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Abst ract  

Recent progress i n  the  area of s t r u c t u r a l  dynamics o f  l a r g e  space 
s t ruc tu res  i s  reviewed. Topics inc lude system i d e n t i f i c a t i o n ,  l a r g e  angle 
s lewing o f  f l e x i b l e  s t ruc tu res ,  d e f i n i t i o n  o f  s c a l i n g  l i m i t a t i o n s  i n  
s t r u c t u r a l  models, and recent  r e s u l t s  on a tens ion -s tab i l i zed  antenna concept 
known as the  hoop-column. 
most o f  the  a c t i v i t i e s  lead ing  t o  r e a l  i s t i c  technologica l  developments. 
Theoret ica l  progress i n  system i d e n t i f i c a t i o n  based on system r e a l i z a t i o n  
theory r e s u l t i n g  i n  u n i f i c a t i o n  o f  several methods i s  reviewed. 
r e s u l t s  from implementation o f  a t h e o r e t i c a l  large-angle s lewing c o n t r o l  
approach are  shown. 

Increas ing ly  complex l abo ra to ry  experiments guide 

Experimental 

Status and r e s u l t s  o f  the development 
computer program fo r  ana lys i s  o f  the  t r a n s i e n t  dynamics o f  
o f  f l e x i b l e  s t ruc tu res  are presented. Cor re la t i on  o f  resu 
and v i b r a t i o n  t e s t s  o f  the  hoop-column antenna concept a re  

I n t r o d u c t i  on 

o f  a- research 
l a r g e  angle mot ion 
t s  from ana lys is  
sumnarized. 

t o  o r b i t  f u l l y  Space systems which are too  l a r g e  t o  be t ranspor ted  i 
assembled have been proposed. 
unprecedented chal lenges i n  the  areas o f  v e r i f i c a t i o n  o f  performance and 
c e r t i f i c a t i o n ,  NASA has f o r  several  years conducted technology programs i n  
several  r e l a t e d  areas i n c l u d i n g  c o n t r o l  - s t ruc tu re  i n t e r a c t i o n ,  s t r u c t u r a l  
assembly, o n - o r b i t  deployment, and ma te r ia l s  research. 
the broad areas of  con t ro lds t ruc tu re  i n t e r a c t i o n ,  ground t e s t  and 
c e r t i f i c a t i o n  issues, f l i g h t  t es t i ng ,  and s t r u c t u r a l  assembly have been 
presented i n  References 1-4. 

Key research needs f o r  design, c e r t i f i c a t i o n ,  and opera t ion  o f  l a r g e  
space systems inc lude several  s p e c i f i c  areas o f  s t r u c t u r a l  dynamics. 
S t r u c t u r a l  dynamic t e s t  methods, f o r  example, have been a sub jec t  o f  research 
f o r  several  years. 
s t ruc tu res  are  o u t l i n e d  i n  References 5-6. 
approach t o  the  determinat ion o f  c h a r a c t e r i s t i c s  o f  l a r g e  space s t ruc tu res  b u t  
d i f f i c u l t i e s  associated w i t h  assurance t h a t  areas o f  the s t r u c t u r e  which a re  
loaded du r ing  assembled opera t ion  are  the same as those which are  loaded 
du r ing  t e s t s  may l i m i t  the  a p p l i c a b i l i t y  o f  t h i s  method. 
systemat ic approach f o r  subst ructure t e s t i n g  i s  presented i n  Reference 7. 
Some s t ruc tu res ,  however, such as some l a r g e  antenna concepts, Reference 8, 
f o r  example, do n o t  l end  themselves e a s i l y  t o  subst ructure tes t i ng .  
types o f  s t ruc tu res ,  i n e v i t a b l y  there  i s  dynamic i n t e r a c t i o n  o f  the  s t r u c t u r e  
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wi th  the  suspension system. 
and inc luded i n  the  associated analys is .  
i d e n t i f i c a t i o n .  
i n t roduc t i on  o f  time-domain methods i n  s t r u c t u r a l  t e s t i n g  (Reference 9, f o r  
example). 
research may be seen here as r e l a t i o n s h i p s  among several  cu r ren t  methods have 
been shown by the  a p p l i c a t i o n  o f  system r e a l i z a t i o n  theory from the  c o n t r o l s  
d i s c i p l i n e  t o  modal i d e n t i f i c a t i o n  methods used by s t r u c t u r a l  dynamicists 
(Ref. 10). The l i t e r a t u r e  i n  t h i s  area i s  extensive.  Reference 11 provides 
an extens ive b ib l i og raphy  i n  system i d e n t i f i c a t i o n  as app l i ed  t o  both modal 
i d e n t i f i c a t i o n  and cont ro ls .  Because the  l a r g e  f l e x i b l e  systems envis ioned 
f o r  the  f u t u r e  need t o  a r t i c u l a t e ,  the problem o f  r e l a t i v e  movement among 
in terconnected bodies becomes important.  The problem i s  d i f f i c u l t  because o f  
the h igh  degree o f  n o n l i n e a r i t y  and the  l a r g e  number o f  degrees o f  freedom 
involved. There a re  no proven general methods f o r  design o f  c o n t r o l s  f o r  such 
s i t ua t i ons .  I n t u i t i o n  exerc ised by h i g h l y  experienced designers p resent ly  i s  
a necessi ty.  Progress i s  impeded by the i n a b i l i t y  t o  perform the many 
i t e r a t i o n s  needed i n  a r i go rous  design process because o f  the  enormous 
computational task.  S ta te -o f - the-ar t  computer programs e x i s t  which can ca r ry  
out a l i m i t e d  number o f  computations bu t  they are  i n s u f f i c i e n t .  One 
research computer program being formulated f o r  l a t t i c e  s t ruc tu res  i s  the 
LATDYN program (Ref. 12). The purpose o f  t h i s  program i s  t o  he lp  researchers 
de f i ne  problems and t o  t e s t  a lgor i thms f o r  improvement o f  e f f i c i e n c y  i n  these 
ca l cu la t i ons .  Present ly  the  program i s  r e s t r i c t e d  t o  two dimensions. A 
three-dimensional fo rmula t ion  i s  i n  progress. 

