3D INELASTIC ANALYSIS METHODS FOR HOT SECTION COMPONENTS

L.T. Dame, P.C. Chen, M.S. Hartle and H.T. Huang
General Electric Company
Aircraft Engine Business Group

INTRODUCTION

The objective of this research is to develop analytical tools capable of economically evaluating the cyclic time-dependent plasticity which occurs in hot section engine components in areas of strain concentration resulting from the combination of both mechanical and thermal stresses. The techniques developed must be capable of accommodating large excursions in temperatures with the associated variations in material properties including plasticity and creep.

The overall objective of this research program is to develop advanced 3-D inelastic structural/stress analysis methods and solution strategies for more accurate and yet more cost-effective analysis of combustors, turbine blades, and vanes. The approach has been to develop a matrix of formulation elements and constitutive models, three increasingly more complex formulation models and three increasingly more complex constitutive models.

The three constitutive models have been developed in conjunction with optimized iteration techniques, accelerators, and convergence criteria within a framework of dynamic time incrementing. These consist of a simple model, a classical model, and a unified model. The simple model performs time-independent inelastic analyses using a bilinear stress-strain curve and time-dependent inelastic analyses using a power-law creep equation. The second model is the classical model of Professors Walter Haisler and David Allen (Reference 1) of Texas A&M University. The third model is the unified model of Bodner, Partom, et al. (Reference 2). All models were customized for a linear variation of loads and temperatures with all material properties and constitutive models being temperature dependent.

The three formulation models developed are an eight-noded mid-surface shell element, a nine-noded mid-surface shell element and a twenty-noded isoparametric solid element. Both of the shell elements are obtained by "degenerating" 3D isoparametric solid elements and then imposing the necessary kinematic assumptions in connection with the small dimension of the shell thickness (References 3 and 4). The eight-noded element uses Serendipity shape functions and the nine-noded element uses Lagrange shape functions. The eight-noded element uses Gaussian quadrature for numerical integration, with nodal and surface stresses being obtained by extrapolation/mapping techniques. Lobatto quadrature is being used with the nine-noded element to effectively provide for direct recovery of the stresses and strains at the surfaces and node points. The eight-noded element has an excellent combination of accuracy and economy in the normal element aspect range encountered when modeling most hot section components. The nine-noded Lagrangian formulation overcomes the shear locking problem experienced when the

*Work done under NASA Contract NAS3-23698.
element size-versus-thickness-aspect ratio becomes very large. The
twenty-noded isoparametric element uses Gaussian quadrature.

A separate computer program has been developed for each combination of
constitutive model-formulation model. Each program provides a functional,
stand alone capability for performing cyclic nonlinear structural analysis.
In addition, the analysis capabilities incorporated into each program can be
abstracted in subroutine form for incorporation into other codes or to form
new combinations. These programs will provide the structural analyst with a
matrix of capabilities involving the constitutive models-formulation models
from which he will be able to select the combination that satisfies his
particular needs.

The program architecture employs state-of-the-art techniques to maximize
efficiency, utility, and portability. Among these features are the
following:

(i) User Friendly I/O
 o Free format data input
 o Global, local coordinate system, (Cartesian, Cylindrical, Spherical)
 o Automatic generation of nodal and elemental attributes
 o User-controlled optional print out
 Nodal Displacements
 Nodal Forces
 Element Forces
 Element Stresses and Strains

(ii) Programming Efficiency
 o Dynamic core allocation
 o Optimization of file/core utilization
 o Blocked column skyline out-of-core equation solver

(iii) Accurate and Economical Solution Techniques
 o Right-hand side pseudoforce technique
Accelerators for the iteration scheme

Convergence criteria based on both the local inelastic strain and the global displacements.

The ability to model piecewise linear load histories was also included in the finite element codes. Since the inelastic strain rate could be expected to change dramatically during a linear load history, it is important to include a dynamic time-incrementing procedure.

Three separate time step control criteria are used. These are the maximum stress increment, maximum inelastic strain increment, and maximum rate of change of the inelastic strain rate. The minimum time step calculated from the three criteria is the value actually used. Since the calculations are based on values readily available from the previous time step, little computational effort is required.

These formulation models and constitutive models have been checked out extensively against both theory and experiment. Figure 1 shows the correlation between Bodner's model in the eight-noded mid-surface shell element (MSS8) and both experiment and other predictions (Reference 5). Figures 2 through 6 illustrate the predictability of the classical (Haisler-Allen) model. Figure 7 shows a comparison of both Bodner's model and the simple model to both experiment and independent predictions (Reference 6).

These nine programs, both source (Fortran 77) and compiled have been installed and checked out on the NASA-Lewis CRAY-I machine. The interactive deck generator has been installed on the NASA-Lewis AMDAHL machine.

Table 1 shows the lines of source code for each of the nine computer programs. These numbers do not include the interactive deck generator.

Table 1. Lines of Source Code

<table>
<thead>
<tr>
<th></th>
<th>Elements</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20 Noded</td>
<td>8 Noded</td>
<td>9 Noded</td>
<td></td>
</tr>
<tr>
<td>Simple</td>
<td>8300</td>
<td>13,800</td>
<td>17,900</td>
<td></td>
</tr>
<tr>
<td>Constitutive</td>
<td>Haisler-Allen</td>
<td>9200</td>
<td>16,300</td>
<td>19,000</td>
</tr>
<tr>
<td></td>
<td>7300</td>
<td>13,800</td>
<td>17,600</td>
<td></td>
</tr>
</tbody>
</table>

Since these programs use dynamic core allocation, they can be recompiled to size for any specific machine. They are presently loaded for 10^7 bytes.
of core. At this size, the maximum problem would be approximately 4000 nodes and 1000 elements.

REFERENCES

Figure 1. Displacement Controlled Cycling Results.
Figure 2. Load Histories for Plasticity Example.
Figure 3. Results of Plasticity Example.
Figure 4. Strain Controlled Creep.
Figure 5. Stress Controlled Cycling with Combined Plasticity and Creep.
Figure 6. Stress Controlled Combined Plasticity and Creep.
Figure 7. Comparison of Bodner Mode to Simple Creep.