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The present study of hish-temperature fatigue and creep-fatigue behavior is part

of a program to identify the basic features of the effects of temperature, creep,

fatigue, and environment on the behavior of a single-crystal superalloy, a bulk coat-

ing alloy, and a coated alloy system. A system was selected which has had consider-

able production experience: the Ni-base superalloy, PWA 1480, and the NiCoCrAIY

coating, PWA 276, inventions of the Pratt & Whitney Aircraft Company.

Isothermal behavior was studied first. A series of fatigue and creep-fatigue

tests of the types commonly designated as pp, cp, pc, and cc were conducted. These

tests were conducted at various constant total strain ranges. The creep-fatigue

cycles employed constant stress dwells at the maximum and/or minimum load. A com-

plete set of data is published in a NASA Technical Memorandum (ref. 1).

MATERIALS AND PROCEDURES

Materials

PWA 1480, which is described in the literature (refs. 2 and 3), has the follow-

ing nominal composition: 10 Cr, 5 A1, 1.5 Ti, 12 Ta, 4 W, 5 Co, and the balance Ni

(in weight percent). The single crystals were solution treated for 4 hr at 1290 °C

before machining. Bars having their <001> planes within less than 7° of the axis

were selected. After machining, the LCF specimens were coated with PWA 276 by low-

pressure plasma spraying. The coating composition (in weight percent) was 20 Co,

17 Co, 12.4 AI, 0.5 Y, and the balance Ni. The coating thickness was about 0.12 n_n.

After coating, the specimens were given a diffusion treatment of 1080 °C for 4 hr

and then aged at 870 °C for 32 hr.
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Test Procedures

The testing facility used in this investigation has been described in reference 4.

Fatigue tests at 0.I Hz and creep-fatigue tests were conducted using an hourglass

type specimen and diametral strain control. The extensometer was always placed across

one of the <001> planes nearly perpendicular to the specimen axis. Heating was pro-

duced by the passage of altez_nating current directly through the specimen.

After the first series of tests it was discovered that they had been conducted

at 1015 °C, rather than at 1050 °C as intended. Also, it appeared that the dwell

stress level affected life in the creep-fatigue cycles, but the result was somewhat

confounded since the controlled dwell stresses and total strain ranges had been varied

con_nensurately in order to minimize test times. In a second series of tests conducted

at 1050 °C, total strain range and dwell stress level were varied as independently as

practicable. However, life behavior in the lower temperature tests shows the same

dependencies on strain and stress as in the 1050 °C tests, even though the two "inde-

pendent" variables are more highly correlated.

All tests were controlled at constant total diametral strain range. However,

the strains reported herein are calculated axial strains. In the creep-fatigue cycles

constant stress dwells were employed. The first tests, those at 1015 °C, were con-

trolled using an electromechanical programmer; in the 1050 °C tests a Data General

S/20 computer was used. The frequency of the pp tests at both temperatures was about

0.1 Hz. The creep-fatigue tests employed about the same ramp rates as the pp tests.

RESULTS

Some results of the 1050 and 1015 °C fatigue and creep-fatigue tests are shown

in table I. Shown are the cycle type; cyclic life Nf; the values at half life of

the total axial strain range ACtor, inelastic axial strain range 6tin, stress

range A_, and maximum stress °max' and the average cycle time tar. Other data

discussed below, such as that for the first cycle, may be found in reference i.

Constitutive Behavior

The constitutive behavior of PWA 1480 at 1015 and 1050 °C for all the stress

dwell creep-fatigue cycle types studied is characterized by extreme cyclic

softening. Inelastic axial strain range increased with cycling for all cycle types.

At 0.5Nf, _C.ln had increased an average of ~25 percent for the pp tests,
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~15 percent for the cp and pc tests, but generally less than 5 percent for the cc

tests. For the 1050 °C tests the decrease in &_ at 0.5Nf averaged ~10 percent

for the pp and cp tests but was slightly higher for the pc tests, ~15 percent. For

the cp and pc tests at 1015 °C the decrease in Aa appeared to be smaller than for

those tests at 1050 °C.

