,°(L) 0
0 0 ¢1¢(L)
k-]
& '(L) 0 0
0 6,(L) O
0 0 ¢i¢,(L)

(37)

Here i=2,3,.....,n. The number n indicates the total number of flexible modes con-

sidered.

Equations of motion
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Lagrange’s equations of motion for the case of independent generalized co-

ordinates g, are

49T _ T _ o _ QU k=12, 38
dt 34, 0 %~ Bge k=120 ) (38

where, ' = T'(¢ g ) is the kinetic energy
U = U(g) is the potential energy, and

Qi are the generalized forces arising from nonconservative sources.

The generalized co-ordinates are:
Rx ,Ry ,R; — position of orbiter mass center relative to inertial frame origin.
01,6,,9;3 — roll, pitch and yaw angles of orbiter.

q 1,9 25+--xdn — modal deformation co-ordinates for the beam.

The previous kinetic energy expression developed in equation (37) is given in
terms of nonholonomic velocities V and w, and generalized velocities ¢. Using the
notation T(V,w.g) for this kinetic energy expression and T for kinetic energy
expression in terms of generalized velocities, the equations of motion are developed.

Thus, equation (37) is rewritten as

T=2)m VIV + T [H]z + (1/2)aT II,, ]Q'*' yT [Allg'_ (37)

+ of [Azlg_+ (12)47 iA3]g’_

(a) Translational Equations

From the chain rule applied to equation (37) using equation (8), one gets

or]  [ar

dRx V1

—a.T— = CT ._ai .

3Ry "z (39)
o T

ORz Vs
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Also, the generalized forces are CF (¢ ) where
EFQ@)=E,)+F,) (40)

F, (z) represents the force applied at the orbiter mass center and F,(z ) represents

the force applied at the reflector mass center. From Lagrange’s equations

49T |, cor |8T |
ar | v + CC Y FQ@) (41)
and from equation (37)
-g% = moY_—HQ+A1g._ (42)
Substituting equation (42) in (41),
m,V—Ho+A§ = —CCT(m,V—Ho+A ) + E(t) (43)
This can be rewritten as
mY —Ho + Ag = N, + F(t) (44)
where the nonlinear term /N, is given as
Ni=—CCT(m,V—He+A§) (45)

= —o(m,V—Ho+A )

Here, & = CCT.

(b) Rotational Equations :

From equation (4)

Again using the chain rule

(46)
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Also
T av’” dal
691 691 691
BT | - 2" || T |, ]0e” ||oT (47)
89, 09; || 0L 09; || 0
o | v’ o]
093 963 093
It can be shown that
Y _yre 95 o123, (48A)
aei Y aei l 9yl
and
Bl _ a1 .geﬂ =123, (48B)
i i
and
T
VTcﬁc Tar—-1 M
— 09, o M 09,
AT | = |yrcdCl || 8L |4 |orar—10M || ST
o8| = [¥ o | a2 T|E M 90, ||5a (49)
T QCT TM‘l..aM
z C 693 e 693
From equation (37),
oT =HV + Lo+ A (50)
0w
and as before
_g‘z; =mV —Ho+Ag (42)
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Using the Lagrange’s equations

d

dt

RR

— T =
YRS MG (51)

where G is the net moment about the mass center of the orbiter with respect to

the body-fixed frame. It is given as

G =G, +(+a)xF, (52)

G, is the external moment applied about the mass center. Eqation (51) can be

simpified by substituting equations (42),(49), and (50) together with the relation-

ship developed in (46) as

HV +I,6+Ai =G + N, (53)

where the nonlinear term /N, is given as

e a%T S
1 1
- P _
Ny= M| vTcC || L lemt||oT M1 O || [BL] | (50
- = V08, [|ov &7 %6, de
T aCT TM—l_a_Ai
¥ Ce; = 893

(¢) Vibration Equations of the Beam

Since T in equation (37) is given in terms of g which is a vector of general-

ized velocities,

oT _ aT
0¢. o4
and
ng,_ = ATV + AJo + Asd . (55)
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The potential energy in the beam is given by