The problem areas mentioned above are n o t  in tended t o  be exhaustive. 
They do, however, i n d i c a t e  the  degree o f  the d i f f i c u l t i e s  which must be 
overcome i n  order  t o  deploy c o n f i d e n t l y  l a r g e  systems i n  space. 
o f  the  present  paper i s  t o  review some recent  progress i n  the areas o f  system 
i d e n t i f i c a t i o n ,  large-angle maneuvers o f  f l e x i b l e  s t ruc tu res ,  s c a l i n g  o f  
l a t t i c e  s t ruc tu res ,  recent  deployment l oad  ca l cu la t i ons ,  and t o  present  
summary r e s u l t s  o f  t e s t s  and analyses o f  a 15m hoop-column antenna. 

This  i n t e r a c t i o n  should be minimized i n  the  t e s t  
Another key research t o p i c  i s  system 

An example o f  the  synergism which can r e s u l t  from i n t e r d i s c i p l i n a r y  

Much progress has been made i n  recent  years w i th  the 

The purpose 

System I d e n t i f i c a t i o n  

System I d e n t i f i c a t i o n  can be d i v ided  i n t o  two ca tegor ies  f o r  purposes o f  
d iscussion. 
performing adapt ive con t ro l .  Because o f  the very r a p i d  speed requirements f o r  
computation o f  changing system c h a r a c t e r i s t i c s ,  t h i s  type o f  system 
i d e n t i f i c a t i o n  remains an impediment t o  implementation o f  adapt ive c o n t r o l  f o r  
more than a few system modes. The o ther  category o f  system i d e n t i f i c a t i o n  i s  
r e f e r r e d  t o  as o f f - l i n e  system i d e n t i f i c a t i o n .  This  process, which i s  much 
f u r t h e r  advanced than on-1 i n e  system i d e n t i f i c a t i o n ,  invo lves  a c q u i s i t i o n  o f  
data, storage i n  some appropr ia te  device, then ana lys i s  by any o f  va r ious l y  
a v a i l a b l e  processes. These processes have been the  sub jec t  o f  a voluminous 
l i t e r a t u r e ,  Reference 11, and on ly  r e c e n t l y  have the var ious methods been 
shown t o  be der ivab le  from a common theory,  Reference 10. Thus f o r  l i n e a r  
systems, advantages and disadvantages o f  the var ious system i d e n t i f i c a t i o n  

One i s  on - l i ne  system i d e n t i f i c a t i o n  which i s  requ i red  f o r  
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approaches emanate from the character and volume of the data t o  be analyzed. 

A key event i n  the development of system identification methods was the 
introduction of the eigensystem real i z a t i o n  algorithm ( E R A ) ,  References 
13-14. T h i s  theory, from the controls community, has served as the bas i s  for 
much of the progress. 
characteristics of these various methods. The f i r s t  line of the figure shows 
the or ig ina l  ERA,  the characteristics of w h i c h  are shown i n  Figure 2. The 
data  are f i r s t  organized i n t o  a matrix known as the Hankel matrix, then the 
singular value decomposition i s  performed. Involved i n  this process i s  an 
assumption of the number of degrees of freedom contained in the da ta .  A key 
element in this method, then, i s  the singular value decomposition which allows 
an estimation of the number of modes present. A recent development known as 
the ERA-FD, or Eigensystem Realization Algorithm in the Frequency Domain, i s  
illustrated i n  Figure 3. This method utilizes the close conceptual 
relationships between time and frequency domains. The method is based on 
transfer functions and allows the usual advantages of frequency domain 
analysis such as windowing t o  isolate certain frequency bandwidths. 
contribution here i s  two-fold. First an eigensystem realization algorithm in 
the frequency domain i s  developed for modal parameter identification of linear 
systems. 
domain and  frequency domain system identification methods i s  established. 