The most dramatic change with cycling in the creep-fatigue tests was the

increase in creep rates. By 0.5Nf, the reduction in cycle time was typically

-80 percent in the cp and pc tests and more than 95 percent in the cc tests, though

the creep strain per cycle typically did not decrease during cycling. Creep strain

did decrease as a fraction of the total inelastic strain range, however, and the

fraction of pp strain increased. This occurred most in the 1050 °C tests.

Another interesting observation was that for the same absolute stress level,

creep rates were higher in compression than in tension. This effect was observed in

comparison of cp and pc tests but was most readily seen in the cc tests. Creep rates

in compression were about 1.5 to 2 times higher than those in tension.

Life Behavior

For both the fatigue and stress dwell creep-fatigue tests conducted in this

study, the life of PWA 1480 correlated well with a model including both _.
in

and _. This model provides considerably better correlations than those based on

_Ein alone, &¢in and amax, or _E.in and tar.

Table II is a summary of the regression analyses for all test types at either

test temperature using various power law models. These various models test the basic

dependencies of life on frequency, strain rate, or _ used in the strain-range-
max

partitioning (ref. 5), frequency-separation (ref. 6), frequency-modified (ref. 7),

and damage-rate (ref. 8) approaches.

The 1050 "C results will be examined first since they are clearer. As previously

indicated, care was taken in the design of this series of tests to reduce as much as

possible the correlation between the two "independent" variables in the creep-fatigue

tests, total strain range, and dwell stress. The tests employed various total strain

ranges but only two dwell stress levels in tension and/or compression. For this data

set, even with the pp tests included, _ and _max are only 25 and 16 percent

(R-values) correlated with &¢in' respectively.
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It may be seen in table II that the model Nf = _ A_ 7 provides a better fit than

the single variable models containing Ac, _max' tar' or any of the two-variable models

not including A_. Neither the addition of _ or t to Ac. in the model
max av in

provides substantial improvement. The model Nf = = AC_n &_7 provides the best fit

of all. Note also that in the models containing _ or t together with _c,
max av

the absolute values of the T-ratios for their coefficients are much less than 3, the

usually accepted value for statistical significance. Plots of Nf,ob s and Nf,pred

are shown in figure 1 for the two models Nf = a &E_n and Nf = a _8. A_7.
in

Also, the model Nf = = Ac 8. Au 7 provides the best fit for individual analyses
In

of each cycle type. The best fit coefficients B and y are not the same for

each cycAe type, as might be expected. Still, equations using the average values of

B and y, -1.26 and -3.08, provide good fits for the individual cycle types. The

values of = in these equations are shown in table III.

It is well demonstrated by the cc tests that _ is more significant than

a in determining life. Three tests were conducted with _ and
max max min

of about +200/-200 MPa, or a A_ of about 400 MPa. An additional 1050 °C cc test,

the first listed in table III, had about the same _ (210 MPa) but a larger
max

_ (47_ MPa). The life of this test was reduced to about 1/3 of that expected for a

+200/-200 MPa test with the same 4tin. In the fourth test listed in table II it

was intended to increase _ but keep 4_ the same as for the first tests.
max

Actually, _ was increased about 30 percent to 257 MPa, but 4a was also
max

increased about 10 percent, and still life increased relative to the +200/-200 MPa

tests, For these cc tests alone, R 2 for the model Nf = _ A_9 uY is 40 percent
in max

only slightly better than the value of 37 percent for Nf = _ _C_n,_ and considerably

less than the value of 76 percent for Nf = _ _CBnl 4_7°

Foc the tests at 1015 °C th_ model containing 4a alone provides no better

correlation than that containing _Cin; however, this could be explained by the high

degree of correlation between _ and 4Ein in these tests, R 2 of 8O percent.

Sin¢_ _. is st_'ongly corceiated with 40, life correlates equally well with
l_z

either va_iab!_. However, as f_r the tests at 1050 °C, o does not provide a good
max

_oc ,_oes tar , and the _odel Nf = _ 4¢_n 4o provides the best corre-corce!atio_ _

8

latlon. F[sure i shows a comps_iso_ of the predictions of the models Nf = a &_
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and Nf = = gcB &o 7. The best fit values of _ and 7 for the latter model are

-1.00 and -2.70. Values of o which provide the best fit for each cyle type are

shown in table III.

