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Abstract

Because of their high strength and stiflness together with their light weight, fiber
reinforced composite materials offer great potential for applications particularly in the
aerospace industry. The weight savings translate into increased performance and
decreased fuel costs. In addition, the use of these materials avoids the dependence on
foreign sources for the critical elements needed in the new exotic metallic alloys that
otherwise might be used. Early research has proven the usefulness of these materials,
but the need to quantitatively characterize important material properties and develop
applicable nondestructive evaluation techniques remains. Important physical properties
(ie. mechanical, thermal, electrical) need to be measured. Moreover, relationships
between these physical properties and important engineering properties such as
strength, residual strength after impact and fatigue loading, and fiber-matrix interfacial
strength need to be examined to provide a basis for quantitative nondestructive evalua-

tion of these materials.

Toward this goal, linear and nonlinear elastic properties have been demonstrated
to be important physical properties in conventional materials. In particular, nonlinear
properties are important in the nondestructive determination of applied and residual
stress (strain) as well as measuring the interatomic bonding forces in crystalline solids.
Also, several investigations have established a possible relationship between nonlinear

elastic properties and ultimate strength in aluminum and carbon steel.

This work presents the theoretical treatment of linear and nonlinear elasticity in
a unidirectionally fiber reinforced composite as well as measurements for a unidirec-
tional graphite/epoxy composite (T300/5208). Linear elastic properties were measured
by both ultrasonic and strain gauge measurements. The nonlinear properties were
determined by measuring changes in ultrasonic "natural" phase velocity with a pulsed
phase locked loop interferometer as a function of stress and temperature. These meas-

urements provide the basis for further investigations into the relationship between
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nonlinear elastic properties and other important properties such as strength and fiber-

matrix interfacial strength in graphite/epoxy composites.
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I. INTRODUCTION

The theory of nonlinear elasticity and the measurement of nonlinear elastic pro-
perties of materials have been subjects of great interest for many years. Nonlinear elas-
ticity is important in many areas of physical measurements including the characteriza-
tion of interatomic bonding forces and anharmonic behavior of a crystal lattice, nondes-
tructive measurement of applied and residual stress (strain) using ultrasonic techniques,
and stress-strain relations in finite strain of materials. This will be discussed in more

detail later.

One of the first successful theoretical treatments of the subject of nonlinear elas-
ticity was presented by Murnaghan [1] in 1937. He extended the theory of infinitesimal
elasticity to the general case including strains of any magnitude. Birch [2], in 1938,
pointed out the importance of this theory for the case of seismic waves superimposed on
the large hydrostatic pressures within the earth. Since that time a number of research-
ers have presented volumes of material on the subject of nonlinear elasticity. Although
a detailed review of this information is beyond the scope of this essay, important work
in several areas will be discussed. First, literature discussing the basic property of non-
linear elasticity and its effects on ultrasonic wave propagation will be reviewed. This
will be followed by a discussion of some of the literature involving the development of
theoretical and measurement techniques as well as some of the applications for non-
linear elastic research. Also, pre\;ious measurements of the nonlinear properties of poly-

mers and composites will be discussed.

The study of the mechanical properties of materials is concerned with the defor-
mation of a material upon application of an external force as well as its behavior upon
removal of that force. There are three types of mechanical behavior exhibited by
materials under loading. These are elastic, anelastic and plastic. In elastic deforma-

tion, the material deforms instantaneously upon application of load and returns to its
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original shape instantaneously upon removal of load. This behavior can be either linear
or nonlinear. This is demonstrated in Figs. 1.1 (a) and 1.1 (b) for the simple case of
uniaxial loading where the elongation serves as a measure of the deformation of the
material. In anelastic deformation, the material deforms over time upon the application
of load and returns to its original shape over time upon the removal of load. This is
demonstrated in Fig. 1.2. When a material undergoes plastic deformation, it deforms
instantaneously upon application of load but does not return to its original shape upon
the removal of the load. Fig. 1.3 shows the load-elongation characteristics of plastic

deformation.

However, the behaviqr of real materials can be a combination of these three
types of mechanical behavior and is generally dependent on the amount of load applied.
The material may be elastic for small loads but the deformation may be anelastic or
plastic at higher loads. Also changes in other parameters such as temperature may
affect the response of the material upon loading. The present work is interested in the
case of nonlinear elastic behavior where the deformation is recoverable but not linearly

related to the applied load.

An understanding of linear and nonlinear elasticity can be gained by considering
theories of interatomic bonding in molecules such as the Born (3] and Madelung [4]
theories for ionic crystals. In these theories, the total energy of bonding is the energy
due to the sum of the attractive and re;‘mlsive forces between the atoms multiplied by
the distance over which they act. The general shape of such a curve is shown in Fig. 1.4
with the potential energy (E) versus the separation distance (r) plotted. The equili-
_brium separation distance is ro where the potential energy is at a minimum E; . To
move the atoms closer together or further apart raises the energy of the system and
thus requires the application of an external force. ThiS force can be determined by tak-
ing the derivative of E with respect to separation distance for the curve in Fig. 1.4. The

resulting force versus separation distance curve is then a simple analogy on the atomic
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Figure l.1 - (b) Load-Elongation curve for nonlinear elastic
deformation.
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Figure 1.3 - Load-Elongation curve for plastic deformation.
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scale to the load-displacement curves discussed earlier.

For small displacements about ry , the potential energy curve appears to be and
can be approximated as a quadratic function. Therefore its derivative is a linear curve.
That is, the relationship between force and separation distance (load and elongation) is
linear for small displacements about equilibrium. However, as the amplitude of the dis-
placement becomes larger, the potential energy curve is no longer quadratic. This
implies that the force-separation curve is no longer linear which gives rise to nonlinear

elasticity.

Another interesting point about Fig. 1.4 is the asymmetry of the potential energy
curve about ry . This provides a simple explanation for the understanding of thermal
expansion in materials. Since the curve is asymmetric, as the material is heated and
the atomic lattice vibrations increase, the mean separation distance between atoms
changes. For the curve in Fig. 1.4, the mean separation distance increases with increas-
ing amplitude vibrations about ry . Thus, in agreement with empirical observations in

most materials, expansion occurs as the material is heated.

Because of the small strains (on the order of 10~* ) imposed on the sample during
ultrasonic wave propagation, nonlinear elastic behavior is generally neglected in the
theories of the propagation of ultrasonic waves. However, as pointed out by Green 51,
there are three cases where nonlinear elasticity may become important in elastic wave
propagation. First, the amplitude of the wave may become large enough to cause finite
strains in the material. In the second case, nonlinear behavior may occur when a small
amplitude wave is superimposed on a large external static stress. Also, nonlinear effects

may be caused by defects in the material which cause localized regions of finite strain.

The effects of nonlinear elasticity on ultrasonic wave propagation were also
pointed out by Green [5]. These include the distortion of finite amplitude sinusoidal
longitudinal waves. As they propagate, energy from the fundamental frequency is

transferred into the harmonics that are generated. The effect has been used by
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numerous investigators to measure the nonlinear properties of solids. Measurements on
aluminum single crystals as well as NaCl, KCI, LiF and a magnesium aluminum alloy
were presented by Gedroits and Krasil’Nikov [6] in 1963. Breazeale and Thompson [7]
reported measurements of harmonic distortion in polycrystalline aluminum also in 1963

which was followed by numerous other investigations.

Another effect of nonlinear elasticity on ultrasonic wave propagation is that a
pure mode nonlinear longitudinal wave may propagate alone, but a nonlinear transverse
wave must have a longitudinal component. Also, nonlinear transverse waves do not dis-

tort when propagating in a defect free solid.

Nonlinear elastic waves can interact with each other in a solid to produce other
waves. This interaction can also take place with thermal phonons to cause energy loss
from the elastic wave. The amount of interaction depends on the amplitude of the elas-
tic waves. Interactions of two nonlinear ultrasonic waves to produce a third ultrasonic
wave were demonstrated by Rollins (8] in 1963 in fused silica, polycrystalline aluminum
and polycrystalline magnesium. Rollins, Taylor and Todd (9] demonstrated this
phenomenon again in 1964 and reported the measurements to be correct to within an
order of magnitude with predictions based on the measured third order elastic constants
of polycrystalline magnesium. Since this time, further examinations of nonlinear wave

interactions have followed.

Another effect of nonlinearity in elastic wave propagation is that the velocity of
a small amplitude ultrasonic wave superimposed on a large static stress is dependent on
the amount of static stress applied. It is this eflect which provides the basis for the
measurement technique used in this research and will thus be discussed in more detail.
The effect can be accounted for by two simple theoretical explanations. In the first, the
equation for the velocity of an elastic wave propagating along a long thin rod is recalled

to be



where v is the ultrasonic phase velocity,
E is Young’s modulus
and p is the density.
This is based on the assumption that the material is homogeneous, isotropic and
behaves in a linear elastic fashion. These assumptions imply that the constitutive equa-

tion of the material has the form

where o is the stress
and ¢ is the strain.

If a nonlinear constitutive equation is used such as
o =E € + E,€?, (1.3)

it follows that the velocity will now depend on strain and therefore stress.

An alternative approach to understanding this is based on the potential energy
theory for interatomic bonding discussed earlier. Since the velocity of ultrasonic waves,
together with the density of the medium give a measure of the modulus (second deriva-
tive of the potential energy), this modulus can be evaluated as a function of strain (or
stress) by measuring the velocity as a function of strain (or stress). Also, since for large
displacements (i.e. finite strain), the potential energy function is not a simple quadratic,
the modulus and thus the velocity would be expected to change with applied stress. As
will be seen later, the relationship between velocity and stress should be linear if terms

up to third order in strain are included in the elastic theory.

The theoretical development of the equations relating ultrasonic velocity to
stress began with the original work on finite deformation of materials by Murnaghan [1].
This work provided the basis for the theory presented by Hughes and Kelly [10] in 1953

in which they derived wave speeds as a function of stress in homogeneous, isotropic
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materials. They considered both uniaxial and hydrostatic compression for different com-
binations of longitudinal and transverse (shear) mode waves. The following seven equa-

tions were presented:

PV =N+ 2u — 3—PK—0-(61 + 4m + 7X + 10u) (1.3)
povyo w— %E@m - -2-11 + 3\ + 6u) (1.4)

ooV = N + 2 — f{o @+ X\ + —-‘i(4m +aN+100)  (L5)
POV = M — 3;)( m + & + 4\ + 4p) (1.6)

PoVey = N + 2 — 5%(21 2: (m + X + 2u)) (1.7)
pov)?y = | — 3;0 (m + >\_n + X\ + 2u) (1.8)

pov, = = (m = (ot — 24 (19)

where X\ u are the second order linear elastic moduli of Lame’ for a homogeneous,

isotropic material,

I,m,n are the third order elastic moduli for a homogeneous, isotropic
material as defined by Murnaghan,

po is the density of the unstressed material,

K, is the bulk modulus,

P is the uniaxial or hydrostatic compression,

and v is the velocity of an ultrasonic wave propagating along the x axis. The

first subscript on v refers to the direction of polarization, while the

second gives the direction of loading. O for the second subscript implies

hydrostatic loading.
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They made measurements of the nonlinear constants of polystyrene, Armco Iron and
Pyrex. Toupin and Bernstein [11] followed this work with an extension of the theory to

include a material of arbitrary crystal symmetry. This work was published in 1961.

The next major theoretical developments were presented in a series of papers by
Brugger [12,13] and Thurston and Brugger [14] in 1964 and 1965. These papers provided
the formulation and notation for most of the research presented in following years on
the topic. In the first paper by Brugger {12], a formal thermodynamic definition of the
higher order elastic constants of a solid was given. The relationships between his
definition and those used by Murnaghan (1] and other authors were also presented. In
the paper of Thurston and Brugger [14], the concept of an ultrasonic "natural” velocity
was introduced. The "natural” velocity was defined as the initial (unstressed) path
length divided by the time of flight of the elastic wave. The concept of "natural” velo-
city is of great importance in the measurement of nonlinear properties because it
requires that the change in only one parameter, the time of flight, be monitored as a
function of stress in the experiments. In determining normal ultrasonic phase velocity
changes, the time of flight as well as the propagation distance must be measured mak-
ing the experimental measurements more difficult and uncertain. Also presented in this
paper were general equations for the relationship between the "natural” velocity
changes and applied stress for different crystal symmetries, wave modes, and stress con-
ditions. In the final paper by Brugger [13], explicit equations were presented for these
relations for a number of crystal symmetries, wave modes and stress conditions. These
equations allow the calculation of all of the third order elastic coefficients for all of the
crystal point groups.

Thus, based on the theory of Thurston and Brugger [14], measurements need only
be made of the change in "natural” velocity (i.e. changes in time of flight) of ultrasonic
waves as a function of stress to determine the third order elastic coefficients. However,

the changes involved are generally quite small and require very accurate ultrasonic
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techniques. Several such techniques have been developed over the years which make
these measurements possible. Early measurements by Hughes et al. (15] in 1850 used a
simple pulse transmission technique. A voltage spike was used to excite a piezoelectric
ultrasonic transducer which launched an ultrasonic wave‘ into the sample. A receiving
transducer on the opposite side of the sample converted the elastic wave into an electri-
cal signal which was displayed on an oscilloscope. The time of flight was measured
directly on the scope with an uncertainty reported to be +/— 0.03 ps. This led to frac-

tional uncertainties of larger than one part in 10° for samples with a 20 ps travel time.

Improvements in the ability to measure more accurately the ultrasonic wave
time of flight followed rapidly. In 1953, McSkimin [16,17) reported on a phase com-
parison ultrasonic technique. This technique was a pulse-echo technique which used the
same transducer as a generator and receiver of the elastic waves. A tone-burst (burst of
several cycles of high frequency sinusoidal waves) was used to excite the transducer and
thus generate the ultrasonic pulse. The elastic pulse traveled through the sample and
reflected off of the other side. This occurred a number of times producing an oscillo-
scope pattern of a number of decaying amplitude pulses which were all similar except
for the exponential decrease in their amplitude. In McSkimin’s technique he amplified
and rectified the received echos and displayed them on the oscilloscope. The time of
flight was determined by varying the frequency of the tone-burst to find frequencies
where the received echos were all in phase. For this condition the time of flight was

given by

b= —— (1.10)

where t was the time of flight,
n was an integer,

f was the frequency of the tone-burst
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and 7 was a phase angle, in degrees, correcting for phase shifts at the
specimen-transducer interface.
The integer n was determined by measuring two sequential values of the frequency for

the "in phase" condition. In this case, n was given by

n=—r (1.11)

where f; and f; were the two measured values of frequency
and Af was the difference between the two measured values.
An expression for the phase angle 4 based on standard equivalent electrical transmission
line theory was presented. It was calculated from known material properties (mechani-
cal impedances of specimen and transducer and resonant frequency of transducer). The

overall uncertainty in measuring velocity was reported to be 0.14 %.