Figure 1 shows some recent developments and 

The 

Second, an explicit description of the relationship between time 

As noted previously, a key element of the eigensystem realization 
algorithm i s  the app l i ca t ion  of the singular value decomposition t o  a matrix 
i n  w h i c h  a number of modes has been assumed t h a t  i s  greater t h a n  the expected 
modal content of the data .  A different approach, Reference 16, has been 
formulated w h i c h  abandons the singular value decomposition i n  favor of the 
Gram-Schmidt orthonormal i za t ion  technique. In this approach, the minimal 
realization of a linear system i s  recursively calculated from sampled impulse 
response da ta .  The system matrix identified i n  this process i s  i n  upper 
Hessenberg form which  has advantages for the identification of modal 
parameters. I t  also has the property t h a t  once the elements of the system 
matrix are computed, they are  never a l t e r e d  a s  the dimension o f  t h e  model i s  
increased. Thus, i n  this process one builds up t o  the proper system order. 
The recursive form will produce results somewhat quicker t h a n  the nonrecursive 
version. However, a somewhat greater sensitivity t o  system noise i s  expected 
because of the use of Gram-Schmidt orthonormal i z a t i o n  technique. 

Another modif icat ion t o  the eigensystem realization algorithm i s  the 
ERA/DC or Eigensystem Realization Analysis/Data Correlation approach. 
method, the singular value decomposition i s  combined w i t h  the philosophy of 
the correlation f i t  method such t h a t  response da ta  correlations, rather t h a n  
actual response values, are used for modal parameter identification. This 
method has the advantage of reducing b i a s  errors due t o  noise corruption 
significantly, w i t h o u t  the need f o r  model overspecification. When 
overspecification is  used, however, the method provides estimates of modal 
parameters of similar accuracy t o  the usual ERA method. 
described in Reference 17. 

In this 

The method i s  
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Large Angle S1 ewi ng o f  F1 e x i  b l  e St ructures 

Performance o f  complex tasks on o r b i t  w i t h  l a r g e  f l e x i b l e  space 
s t r u c t u r e s  invo lves  a r t i c u l a t i o n  through very 1 arge angles. 
t h i s  a r t i c u l a t i o n  be accompli shed w i t h  g rea t  accuracy, i t  must be accompl i shed 
sometimes w i t h  minimal v i b r a t i o n .  Thus, two aspects o f  t h i s  problem ar ise :  
f i r s t  the  design o f  c o n t r o l s  which w i l l  p r a c t i c a l l y  permi t  t h i s  l a r g e  angle 
s lewing v i b r a t i o n  and secondly, s imu la t ion  o f  the  l a r g e  angle maneuver w i t h  
t h e  e f f e c t s  o f  c o n t r o l s  incorporated. Some research i n  both these areas i s  
described i n  t h i s  sect ion.  Fur ther  d e t a i l s  o f  t h i s  work can be found i n  
References 12 and 18-22. 

Not on ly  must 

I n  F igure 4, a t e s t  setup i s  depic ted i n  which a s lewing maneuver o f  30' 
i s  performed i n  3.5 seconds. 
implementation o f  a c losed form feedback law i s  attempted. The f i g u r e  shows 
on the  r i g h t  a comparison o f  t h e  r o o t  s t r a i n  both w i t h  and w i t h o u t  cont ro l .  
The r e s u l t s  i n d i c a t e  t h e  method was successful.  Th is  work has been extended 
t o  a mult ibody problem as shown i n  F igure  5 and Reference 21. 
experimental apparatus, the  a r t i c u l a t i o n  i s  performed by way of th ree  motors. 
Each o f  t h e  appendages i s  f l e x i b l e .  
gages and a r o o t  angular measurement. 
appendages, t h e  c e n t r a l  body a l s o  can be maneuvered. 
experiment a re  shown i n  F igure  6. 
one panel i s  maneuvered thrgugh 45' r e l a t i v e  t o  the  center  body. The center  
body moves an a d d i t i o n a l  45 w h i l e  t h e  second panel must p o i n t  i n  one 
d i r e c t i o n .  
w i t h  and w i t h o u t  c o n t r o l .  The r e s u l t s  i n d i c a t e  t h a t  t h e  maneuver was 
accomplished w i t h  a s t r a i n  reduc t ion  when f l e x i b l e  motion c o n t r o l  was 
implemented. 
r i g i d  body l a r g e  angle component o f  the motion from the  e l a s t i c  motion 
which i s  assumed t o  be snial l .  