It may be seen that correlations using all the models are better for the 1015 °C

data than for the 1050 °C data. This is largely because the 1015 °C data cover a

greater range of the "independent" variables.

Failure Mode

Internal crack initiation at pores was the predominant failure mode in these

tests. For the creep-fatigue tests cracking initiated at many internal pores and

linked up before the final overload in 80 percent of the specimens. Others appeared

to have a dominant crack which initiated near the surface, possibly at a pore, but

generally the fracture faces were heavily oxidized and difficult to interpret.

Fracture surfaces with this appearance were more common for the pp tests. Still_ the

majority of pp tests failed at multiple internal pores.

DISCUSSION

Except in that it permits inelastic strain, creep does not have a great effect

on the cycle life of the coated single-crystal superalloy, PWA 1480. On any basis of

comparison, and particularly on the basis of Nf = = gE B go Y as in table III, lives

for the creep-fatigue cycles are not greatly, if at all, worse than those for the pp

tests. Though life may be lower for the cp cycle than for the others, it is only

about 30 percent lower than the average for the other cycles. Lives for the other

cycles may all be the same.

In fact, there appears to be no time-dependent process having a great effect on

life. This is shown by the lack of any substantial improvement when t is included
av

in the life models. Neither creep nor the environmental degradation have affected

the coated single-crystal superalloy. The mechanisms of creep degradation in polycry-

stalline alloys such as grain boundary cavitation or sliding obviously cannot occur,

and the environment cannot affect the internal crack propagation mode of failure.

The successful life model containing go. and go is unusual and may be
in

peculiar to the coated single-crystal superalloy system studied. Crack initiation in

high temperature creep-fatigue, at least for polycrystalline materials, is usually
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found to be determined by _c. and some measure of time-dependen_ damage pro-
In

cesses such as creep cavitation at grain boundaries or oxidation attack. The import-

ance of Ao in the life model and the internal crack initiation observed and may

reflect that crack propagation is a significant portion of life in these texts. Since

the cracks are protected from the atmosphere, it might be expected that the crack

growth rates are relatively low, and, while crack initiation is thought to be

primarily driven by AEin, _o can be tied to crack propagation rates.

RESULTS AND CONCLUSIONS

Fatigue tests at 0.1 Hz and cp, pc, and cc type creep-fatigue tests have been

conducted on NiCoCrAIY coated specimens of a single-crystal superalloy, PWA 1480, at

1050 and about 1015 °C. The following results and conclusions were obtained:

1. Considerable cyclic softening occurred for all test cycles, evidenced partic-

ularly by rapidly increasing creep rates in the creep-fatigue tests.

2. Lives for the pp, cp, pc, and cc cycles were not greatly different; however,

those for the cp cycle did appear to be lowest at both test temperatures.

model, Nf = a ACina A_7 was found to provide good correlation for all
3. A life

cycle types, better than models based on &E. alone, or Ac. with either
In in

or t
max av

4. For all test types failure occurred predominantly by multiple internal crack-

ing originating at porosity.

5 The strong correlation of life with &o may reflect a significant crack

_rowth p_riod in the life of the specimens°

3. The lack of improvement in the models when average cycle time was considered

appears to reflect that neither is there a large effect of strain rate on the damage

mechanis_ in the single-crystai material nor any environmental effect due to the

_nternal cracki_ mode of failure
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TABLE I. - LOW-CYCLE FATIGUE DATA FOR COATED PWA 1480 SINGLE CRYSTALS

[Values of A(in, Ao, and OmaX are those at half life.]