U =@/ 2)¢"Kqg (56)

where the stiffness matrix K is given as

\ O

K = kii (57)
0\

and

L L L
kii = FJ Bi4 (ble (S )ds + f¢yzl (S )dS + G‘IIBVZR f‘b‘/z;; (s )ds
0 0 0

1

Do? |z
G, represents the modulus of rigidity of the beam and By; = i where D is
¥
the mass per unit volume (mass density) of the beam. Thus,
U | _ x
=Kg . (58)
[a.fl.
Using the Lagrangian Equations (38) and assuming that F, =0,
ATV + AT+ Asd =—Kg (59)

(d) Slewing Equations

If it is considered to perform a slew maneuver about an arbitrary axis A and
the slew angle to be £, then the slew maneuver can be expressed in terms of four

Euler parameters. These four Euler parameters are defined as

= le|= Lsing— (60)
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€= cos-g— (61)

and their derivatives with respect to time are given as

(€40 + eXw) (62)

we (63)

If a slew maneuver is considered to be purely rotational, then the transla-
tional velocity and acceleration can be shown to be negligible during the slew
maneuver and only the rotational and vibration equations are regired for the
analysis and they are simplified by setting V=0 in both (53) and (59) and are

written as follows

I,d + Ay = G(@)+ Ny(w) (64)
Alo + A d = —Kg . (65)

Thus equations (62) - (65) completely represent the dynamics of the slew
maneuver. These equations are nonlinear and coupled including both the rigid-
body dynamics and the dynamics of the flexible appendage with kinematic non-
linearities. It is important to note that the nonlinear term N ,(w) is dependent on
the rotational velocity and as a result determined by the slew maneuver rate. Thus
the basic slew maneuver stretegy has to be developed before this term can be

linearized.
(e) Vibration Equations of the Beam with Damping

If damping is included in the derivation of vibration equations of the beam,
then the damping effect can be expressed in terms of frictional forces. These are
nonconservative, retarding forces and are assumed to be proportional to the gen-

eralized velocities. In deriving the vibration equations by means of Lagrange’s
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equations, the following function is introduced

1 ..
Fy = EZ 2 bij4:q;
i=1j=1

(66)

It also has a positive definite quadratic form similar to the kinetic and poten-

tial energy expressions.

With this definition, Lagrange’s equations assume the form

d T _ T 08Fq
dt 84 0%r 99k *

Again, as before

o

= AV + Alo + Ay
0L

and

Ul =g
= 4
0
and it can be seen from (66) that
F .
0g

where the damping matrix B is symmetrical and is given as

by b1y - - byn

by bay - - bay

bnl bn2 L bnn

(67)

(55)

(58)

(68)

(69)
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The vibration equations are given as

ATV + ATo +Af +Bj=—Kg . (70)

The slewing equations (64) and (65) would be modified as

I, +A,d=G0)+ Nywgd) (71)
AYo + Asg + B = — Kg . (72)

Nonlinear Term in the Rotational Equations

The nonlinear term N, in the rotational equations (64) and (71) during the

slewing maneuver is simplified as

a)TM_l-aA/I-
- 091
N,=M"1 QTM—I%Q—” - M lz,,g+ Azg_] (73)
2
TM—I M
- 003
where
Tyt M [0 0 0] (74)
- 091
oI M™1 g‘]ew = 0029 [(—colsinezcosze 3+0,sinf,sinf3cos83)  (w,sinf,sind 3c0s0;
2 2
—w,sinf,sin?03)  (@cosf,c0s03—w,c0s0,5in03) ] (75)
o’ M™! ggl = 00:9 (wycos6,)  (—w;cosfy)
3 2

(—wsinf,cos0 3 + ©,sinf,sind; + @ 3c089,)| . (76)
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Since the transformation matrix, M , is a function of 6, and 63, the time

derivative of M can be expressed by the chain rule as

v OMg o OMj
M aez92+ a9393 (77)
From equation (5)
(—sinf,c0s03)0, (sinf,sinf;)d, (cosh,)d,

gie"’—éz= 0 0 0 (78)

2 0 0 0.