I n  t h i s  experiment, a r e l a t i v e l y  simple 

I n  t h i s  

Each appendage has th ree  s t r a i n  
I n  a d d i t i o n  t o  s lewing each o f  t h e  

Resul ts from t h i s  
The maneuver i l l u s t r a t e d  here shows t h a t  

The r e s u l t s  shown are r o o t  s t r a i n s  f o r  both panels one and two, 

The key fea tu re  o f  the a lgor i thm i s  the  separat ion of the 

Research i s  underway t o  be ab le  t o  s imulate such motions as descr ibed i n  
t h e  experimental setups as w e l l  as t o  perform parametr ic s tud ies  f o r  such 
proposed p r o j e c t s  as t h e  Space Sta t ion .  Reference 12 descr ibes a computer 
program intended f o r  use as a research t o o l  t o  i s o l a t e  problem areas and t o  
improve e f f i c i e n c y  o f  computations associated w i t h  s imulat ion.  F igure  7 
i n d i c a t e s  one a p p l i c a t i o n  o f  t h i s  program, c a l l e d  LATDYN f o r  Large-Angle 
Trans ient  Dynamics, which e x i s t s  p resent ly  as a two-dimensional c a p a b i l i t y .  
The fagure shows r e s u l t s  o f  s lewing a l a r g e  mass (32 000 l b s )  through an angle 
o f  10 . I n  t h i s  s imulat ion,  the  Space S t a t i o n  i s  represented by modes and t h e  
arm i s  f l e x i b l e ,  having c h a r a c t e r i s t i c s  s i m i l a r  t o  t h e  remote manipulator 
system on t h e  Space Shut t le .  The maneuver incorporates a n a l y t i c a l l y  the  
s lewing c o n t r o l  demonstrated i n  t h e  experiment of F igure  4. The mot ion o f  the 
32 000 l b  mass i s  shown t o  be q u i t e  smooth. I n  a d d i t i o n ,  dynamic responses 
are i l l u s t r a t e d  f o r  two p o s i t i o n s  on t h e  Space Stat ion.  
t i p  o f  the  t r a n s f e r  boom on which i s  loca ted  a f a i r l y  l a r g e  mass which 
represents a s o l a r  dynamic power system. The o ther  l o c a t i o n  i s  t h e  middle o f  
the upper boom. This  l o c a t i o n  i s  seen t o  v i b r a t e  s u b s t a n t i a l l y  as a r e s u l t  o f  
the maneuver. Thus w h i l e  t h e  ac tua l  mot ion o f  the  mass i s  very smooth, o ther  
p a r t s  of t h e  s t r u c t u r e  may be s t imu la ted  t o  v i b r a t e  a t  f a i r l y  l a r g e  ampitudes. 

One p o s i t i o n  i s  the  
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These results could have implications for  micro-g experiments. 
similar maneuver on a so called "Block 1" Space Sta t ion  configuration are 
shown i n  Figure 8. Again, while the motion of the mass i s  quite smooth, 
vibratory accelerations a t  the modules can be substantial. 
results indicate t h a t  merely scaling vibratory amplitudes by a mass scaling 
1 aw i s not conservati ve. 

Results of a 

In a d d i t i o n ,  the 

Formulations implemented i n  a mu1 ti body dynamics program necessarily 
involve decisions concerning the degree of nonlinearity in the motion t o  be 
simulated. Figure 9 indicates t h a t  this nonlinearity must be incorporated in 
a very consistent manner. Otherwise, singularities and spurious results may 
occur. The simple problem depicted there, studied i n  Reference 22, indicates 
t h a t  spurious results can be obtained if nonlinear kinematics are not  included 
properly. The par t icu lar  result shown indicates t h a t  the physically 
unacceptable result of an infinite deployment time for  the simple boom 
resulting from linear strain assumptions i s  accounted for properly i n  the 
formulation of the LATDYN program. 
three dimensions. 

The program currently i s  being extended t o  

Scalino of Lattice Structures 

A p a r t  of the COFS program which was described in Reference 2 and 
depicted i n  Figure 10, i s  a scale model of the Space S ta t ion  known as COFS 
111. The overall purpose of the COFS I11 program i s  t o  explore the use of 
scale models as a par t  of the certification process for  large space 
structures. 
of certification for large space structures i s  discussed in Reference 2. 
this program, a model of the Space S ta t ion  will be built, probably a t  1/4 
scale, and tested i n  a proposed f a c i l i t y  known as the Large Spacecraft 
Laboratory shown i n  Figure 11. An investigation of the feasibility of such a 
model including variations on scale factor was conducted, Reference 23. 
Figure 12 indicates the v a r i a t i o n  of cost of such a model w i t h  scale factor.  
As can be seen from the figure, the 1/4-scale model costs less t h a n  the 
1/5-scale model. This  reduced cost  i s  d u e  t o  increases i n  precision required 
for the 1/5-scale model. Also, the figure shows t h a t  the cost of 
manufacturing such a model i s  dominated by precision requirements for joints. 
The assumption in this study i s  t h a t  precision requirements scale linearly 
w i t h  the scale factor. To investigate some of the limits and the quality 
required i n  such a model, tests were performed on specimens manufactured a t  
different scales, Figure 13 (Refs. 24-25). Results of these tests shown i n  
Figures 14 and 15 show t h a t  scaling of graphite/epoxy construction down t o  1/4 
scale presented l i t t l e  d i f f i c u l t y  from the standpoint o f  qua l i ty  of the 
scaled tube. 
compared t o  full-scale j o i n t  da ta .  
scaled stiffness relative t o  full-scale results, i n d i c a t i n g  t h a t  some loss i n  
precision i s  present i n  the manufacturing of these specimens. Figure 16 shows 
some comparisons of damping. Results are surprisingly consistent. The scaled 
da ta  generally f a l l  within the scatter of the da ta  usually obtained i n  damping 
tests. 