Cycle Cycle
type 11re,

Nf

PP

°°I

pc

II0

950
1000
2900

85
160
3OO

! 440
810

1150

195
610
930
1250
1410
1650
1700

370
790
990
1100
2110

i

pp 114
1)2

20.>I
2314
39 )0
78 I0

;p I5
18

146
218
610

pc 29
54

340
730

2101

.c I 192
724

.......1182 

Total axial Inelastic
strain range, axial strain

&(tot, range,
percent A(in ,

percent

Stress

range,
Ao,
MPa

Test temperature, I050 °C

1.86
1.29
1.26
1.05
1.16

.87

2.04
1.50
1.53
1.30
1.27
1.12

1.62
1.62
1.42
I.58
1.54
1.30
!.12

1.32
1.41
1.20
1.30

.90

0.92
.47
.52
.32
.47
.30

I.20
0.82
.81
.69
.60

0.52

0.85
.81
.76
.91
.90
.71
.52

766
631
571
552
537
416

655
528
559
465
505
438

625
639
592
490
445
419
445i

O. 70 474
L .87 412
! .68 403
i .74 439

I .3o i_40o
Test temperature, 1015 °C

1.81
2.02
1.08

.85

.77

.05

3.32
1.85
1.18
1.51

.90

2.44
2.01
i.43
1.10
.50

1.6_t
1.37
.88

0.62
.81
.38
.15
.16
.05

1.95
1.16

.40

.58

.30

904
941
521
529
438
344

1090
8O2
680
644
531

1.37 826
.88 856

.62 j 603.34 613

.3O i 468
t

0.98 j 514

.72 j 499.30 436

Maximum Average ,
stress, cycle time,
Omax, tav,

MPa min

388 0.17
331 .17
292 .17
272 .17
274 .17
210 .17

255 1.14
197 1.28
163 .35
206 .31
201 .50
201 .40

376 0.60
379 .50
287 .63
266 .60
225 .40
225 .40
247 .24

210 0.78
206 .64
206 .49
257 1.45
199 .30

457 0.14
478 .16
275 .15
276 .15
227 .12
166 .15

429 15.3
270 4.8
206 4.6
208 2.4
345 15.0

569 22.1
394 14.7
396 3.92
395 1.23
276 1.26

257 7.38
250 .45
218 .59
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TABLE II. - FIT OF VARIOUS MODELS RELATING LOG Nf FOR ALL CYCLE TYPES TO THE LOG OF

SEVERAL SINGLE VARIABLES OR COMBINATIONS THEREOF

Temperature

Constant

a T

Io9 acin

Coef- T
ficient

Variable

log aa log ama x

Coef- T Coef- T

ficient ficient

log tav

Coef- T

ficient

1050 -O.792

12.772
5.602
3.037

-0.8
6.1
2.8

22.

-1.65 -3.7

-3.683 -4.8
-1.159 -1.4

-0.466 -1.7

0.32

.29

.39

.38

8.396
1.218

-I .297

4.2

0.6
-i .1

-1.258 -3.8

-1.578 -3.5
-1.927 -3.1

-3.077 -4.9

-0.765 -I .i
0.199 0.6

.23

.32

.33

1015 -1.505
16.427
10.287

2.689

-3 .I
9.8
4.5

21.7

-1.762 -8.5
-4.958 -8.2

-3.091 -3.4

-0.654 -4.3

.34

.33

.60

.53

7.781

0.424
-0.706

3.0
0.2

-1.4

-1.003 -3.8

-1.607 -6.1
-1.433 -6.2

-2.696 -3.6
-0.63 -1.0

-0.251 -2.3

.26

.34

.30

R2 ,
percent

37

5O
8

12

7O
4O
38

81
8O
40
52

90
82

86

TABLE III. - BEST FIT VALUES _ IN THE LIFE

MODELS FOR 1050 and 1015 °C

Cycle type : 95 percent confidence
limits on aXlO -8

= ac_ 1"26 ao -3.08
1050 "C: Nf : in

pp 2.25xi08 1.8 to 2.9
cp 1.41 1.0 to 2.0
pc 3.66 2.4 to 5.5
cc 1.86 1.2 to 2.9

1015 "C: Nf = _ ac_ "00 aa-2"70

pp 0.489xi08 0.24 to 0.98
cp .236 .16 to 0.35
pc .318 .17 to 0.60
cc .360 .11 to 1.18
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Figure 1, Observed vs. calculated cyclic life at 1050°C for life models indicated.
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Figure I_. Observed vs. calculated cyclic life at 1015°C for life models indicated.

360