In 1957 Williams and Lamb [18] reported a technique using a pair of ultrasonic
bursts and a through tra'nsmission technique. The first burst was launched through the
sample and reflected multiple times through the specimen. The second burst was
launched through the same transducer a short time later so that the first arrival of the
second pulse at the receiving transducer would coincide with the arrival of the first echo
of the first pulse. The excitation frequency was then adjuéted so that there was cancel-
lation between the two signals. Analysis was then presented which allowed calculation
of the travel time in the specimen from the frequency which included corrections for
phase shifts at the specimen-transducer interface. Analysis of the phase angle also
included the effect of the coupling medium between the transducer and specimen. The

measured velocity was considered to be accurate to one part in 10* .

Other techniques developed later such as the pulse superposition method
(McSkimin [19]) in 1961 and the pulse echo overlap technique (May [20] and Papadakis
(21]) increased absolute accuracy of velocity measurements under certain conditions to

several parts per million according to Papadakis [22]. He also reported that changes in
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time of flight could be measured accurate to parts in 107 using these techniques. Details

of the pulse echo overlap technique will be discussed later.

The final technique discussed was reported by Heyman [23,24] in 1980. It
allowed changes in "natural" velocity accurate to one part in 107 to be measured. The
technique uses an ultrasonic instrument known as a pulsed phase locked loop (P2L2)
which measures changes in resonant frequency of the specimen, transducer, bond compo-
site resonator system as a function of some other parameter such as stress or tempera-
ture. This can be shown to be equivalent to measuring changes in "natural” velocity

(W) as follows. Since

Lo
W=— (1.12)
t
where L, is the initial length of propagation which is a constant
and t is the time of flight,
then
(tALy — LoAt)
AW = > (1.13)
t
which reduces to
LAt
AW = —— (1.14)
t
since
ALy =0 (1.15)
Therefore,
AW & (1.16)
W t '

The normal phase velocity (v) is given by
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L
v=— 1.17
t (1.17)
where L is the length of propagation which is not a constant.
Therefore,
AW At Av AL
—_— = = - . (1.18)
W t v L
However the resonant frequency of the test system is given by
nv
F,=— 1.19
where n is an integer denoting the number of the harmonic.
Therefore,
Av AL
AF = - ) (1.20)
F v L
and thus,
AF AW At
= = — . (r.21)

The way in which the P2L2 measures changes in resonant frequency will be discussed in

a later section as it is the instrument used for the nonlinear measurements in this work.

Although most of the work discussed thus far deals with the development of
theory and measurement techniques for nonlinear behavior of materials, much work in
the literature points out the importance of nonlinear measurements and their applica-
tions. One of the first applications of nonlinear elasticity was in the area of materials
characterization. Nonlinear elastic constants, through their representation in terms of
interatomic potentials in crystalline solids, provide much information about the nature
of the bonding of atoms in a crystal. Einspruch and Manning [25] pointed out the

importance of nonlinear and anharmonic phenomena in solid materials in relation to
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other important material properties such as thermal coefficients of expansion, Grineisen
constants and ultrasonic attenuation. They also pointed out the need for a nonlinear
description of elasticity in theories dealing with regions of high stress or finite strain in

solids such as around dislocations.

One of the most useful and important applications of nonlinear elasticity, how-
ever, has been in the field of nondestructive evaluation of applied and residual stress
(strain) in materials. This application is based on the fact that ultrasonic wave speeds
are a function of the stress state of a material due to nonlinear effects. Thus, if the
relationship between stress and velocity is previously measured for a given material,
theoretically, the state of stress in the material can be monitored by measuring the
ultrasonic velocity. A variation of this is called the acoustoelastic effect or acoustical
birefringence. The acoustoelastic effect arises from the fact that two shear waves, one
polarized parallel to stress and the other perpendicular to stress, have a difference in
velocity proportional to the applied stress. Again this is due to nonlinear effects.
Acoustical birefringence is similar to optical birefringence or the photoelastic effect
which has been used to determine strain in transparent materials for many years. As
early as 1959 the acoustoelastic effect was being touted for the measurement of residual
stress. Benson and Raelson [26] stated that acoustoelasticity could be as effective as

photoelastic methods with the additional benefit of applications to opaque materials.

However, in the years since, problems have plagued the application of acoustical
birefringence for the measuremen.t of residual stress. The effect of velocity difference
between the shear waves due to material anisotropy is often much larger than changes
observed due to stress making residual stress measurements difficult. Another problem
involves energy flux deviation. In an anisotropic body, the energy flux vector (the direc-
tion of the flow of energy per unit time per unit area) of an elastic wave does not in
general coincide with the wave normal. This refraction of the wave is different for the

two shear waves which means the two waves do not follow the same path through the
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material. It also depends on the degree of anisotropy and may also change as a fune-
tion of stress. These factors make velocity measurements for acoustoelastic determina-
tion of stress extremely difficult. Also, as pointed out by Hsu [27], although there are
analogies between the photoelastic effect and the acoustoelastic effect, a comparison of
the important parameters (i.e. wavelengths, frequencies, velocity changes, etc.) for both
acoustical and optical wave propagation shows that the acoustic technique is not as

efficient as the optical technique.

Nevertheless, numerous investigators are still attempting to overcome these prob-
lems. Theory has been developed to attempt to account for the effect of special textures
which has met with limited success in applications. Also, as noted earlier, measurement
technology in ultrasonics has progressed substantially. 'The progress in acoustoelasticity
was reviewed in detail by Pao et al. [28]. The general problem of the experimental
determination of residual stress using ultrasonic methods has yet to be solved. However,
the detection of applied stress has been successfully reported by numerous authors

[24,29,30].

Nonlinear elastic material properties may also be important in the nondestruc-
tive evaluation of irﬁportant engineering properties of materials. For engineering appli-
cations, it is important to determine material propertie.s such as strength and residual
strength after impact or fatigue loading and thermal cycling. However, most nondes-
tructive measurements yield only physical properties such as modulus, density or
coefficient of thermal expansion. To determine the important engineering properties
relationships must be developed between the measured physical quantities and the
desired engineering properties. Nonlinear properties may be useful in this respect as
they are parameters which are significant in large deformations (i.e. near failure strains)
of materials. To examine this, Heyman et al. [31] studied the relationship between the
Stress Acoustic Constant (SAC) which is a measure of a mixture of second and third

order elastic moduli and carbon content in carbon steels. They found the SAC not only
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seemed to be related to the carbon content but to the strength of the material as well.
In aluminum, Heyman and Chern [32| examined the relationship between the SAC and
heat treatment. They found that while the second order moduli were insensitive to the
different heat treatments used, the SAC was able to differentiate them. Thus, a simple
test method for detecting improperly heat treated and thus inferior strength aluminum

was demonstrated based on measurements of nonlinear elastic properties.

Although previous discussion has considered primarily only metallic and non-
metallic crystalline solids, numerous studies have presented measurements of nonlinear
phenomena in polymeric and composite materials. In 1950, Hughes et al. [15] reported
changes in wave speed as a function of pressure and temperature for polyethylene,
polystyrene and Lucite. In 1953, Hughes and Kelly [10] presented the three third order
elastic constants for polystyrene. In 1959, Singh and Nolle [33] measured the velocity as
a function of hydrostatic pressure and temperature for polyisobutylene. Assay et al.
[34,35] presented the change in velocity for polymethylmethacrylate as a function of
stress and temperature. The relationship between stress and velocity became nonlinear
at high pressures indicating higher order nonlinear effects. Lamberson (36], in 1969,
reported on the temperature and hydrostatic pressure dependence of velocity in polys-
tyrene and two composite materials. One of the composites was carbon phenolic while
the other was a tape wound silica phenolic. He also reported nonlinear stress-velocity
curves for these materials at high pressures. Zarembo and Shklovskaya [37] reported
harmonic generation data for polystyrene, plexiglass and rubber in 1971. They also
examined the effect of hydrostatic and uniaxial stress on harmonic generation in these
materials. Other authors [38,39] have reported nonlinear measurements on different

polymeric materials since this time.

The present work deals with the measurement of the linear and nonlinear elastic
properties of a graphite/epoxy composite material. More specifically, measurements

were made on unidirectional laminates of T300/5208 (Thornel 300 graphite fibers in a
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Narmco 5208 epoxy resin). The choice of a unidirectional lay up was made because it
offers the highest elastic symmetry and therefore is the least complex orientation to
analyze. The elastic symmetry of unidirectional fiber reinforced composites is usually
taken to be that of transverse isotropy if the fibers are randomly distributed in the
plane perpendicular to the fiber axis. A transversely isotropic material is one which has
a preferred axis, perpendicular to which is a plane in which the material behaves in an
elastically isotropic fashion. In the case of a unidirectional composite, the fiber axis is
the preferred axis having a much laréer elastic stiffness, and the isotropic plane is the

plane perpendicular to the fiber axis with a much lower stiffness.

For a transversely isotropic material there are five linear elastic (second order)
moduli. This is the same as for the case of a hexagonal single crystal. However, there
are only nine nonlinear (third order) moduli for transverse isotropy as opposed to either
ten or twelve for the different point group symmetries of hexagonal single crystals. In
the present work, the five linear (second order) elastic stiffness moduli for the unidirec-
tional composites were computed from ultrasonic velocity measurements. These values
were then compared with available data from the literature as well as checked for con-
sistency with the assumption of transverse isotropy. From the linear elastic stiffness
moduli, the compliance moduli were calculated and compared with those obtained by
strain gauge measurements. These were also compared with reported values for a simi-
lar material. Measurements were then made to determine the change in "natural” wave
velocity as a function of applied stress and temperature. A variety of combinations of
propagation direction and loading configurations were used with longitudinal and
transverse waves. This data was also checked for consistency with the predictions of
transverse isotropy. Then the velocity-stress data was used to calculate some of the

nonlinear coefficients of this material.
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II. LINEAR ELASTICITY

II.A. Introduction

In order to determine the nonlinear elastic moduli, the linear elastic stiffness and
compliance moduli must first be measured. In this chapter, measurements of these pro-
perties in a unidirectional graphite/epoxy composite will be discussed. Definitions of the
terms used in linear elastic theory will be presented first, followed by a theoretical
explanation of the methods used. Then, the measurements will be reported and com-

pared with theoretically predicted and previously measured values for this material.

II.B. Theory

As discussed earlier, the theoretical basis for linear elasticity shows that it is
only applicable for small or infinitesimal deformations. This permits the use of simplify-
ing assumptions in the definition of strain for linear elasticity. The coordinates of a
point of material in an undeformed body are defined to be a; with respect to the origin
in an orthogonal coordinate system (Note: Einstein convention of summation over
repeated indices is assumed throughout this paper). The same point of material defined
by a; will be displaced to a new position X; in the material after deformation. The dis-

placement is a vector defined by
T=X-7 (2.1)

having components u;. The strain can now be defined in two ways. The Lagrangian
strain tensor which provides a measure of the deformation with respect to the unde-

formed material coordinates is defined by

1 |9y Oy, Ouy Ouy

=5 |Pa, T Oy T Oada; | (22)
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In the Eulerian formulation of strain, the strain is described in reference to the

deformed state and is given by

Ou; Ou; duy du
e,-j = L l + ! + Kk s (2.3)

2 8x] Bxi Baiaaj

The Lagrangian formulation is often referred to as a material description of strain while
the Eulerian is called the spatial description. The Lagrangian is more often used in
solid mechanics and the Eulerian in fluid mechanics. The assumption of infinitesimal

deformation can now be applied. This assumption means that since

O g 2 <1
9a, an B, < (2.4)

3uk8uk
aait?a,-

for infinitesimal deformations, then the quadratic term [ ] is much smaller

than the linear terms and can be dropped from the expression. Thus the small or

infinitesimal strain tensor is defined by

1 311i 8uj

€j = 9 (9_3.]- 537. (2.5)

The small strain assumption also means that
6ij=L%’ ﬁ=lﬁ+% (2.6)
2 | Oa; Oa; 2 | Ik,

or that there is no difference between the Lagrangian and Eulerian formulations for
strain. It can also be seen from the definition of the small strain tensor that it is a sym-
metric tensor (i.e. €; = ¢; ).

The physical description of the components €,;, €5, and €33 is that they are the
normal strains which provide the measure of the normalized change in length of the

body along the respective coordinate axis. For example, if ly is the unstrained length

along axis x; and |, is the strained length along x, , then




(2.7)

The remaining strain components are the shear strains which are a measure of the
change in angle between two originally orthogonal axes in the undeformed medium.
This is demonstrated in Fig. 2.1 where the strain is given by

Ax,

Xq

€190 = = tan(f) = 0 (for small strain). (2.8)

The stress tensor (o) provides a measure of the applied forces on the body. It is

defined by

o — force on the i'th face in the j'th direction
=

2.9
cross sectional area of the i'th face (29)

A diagram of the nine components of the stress tensor is shown in Fig. 2.2. The
engineering or nominal stress is used where the cross sectional area is that measured in
the unstressed state. The true stress uses the instantaneous cross sectional area which
is much more difficult to measure. The components ), 0 and o3; are the normal
stress components while the remainder are shear stress components. Laws of statics can
be used to show that if a body is to be in rotational equilibrium, the stress tensor must

also be symmetric.