The basic concept involved i n  the use of scale models as a p a r t  
In 

Figure 15 shows results o f  stat ic  tests o f  some scaled joints 
In general there i s  a softening of the 
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Control of F1 exi bl e Structures (COFS) Beam Redesign 

The Control of Flexible Structures (COFS) program involves a f l i g h t  t o  
orbit of a beam approximately 6Om long. This beam i s  deployable, contains a 
heavy concentrated mass a t  the end, a parameter modification device which can 
be used t o  couple and tune directional responses in modes, and an 
excitation/damping system. The o r i g i n a l  design had no strain i n  the packaged 
state and no strain i n  the deployed state. However, intermediate states of 
deployment involve significant strains. An evaluation of these strains, 
Figure 17, showed t h a t  they were too  h i g h  t o  be acceptable. The figure shows 
a comparison of three analyses of the deloyment, a l l  of w h i c h  are i n  general 
agreement. The loads shown are significant, corresponding t o  strains as h i g h  
as 0.5 percent. As a result of this situation, an a c t i v i t y  was begun t o  
evaluate other designs t o  find a design w h i c h  would involve acceptable 
strains. 
results of optimization o f  the structure w i t h  multiple design constraints. 
The p l o t  indicates convergence after about  eight cycles of the design process. 
In  this design problem, the weight of the structure was used as the objective 
function. 
were t o  be w i t h i n  a specified degree o f  closeness. T h e  purpose i n  d e s i g n i n g  a 
beam w i t h  closely spaced frequencies i s  t o  challenge system i d e n t i f i c a t i o n  
procedures w h i c h  will be used i n  the orbital test. Other constraints were 
t h a t  the f i r s t  bending frequency must be greater t h a n  or equal t o  0.18 Hertz 
t o  avoid coupling with the Space Shuttle control system, and t h a t  the diagonal 
frequency must be greater t h a n  15 Hertz. 
could be found using these parameters, the strains involved were s t i l l  too  
large t o  be acceptable and  so a change i n  the design, introduction of batten 
hinges, w h i c h  significantly lessened strains was implemented. 

Results of this study are sumnarized i n  Figure 18 w h i c h  shows 

Constraints were t h a t  the f i r s t  torsion and second bending modes 

A l t h o u g h  an optimum beam design 

Hoop-Column Test-Analysis Correlation 

The structures vary widely i n  size and i n  weight because of the great range of 
mission requirements. One such antenna concept i s  the hoop and column antenna 
pictured i n  Figure 19. This particular structure originally was intended t o  
be a 1/8-scale model of an antenna which would be used for mobile satell i te 
comnunications. I t  was b u i l t  primarily t o  demonstrate deployment kinematics. 
The hoop folds alternately up and down a t  the joints while the central mast 
telescopes. The mast and ring are held i n  proper relative position through 
the use of cables and the mesh i s  shaped by another cable system. As p a r t  of 
the test  for this antenna, rad io  frequency (RF) tests were performed. After 
RF tests, structural dynamics testing was conducted a t  the NASA Langley 
Research Center. Some results of the testing are shown i n  Figure 20 w i t h  more 
detail given i n  Reference 27. 
o r ig ina l  analysis and  the test  data .  
concepts are comnon and should be expected. 
appeared, procedures were initiated t o  determine reasons fo r  the discrepancies 
and static tests were conducted on various components as a result. After 
variations i n  j o i n t  stiffness and  variations i n  cable tension from nominal 

Antenna structures vary greatly i n  the variety of structural concepts. 

The figure indicates a discrepancy between the 
Such discrepancies fo r  new structural 

After these discrepancies 
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values were incorporated in the analysis, analysis and tes t  showed good 
correlation. These results indicate the continuing need fo r  tes t  programs i n  
structural concept development. 
a i r .  
air either on damping or the structural dynamic characteristics. 

Tests were conducted bo th  i n  vacuum and i n  
Results show t h a t  for  this antenna concept there i s  l i t t l e  effect of the 

Concl ud inq  Remarks 

Recent results and activities related t o  the structural dynamics and 
v i  bration control of large space structures, concentrated primarily on work 
a t  the NASA Langley Research Center, has been reviewed and summarized. 
Topics discussed include system identification, large angle motions of 
flexible structures, scaling, optimized design w i t h  constraints, and 
analysis-test correlation on a new antenna concept. 