(—cosf,sinf3)0; (—cosBcos03)8; O
35-9"193_ (cosf3)85 (—sinf)d; 0 (79)

3 0 0 0

Substituting these equations (78) and (79) in (77)

(—sinf,c0s03)0,+(—cos 0,sin03)8; (sinh,sind ;)0 ,+(—cosh,cosd )05 (cosf,)d,

M = (cosB3)8; (—sinf3)0; 0
0 0 0
(80)

From equation (4), this can also be expressed as

(sinB,c0s63)(e>;cosf,51n6 4

(— 5108 ,c0s0 3+ ,sinf,sinf
+w 3c0s6,)

cosf, (cos 6 3)(—wsinf,cosf;

+w,sinf,sinf 3+ 3cosh,)

(sinf,sinf ;)(w ycos0,sinb,

+ 505050050 3 )+(—cos0,sin0;3) +0 50050 ,c080 3)+(—cosf ,co0s0 3)

(—osinf,c0s0 3+ ,5in0 ,sind 5
+ 3c0s6,)

(—sinB3)(—w sinf,cosH 3
+w,sinf,sinf 3+ 3c0s0,)




- 26 -

cos8,(w ;0088 ,5in0 3+ 5c0s6 5c050 3)

(81)
0
0
Also, M~ 1 is given as
cosf; cosf,sinf; —sinf,cos0,4
M~l= —sinf; cosf,cosf; sinb,sinf, (82)
cosf, .
0 0 cosf,
Thus, the nonlinear term NV, can be rewritten as
N,= Aj(0f) lIa o+A 29.]
‘Where the term A 3 is
0
A8 = M| oM 181 | _ a
092
ol M -19M
- 093
Ny= A3, 0+ As(08)Ag
= A9+ As(e8)g (83)

where A , depends on the rigid-body slewing and is nonlinear in terms of @ and 6.
The second term relates the coupling between the rigid-body slewing and the flexi-
ble modes.
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4. NUMERICAL DATA

The analytics developed in the previous section are utilized together with the
basic SCOLE data [1] and the three dimensional linear vibration analysis [4] to

generate the following numerical data.

mqy = 6366.46slugs.; m,= 12.42slugs.; p = 0.095S5slugs|ft.; L = 130ft.

Gy = T2E+8 | ft% (EI), = (EI), = (EI) = 4E+Tb—ft?

0.036
r = |—0.036
—0.379

9054430 0.0 145393.0
I,=| 00 67891000 0.
145393.0 00  7086601.0

18000.0 —7570.0 0.0
I,= |—7570.0 27407.0 0.0
0 0.0 27407.0

The three dimensional vibration analysis is given in terms of the first ten

modal frequencies and mode shapes in table 1. Here,

.S
b,(s)= A, sin—— +sz cos—i= +Cx, sinhi= L +Dx, cosh—2

L L

L

/S
¢, (s)= Ay sin—i= +Byi cos——. +Cyi sinhT+Dyi cosh—L=

L L

byi(s) = Ay sinay, %+B Wi COS®y; %
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‘ 1
| ool |7
o; = El
1
DLz(Diz 2
a‘l,i = G

Using these data the following matrices are obtained.

1216640 15167.53 —115118.9
I, = [15108.34 7083005 —52474.84
—115096 —52503.9 7131493
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TABLE 1