Having defined both stress and strain, the relationship between the two can now
be discussed. For linear elasticity, the generalized Hooke’s law is used. This expresses

the relationship between stress and strain as

0ij = Cijki€k (2.10)

where ¢y is the fourth rank lineat elastic stiffiness tensor. In the most general form this
tensor has eighty-one components. However, because the stress and strain tensors are

both symmetric, the following relations are valid
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Figure 2,1 - Two dimensional representation of shear strain,
solid line represents undeformed medium while
dashed line is deformed medium.
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Figure 2.2 - Diagram of the nine stress tensor components.
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Cijkl = Cjikl (2.11)

and
Cijkl = Cijik- (2.12)

This reduces the number of independent components to thirty-six. The assumed
existence of a strain energy density function (#) which for the case of linear elasticity

has the form

1
¢ = 3 Ciikiijéxl (2.13)

provides further reduction of the number of independent elastic coefficients. It must be

true that

=1 1
¢ = 5 Ciiki€ij€kl = 5 CijkiCki€ij- (2.14)
Equating this expression term by term with respect to strain yields the relation

Cijkl = Cklij- (2.15)

This reduces the number of independent coefficients to twenty-one. At this point, the
Voigt notation can be used to simplify things somewhat. For each pair of indices on

stress, strain and elastic moduli, the following substitutions are made
11 —-1 23 —4
22 —2 31 —5 (2.16)
33—3 12 —6

Using this notation, the generalized Hooke’s law can be rewritten as

Ty = CABEB (2.17)

where capital subscripts are summed from one to six. The elastic stiffness moduli can
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now be written in matrix form for the most general anisotropic solid as

'011 €12 €13 C14 Cg5 Cls.
Cj2 Co2 C23 C24 C25 Co26
C13 C23 C33 C3q4 C35 C36
CAB™ lc14 g4 €34 Caq C45 Cip (2.18)
C15 Co5 C35 C45 Cs5 Csp

Ci6 C26 C36 C46 Cs6 Ce6

The reduction in the number of independent elastic constants can be carried
further if material symmetries are taken into consideration. This is accomplished by
examining the effect on the strain energy density function of a rotation of the material
which places the material in an elastically equivalent condition due to symmetries of the
material. Due to the scalar nature of the strain energy density function, it should have
the same value in both configurations. An example of this procedure is now given. The
strain energy density function is written out in terms of the twenty-one independent

coefficients as

1 2 2 2 2 2 2
¢ = ’5(01151 + Cop€d + Cg3€5 + Caqfq + Css€5 + Copts) T+ C12€1€0

+ ¢y3€1€3 + C14€1€4 + C1561€5 T C1e€i€p T Cozofy T Cos€afy + CosEofs
+ Cog€ofs + C34€3€4 + Cas€a€s + Casfats T+ Castafs + Cye€s€s + Cspfs€s  (2:19)

In an isotropic material any rotation is elastically equivalent. Assuming an isotropic
material, a rotation of 180 degrees around the x; axis is chosen and is shown in Fig. 2.3.
The transformation matrix or direction cosine matrix [a;;] is found by taking the cosine

of the angle between the rotated and original axes. For this rotation it is given by
-1 0 O
[ag] =0 -1 0O} (2.20)
0 01



=27~

X|

Figure 2.3 - Diagram of the rotation of axes 180 degrees around
the X4 axis (primed axes are the rotated axes) .,
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The effect of this rotation on the strain tensor is given by

!
Eij = aika]‘lem‘ (2.21)
/ /
Thus €11 = €11 € =€
1 /
€g9 = €29 €y = €9
1 I
€33 = €33 €3 = €3
! , (2.22)
623 = - 623 or 64 = - 64
i 1
€31 = — €31 € = — €&
i i
€12 = €12 €s = €6

The rotated strain energy density function can be written after substituting equation

(2.22) as

!

¢

1 2 2 2 2 2 2
- 5(01151 + Cog€s + Ca3€3 + Cq4€4 + Cs5€5 T+ ces€s) + Cro€1€e

+ ¢ 3€1€3 — C14€1€4 — C15€1€5 T C16€1€6 T Co3€af3 — Coq€2€s — Cosots

+ Cog€a — C34€3€4 — Cas€3€s + C3s€3€6 t C45€4€5 — Cas€as — cse€s€p).  (2:23)

Evaluating term by term the relation

yields

C14
€15
Co4
Cos
C34
€35
C46
Cse =

C14
€15
Co4
Cos
Ca4
€35
C46
Cse

all other ¢;; = ¢;;.

If equations (2.25) are to be true, then

©-
i

¢ (2.24)

(2.25)
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Clq4 = Cj5 = Cgq = Cg5 == C34 = C35 = C4g = C56 = O. (2.26)

Application of further symmetry operations will show that for an isotropic material, the

number of independent elastic coefficients reduces to two. The matrix then appears as

€11 €12 €12 0 0
Ci2 C11 C12 0 0 0 (2.27)
[ ] €13 C12 1 0 0
cAB = ’
C - C
lo o o “2 12 0 0
(o4 —C
0 0 0 0 L - L 0
C - C
0 0 0 0 0 L - 12

For a transversely isotropic material, the number of independent coefficients is five while
for an orthotropic material it is nine. The derivation of the independent coefficients as
well as their final matrix forms for these two elastic symmetries which are important for

unidirectional fiber reinforced composites is shown in Appendix A.

The relationship between strain and stress is given by
eij = sijklakl. (2.28)

The moduli sy form the linear elastic compliance tensor. The conditions of symmetry
for the stiffness tensor also apply to the compliance tensor. The relations between the
compliance and stiffness moduli for a given symmetry can be determined by inverting

the stifflness matrix.

The value of the elastic moduli are also dependent upon the conditions (isother-
mal or adiabatic) in which they are measured. Isothermal moduli are measured at con-
stant temperature (T) while adiabatic moduli are measured at constant entropy (S).

The work by Brugger [12] provides a precise thermodynamic definition of the elastic
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moduli and the relationship between adiabatic and isothermal coefficients. In terms of

the free energy (F), the isothermal stiffness moduli are defined by

&PF

T
Cijkt = Po 311 O (2.29)
ij
where pg is the unstrained density.
The adiabatic stiffness moduli are
)kl Po 877ij877kl .

where U is the internal energy.
The adiabatic and isothermal compliances are defined in terms of the enthalpy (H) and

the Gibbs function (G) respectively and the thermodynamic tensions (t;;) which are

tij = Po & = Po X1 (2.31)
3?7ij 5771;‘

The compliance moduli are

and
&G
Silkl = — Po m (2.33)

The relationship between adiabatic and isothermal compliance moduli was given in

matrix form by Hankey and Schule [40] as

T
SAB = Sip + ACB (2:34)
PoCp

where c, is the specific heat at constant pressure,

and a, is the linear coefficient of thermal expansion defined by
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Oy

> (2.35)

Qp =
The difference between adiabatic and isothermal moduli is usually quite small and often

less than experimental uncertainty.

The determination of the adiabatic linear elastic stiffness moduli can be made
by measuring the density and the ultrasonic wave velocity. The derivation of the equa-
tions of motion for the propagation of linear elastic waves in an anisotropic medium
provides the theoretical basis for this technique. This subject has been treated by a
number of authors among the earliest being Love [41} and it is reviewed in detail by
Green [5]. In deriving the wave equations, a number of initial assumptions about the
propagation medium are made. It is assumed to be unbounded, homogeneous and con-
tinuous. Next, an infinitesimal volume element of the medium is examined and the net
unbalanced forces acting on it are determined. This is accomplished by finding the
resultant of the variation of stress across the element for each direction and multiplying
this by the respective cross sectional area. Fig. 2.4 shows the variation of stress along
the x; direction for the infinitesimal volume element with sides of length 8x,, §x, and 6x;.
If there were no variation of stress and thus no net unbalanced forces, there would be

no wave motion. The net unbalanced force along x, is given by

60'11 60'21
(o1 + ———8x)) — o1y)éxy8x3 + (091 + ——8%5) — 03], 6x5
Ox, 5 &}
903,
+ [(o3y + N &x3) — 031]6%,6%,. (2.38)
3
This can be reduced to
do, do: do:
H 2 2 10%00% 3. (2.37)

O Oxy  Ox

Similar expression can be written for the net unbalanced force along x, and x5 . Accord-

ing to Newton’s second law these unbalanced forces must equal mu; where m is the mass




-32-

f’CT3|
/03'+'0x3 e
/ /60'
o 2|
I O'2l+ax2 SX,
o
Sx 5 2l /
90y,
’ O—"+ax, Sx,
-
8x| O3, / X2
S)QZ

X|

Figure 2.4 - Illustration of the variation of stress on a volume
element of material along the x; direction.
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of the element and u; are the second time derivatives of the displacements which are the
acceleration components. Actually, to be more exact, it is pointed out that Newton’s
second law states that the force is equal to the time derivative of the momentum p; .

However,

P = mui (2.38)
and therefore
p; = mi; + mu,. (2.39)

Since the mass of the element is assumed to be constant in time the forces are simply

given by mu; . Therefore the balance of forces can be written in component form as

mu = [ ]&16’(26)(3 (240)

It is noted that the body forces are neglected in this equation. The mass can be rewrit-

ten in terms of the density p, and the volume (V) which is given by
V = §x,0x,0x3 (2.41)
as
m = Pobx;8xy0x3. (2.42)

Substituting (2.42) into (2.40) and canceling appropriate terms yields

oc;;
potl; = |—=| (2.43)

O

To rewrite this in terms of only density and displacement, the stress is first rewritten in
terms of the strain using Hooke’s law (2.10). Then the strain definition (2.6) is used to

produce the expression for stress in terms of displacement as
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SO F i L] (2.44)
ij ijkl 2 8x1 8xk X :
The symmetry of the elastic coefficients (2.12) is applied to further simplify (2.44) to

yield

—C

P = ikl | = —Ciiik | = 2.45
1) 2 ijkl axl 2c]]lk axk ( )

and therefore
Ouy (
T = Cijkl | 3o 2.46)
) axl

This is now put back into equation (2.43) to yield the final form of the equation of

motion for linear elastic wave propagation in an anisotropic medium which is

. &Puy
Poli = Cijk| ‘-_axlax. i
]

(2.47)
Now that the equation of motion has been derived, the next step is to choose a
solution for the displacements as a function of time and space. For a plane wave, a

solution can be written as
{wt = kpx
ui(xk,t) == Aoaie( m) (2.48)

where A is the amplitude of the wave,
a; are the direction cosines of the particle displacement vector,
t is the time,
w is the angular frequency
and k., are the components of the wave vector.
The wave vector components (k;) are related to the direction cosines of the wave nor-

mal (1) and the wavelength (\) by the expression



kp = ~ lp = klp (2.49)

where k is the wave number.
The solution for the displacement can now be substituted into the equation of motion.

This will lead to the following expression
cijklkzllljak = powlQ (2.50)
which can be rewritten as
(cijialil; — Povoi)oy =0 (2.51)
where v is the phase velocity of the elastic wave and is given by

W
v o= i (2.52)

In equation (2.51), it is noted that ay is arbitrary and therefore not necessarily equal to
zero. In order for this equation to have nontrivial solutions, it must be true that the

determinant of the matrix of coefficients must equal zero. That is
[eijlly = Pov?8ik| =O. (2.53)
To more conveniently write this equation, a matrix [\;] is defined by
ANk = cijithl;- (2.54)
Therefore, equation (2.53) becomes
[Mk — pov?8i| = 0. (2.55)

This is a characteristic equation which when expanded forms a cubic expression in terms
of pov? . Since )\, is a symmetric matrix, the three solutions for pgv? must all be real.

The physical significance of this is that for any arbitrary direction in an anisotropic
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medium, three plane waves may be propagated. The velocity of each of these waves
depends on the density, the elastic constants and the direction cosines of the wave nor-
mal. Thus, if the ultrasonic wave velocities are measured for a number of directions in
an anisotropic medium with known density and elastic symmetry, the linear elastic
stiffness moduli can be determined. Although not formally designated as such in the

preceding equations, these moduli will be the adiabatic stiffnesses.

The particle displacement vector direction cosines can be determined for each of
the three waves propagating along a given direction. This is accomplished by solving

for the eigenvectors for each eigenvalue (pov?) using the equation
PovZoy = Ny, (2.56)
and also applying the fact that
oo = 1. (2.57)

These direction cosines determine the mode of the wave. If they are the same as the

wave normal direction cosines, that is

Q= li’

(2.58)

then the particle displacement of the elastic wave lies along the direction of propaga-
tion of the wave. A wave of this type is referred to as a pure mode longitudinal
(compressional) wave. If the particle displacement is perpendicular to the propagation

direction and therefore
aili =0, (2.59)

then the wave is called a pure mode transverse (shear) wave. Illustrations of longitudi-

nal and transverse mode waves are given in Figs. 2.5 a) and b).
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Figure 2.5 - (a) Illustration of a longitudinal (compressional)
elastic wave demonstrating directions of particle
vibration and propagation.
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Figure 2.5 - (b) Illustration of a transverse (shear) wave.
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However, in general the wave need not be pure mode. It can be either quasilong-
itudinal or quasitransverse depending on which type of particle motion is more dom-
inant. Of the three waves propagating along a given direction, one is longitudinal or

quasilongitudinal while the other two are transverse or quasitransverse.

Another consideration of linear elastic wave propagation in an anisotropic
medium is that the direction of the energy flux of the wave may not in general be the
same as the direction of the wave front normal. That is, there may be a refraction of
the wave because of the anisotropy of the medium. The energy flux vector is defined as
the direction of the flow of energy per unit time per unit area. A diagram of the energy
flux deviation of a quasitransverse wave is shown in Fig. 2.6. Equations for expressing
the energy flux vector and its deviation from the direction of the wave normal are

reviewed by Green [5] and are presented here.