Significant progress has been made recently in system identification 
because of the placement of various methods on a common theoretical basis. 
T h i s  development has resulted from the synergism possible i n  
multidisciplinary research, in this case from the application of theory 
developed i n  the controls community t o  system identification approaches used 
i n  the structural dynamics community. Thus differences in various methods 
applied t o  linear systems relate t o  variations i n  d a t a  characteristics. 

Both  experimental and theoretical results i n  large angle slewing of 
flexible structures indicate significant progress. 
relatively simple t o  more complex laboratory experiments has been 
accomplished i n  which algorithms for accomplishing large angle a r t i cu la t ion  
have been demonstrated i n  the presence of real hardware effects such as 
actuator  backlash a n d  computational delays. A two-dimensional version of a 
computer program being developed for research purposes i s  operational. 
three-dimensional version presently i s  be ing  programmed. The primary 
purpose of this program i s  t o  help indicate  areas w h i c h  need theoretical 
development o r  which need improvements i n  numerical accuracy o r  speed. 

A progression from 

A 

Applicat ion of scale models t o  the certification process for large 
space structures i s  under investigation. 
specimens indicate t h a t  models of significantly reduced size are feasible 
for structures of a type applicable t o  the space station. 
inherent i n  these models, w h i c h  are large even a t  scaled size, require t h a t  
testing be conducted on suspensions t h a t  extend t o  large heights. 
facility w h i c h  would permit such testing i s  proposed. 

Experimental efforts w i t h  scaled 

Low frequencies 

A 

Optimum design principles have been successfully applied t o  a practical 
structure. This redesign has been accomplished i n  the presence of multiple 
constraints on natural frequencies. These constraints require t h a t  certain 
frequencies be greater t h a n  specified values and t h a t  proximity of certain 
frequencies be maintained. 

7 



An ex tens ive  program i n  which  the dynamics of a new antenna concept 
were s tudied  both a n a l y t i c a l l y  and experimental ly  demonstrates the need for 
ex tens ive  t e s t i n g  of new structural concepts. S i g n i f i c a n t  p r e t e s t  e r r o r s  
r e su l t ed  from the i n a b i l i t y  t o  account a p r i o r i  f o r  e f f e c t s  such a s  j o i n t  
compl i ance. 

References 

1. 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

Card, Michael F.; and Anderson, Wil lard W.: Technical Issues  i n  Dynamics 
and Control of Large Space S t ruc tures .  
Astronautical Federat ion Congress, Budapest, Hungary, October 10-15, 
1983. Paper No. IAF 83-803. 

Thirty-Fourth In te rna t iona l  

Pinson, Larry D.: 
T h i  r ty-Fi f t h  In te rna t iona l  Astronaut ical  Federat ion Congress, Lausanne, 
Switzerland, October 7-13, 1984. Paper No. IAF 84-388. 

Large Space S t ruc tu res  Ground and F l i g h t  Progress. 

Miller, James B . ;  Pappa, Richard S.;  Brumfield, M. Larry; and 
Adams, Richard R. :  Measurement o f  O r b i t a l  Dynamics o f  the OAST-1 Sola r  
Array Using Recorded Video Images. Thirty-Sixth In te rna t iona l  
Astronaut ical  Federat ion Congress, Stockholm, Sweden, October 7-12, 1985. 
Paper No. 85-213. 

Mikulas, Martin M . ,  Jr . ;  and Bush,  Harold G.: 
U t i l i z a t i o n  of a Space S ta t ion  Assembled from 5-Meter Erectable  S t r u t s .  
Thirty-Seventh In te rna t iona l  Astronaut ical  Federat ion Congress, Innsbruk, 
Austr ia ,  October 4-11, 1986, 39 p. Paper No. IAF 86-35. 

Design, Construction, and 

Hanks, Brantley R . ;  and Pinson, Larry D.: 
Test ing Challenges. 

Large Space S t ruc tu res  Raise 
Astronaut ics  and Aeronautics,  October 1983. 

Venneri, Samuel L.; Hanks, Brant ley R . ;  and Pinson, Larry D.: 
Trends i n  Spacecraf t  Design and Qual i f ica t ion .  
Conference on Mechanical Q u a l i f i c a t i o n  of Large F lex ib l e  Spacecraf t  
S t ruc tu res ,  No. 397, September 8-13, 1985. 

Future 
Proceedings of AGARD 

Wada, B. K . ;  Kuo, P. C . ;  and Glaser, R.  J . :  
Test ing f o r  Large Space S t ruc tu res .  
23, no. 2, March-April 1986, pp. 184-188. 

Belvin, W. K . ;  Edighoffer,  H. H.;  and Herstrom, C.: 
Adjustment of a 15-Meter Diameter Space Antenna. 
AIAA/ASME/AHS/ASCE 28th St ruc tu res ,  S t ruc tu ra l  Dynamics and Mater ia ls  
Conference, Monterey, C A ,  A p r i l  6-8, 1987, pp. 1-9. 

Extension o f  Ground-Based 
J. of  Spacecraf t  and Rockets, vol. 