FIRST TEN FLEXIBLE MODES OF SCOLE MODEL

THREE DIMENSIONAL MODE SHAPE CHARACTERISTICS
MODE No. 1 2
FREQ. (Hz.) 0.27804240E+00 0.31357296E+00
o 0.12012084E+01 0.12756518E+01
A, 0.16282665E+00 0.38855291E-02
B, -0.19670286E+00 -0.14998387E-01
Cx -0.16983450E+00 -0.43321018E-02
D, 0.19616259E+00 0.14985820E-01
A, -0.10274618E-01 0.14219781E+00
B, 0.57579133E-02 -0.22695797E+00
C, 0.11810057E-01 -0.1928310SE+00
D, -0.57220462E-02 0.2264456 1E+00
ay 0.19360955E-01 0.21835058E-01
Ay -0.50748354E-01 0.31115282E-01
_By 0.13978018E-04 -0.75992337E-05
MODE No. 3 4
FREQ. (Hz.) 0.81300189E+00 0.11856099E+01
o 0.20540387E+01 0.2480468 7E+01
A, 0.40868188E-01 0.80641794E-01
B, -0.61958845E-01 -0.67233377E-01
C, -0.41309992E-01 -0.80913938E-01
D, 0.61880796E-01 0.67106316E-01
A, -0.22438404E-01 0.13728679E+00
B, 0.36509234E-01 -0.11746932E+00
C, 0.24390447E-01 -0.14085209E+00
D, -0.36464758E-01 0.11725057E+00
ay 0.56611842E-01 0.82557693E-01
Ay 0.92698901E-01 -0.16158934E-03
_By -0.87320799E-05 0.10437718E-07
MODE No. 5 6
FREQ. (Hz.) 0.20536300E+01 0.497 16090E+01
a 0.32645546E+01 0.49716090E+01
A, 0.99278129E-01 0.45739784E-01
B, -0.92344553E-01 -0.46365581E-01
C, -0.99442145E-01 -0.45763106E-01
D, 0.92225801E-01 0.46329676E-01
A, -0.57396019E-01 0.78612940E-01
B, 0.53976008E-01 -0.79952853E-01
c, 0.58114853E-01 -0.78914485E-01
D, -0.53906980E-01 0.79891039E-01
ay 0.14300062E+00 0.33165303E+00
Ay -0.16588614E-02 -0.93394833E-05
By 0.61861804E-07 0.15017211E-09
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THREE DIMENSIONAL MODE SHAPE CHARACTERISTICS

MODE No. 7 8

FREQ. (Hz.) 0.55157833E+01 0.12281249E+02
a 0.53501560E+01 0.79833305E+01

A, 0.81311804E-01 0.44835061E-01

B, -0.82056569E-01 -0.44834914E-01

C, -0.81344923E-01 -0.44840508E-01

D, 0.81997259E-01 0.44813000E-01

A, -0.47145439E-01 0.77404756E-01

B, 0.47703590E-01 -0.77465629E-01

G 0.47289807E-01 -0.77475327E-01

D, -0.47669155E-01 0.77427782E-01

ay 0.38408110E+00 0.85518143E+00

Ay -0.23855560E-02 0.15830371E-05

B, 0.33122041E-07 -0.98715017E-11

MODE No. 9 10

FREQ. (Hz.) 0.12890442E+02 0.23679520E+02
a 0.81789349E+01 0.11085347E+02

A, 0.78743585E-01 0.44348498E-01

B, -0.78755259E-01 -0.44367373E-01

C, -0.78752483E-01 -0.44350511E-01

D, 0.78717693E-01 0.44351763E-01

A, -0.45569244E-01 0.76707490E-01

B, 0.45609474E-01 -0.76762782E-01

C, 0.45607884E-01 -0.76733612E-01

D, -0.45587726E-01 0.76735779E-01

ay 0.89760145E+00 0.16488784E+01

A, 0.94995483E-03 -0.51105957E-06

-0.56437766E-08

0.16528495E-11

i




0.45879E+2 0.36305E—1 —0.89042E—1
0.36305E—1 0.6211E+2 0.11263E0
—0.89042E—1 O0.11263E0 0.32737E+2
—0.14067E0 —0.1471E0 -—-0.6392E—1
—-0.1457E0 —0.5518E—1 —0.14526E0
0.1914E—1 0.19839E—1 0.7925E-—2
0.84597E—1 0.3935E—2 —0.8369E—1
—0.6893E—2 —0.7165E—2 —0.2829E—-2
—0.4269E—1 0.5969E—2 0.89767E—1
0.4204E—-2 0.41227E-2 0.1866E—2
0.1914E—1 0.84597E—1 —0.6893E-2
0.19839E—1 0.3935E—-2 —0.7165E—2
0.7925E—-2 —0.8369E—1 —0.2829E—2
—0.4278E—1 —0.76115E—1 0.1543E—1
—0.2570E—-1 -—0.12912E0  0.9222E-2
0.23209E+5 O0.10383E—1 —0.2089E-2
0.10383E—1 0.55561E+5 —0.37286E—2