First, the expressions for the kinetic energy (K) and the potential energy (P)

which is contained in the wave field are given by

K= —;— [puldr (2.60)

and

1
P= ;]0}}6”(17' (2‘61)

where d7 is a volume element of the wave field.
The sum of K and P yields the total elastic energy E contained in the wave field which

is

Il
IR

m

[fpl.liQdT + fd,leud’r] (2.62)

The time derivative of Z is then given by

o= - 1,0
E‘ = fpuiuid‘r + EI“BT(UIJE”)CIT (2.63)
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Figure 2.6 - Diagram of a quasitransverse elastic wave undergoing
energy flux deviation illustrating the directions of
particle displacements, wave normal, and energy flux
vector.
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To simplify this expression the term under the second integral is now considered. It can

be rewritten as
I .
ot (dijeij) = gijeij + Tjeij- (2.64)
Hooke’s law (2.10) can now be substituted into this equation to express %(aijeij) in
terms of the elastic moduli and the strains as
N -
(dijeis) = cijii€xi€ij + CijkiCriij- (2.65)
ot
Because of the symmetry of the elastic moduli, equation (2.65) can be rewritten as
rl - -
ot (dij€i;) = cuijexi€ij + Cijri€itij- (2.66)

Again using Hooke’s law this becomes

d . .
gt‘(cﬁjfij) = Oy €k T Gij€jj (2.67)
which can be rewritten as
0 .
E(Uijeij) = 20j€j; (2.68)

after the dummy indices k and 1 are summed out of the equation. The time derivative
of the strain in equation (2.68) can be rewritten in terms of the displacements using the

definition of strain as

. 1 j
L, . — — — 2.6
€; = > + (2.69)

This is substituted into equation (2.68) resulting in

0 &y oy
b’?(aijfij) = 0 ‘gj' + Bx, (2.70)
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which because of the symmetry of the stress tensor is
o

2
—(o3;€;5) = 20;,——. (2.71)
oY Y O

Equation (2.71) is now put back into equation (2.63) to give the time derivative of the

total energy of the elastic wave field as

= o,
% = foudr + f q,gdr (2.72)
Since
—3¥(a-~i1~) = 0; o, + 1 1, i (2.73)
1 1 .
Ox; ! ! 0x; O,
or

ay;
O.llg =5 1) ul

2.74
ax (274)
the second integral in equation (2.72) can be rewritten as
oy d da;;
. . i
Jojodr = [—(oy)dr — fo;——>dr. (2.75)
Oxj Ox; O

Gauss’s theorem can now be applied to the first integral of equation (2.75) to rewrite it
as a surface integral of the form

fai( o,;0;)d7 = [o;;1;dS. (2.76)
)

This can be substituted into equation (2.75) which is then inserted into equation (2.72)
which gives

do;;
[ |ty — —>dr + fa0ds. (2.77)
axl

1]

&
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The first integral equals zero because of the equation of motion (2.47). Therefore, it

remains that

%—f— = [o;u;dS. (2.78)

This equation represents the energy flow into the volume element 7 through the surface
S. The energy flux vector with components E; can be formed which gives the energy flux

flowing outward from the volume 7 through S by

E.l = — O'ijﬁi- (2.79)

If the time averaged values E of the energy flux vector over one cycle of the elastic

wave are computed and it is defined that
E2=E!+EZ +E} (2.80)

then the direction cosines of the energy flux vector (E{) can be formed by

/ Ei

E =—. :
I (2.81)

If
E =1, (2.82)

then the wave propagates along the direction of the wave normal and there is no energy
flux deviation. Otherwise, the angle (8) of deviation of the energy flux from the wave

normal can be determined by

§ = cos”Y(E{L}). (2.83)

Therefore, to determine the elastic moduli by using ultrasonic velocity measure-

ments, a number of considerations must be examined. First, the elastic symmetry and
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thus the form of the elastic stiffness matrix must be known. Then a direction of propa-
gation must be chosen and the solutions for the velocities of the three waves that pro-
pagate along this direction must be calculated in terms of the density and the elastic
moduli. Also, any energy flux deviation of the three wave modes must be determined.
This is repeated for a number of different directions until enough independent equations
are derived to calculate all of the elastic moduli from the corresponding velocity meas-
urements. Usually, an attempt is usually made to choose directions which propagate
waves which are pure mode and suffer no energy flux deviations to make the measure-
ments as easy as possible. Unfortunately, this can not always be accomplished.
Brugger [42] published an equation which can be used to determine the pure mode direc-

tions for the various elastic symmetries. In general form this equation is
eijkcjlrslklllrls =0 (2.84)

where ¢;;, is the permutation tensor.

It is defined by
0 if any i,j,k are equal
€ix = 1 1 if i,j,k are in cyclic order (2.85)
—1 if i,j,k are in acyclic order

Also presented are the pure mode wave directions for the various elastic symmetries.

The specific case of elastic wave propagation in a unidirectionally graphite fiber
reinforced composite will now be discussed. First, the applicability of the previously
derived wave equations to a composite material must be considered with respect to the
heterogeneous nature of the medium. This violates one of the initial assumptions that
the medium be homogeneous. However, it is generally assumed that if the wavelength
of the elastic waves is much larger than the size of the inhomogeneity, then the material
is macroscopically homogeneous and the wave equations are applicable. In the materi-

als studied, the size of the inhomogeneity is given by the diameter of the fibers which is
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on the order of seven pm . In the frequency range used (=~ 2.25MHz) , the wavelengths
for the different wave modes and directions of propagation ranged from about 700um to
almost 5000pum . Therefore, the previously stated assumptions are valid as are the wave

equations.

Another important question is the use of Hooke’s law because of the viscoelastic
nature of most polymeric materials. However, epoxies and their composites, because of
the high degree of crosslinking along the molecular chains, generally exhibit little viscoe-
lastic behavior. This is especially trﬁe at the temperatures at which these measure-
ments were made (room temperature). Measurements of the wave speeds and thus the
moduli as a function of frequency demonstrated no viscoelastic effects. Therefore the

application of Hooke’s law appeared to be valid.

The appropriate elastic symmetry model for a unidirectionally fiber reinforced
graphite/epoxy composite must now be chosen in order to derive the specific solutions
for the velocities of ultrasonic wave propagation. The most common symmetry model
used for unidirectional composities is that of transverse isotropy. In a transversely iso-
tropic material, there exists a preferred axis perpendicular to which there exists a plane
in which the material behaves isotropically. In unidirectional graphite/epoxy, the fiber
direction (x3) is the preferred axis while the xx; plane is the plane of isotropy as shown
in Fig. 2.7. Transversely isotropic behavior of unidirectional composites is based on the
assumption of a random distribution of fibers in the x;x; plane as well as alignment of
the fibers along the x; axis. The symmetry conditions for such a material are that it be
elastically insensitive to twofold (180 degree) rotations about each of the three axes as
well as insensitive to any rotation around the x; axis. Application of these symmetry
conditions as shown in Appendix A demonstrates that there are only five independent
elastic moduli. The matrix form of the elastic stiffness moduli for a transversely isotro-

pic material is then given by
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Figure 2.7 - Illustration-of axis designation in a unidirectional
fiber reinforced composite with respect to the fiber
direction and the lamina stacking direction,
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¢;p €12 3 0 O 0
cig ¢ip ¢3 0 O 0
¢13 €13 a3 0 O 0
[CAB] =10 0 0 ¢y O 0 . (2.86)
0 0 0 0 cy 0
o 0 0 0 0 c—“%c‘—"’

However, if for some reason the fibers are not randomly spaced in the x,x, plane,
this plane will no longer be elastically isotropic. In this case, the material will possess
an orthotropic symmetry. This might occur if because of the lay up process of manufac-
ture there was a resin rich layer between each lamina as shown in Fig. 2.8 or if some of
the laminae were misoriented. The resulting orthotropic material would now have only
the two fold symmetries about each of the three axes as is the case with cross ply or
angular ply composite lay ups. For this symmetry the number of independent linear
elastic moduli increases to nine as shown in Appendix A. The matrix form of the moduli

is then

1y c12 ¢13 0 O
Cig Cg0 Co3 0 O
i3 Co3 cz3 0 O
ltasl =0 0 0 ¢y ©
0 0 0 c5
0 0 0 0 cg

(2.87)

o ©o © o ©

0
0

Ultrasonic velocity data can be compared with the equations derived for both
models to determine which gives the best fit to the data. The derivations of the equa-
tions for the velocity as a function of density and elastic moduli for a number of
different directions and pure wave modes for transversely isotropic and orthotropic sym-

metries are presented in Appendix B. However a summary of the results is presented in
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Figure 2.8 - Illustration of unidirectional composite with resin
rich regions between laminae causing the material to
have orthotropic elastic symmetry.
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Table 2.1. To determine all of the elastic moduli for the two models, several nonpure

mode waves must be used. The results for these waves are presented in Table 2.2.

II.C. Experiment

In most of the ultrasonic velocity measurements made in this study, a pulse echo
overlap velocity measurement system was used. This system was briefly discussed in the
Introduction. However, the details of its operation will now be discussed. Figure 2.9
shows a block diagram of the entire pulse echo overlap system. A Matec model 6600
pulse modulator and receiver was used to generate an electrical tone burst of variable
amplitude and frequency. This was used to excite an ultrasonic transducer (typically
undamped crystals of quartz or PZT with fundamental resonances of approximately
2.25 MHz.) which excited ultrasonic waves into the graphite/epoxy samples. The result-
ing echoes from the back surface of the specimen were detected by the same transducer
and converted back into electrical signals. The received signals were input into the
receiver and amplified. After amplification, they were displayed on a Hewlitt Packard
(H.P.) 1743A dual trace oscilloscope. A typical pulse echo pattern is shown in Fig. 2.10.
The echoes appear identical to the generating signal (main bang) except for an exponen-

tial decrease in amplitude due to attenuation in the sample.

To have the pulse echo pattern appear stable on the oscilloscope, the Matec gen-
erator and the H.P. 1743A oscilloscope must be triggered simultaneously. This was
accomplished by using the triggering components of the pulse echo overlap system. Ihe
signal from a continuous wave (c.w.) oscillator (Matec model 110) was input into a
Matec 122B decade divider and dual delay generator. The Matec 122B divided the ori-
ginal signal by a preset amount (typically 1000) and then generated a trigger signal at

the divided frequency. This is demonstrated for frequency division by five in Fig. 2.11.
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Table 2.1 - Equations for pure mode linear elastic wave propagation in

transversely isotropic and orthotropic media.

Propagation | Particle Displacement | Wave Transversely Orthotropic
Direction Direction Mode Isotropic Model
Cosines Cosines Model
ll =1 Q) = 1 Qg = 0 Qg = 0 PL p0V2 = C13 p0v2 =y
1
12 =0 = 0 Qg = 1 Qg = 0 PT p0V2 = E(Cu - 012) pov2 = Cgg
13=0 °’1=0 a2=0 0'331 PT p0V2=C44 poV2=055
1
11 =0 Q= 1 Qg = 0 g = 0 PT p0V2 = E(Cu b C12) p°V2 = Cgqp
l,=1 ;=0 ag=1 a3=0 PL Pov: = ¢y Pove = Cop
13 =0 Q) = 0 Qo = 0 g = 1 PT poV2 = Cy4 poV2 = Cy4
ll =0 a; = 1 Qg = 0 g = 0 PT P0V2 = Cyq4 poV2 = Cgp
12 =0 oy = 0 Qg = 1 Qg = 0 PT p0V2 = Cyy p0v2 = Cy4
lg=1 a; =0 0;=0 az=1 PL pov? = cay Pove = Ca3
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Table 2.2 - Equations for non pure mode, off axis linear elastic wave

propagation in transversely istotropic and orthotropic media.

Transverse Isotropy
Propagation Wave pov?
Direction Mode
Cosines
1 1
L, = V2 QL Iy [cu + 2c4 + cag + V(ey — cgg) + 4(cis + ‘344)2]
111
l,=0 PT Py [;(Cu —c) + Cyy
1 1
Il = BV QT ” [c“ + 244 + a3 — V(cy — ca)® + 4(c1z + 044)2]
,=0 QL Same as QL above
lp = 12 PT Same as PT above
I3 = —\}5 QT Same as QT above
ll = 1 PL Cy1
Ve
= = PT ¢
2 75' Y
1
Ig=0 PT '2'(011 — ¢y9)
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Table 2.2 - (Continued)

Orthotropy
Propagation Wave pov?
Direction Mode
Cosines
1 1
l, = BV, QL Y [Cu + 2c55 + cag + V(eyy = cg5)® + 4(cys + 055)2]
1
=0 PT 3(044 + C40)
1 1
I3 = 3 QT 1 [cu + 2cg5 + c33 — \/(Cu - cag)® + 4(c13 + 055)2]
;=0 QL % [ 2 + 2¢4 + Ca3 + V(e — ca0)? + 4(cog + 044)2]
Iy = 71 PT i(055 + cgq)
2 2
Iy = L QT L[c + ¢4 + ¢33 — V(e — €13)% + 4(c +C)2]
75‘ 4 22 4“4 22 33 23 14
1, = 1 QL L[c + 248 + oo + V(1 — c0)® + 4(c +c)2]
BV 4 1 22 11 22 12 66
ly= ;;17' PT L(cu + ¢s5)
2 2
1
I3=0 QT 1 [cu + 2¢08 + cp — V(1 = co)® + 4(cyp + 060)2]
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C.W. FREQUENCY COMPUTER
OSCILLATOR COUNTER TEKTRONIX
MATEC 110 H.P 53I6A 4051

DECADE DIVIDER
AND OUAL DELAY DIRECT SYNC. OSCILLOSCOPE
GENERATOR
MATEC 1228 H.P. 1743A
[®]
wilo
alz
>\
o
CULSE RECEIVER OUTPUT
MODULATOR | INPUT TO RECEIVER
AND RECEIVER PULSE OUTPUT
MATEC 6600 SAMPLE
TRANSDUCER
| 0SCILLOSCOPE MIXER FREQUENCY
TEKTRONIX ANZAC SYNTHESIZER/
556 MD-140 FUNCTION
GENERATOR
H.P 3325A

Figure 2.9 - Block diagram of pulse echo overlap system.
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Figure 2,10 - Illustration of a typical pulse echo pattern
demonstrating voltage versus time.
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The trigger signal was then used to trigger both the Matec model 6600 and the oscillo-
scope. The Matec model 122B also generated a dual strobe which was input into the z
axis of the scope. This had the effect of intensifying two chosen regions of the oscillo-

scope trace. The width and spacing of the strobes was variable.

The high accuracy in measuring the time between two echoes needed to compute
the velocity arises because of a special triggering technique. First, the echo pattern was
set up as previously described. The strobes were set so that two echoes were intensified
on the trace and the scope intensity control was adjusted so that only these two echoes
remained visible on the trace. Then, using another output of the Matec model 122B, a
trigger signal was applied to the oscilloscope which was at the original rate of the
Matec oscillator which was typically 1000 times faster than the trigger rate of the
Matec model 6600. This caused an oscilloscope trace to be drawn out 1000 times during
the single pulse echo cycle of the Matec 6600. The effect of this, because of the per-
sistence of the oscilloscope screen, was to make the two echoes appear together on the
screen as shown in Fig. 2.12. If the trigger frequency was adjusted, the two echoes could
be caused to coincide on the screen or "overlapped” as shown in Fig. 2.13. The fre-
quency (f) of the Matec c.w. oscillator at which this occurred was related to the time

between echoes (t) by

n
t = — 2.88
T (2.88)

where n was an integer.
By measuring two successive overlap frequencies (f,,f2), the integer n could be taken out

of the equation and the time of flight then given by

1
t=|—1| 2.89
-1, (2.89)

A number of overlap frequencies were measured and the results averaged to get a more

reliable value for t. The main uncertainties of the measurement of t were the



-55-

C. W. Source

AL L L L

Output of Matec 1228

Figure 2.11 - Illustration of frequency division of a continuous
wave (c.w.) source by the Matec model 122B by a
factor of five.
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Figure 2.12 - Illustration of an oscilloscope trace of two echoes
during the pulse echo overlap technique where the
echoes are not properly overlapped.

Figure 2.13 - Illustration of two properly overlapped echoes.
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uncertainty in the operator’s visual ability to detect the overlapped condition and the

uncertainty in the measurement of the c.w. oscillator frequency.