Quas i -S ta t ic  Shape 
Presented a t  

Ibrahim, S. R . ;  and M i k u l c i k ,  E.  C.: 
I d e n t i f i c a t i o n  of Vibration Parameters from the Free Response. 
Vibration Bulletin, no. 47, p t .  4, September 1977, pp. 183-198. 

A Method f o r  the Direct 
Shock and 

8 



10. Juang, Jer-Nan: Mathematical Correlation of Modal -Parameter-Ident i f i -  
cation Methods Via System Realization Theory. 
of Analyt ical  and Experimental Modal Analysis,  vol. 2, no. 1, January 

The International Journal 

1987, pp. 1-18. 

11. Juang, Jer-Nan; and Pappa, Richard S . :  A Comparative Overview of Modal 
Tes t ing  and System I d e n t i f i c a t i o n  f o r  Control o f  St ruc tu res .  Presented 
a t  the SEM 1987 Spring Conference on Experimental Mechanics and 
Manufacturer 's  Exhibi t ion,  Houston, TX, June 14-19, 1987, pp. 1-10. 

12. Housner, J .  M.; McGowan, P. E . ;  Abrahamson, A. L . ;  and Powell, M. G.: 
The LATDYN User's Manual. NASA TM 87635, January 1986. 

13. Juang, J.-N.; and Pappa, R.  S.: An Eigensystem Real iza t ion  Algorithm f o r  
Modal Parameter I d e n t i f i c a t i o n  and Model Reduction. J. of Guidance, 
Control, and Dynamics, vol. 8, no. 5, September-October 1985, pp. 620-627. 

14. Juang, J.-N.; and Pappa, R. S.: Effec t s  of Noise on Modal Parameters 
I d e n t i f i e d  by the Eigensystem Realization Algorithm. J .  of Guidance, 
Control ,  and Dynamics, vol. 9, no. 3, May-June 1986, pp. 294-303. 

15. Juang, Jer-Nan; and  Suzuki, Hideto: An Eigensystem Realization Algorithm 
i n  Frequency Domain f o r  Modal Parameter I d e n t i f i c a t i o n .  Presented a t  the 
AIAA Guidance, Naviation and Control Conference, Williamsburg, VA, 
August 18-20, 1986. 

16. Longman, Richard W . ;  and  Juang, Jer-Nan: 
Eigensystem Real iza t ion  Algorithm f o r  System I d e n t i f i c a t i o n .  
a t  the AIAA/AAS Astrodynamics Conference, Will iamsburg, VA, August 18-20, 
1986. 

A Recursive Form o f  the 
Presented 

17. Juang, Jer-Nan; Cooper, J. E . ;  and Wright, J.  R.: 
Real iza t ion  Algorithm Using Data Correlations ( E R A / D C )  f o r  Modal 
Parameter I d e n t i f i c a t i o n .  Presented a t  the 5 t h  In te rna t iona l  Modal 
Analysis Conference, London, England, Apri l  6-9, 1987, pp. 1-6. 

An Eigensystem 

18. Juang, Jer-Nan; and  Turner, James D.: 
Control. NASA CP-2447, 1986, pp. 869-880. 

Research i n  Slewing and Tracking 

19. Juang, J.-N.; Horta, L.  G. ;  and Robertshaw, H. H.: 
Experiment f o r  F lex ib l e  S t ruc tu res .  
Dynamics, vol. 9, no. 5, September-October 1986, pp. 599-607. 

A Slewing Control 
J. of Guidance, Control ,  and 

20. Juang, J.-N.; and Horta, L. G.: E f f ec t s  of Atmosphere on Slewing Control 
of  a F lex ib l e  S t ruc tu re .  3. of Guidance, Control, and Dynamics, vol. 10, 
no. 4, July-August 1987, pp. 387-392. 

21. Ghaemnaghami, Peiman; and Juang, Jer-Nan: A Controller Design f o r  
Mu1 ti-Body Large Angle Maneuvers. 
Symposium on the Mathematics o f  Networks and Systems, Phoenix, AZ, June 

Presented a t  the 1987 In te rna t iona l  

15-19, 1987. 

9 



22. McGowan, P. E.; and Housner, J. M.: 
Deploying F l e x i b l e  Space Booms. NASA TM 87617, September 1985. 

23. Gronet, M. J.; Pinson, E. D.; Voqui, H. L.; Crawley, E. F.; and 
Everman, M. R.: 
Scale Model o f  t he  NASA Space Stat ion.  NASA CR-4068, 1987. 

Nonlinear Dynamic Analysis o f  

Pre l im inary  Design, Analysis, and Costing o f  a Dynamic 

24. Letchworth, Robert; and McGowan, Paul E.: 
Control Technology. NASA CP-2447, P a r t  1, November 18-21, 1986, 

COFS 111 Multi-body Dynamics 8 

pp. 347-370. 

25. Letchworth, Robert; McGowan, Paul E.; and Gronet, Marc J.: COFS I 1 1  
Mu1 t ibody  Dynamics and Control Technology. 
November 18-21, 1986, pp. 347-370. 