—0.2089E—2 —0.37286E—2 0.1342962E+8
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—0.3955E—2 —0.3859E—1 0.1421E-2
0.1227E-2  0.2397E—2  —0.4427E-3
—0.2133821E0 —0.3687057E+3
0.3808921E+3 —0.3030935E+2

—0.1808478E+3 —0.1318596E +3
0.1423380E+3 —0.1135851E+1
—0.2416743E+2 0.574383E+2

—0.6802273E0  0.3104929E2
0.2784792E+2 0.6651585E+2
0.7842818E+1 —0.1930097E+2

—0.2694455E+2 —0.5544252E+2

—0.9225328E—1 0.1594045E+2

—0.14067E0  0.1457E0
—0.1471E0 —0.5518E—1
—0.6392E—1 —0.14526E0
0.2547E+3  0.1908E0
0.190820  0.8103E+3
—~0.4278E—1 —0.2570E—1
—0.76115E—1 —0.12912E0
0.1543E—1  0.9222E—2
0.2859E—1 0.4611E—1
—0.9067E—2 —0.5947E—2
—0.4269E—1  0.4204E—2
0.5969E—2  0.4127E—2
0.89767E—1  0.1866E—2
0.2859E—1  —0.9067E—2
04611E—1  —0.5947E—2
—0.3955E—2  0.1227E—2
—0.3859E—~1  0.2397E—2
0.1421E—2  —0.4427E—3
0.2095672E+8 —0.9108E—3

—0.9108E—3 0.8662547E+10

—0.7253901E~1
—0.8427658E~1
—0.125799E0
—0.2367351E—1
—0.9150328E—1
—0.3843062E—1
0.596075E—1
—0.4363533E—-2
—0.4200623E—1
—0.1626004E—1
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The stiffness matrix K is calculated using equation (57) and the mode shape
coefficients given in Table 1. This matrix is a diagonal matrix and is represented in

terms of the diagonal elements as

k11 = 0.2820217E0
k2, = 0.3574692E0
k33 = 0.2412807E1
k4= 0.5285116E1
kss= 0.1588654E2
kg5 = 0.8573860E2
k7= 0.1146118E3
ks = 0.5686101E3
koo = 0.6254598E3
k 10,10 = 0.2114612E4

The damping matrix B used for this analysis is a diagonal matrix and for

damping ratio { = 0.003, it is calculated to be

b11= 0.9685964E—3
b2 = 0.1088608E—2
bs3= 0.2834016E—2
bss= 0.4256808E—2
bss= 0.7387177E~2
bgs= 0.1719014E—1
by, = 0.1984237E—1
bgs = 0.4421234E—1
beo = 0.4633434E—1
b1010= 0.8527647E—1
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APPENDIX
The following is a summary of transformations between inertial frame and

body-fixed frame. Here, s; and ¢; (i=1,2,3) denote sinf; and cosf; (i=1,2,3)

respectively.

(a) Space-three Angles

Ca2C3 €283 —S2
C = S1S2C3'_S3C1 S1S2S3+C3C1 §1C2

CISZC3+S3S1 C18253—C35 Ci1C»

1 0 —S
MT= 0 Cq §1C»
0 —s; 1

(b) Space-two Angles

Cy 5283 —S,C3
C = |s155 —scp53+C3C; 51CC3+83Cy

C1S2 —C1C2S3_C3S1 C1C2C3—S38

1 0 Csy
MT = 0 Cy S1852
0 —s; C152

(¢) Body-two Angles

Co S159 —c182
C = |s,83 —sjica83tcacy ciCaS3tCasy
§9C3 —8§1C2C3—83C) C1C2€37535

Cy 0 1

MT = |s 0
= 8283 C3

S9C 3 ""S30
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Spacecraft Control Experiment (SCOLE) Z

FIGURE 1
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Figure 3- Position Vectors in Inertial Frame
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Figure 4- Vectors in Body-fixed Frame
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