Because of time delays of the ultrasonic pulse in the bond and phase shifts at the
specimen-transducer interface, corrections had to be made to determine the true time of
flight (8) from the measured time (t). The theory for these corrections was presented by
McSkimmin [19] and is outlined in Appendix C. In this theory it is necessary to deter-
mine the frequency of the ultrasonic pulse. This was accomplished by inputting the tone
burst into a mixer (Anzac MD-40) along with the signal from a H.P. 3325A frequency
synthesizer/function generator. The output of the mixer was then input into a Tek-
tronix 53C oscilloscope. The output of the mixer was the sum and difference frequencies
of the tone burst and the H.P. c.w. source. If they were of the same frequency, the out-
put of the mixer was a constant voltage (0 Hz) dependent on the phase difference
between the two signals. This phase difference was variable each time the Matec 6600
was triggered and thus a series of parallel lines was generated on the scope trace. This
is shown in Fig. 2.14. If the frequencies were different, then the output would have the
difference frequency again phase shifted on each new trace. Therefore, the frequency of
the tone burst from the Matec 6600 could be monitored by the frequency of the H.P. fre-

quency synthesizer.

The remaining equipment was used to collect data. A Tektronix 4051 computer
was used to read the trigger frequency values and calculate the time of flight which was
used to calculate the velocities and the moduli. The program used to control the pulse

echo overlap data acquisition and analysis is shown in Appendix D.

There were a number of factors which affected the size and geometry of the sam-
ples used. They had to have parallel sides to be used in the pulse echo technique. Also,
the thicker the specimen, the more accurately its time of flight could be measured.
However, because of the high ultrasonic attenuation of graphite/epoxy composites, espe-

cially for shear waves, there were limits on the maximum thickness. Also, limits on
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Figure 2.14 - Illustration of the oscilloscope trace of the output
of a mixer when the input c.w. and pulse sources are
of the same frequency.
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sample thickness occurred because of the desire to have the wavefront remain planar.

The distance (d) over which the wavefront remains planar was given by Mason [43] as

R2

d 2X

(2.90)

where R is the radius of the transducer
and X is the wavelength of the ultrasonic wave.
However limitations on the thickness because of the large attenuation usually occurred
before this requirement became important. There were also restrictions on the lateral
dimensions of the samples. The equation of motion are based on the assumption of a
wave propagating through a unbounded medium. However, ultrasonic velocities have
been shown by Tu et al. [44] to be independent of lateral dimensions if the sample was

at least two and one half times the acoustic wavelength.

The above constraints provided the basis for the choice of the sample geometries
used. Ideally, the measurements of the elastic moduli would be made using only one
sample to avoid any problems with sample to sample variations in the elastic properties.
These problems are especially prevalent in polymer composite materials where elastic
property variations may occur not only from batch to batch due to different curing pro-
cedures but also within a given batch because of regional variation of fiber content, void
content and other important parameters. However, because of the above constraints
and the necessity to use off axis non pure mode wave propagation to determine some of
the moduli, several samples were required. These samples were all cut from a 150 ply
laminate of T300/5208 unidirectional graphite/epoxy that was nominally 12 X 15 X 0.9
in. (30.5 X 38.1 X 2.3 cm.) after cure. This panel was designated MCIS 1 and layed up
and cured at NASA, Langley Research Center. The finished panel was ultrasonically
C-scanned by the Materials Characterization and Instrumentation Section at NASA
Langley for the presence of gross voids or delaminations. None were found to be

present. A number of tensile and compression samples were then cut and machined



~—~

- 60 -

from this panel. Those used for the ultrasonic testing were MCIS 1.10A, 1.8A, 1.10B,
1.7A, 1.5 ABE and F and 1.6A. whose dimensions are listed in Tables 2.3 and 2.4. The
samples were generally flat and parallel to +/- 0.0003 in. (0.00078 cm.) or better. Sam-
ples MCIS 1.10A, 1.8A, 1.10B and 1.7A were all rectangular parallelepipeds with their
faces oriented perpendicular to the three coordinate axes. The densities for each are
also given in Table 2.3 which show some sample to sample variation. The remaining
samples were cut to allow wave propagation in a direction that was 45 degrees between
two of the axes and perpendicular to the third. These samples were used to propagate
the waves listed in Table 2.2. The sample dimensions are given in Table 2.4. The densi-
ties of these samples were not measured but the value of 1.54 g/cm® was used for all cal-

culations involving these specimen.

Measurements of the pure mode longitudinal wave speeds along each of the three
coordinate axes were made using specimen MCIS 1.10A. Specimen MCIS 1.8A, 1.10B
and 1.7A were used to determine the six different combinations of polarization and pro-
pagation directions for the pure mode shear waves along the three axes. The velocities
and the product pgv? for each of these waves are shown in Table 2.5. The uncertainties
for the shear wave velocities were larger than those of the longitudinal velocities
because of the much higher attenuation of shear waves. Even using the thinner speci-
men for the shear waves did not overcome the high attenuation. This resulted in a
much smaller amplitude second echo which was difficult to reproducibly overlap. The
uncertainty in the longitudinal velocity along x; was also large because of the high velo-

city and thus the short time of flight along this direction.

The measured values were then compared with theory to check for transversely
isotropic behavior. The products pov? calculated using the longitudinal waves along
x; and x, in sample MCIS 1.10A should be equal as should the products calculated from
the two shear waves propagating along x; in sample MCIS 1.8A. Comparisons for the

other similar products were not valid because they were obtained on different samples.
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Table 2.3 - Sample dimensions and densities for samples used for pure
mode elastic wave propagation.

Sample Dimensions (in.) Density

Number X, Xo X3 (g/cm®)
1.10A 0.8001 0.7999 0.8002 1.5404 +/— 0.0004
1.10B 0.7999 0.5002 0.7996 1.5460 +/— 0.0006
1.8A 0.8002 0.8000 0.5002 1.5384 +/— 0.0005
1.7A 0.5001 0.8001 0.7999 1.5411 +/— 0.0005

Table 2.4 - Sample dimensions for samples used for off axis, non pure
mode wave propagation.

Sample Dimension (in.) along axis Dimension (in.) along axis
Number 45 degrees between axes

1.5A 0.4499 X1, X3 0.9 Xg

1.5B 0.5000 X1, X3 0.9 Xq

1.5E 0.4491 Xg, X3 0.9 X,

1.5F 0.4993 Xg, X3 0.9 X,

1.6A 0.5001 Xy, Xo 0.9 Xs

Table 2.5 - Data for pure mode linear elastic wave propagation.

Sample Propagation Polarization Velocity Pov?
Number Direction Direction (10%cm/s) (GPa)
1.10A X, X - 3.0467 +/- 0.0005 | 14.295 +/- 0.005
1.10A Xs Xs 3.0390 +/- 0.0008 | 14.226 +/- 0.006
1.10A Xs Xs 8.390 +/- 0.007 108.4 +/- 0.1
1.7A X, Xq 1.557 +/- 0.002 3.736 +/- 0.007
1.7A X, Xs 1.849 +/- 0.003 5.27 +/- 0.01
1.10B Xo X, 1.558 +/- 0.003 3.75 +/- 0.01
1.10B Xq X3 1.850 +/- 0.003 5.29 +/- 0.01
1.8A Xs Xy 1.850 +/- 0.002 5.265 +/- 0.008
1.8A Xs Xs 1.851 +/- 0.002 5.271 +/- 0.008
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In the first comparison, the difference was larger than experimental error. However, it
was still quite small and thus the deviation from transversely isotropic elastic behavior
was small. In the comparison of the shear wave products, the difference is smaller than
experimental uncertainty. Thus, overall the elastic behavior of the material was very

nearly transversely isotropic for linear elasticity.

Using the data presented in Table 2.5, four of the transversely isotropic moduli
can be calculated using the equations from Table 2.1. Also, six of the nine orthotropic
moduli can be calculated. However, to determine the transversely isotropic c,3 and the
orthotropic ¢,¢13, and co3 , off axis quasilongitudinal and quasishear mode waves had to
be used. The samples used for these measurements were MCIS 1.5 ABE and F and
1.6A. As pointed out by Kriz and Stinchcomb [45], these wave modes suffer energy flux
deviations as large as 43 degrees which impose further specimen size requirements. The
basic requirements are that the sample was thick enough to allow the two quasi-mode
waves to separate into distinct wave forms and thin enough so that the deviation of the
wave did not cause it to impinge on the side of the specimen. The energy flux deviation
and large attenuation also prevented the use of the pulse echo method for the velocity
measurements. For these measurements, two transducers were used in a through
transmission arrangement. The time of flight was first measured through a fused quartz
delay line. Then it was measured through the delay line and the specimen for the
different wave modes. The difference between the two was taken to be the time of flight
and used to calculate the velocity. The uncertainty of this method is much larger than
the pulse echo overlap method resulting in much reduced accuracy. The results are
shown in Table 2.6 which show large scattei’ due to uncertainty in the measurement as

well as material variations.

Using the data from Tables 2.5 and 2.6 with the equations from Tables 2.1 and
2.2, the independent elastic moduli were determined for both the transverse isotropy

and orthotropy models. The results are presented in Table 2.7. Where possible, the



- 63-

multiple results were averaged except for c;3 and cy3 where there was a wide range of
values. This wide range was due to the large uncertainty in the measurements which
propagates into an even larger uncertainty in the calculated values. The values
presented for c;3 and cy; were calculated using the quasishear data because the quasi-

longitudinal data yielded complex values for the moduli.

The values for the transversely isotropic model can be compared with those
reported by Kriz and Stinchcomb [45]. They reported data for the moduli of T300/5208
graphite/epoxy measured ultrasonically as well as the values theoretically predicted
from the properties of the fibers and matrix. The theoretical values are derived for an
assumed volume fraction of fibers of 0.67. These are all presented in Table 2.8. The
values all compare favorably except for cg3 which was much lower in the present study.
The lower density of the samples used in the present experiments implies that there may
be a lower fiber content and/or a higher void content. This would account for some of
the discrepancy in the v‘alue of cz3 . There may also be some misalignment of the fibers
along the x; axis which would also lower the value of cy3 although there is no other
confirming evidence of this fact. The values of Kriz and Stinchcomb also show much

more scatter demonstrating sample to sample variations.

To calculate the nonlinear elastic moduli, the isothermal linear elastic compli-
ance moduli are also needed. The adiabatic compliance moduli can be obtained by
inverting the stiffness matrix. Corrections for differences in adiabatic versus isothermal
moduli can then be applied if they are larger than the uncertainties of the inverted
values. For the case of transverse isotropy the compliances are given by the following
equations,

2
€11€33 — €13

cag(ch — cf) + 2¢(cip — ¢qp)’

sll = (291)

¢y + Cpo

Sgz = (292)

caa(cyy + ¢19) — 2¢f3
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Table 2.8 - Data for off axis, non pure mode linear elastic wave propa-
gation.

Sample Propagation Wave | Velocity pov?
Number Direction Mode | (10%cm/s) (GPa)
Perpendicular to | 45 degrees between Assuming
po = 1.54g/cm®

1.5A Xo Xy, X QL 5.78 51.4
1.5A Xo Xy, Xg QT 247 9.40
1.5B Xg Xy, Xa QL 5.73 50.6
1.5B Xo Xy, X3 QT 2.38 8.72
1.5E Xy Xg, X3 QL 6.00 55.44
1.5E Xy Xg, X3 QT 2.42 9.01
1.5F Xy Xo, X3 QL 5.86 52.9
1.5F X; Xg, Xg QT 2.40 8.87
1.6A Xg Xy, Xg QL 3.043 14.26
16A X3 Xy, Xz QT 1.558 3.74

Table 2.7 - Measured linear elastic moduli for transversely isotropic
and orthotropic symmetries.

Transversely Value Orthotropic Value
I;‘:;ZE: (GPa) Modulus (GPa)
cn 14.26 e 14.295
Ci2 6.78 Ci2 6.78
¢y 30-89 c1 3.3-90
Ca3 108.4 Ca3 108.4
Cyq 5.27 Cqq 5.28
Coo 14.226
Cos 66-77
Cs5 5.27
Ces 3.74
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Table 2.8 - Comparison of measured transversely isotropic stiffness
data with that presented by Kriz and Stinchcomb [45].

Modulus Present Kriz and Stinchcomb
Work
(GPa) Experiment Theory
1 14.26 15.0- 157 14.5
¢1 6.78 7.10 - 7.58 7.24
C13 30-89 6.96 - 9.09 6.50
Cag 108.4 154 161
Cq4q 5.27 7.84 7.10
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2
—(c10¢33 — ¢i3)
Sig = (2.93)

2
caa(cd — cfy) + 2¢h(cip — ¢y)

c1a(ci2 — ¢11)

513 = 2 5 2 (294)
caa(ciy — ¢ia) + 2¢i3(eyp — ¢11)
and
1
Su4 =~ (2.95)
44

Because of the large uncertainty in c¢;3 , there is a variation in the possible values for
the compliance moduli. The values for the compliances for the two extreme values of
¢15 are given in Table 2.9. The wide variation in the values of c;3 has little effect except

on the modulus s,3 .
The inversion of the orthotropic stiffness moduli yields the following equations

2
C9oC33 — Co3

S11 ,  (2.96)

2 2
c11(caotaz — €33) — ¢1o(C12Caz — 2€13Ce3) — Ci3Cep

2
€11€33 — C13

S92 , (2.97)

2 2
c11(°22033 — cg3) — ¢yo(ciocas — 2013023) — C13Co2

2
C11C22 — C32
s33 = . (298)

c11(coataz — c4s) — C1o(C12C33 — 2¢y3C03) — cfsCon

1
S44 = " (2.99)
Cyqq
1
Ss5 = ——, (2.100)
Css
1
Sgg = — (2.101)
Ce6
o = —(c12633 — C13¢23) (2.102)
12 2 12 2 0\
¢11(Cagas — €53) — C1o(€ “caz — 2¢13C23) — €i3Cao
_ C12C23 — C13C22
513 = (2.103)

¢y1(Cootas — 0223) — ¢1o(C19€33 — 2¢y3¢93) — c%)3022
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Table 2.9 - Calculated linear elastic compliance values using ultrasonic

stifiness data for transversely isotropic and orthotropic symmetries.

Compliance Moduli (GPa)™!

Transverse [sotropy

Modulus c;3=3.0 c3=8.9
s1y 0.091 0.093
512 -0.043 -0.041
$13 -0.0013 -0.0042
Sa3 0.0093 0.0099
Su 0.19 0.19

Orthotropy (cog = 7.2)

Modulus ci3 = 3.3 ci3=9.0
S1y 0.090 0.093
Sp0 0.093 0.092
Sa3 0.0095 0.0098
Seq 0.19 0.19
Sss 0.19 0.19
Ses 0.27 0.27
Si2 -0.043 -0.042
S13 0.00011 -0.0049
So -0.0049 -0.0026
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and

_(011023 - 013012)
Soz = . (2.104)

2 2
C11(C22033 - 023) - 012(012033 - 2013023) — C13C22

The calculated values for these moduli are also presented in Table 2.9. Again there was
a narrow range of values except in the constants s;3 and se3 because of the large uncer-

tainty in c¢;3 and cog .