NASA CP-2447, P a r t  2, 

26. Walsh, Joanne L.: Opt imizat ion Procedure t o  Control the  Coupling o f  
V ib ra t i on  Modes i n  F l e x i b l e  Space Structures.  Presented a t  
AIAA/ASME/ASCE/AHS 28th St ructures,  S t ruc tu ra l  Dynamics and Mater ia ls  
Conference, Monterey, CA, A I A A  Paper NO. 87-0826-CP, A p r i l  6-8, 1987. 

27. Belv in ,  W. K.; and Edighof fer ,  H. H.: 15 Meter Hoop-Column Antenna 
Dynamics Test and Analysis. 
Nor fo lk ,  VA November 18-21, 1986. 

F i r s t  NASA/DOD C S I  Technology Conference, 

10 



Onginal ERA 

Frequency domain 
ERA 

Recursive ERA 

I pa correlation 

X 

X 

X 

X 

'Assumes noisy data 

F ig .  1 Sumnary o f  developments i n  
sys tem i denti  f i c a t i  on which 
employ the E i  gensystem 
R e a l i z a t i o n  Algorithm. 

Digitized free responses 

Singular value decomp. 
(estimate no. of modes) 

State matrix construction -L 

Fig.  2 Flow c h a r t  f o r  Eigensystem 
R e a l i z a t i o n  Algorithm. 
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0 Applicable with hgh dampine 

0 Multi-input and multi-output capability 

Direct solution without curve fitting 

0 Narrow-band analysis 

0 Lower computation and storage 
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Experiment 

Fig .  4 Slewing control  f o r  s ing le  
f l  e x i  b l  e panel w i t h  and 
without v i  b r a t i o n  cont ro l .  
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Fig. 5 Apparatus f o r  slewing o f  
mult iple bodies with and 
without vibration control. 

3 - Body experiment 

Initial position No flexible motion control Flexible motion control 

Position change maneuver with: 

Motor-driven 
/' /,, hinge 

- ,  
anel 1 T\I Panel 2 

2 sec I I  

Final Dosition 2 sec 

Panel 2 
Panel 2 root 

strain 
Panel 1 

Fig. 6 Results o f  a slewing 
maneuver executed on 
mu1 ti pl  e body slewing 
apparatus. 
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Fig.  7 Results o f  LATDYN program analysis o f  movement o f  a l a r g e  
mass by a manipulator system on the dual-keel Space Sta t ion .  
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"Block 1" configuration 
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LSolar array 

30 IT 1 2 0 r  

Accel., , ~ * 

ma = constant 

Accel., 
1w 

'\\ 
* 60- 

- 
10 

5 

0 80 ~ 160 240 2o0 50hOO 150000 250000 
I I. 

E, 
40 

Time, sec Total module wt., Ib 

time history with module weight 
Typical module acceleration Variation of max module acceleration 

Fig. 8 Results o f  LATDYN program analysis o f  movement o f  a large mass 
by a manipulator system on the block 1 Space Station 
con f i gura tion. 
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Program. 
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Fig. 11 Artist sketch o f  proposed 
Large Spacecraft Labora- 
tory showing scaled Space 
Station model on sus- 
pension. 
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Fig. 12 Some results of 
feasibility study for 
Space Station scale 
model 
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. Typical joint static 
test data 

Scaled joint axial stiffness (K) 
K = (EAIL) 

Avg K Diff. (lblin.) 
Joint 
scale 
factor, J. 

1 246,000 

1 I3 231,696 6 

1 I4 201,000 18 

' -50L 

Fig .  15 Results o f  scaled j o i n t  
t e s t s  i n d i c a t i n g  feas i -  
b i l i t y  o f  sca l ing  j o i n t s .  
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deflection test data 
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Damping loss factor (LF) 

A A  
271 AS 

LF= - 

Joint Avg LF % Diff. 

Full scale .030 

113 scale ,026 13 

114 scale .040 33 

F i g .  16 Assessment o f  loss fac tors  
i n  scaled j o i n t s  showing 
good c o r r e l a t i o n  o f  scaled 
and f u l l - s c a l e  t e s t  
resul  t s .  
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Fig.  17 Comparison o f  loads developed i n  longerons during deployment 
of or ig ina l  COFS truss configuration. 

Requirements 
No diagonal buckling 
Member frequency >> mast frequency 
Minimum gage, e.g., wall thickness > 0.56 mm 
Lowest mast frequency 2 0.1 8 Hz 
1 st torsion and 2 bending frequencies within 1 % 

Design variables Results 
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f = 0.1 8 Hz rl st bending 
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. 

Fig.  18 Sumnary o f  optimization o f  COFS I truss design wi th  mul t ip le  
constraints. 
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Fig. 19 F i  fteen-meter hoop column mu1 t i -aperture antenna. 

Pre-test 
Analysts 

FWz) 

Fig. 20 Results o f  pre- and post-test analyses o f  new hoop-column 
antenna concept. 
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