The isothermal correction for these adiabatic compliance moduli can be calcu-
lated using equation (2.34). The temperature of these measurements was nominally 24
C and the density was 1.54 g/cm® . The coefficients of thermal expansion for similar
unidirectional  carbon/epoxy  composites were given by Hull [46] as
o = ay =30107%/C and a3 = — 0.2 - 107°/C and the specific heat was given by as
¢, = 2.1 J/gC (unpublished data from C. Welsh, 1986). Using these values, the max--

1 which was much smaller than the

imum correction term was only about 7 - 107~% GPa
uncertainty of the calculated values. Thus the difference between the adiabatic and the

isothermal values for the compliance moduli was negligible.

Some of the elastic compliance moduli were also measured using static compres-
sive loading with bonded strain gauges to measure the strain. The theory for this is
based on Hooke’s law. If a unidirectional stress is applied, for example, along the x,

axis, the strain can be written as

€1 = 51101, (2105)
€y = 851907, (2.106)
€3 = S1307 (2.107)

and

€4 = €5 = €g = U. (2108)
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Therefore the moduli can be rewritten as

dGA
S1A = E;- (2.109)
1
or in more general form as
dEB
SAB = , (2.110)
dO'A

for a unidirectional stress along the A axis. Therefore the stress and strain can be meas-

ured and the slope of the stress-strain curve will provide the moduli.

The samples used in these measurements were cubes nominally 0.7 in. (1.8 em.)
on a side oriented with faces perpendicular to.the coordinate axes. They were also cut
from the panel MCIS 1 and were designated MCIS 1.8D and E. The load was applied
with a MTS 810 load frame in compression and the calibrated output of the load cell
was input into a H.P. 3478A digital multimeter. To insure that the load remained uni-
directional, a fixture was designed and inserted into the load frame that placed the
upper compression plate on a ball bearing. This allowed the compression plate to com-
pensate for any slight lack of parallelism in the specimen. Fig 2.15 illustrates this
fixture. The strains were measured with Measurements Group Inc. 35002 strain gauges.
The surfaces of the samples were cleaned according to manufacturer’s instructions and
the strain gauges were then bonded onto the samples. A conventional Wheatstone
Bridge circuit was used with a H.P. 6002A power supply providing a five volt input and
a H.P. 3478A voltmeter measuring the output voltage. A Tektronix 4051 computer was
used to read the data from the voltmeters and calculate stress, strain and the resulting
modulus. The control program is shown in Appendix E. F ig 2.16 shows the block
diagram for the experimental set up. During each test, a unidirectional stress was
applied and the corresponding strain was measured in two directions. One direction

was parallel to the direction of applied stress while the other was perpendicular. Then
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Ball Bearing
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~——Upper Compression
Plate

«~—— Specimen

-——Lower Compression
Plate

Figure 2.15 - Diagram of the compression fixture used during the
static loading for the measurement of the elastic

compliance moduli and the uniaxial stress acoustic
constants.
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CIRCUIT
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Figure 2.16 - Block diagram of the apparatus used for static
measurement of the linear elastic compliance

moduli.



the sample was reoriented to apply stress in a different direction.

The resulting values for the compliance moduli are given in Table 2.10. The shear
moduli sy, sss and seg were not measured by this technique. Again the deviation from
transversely isotropic behavior is quite small as demonstrated by the good agreement
between s,; and sy, and between s;3 and sp3 for the orthotropic moduli. These values
compare favorably with the values obtained from the inversion of the ultrasonic data
except for the value of s; . This discrepancy could be caused by error accumulation in
the inversion of the stifiness moduli of it could be due to inaccuracy of the static meas-
urement. Ledbetter and Read [47] also compared static measurements to ultrasonic
measurements for a NbTi fiber reinforced Cu composite and reported discrepancies in
the off diagonal moduli. The measured values can also be compared to those presented
by Garber [48] which are listed in Table 2.11. His measurements were made in tension
on thin laminates of T300/5208. Because thin laminates were used, s;g was not meas-
ured. The values compare favorably except for sz . This is consistent with the lower

value of ca3 reported earlier for the material in the present study.

11.D. Conclusion

The linear elastic stiffness and compliance moduli of a unidirectional
graphite/epoxy composite have been measured by ultrasonic and static measurements.
These measurements demonstrate a measurable deviation from transversely isotropic
behavior. However, the deviation is very small, especially when compared to material
variations from sample to sample, and thus the assumption of transverse isotropy for

the linear elastic behavior of this material is valid.

Comparisons of the present data with that presented in the literature for similar

materials are favorable except for the values of cg and sg3 . The difference in these
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Table 2.10 - Measured linear elastic compliance values for transversely

isotropic and orthotropic symmetries.

Transversely Value Orthotropic Value
Isotropic (GPa)™! Modulus (GPa)™!
Modulus

Suy 0.089 siy 0.0890
S12 -0.063 S12 -0.0626
513 -0.0021 513 -0.00208
Sa3 0.00935 Sss 0.00935
Sa2 0.0891
Soa -0.00215
Table 2.11 - Comparison of measured compliance values with those

presented by Garber [49].

Modulus Present Garber
Work (GPa)™!
Si 0.089 0.0921
S12 -0.063 not measured
Sis -0.0021 -0.0025
Sa 0.00935 0.0078
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moduli together with a lower measured density may indicate a lower fiber volume con-
tent or a higher void content in the material of the present study. It also may indicate

either a poor alignment of the fibers or a waviness of the fibers along the fiber axis.

The comparisons of the ultrasonic and static data are good except for the
modulus s;o . The difference may be an artifact of the measurement or the calculations
used in the comparisons. Because of the higher accuracy of ultrasonic measurements,
the values used in the computation of the nonlinear moduli in the next chapter are
those obtained by ultrasonic measurements except in the case of 5,3 where large uncer-

tainties exist.
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III. NONLINEAR ELASTICTIY

III.A. Introduction

Using the linear elastic stiffness and compliance moduli presented in the previous
chapter, the nonlineal; elastic moduli can be calculated from measurements of the stress
dependence of the ultrasonic "natural” velocity. In this chapter, the theory of how this
is accomplished will be presented along with actual measurements and calculations for

the unidirectional graphite/epoxy composites being studied.

II.B. Theory

The theory for nonlinear elasticity differs in several respects from the theory of
linear elasticity which was presented earlier. The first major difference is that the
assumption of infinitesimal deformation is no longer valid. Therefore, the strain tensor
must be defined using either the Lagrangian or Eulerian definitions. In this work the .
Lagrangian formulation will be used. The constitutive equation (i.e. relation between
stress and strain) must be extended to include higher order terms. Also the strain

energy function must be extended. It is given by Brugger (12] as

1 1
¢ = 3 Ciit il + g Ciikimn’ij i hmn + (3.1)

The numerical coefficient for each of the terms is —1—|- where n is the order of strain for
n!

that term. The Voigt reduced notation can be used to rewrite this equation as

1 1
¢ = ;ZCAAnE. + Y capfats + EECAAAWX
A A<B A

1
+ Py Y caapfifte + 3 capplafifa + ¢ - (32)
A%B A<B<D
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where no sum is implied except where indicated and the capital indices range from 1 to
6.

The definitions for the elastic moduli are similar to those of linear elastic theory.

The higher order adiabatic and isothermal moduli were defined by Brugger [12] as
( )

o = Po U , (3.3)
Lxima. oniiOMmaONmn * * * k
{ 3\
T O"F

1 = , 3.4
Cijklmn... = Po \anijanklanmn o (3.4)
Sijsklmn... =— o s (3.5)

OO Obmn * *

and
T "G

1 = — 3.6
Sijklmn... Po &ij&klat‘mn Ve (3.8)

However, in this research, the third order moduli were obtained by measuring the stress
derivative (isothermal) of the ultrasonic velocity (adiabatic). Therefore the resulting

moduli were the "mixed" third order moduli as defined by Brugger [12] as

S
M _ |%cik a7
Cijklmn = an (8.7)
mn
or in reduced notation
S
Mo = O 3.8
ABD = |5,° (38)

They are related to the pure adiabatic third order moduli by

S M S def
¢iiklmn = Cijklmn 26C1 Cmnop@op |Cijklgr&qr — 3T (3.9)
0

or



T
ciep = CABp + oCr Cpog |cAbror — 3T (3.10)

However, again the differences are usually small and therefore less than experimental

uncertainty.

Using the same arguments based on symmetry of the stress and strain tensors
and the existence of the strain energy function, the number of independent third order
elastic moduli can be reduced to 56 for the most general anisotropic material. Further
considerations of the symmetry of the material reduces the number to 20 for an ortho-
tropic material and 9 for a transversely isotropic material as shown in Appendix F. For
the  orthotropic case the independent moduli are  c¢yy, Cyy2) €113 Cio05
C123) €133) C144» C156, C168) C202, C293) €233, C244s 256y C288) C333) €344, 356, C386 aNd Cy50 . All other
moduli are equal to zero. The independent moduli for transverse isotropy are
€111 €112 €113y €123, C133, C144, C166) Csaz and cgyy with the following relations for the other
moduli

Co22 = C111, €355 = C344

1
C223 = C113, C166 = C266 = Z‘(Cm = ¢119)
Coss = C144, C233 = Cj33 (3.11)

1
Co44 = C155, C366 = ;(0113 — ¢j23)

1
C122 = C112, C456 = 5(0155 - 0144)

with all remaining c,gp =0 .

As mentioned previously, these moduli can be obtained from measurements of the
stress derivative of the ultrasonic "natural” velocity. The theoretical basis for this was
presented by Thurston and Brugger [14]. They rederived the equation of motion for a
small amplitude elastic wave propagating in a homogeneously stressed medium using the
following notation. The coordinates a; refer to the position of a point of material in the

"natural” or unstressed state. X; are coordinates of the homogeneously stressed material



-78 -

or the material in the initial state while x; refer to the material in the stressed state
deformed by the small amplitude elastic wave. The vector components u; are the com-

ponents of displacement from the initial state due to the elastic wave and are given by

 =x — X;., (3.12)

U; are the components of displacement referred to the natural state and are related to

y; by
IX;
u = |7 . 3.13
3 3aq q ( )
The wave equation was then presented as
%
. S k
Polli = Ao 3.14
oYy jkpm 8ap ap ( )
where “refers to values in the initial state
and Ajskpm is given by
X, 3K,
AS o =6y bon + ——¢5 (3.15)
jkpm 1k"pm pqmi- .
0aOa;
A solution in terms of the "natural” velocity was chosen of the form
0 = At~ 2NW) (3.16)

] ]

where N is a unit normal in the natural state.
This solution implies that a wave with a wave front which is a material plane with unit
normal N moves from the plane N -3 =0 to N @ = L; in the time L,/W . Substitu-

tion of this solution yielded the propagation conditions
2
pOW UJ = ijk (3.17)

where wy, is given by
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Wik = NrNs(ajkﬁrs + (5qk + 27~7qk)éj§qs)' (3.18)

The eigenvector U is normalized so that its components are the direction cosines of the
particle displacement with respect to the natural state. Differentiating equation (3.17)

with respect to pressure (p) and evaluating at zero pressure yields
2 ! _ /
(PoW*)p = 0 = (UjwixUx)p = 0 (3.19)

which was reduced to the following forms for the conditions of hydrostatic pressure and

uniaxial compressive stress. For hydrostatic loading,

1
—(pOWQ)p -0 =14 2wFyec + GHC (3.20)
where Fyc = sL,,UU,, (3.21)
GHC = S;rauvcuvprququUrUa ’ (3'22)
and w = (pgW2)y = (pv%) = cpreN,NU, U, . (3.23)

For uniaxial loading the equation reduced to

_(aoowz);/) =0 =2wF. + Gy, (3.24)

where F,. and G, are given by
Fue = b MMU U, (3.25)
and
Gye = SabuvCuvprasMaMpNpNgU U (3.26)

and M; are the components of a unit vector in the direction of stress.
It is assumed for the uniaxial case that the direction of propagation is always perpen-

dicular to the direction of stress.
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These equations provide relationships between the linear elastic stiffness and
compliance moduli, the third order elastic moduli and the derivative of the "natural”
velocity with respect to stress. However, the measurements made in this study were of

the Stress Acoustic Constants (H) which were defined by Heyman [31] and Cantrell [49)

to be
AW N
W), =
H= | _|_ (Po )po ° (3.27)
Ao (200W*)

Since there were a number of different orientations of stress and propagation and polari-
zation directions, the different SAC’s were designated with three subscripts as Hj .
The first subscript gave the direction of applied stress which was limited to one of the
three axes for these experiments. A zero for the first subsecript implies hydrostatic load-
ing. The second and third subscripts were the directions of propagation and polariza-
tion of the ultrasonic wave respectively. These again were limited to being pure mode

waves along the three axes.

Using this notation, the equations for the SAC’s were derived for both the models
of transverse isotropy and orthotropy. The results for the 27 cases considered are given

in table 3.1.

III.C. Experiment

The measurements of the stress derivatives of the "natural” velocity were carried
out using some of the samples that were used in the previously described ultrasonic velo-
city measurements. Sample MCIS 1.10A was used for the measurements of the longitu-
dinal velocity derivatives while samples MCIS 1.8A, 1.10B and 1.7A were used in the

shear wave measurements.
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Table 3.1 - Stress Acoustic Constant Equations for transversely isotro-

pic and orthotropic media.

Transverse Isotropy

1 + 2¢5(8y; + 812 + 813) + (811 + 812 + Sya)(€111 + €112) + (2513 + 533)0113]
2Cu

Hou = —[

H022 = HOll

Hegs = —
033 2C33

1 + 2c35(28;3 + S33) + 2(8y; + 812 + 813)C1a3 + (2815 + Sas)csas]

Hog = —

1 + 2c44(s1) + S12 + 813) + (511 + 812 + S13)(Crae + C155) + (2815 + 333)0344]
2cyy

Hoaz = Hosl

H012 ==

1 +(cyy — c1o)(81 + 812 + S13) + %((s1y + S12 + Sy3)(cy — cnz)]
(11 — ¢12)
_ [(2513 + S33)(C113 — C€123)
(cy1 = €12

Hom = Hmz

Hms ==

1 + 2¢44(2s13 + sa3) + (511 + 12 + S13)(Craa + C155) + (2813 + 533)0344]
20“

Heps = Hop
How = 2c39813 + (S11 + S12)€133 + S13Cass
133 = — 2
Ca3
Hyss = Higg

2¢y1812 + 811€112 + S121 + 513‘:113]

Hyp = —

Hyy = Hy

2¢y48y3 + Sya(Ciny + Cia2) + 3330113]

Hyy, = —
311 [ 2011

H322 = Hsu
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Table 3.1 - Continued

Transverse Isotropy (Continued)

Home = 2¢44813 + S11C14 + S12€185 + S130344
123 = — 2
Caa
Hyis = Hygs

(e — 1) + 1/4(syy + si2)(C11 — C11g) + 1/2813(cps — 0123)]

Hy = -
@ { (en — c12)

H212 = H121

(Cu — Cip)81a + %sy3(cyyy — c1g) + %S33(C133 — Cm)]

Harz = = [ (11 — c12)

Hgoy = Hayo

244533 + 813(C144 + C156) + S33Caus
2044

Haps = —[

Hag = Hgs

2¢44811 + S11C166 + S12€144 + S13Cs44
2(344

H131 = -[

Hosp = Hyg

2¢44812 + 8116144 + 812C185 + S13C3u4
2(:44

H132=—[

Hzn = Haggy
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Table 3.1 - Continued

Orthotropy
1 + 2¢y;S; + Sye1yy + Sacyyp + Szeqns
Hoyy = = 2
1
H [ 1+ 2C2282 + 510122 -+ SQCm + 830223‘
0z = 2022
H _ [ 1 + 203383 + SlC133 + 826233 -+ 83(3333.
033 2C33
1+ 205581 <+ Slc155 + 820255 + 830355
Hon = — 2¢
56
How = 1 + 2¢44Sp + Sic144 + Sgeouy + Szeay
032 = — 2cs
1 A
H 1 + 2cggSy + Sycig6 + SoCoge + Sacaes
012 = — 2¢40
Ho = 1 + 2¢6S; + Sic168 + SoCags + SaCase
021 = 2een
1 + 205583 <+ Slcl“ + SQC%S <+ Ss(:355q
Hma = - 9¢
56
H 1 + 2¢4S3 + Sjcraq + Socou + Sacsss-
03 == 2cy
H 2¢33813 + 511C133 + S12€933 + S13Cass
138 =~ 2C33
Hoe = 2¢33593 + S12€133 + S20Coa3 + So3C3as
n = 2(:33

2cooS1g + S11C122 + S12€200 + S13C203

Hyp = —
| -+

2¢y1812 + S12€111 + SpC1ig + Sg3€1is
2C11

qu = —[

where Sl =51 + S)9 + S13
Sy = s12 + g2 + So3

and S; = S13 + So3 + Sa3
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Orthotropy
H 2cooSo3 + S13C192 + S93Con0 + S33C003
22 = —
2(322
H 2¢41813 + S13C111 + S23C112 + S3aCqi3
31 = — 2
acyy
Hooo = 2¢geS11 + S11C166 + S12C266 + S13C360
121 = — 2
66
H 2cgeS22 + S12C186 + S2oC2e8 + S23C306
212 = — 2
<Ces
by
Haw = — | =88528 + S13¢166 + S23C266 + SasCage
31z = = %
66
1 ]
Huo = 2ceg513 + S13C166 + S23C266 + S33Ca0e
agr = — o
o6
H 2€44513 + 511C144 + S12€244 + S13C344
128 = —
2c
2Cqy
. .
2cgg503 + 512155 + S29C285 + S23Cass
Hyss = >
L 56 ]
[ 9
H 2¢44533 + S13C144 + S23Co44 + S33C344
33 = —
2C44
2cgeSas + S13C165 + S23Co56 + S3aCass
Hyss = — >
2Csg
= <
H 2Cg5S11 + S11C155 + S19C055 + S13C3s5
1381 = =
| 2(:55 ]
How = 244800 + S12C144 + S29C04s + 523C344
232 = — %
44
H 2¢44512 + 5110144 + S12C244 + S13C344
12 = — 2
L 44 -
H 255812 + S12C1s5 + S2oC985 + S23C3s5
281 = —

2055
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The change in "natural” velocity was measured using a pulsed phase locked loop
(P2L2) interferometer. The theory of the measurement of the change in resonant fre-
quency and it’s relationship to the change in "natural” velocity was presented earlier.
Now the theory of the operation of the P2L2 which is shown in Fig. 3.1 will be dis-

cussed.

The heart of the P2L2 is a voltage controlled oscillator (VCO) which generates a
continuous wave signal of a frequency that is controlled by a D.C. input signal. A por-
tion of the signal from the VCO is gated out into a tone burst and is then used to excite
the ultrasonic transducer. The resulting elastic wave is launched into the sample and is
then detected either by the same transducer in the pulse echo mode or another trans-
ducer in the through transmission mode. The received signal is input into the P2L2
where it is phase compared with the signal from the VCO at a preselected phase point
using a sample and hold. The sampled voltage from the phase detector is then used to

drive the VCO to a condition of quadrature. The acoustic phase shift () given by
0 = 2nft (3.28)

is then maintained as a constant by the feedback loop and therefore

Af =0 = 2m(tAf + fAt) (3.29)
and
Af Af | At
2 =0= : + - (3.30)

Thus, as stated earlier,

== (3.31)

Therefore, by monitoring the change in the frequency of the P2L2, the change in

"natural” velocity is also monitored.
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Figure 3.1 - Block diagram of the pulsed phase locked loop
ultrasonic interferometer.



- 87-

A block diagram of the experimental apparatus used for the uniaxial SAC meas-
urements is shown in Fig. 3.2. The uniaxial compressive load was applied as in the
strain gauge measurements with a MTS 810 load frame. The calibrated output of the
load cell was monitored by the H.P. 3478A digital multimeter. The tone burst from the
P2L2 was used to excite a conventional damped broad band 2.25 MH:z transducer.
Because broad band transducers were used, phase shifts at the transducer specimen
interface were assumed to be negligible. The P2L2 was used in a pulse echo mode with
the reflected echos input back into the instrument for phase comparison. A Tektronix
2445 oscilloscope was used to view the ultrasonic signal, the phase signal and the sample
and hold position. It was triggered by a reference sync from the P2L2. The frequency
was monitored by a H.P. 5316A universal counter. The voltage and frequency values
were read by a Tektronix 4051 computer and converted to stress and normalized fre-
quency shift. The program listed in Appendix G also computed the slope of the curve

by linear regression as well as plotted and stored the data.

The value for each uniaxial SAC was determined by averaging the values from
ten measurements. A spring loaded clamping device was used to maintain constant
pressure of the transducer on the specimen in order to hold the bond thickness constant
during the measurement. Variations in the bond thickness would cause phase shifts
which introduced errors into the measurement. These errors which have less effect on
thick samples made initial measurements on thin laminates impossible and placed
another constraint on minimum specimen thickness. The transducer was also rebonded
onto the specimen three or four times during the ten measurements to determine the
effect of slight variations in initial bond thicknesses. After each rebonding, the specimen
was ramped through the load cycle several times to settle the bond. Then, the sample
was allowed to remain at rest approximately 15 minutes to bring the sample to equili-
brium temperature. This was necessary because the handling of the sample during

rebonding increased the temperature slightly which could significantly affect the results.

C 3
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Figure 3.2 - Block diagram of uniaxial stress acoustic constant
measurement apparatus.
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Another concern in these measurements was again the presence of viscoelastic
effects in these materials. The loading rate was varied considerably to examine this
effect. The specimen were loaded to between 80 and 100 MPa in times ranging from 10
sec. to over three minutes with no observed effects. The measurements were made for
both increasing and decreasing load with no measurable differences. The effect of tem-
perature variations due to thermoelastic heating was also considered. Theory assumes
these measurements to be made under isothermal conditions. At these loading rates
which were very nearly isothermal, the effect of thermoelastic heating was calculated to
be much less than experimental uncertainty. The basis of these calculations was the

temperature derivative of velocity data to be presented later.

The previously mentioned constraints on the choices of stress, propagation and
polarization directions allows for 18 measurements to be made. The average values
from the ten measurements of each and their standard deviations are presented in
Table 3.2. The uncertainties were typically less than five percent of the measured
values for these measurements. The values were consistently positive indicating increas-
ing frequency as a function of increasing compressive stress except for Hypg and Hyys . A
few of the wave modes exhibited nonlinear (quadratic) curves indicating higher than
third order nonlinear effects. These are designated by an * in the table and the SAC
values for these are the linear coefficients of a quadratic fit to the data. Typical curves

for the uniaxial SAC measurements are shown in Figs. 3.3 - 3.20.

As with the linear elastic measurements, some of these measurements can be used
to check for consistency with transversely isotropic behavior. The SAC pairs
(Hyzz, Hayy,) (Hayy, Hag) , (Hyss, Hoss) , (Hyay, Hogo) , and (His, Hpsy) should all have equal
values. Other pairs that should have equal values were not compared as they were
measured on different specimens making comparisons invalid because of sample to sam-
ple variations. The values of some of these pairs compare well within experimental

uncertainty. However, H3; and Hyy differ by more than the uncertainty of the
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Table 3.2 - Measured values for the Uniaxial Stress Acoustic Con-

stants.

Uniaxial Stress Acoustic Constants
SAC Value (GPa)™
H) o 0.0490 +/- 0.0009
H,, 0.0427 +/- 0.0010
Hao, 0.00118 +/- 0.00007
Hay 0.00123 +/- 0.00001
Hy 0.0887 +/- 0.0007
H,,, 0.0741 +/- 0.0010
Hy,o 0.00279 +/- 0.00010
Hgy, 0.00299 +/- 0.00010
3 0.068 +/- 0.002
Hjis 0.0572 +/- 0.0010
Hags -0.00993 +/- 0.0004
Hys -0.00919 +/- 0.0003
Hy3 0.165 +/- 0.003
Hoso 0.149 +/- 0.002
Hq 0.111 +/- 0.002
Hoys, 0.109 +/- 0.001
H,ss 0.0538 +/- 0.0005
Hygs 0.0479 +/- 0.0003
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Figure 3.4 - Delta F/F versus stress for a longitudinal wave
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Figure 3.12 - Delta F/F versus stress for a shear wave propagating
along X, polarized along Xy with stress applied along
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Figure 3.18 - Delta F/F versus stress for a shear wave propagating
along Xq polarized along X, with stress applied along

X2.



-99~

AF/F

T

0.0 2.0 4.0 6.0 E+7
STRESS (Pa)

Figure 3.19 - Delta F/F versus stress for a shear wave propagating
along Xq polarized along X, with stress applied along

X1.
-3 |
8.0 +
L 6.0 4
~
w
g4 4.0 ¢+
2.0 +
L 0.0 ) y _i 2
0.0 2.0 4.0 6.0 E+7

STRESS (Pa)
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measurement as well as H;; and Hyp . Thus, again measurable deviations from
transverse isotropy were demonstrated. However, why this behavior is demonstrated

only in some measurements and not in others is not clear.

The hydrostatic measurements were made in a similar fashion as those made
under uniaxial compression. A block diagram of the set up is shown in Fig. 3.21. The
change in "natural” velocity was again measured with the P2L2. Argon was used to
increase the pressure within the pressure chamber. A H.P. 5316A universal counter
monitored the frequency while a Tektfonix 465B oscilloscope was used to view the ultra-
sonic, phase, and sample/hold signals. The Tektronix 4051 computer was used to read
the frequency data. The pressure data was manually read from a Heise C-57488 pres-

sure gauge and input into the computer.

There were several differences from the uniaxial measurements, however. While
temperature variations during the uniaxial SAC measurements were insignificant, they
were important in the hydrostatic measurements. Increasing the pressure 25 psi. sud-
denly, caused an increase in temperature of the gas and thus the sample of several
tenths of a degree C. This temperature increase was significant. Therefore, the pres-
sure had to be increased slowly and then time for thermal equilibrium to be obtained
had to be given. Typically, there was a 20 to 30 minute delay between data points.
Also, over this period of time the room temperature could vary significantly. This
caused additional problems. To overcome this, heating elements were installed in the
pressure chamber. A temperature controller was used with these heaters to maintain
the temperature several degrees C above room temperature. This speeded the time
required to attain thermal equilibrium and avoided the effect of room temperature vari-
ations provided it did not rise more than the several degree buffer. A Lake Shore Cryo-
tronics Inc. model DRC84C temperature controller was used. This instrument had a
reported ability to maintain the temperature within +/- 0.1 degree C. Although this

instrument drastically improved the situation, these small variations in temperature
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Figure 3.21 - Block diagram of apparatus used in the hydrostatic
pressure stress acoustic constant measurements.
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reduced the accuracy of the measurement significantly.

Another problem that increased the uncertainty in the hydrostatic measurements
was the limitation in pressure. The upper limit of pressure in the chamber was set at
only 250 psi. This was about a factor of 50 less than the maximum stress applied dur-
ing the uniaxial measurements. Theoretically, the slope of the SAC should be evaluated
at zero stress and thus this limitation in pressure should not be a problem. However, the
low pressure produced much smaller velocity changes making them more uncertain.
Also, the effect of temperature variations were much greater. Thus, the uncertainty of
these measurements was much larger. It was on the order of ten percent of the meas-
ured SAC for most of the h&drostatic measurements. The limitation in maximum pres-
sure also made the measurement of Hyss impossible because the changes involved were to
small to detect with the P2L2. The possibility of anomalous behavior at low pressures
must also be considered. Therefore, although the hydrostatically measured SAC values
were used with the uniaxial SAC measurements to determine the nonlinear moduli in
this work, measurements at higher pressures are needed to determine the validity of

these calculations.

Because of the tremendous amount of time involved in making a single hydros-
tatic SAC measurement (10 to 15 data points at 20 to 30 minutes per data point), only
three measurements were used in the calculation of each hydrostatic SAC. This also
contributed to the large uncertainty in these measurements. Measurements were again

made for increasing and decreasing pressures with no observed differences.

The hydrostatic measurements were all made using undamped crystal transduc-
ers (PZT 5A) because of size limitations within the pressure chamber. This created the
necessity of making corrections because of phase shifts at the transducer-specimen inter-
face. These phase shifts are a function of frequency and can be calculated using the
theory presented by McSkimmin [19]. The correction to the experimentally determined

normalized frequency shift assuming zero bond thickness was given by
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AF  AF A

= - (3.32)
Ftrue Fexp. t'tra.ns.
where was the true frequency change,
true
was the experimentally measured change,
Fesp.
and was the change in time of flight due to phase shifts.
trans.
The term was given by
trans. -— ,71 + /70
av |FaBe0) T Fo360)
= - (3.33)
ttr:ms. t'0
where Fy, F, were the measured frequencies of two data points,
to was the time of flight in the unstressed specimen,
and 7y, 7, were the phase angles of the two data points in degrees.
They were given by
2Z.R
-1 st\0
Yo = tan P a— (3.34)
R0 - Zs
and
2ZR
-1 st
Y = tan e (3.35)
Rl - Zs
where Z,, Z, were the mechanical impedances of the specimen and
transducer respectively,
and
Fo
Ry = Z, tan T 180 (3.36)

R

and
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F
R, =Z, tan | * 180 (3.37)
Fgr
where Fr was the resonant frequency of the transducer.
The effect of nonzero bond thickness on this correction term was also analyzed and

found to be less than experimental uncertainty.

The original and corrected values for the hydrostatic SAC’s are shown in Table
3.3. Typical curves are shown in Figs. 3.22 - 3.29. Comparisons of the data to check for
transversely isotropic behavior show no measurable differences. This is most likely due

to the large uncertainty of the measurements.

The effect of temperature on the "natural” velocity was also measured for small
variations about room temperature. The apparatus used for these measurements was
the same as that used in the hydrostatic measurements. The temperature was increased
above room temperature several degrees C in 0.3 C steps using the heaters and the tem-
perature controller. The frequency was measured at each point after thermal equili-
brium was attained. Again corrections were applied to account for phase shifts at the
transducer-specimen interface. Typical curves are shown in Figs. 3.30 - 3.38. The slopes
of these curves were designated as the Thermal Acoustic Constants (Hry) and are given
in Table 3.4 where the second and third subscripts give the directions of propagation
and polarization respectively. The same samples used for the hydrostatic and uniaxial

measurements were also used for these measurements.

The curves all demonstrated linear relationships between temperature change
and normalized frequency shift for the limited range of the measurements. While these
measurements were not used in the data reduction to determine the third order elastic
coefficients, they were important in determining the effect of temperature changes on

the SAC measurements.
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Table 3.3 - Measured and corrected values for the Hydrostatic Stress

Acoustic Constants.

Hydrostatic Stress Acoustic Constants (GPa)™
SAC Original Value Corrected Value
Hoyy 0.46 +/- 0.02 0.39 +/- 0.02
Hoyse 0.44 +/- 0.02 0.37 +/- 0.02
Hyy2 0.301 +/- 0.007 0.257 +/- 0.007
Hyy, 0.305 +/- 0.006 0.261 +/- 0.006
Hous 0.32 +/- 0.03 0.27 +/- 0.03
Hgos 0.32 +/- 0.02 0.27 +/- 0.02
Hgg; 0.33 +/- 0.02 0.28 +/- 0.02
Hogo 0.30 +/- 0.02 0.25 +/- 0.02
Hggs Not Measured
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Figure 3.25 - Delta F/F versus pressure for a shear wave propa-
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Figure 3.26 - Delta F/F versus pressure for a shear wave propa-
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Table 3.4 - Measured and corrected values for the Thermal Acoustic

Constants,
Thermal Acoustic Constants (10~ C™1)

TAC Original Value Corrected Value
Hoy, -7.58 +/- 0.02 -6.36 +/- 0.02
Hogo -7.55 +/- 0.03 -6.33 +/- 0.03
Hrpp 9.9 +/- 0.1 -85 +/- 0.1
Hrpo, " -99+/-0.1 -8.5 +/- 0.1
Hrys -11.9 +/- 0.2 -10.2 +/- 0.2
Hros -11.8 +/- 0.2 -10.1 +/- 0.2
Hrs, -84 +/-05 -714/-05
Hrgy -9.0 +/- 0.7 7.6 +/- 0.7
Hrss -0.84 +/- 0.09 -0.72 +/- 0.09
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Figure 3.31 - Delta F/F versus temperature change for a longitudinal
wave propagating along x,.
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Figure 3.37 - Delta F/F versus temperature change for a shear
wave propagating along X, polarized along Xqe
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II1.D. Data Analysis

The SAC data, along with the linear moduli were used to determine some of the
third order elastic moduli for this material. Since there were more equations and data
than unknown moduli, the data was reduced by using a least squares fit to determine
the best values for the moduli. The data was fit using both the transversely isotropic
and orthotropic models. However, the lack of data for Hgg; prevented the calculation of
the moduli ¢33 and cg33 for the transversely isotropic model and the moduli

Cya3, Coa3, Ca3s, €103, and cygq for the orthotropic model.

The least squares procedure for the determination of third order moduli was out-
lined by Hankey and Schuele [40]. The formulation is as follows. The measured values
for the SAC’s are added to the constant terms in the equations of Table 3.1. These are
designated M; . The coefficients of the equations are designated A;; and the moduli to

be determined are D;. Thus the equations of Table 3.1 are rewritten as

M, = A,

1jD'

, (3.38)

where i is summed over the number of data used and j is summed over the number of

moduli to be determined. This can be rewritten as
AM; = (AjAj)D; (3.39)

where k also runs from one to the number of coefficients to be determined. The best fit

for the moduli D; are then given by
-1
D] = (AlkAl]) ApkMp (3.40)

where (AjA;)”! is the inverse matrix element and p is summed over the number of

measured values.

If it is assumed that the error in the measured values is much greater than the

error in the coefficients, then the error in the coeflicients can be dropped. The error in
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the fitted values is then given by
—1
AD] = I(AlkA”) Apk'AMp (3.41)

where AD; are the maximum limits of error,
and AMp are the errors in the measured values.

The probable limit of error (AD,-') is given by

! ADJ

i = m (3.42)

where N is the number of measurements.
The above stated assumption was valid in these measurements as the errors in the
measured SAC’s ranged from one to ten percent while the errors in the linear coefficients

were typically less (parts in 10%)

Programs were written to perform the data reduction for the two symmetry
models and are listed in Appendix H. The fitted values and their uncertainties are

given in Table 3.5.

IOI.E. Conclusion

Using a pulsed phase locked loop interferometer, the normalized change in the
ultrasonic "natural” phase velocity as a function of both stress and temperature have
been measured. The stress measurements were made under conditions of hydrostatic
and uniaxial stress. The measured curves were predominantly linear although several
were nonlinear (quadratic) indicating higher than third order nonlinear elastic effects.
Because of equipment limitations, the hydrostatic measurements were made at much
lower pressures in comparison to the uniaxial measurements. Thus the uncertainties of
the hydrostatic measurements were much larger making the validity of using them with

the uniaxial measurements to calculate the third order moduli questionable. This



Table 3.5 - Calculated values of third order elastic stiffness moduli for

transversely isotropic and orthotropic symmetries.

Third Order Elastic Moduli
Transverse Isotropy
Modulus Value (GPa) Max. Error Probable Error
i -214 17 4
C112 -89 12 3
i3 -4 110 23
ci2 65 109 23
Craq -33.4 3 0.5
€185 -49.1 4 0.8
Caa4 -47 30 6
Orthotropy
i -196 15 3
Ci12 -94 5 1
Cus -63 63 13
C1o -91 8 2
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Table 3.5 - Continued
Orthotropic Nonlinear Moduli (Continued)

Modulus Value Max. Error Probable Error
Com -186 21 4
Cons -60 93 19
Caq -33.0 2.4 0.5
Co4q -47.8 3.3 0.7
Cay4 -46 27 6
Ciss -50.1 3.9 0.8
Coss -33.5 2.8 0.6
Cass -49 32 7
Ciee -33.9 0.6 0.1
Cose -33.1 0.6 0.1
Case -28.5 4.0 0.8
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limitation in maximum hydrostatic pressure also prevented the measurement of Hggs
which prevented the calculation of several of the nonlinear moduli. The hydrostatic
measurements need to be evaluated at higher pressures to reduce the uncertainties and
to evaluate Hggg . This would enable the determination of the remaining third order

moduli.

The effect of temperature changes on "natural” velocity was also evaluated for
nine combinations of propagation and polarization directions. These measurements
were made over a narrow range of temperature change slightly above room tempera-
ture. The curves all demonstrated linear relationships between velocity and tempera-
ture. Although not directly used for the evaluation of third order moduli, these meas-
urements were important in the evaluation of the effects of temperature variations dur-

ing the SAC measurements.

The SAC values and the second order moduli were used to calculate some of the
third order elastic moduli. A least squares fit was applied for both the transversely iso-
tropic and the orthotropic models of elastic symmetry. The values for these moduli
were all negative with the exception of the cjp3 . This is in agreement with the non-
linear behavior of conventional materials. Although the linear elastic moduli and the
SAC data demonstrated small deviations from transverse isotropy, large uncertainties in
the third order moduli masked any such deviations. The orthotropic moduli agree

within experimental error to the conditions of transverse isotropy.
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IV. SUMMARY AND CONCLUSIONS

The mechanical behavior of a unidirectional T300/5208 graphite/epoxy compo-
site material has been evaluated in this research. In particular, the linear (second
order) and nonlinear (third order) elastic properties have been measured. The linear
moduli were measured by ultrasonic velocity measurements as well as by static loading
strain gauge measurements. The nonlinear moduli were calculated from the linear
moduli and measurements of the change in ultrasonic "natural” phase velocity as a

function of stress.

The measured linear elastic properties of this material agreed well with previ-
ously reported values for a similar material except for the moduli cg3 and sz . These
were the moduli that reveal the behavior of the composite under loading along the fiber
direction. The low value for cg and corresponding high value for S33 may have been a
result of a lower fiber content or higher void content in this material. It could also have
been the effect of misalignment of fibers in some of the laminae. However, the values of
the ultrasonic and static measurements compared well with the exception of the off
diagonal modulus ¢;3 . This discrepancy was probably the result of either large uncer-
tainties of the static measurements or error propagation in the inversion of the ultra-
sonic moduli. These measurements also pointed out measurable deviations from
transversely isotropic elastic behavior which is usually assumed for unidirectional com-
posites. The material more correctly possessed orthotropic symmetry although the devi-

ations from transverse isotropy were small.

The change in ultrasonic "natural” velocity as a function of stress and tempera-
ture was measured with a pulsed phase locked loop ultrasonic interferometer for
numerous wave modes. These measurements again demonstrated deviations from
transversely isotropic behavior. Also, some of the stress-velocity curves were nonlinear

(quadratic) which indicated higher than third order nonlinear effects. The
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temperature-velocity curves were all linear over the small range of the measurements.
Some of the third order elastic stiffness moduli were calculated from the stress depen-
dence of velocity. These were all negative in agreement with nonlinear properties of con-
ventional materials. The uncertainties of some of these moduli were large as a result of
the large uncertainties of the hydrostatic pressure measurements propagating in the
least squares data reduction. These large uncertainties masked any deviations from

transverse isotropy that might have been present.

However, it should be noted here that the measured SAC’s are probably more use-
ful than the calculated nonlinear moduli. This is because they are more easily obtained
with smaller experimental uncertainty and can be measured in an individual specimen
instead of calculated from measurements made in several specimens. Also, the SAC’s are
the quantities that are more useful in experimental attempts to measure applied and
residual stress and may be important in nondestructive evaluation of ultimate strength

of materials.

It would be remiss to fail to point out several factors that could be improved to
yield better measurements. First, the hydrostatic measurements should be carried out
to higher pressures with improved temperature controller capabilities. This would
reduce the uncertainties of these measurements and thus those of the nonlinear moduli.
Also, the effect of sample to sample variations on both the linear and nonlinear proper-
ties needs to be evaluated further. These measurements were made on as few samples
as possible to reduce this effect in the calculations. Future measurements should also
evaluate the changes in velocity over wider temperature variations and with much
higher stresses (i.e. near ultimate strength stresses) as well as evaluate the nonlinear

properties by other techniques such as harmonic generation.

Although the primary goal of this investigation was a more thorough characteri-
zation of the mechanical properties of graphite/epoxy composites, these measurements

serve as a basis for further study and potential applications in the area of
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nondestructive testing of these materials. Also, the effects of fiber volume ratio and
more complex lay up orientations on nonlinear properties of composites need to be
evaluated. The relationships between nonlinear properties and important engineering
properties such as strength, residual strength after impact and fatigue loading, and
fiber-matrix interfacial strength need to be.studied. These may lead to the development
of needed nondestructive evaluation techniques for composite materials which will play

an important role in the future of the aerospace industry.

The problem or residual strain in composites which arises because of the
mismatch of coefficients of thermal expansion between fiber and matrix is another
potential application for these measurements. When the composite material is cooled
from the higher temperatures of polymerization during cure, large strains develop which
may degrade the ultimate strength of the material. Although special curing cycles have
been developed to reduce this effect, it still remains as an important problem in the field
of compésites. And as nonlinear ultrasonics have been used in attempts to nondestruc-
tively evaluate residual strains in conventional materials, they may well be useful in the
measurement of residual stains in composites. Especially, since it may be possible to
characterize the elastic symmetry of the composite better than in conventional materi-
als because the symmetry of the material is determined by the lay up orientation. In
conventional materials the problems associated with anisotropic textures of the material

have limited the applicability of this technique.
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APPENDIX A

The derivation of the independent linear (second order) elastic moduli for the
symmetries of transverse isotropy and orthotropy are now presented. The case of ortho-
tropic elastic symmetry is presented first. In an orthotropic material, there are three
orthogonal planes of two fold symmetry. Therefore if the three coordinate axes are
chosen such that they are the normals to these planes, then the independent elastic
moduli can be determined by applying the two fold rotations about each of these axes

on the strain energy function. The strain energy function is initially given by

¢ = _;'(Cuff + Coped + Caged + Case] + Css€d + costs) T C1a€1€2

+ cya€1€3 + Cra€1€q F CisEr€s T+ Cr6E1€s T C23€2€3 T Coafolq F Cos€ols

+ Cogat + C34€3€4 T Cas€a€s + C36€afs t C45€4Cs + cye€q€s + Cse€sEs- (A1)

The effect of a 180 degree rotation about the x; axis is now considered. The

matrix of transformation is given by

-1 0 O
[aij] = 01 0 (A2)
0 -1

The effect on this rotation on the strains is given by

!

€ = 3im3jn€mn (A3)

which yields the following relations between the rotated and original strains expressed

in the Voigt reduced notation
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€3 = €3
!
€4 = —€4
1 A4
e = ¢ (A4)
i
€ = —€¢

The strain energy function can be written for the rotated state and the above equations

substituted to yield

1 2 2 2 2 2 2
¢ = 5(01151 + Cog€s + Caz€3 + C4q€4 + C5s€5 + ces€s) T Cr2€1€2

+ ¢13€1€3 — C14€1€4 + C15€1€5 — C16€1€6 T C23€o€3 — Co4C24 + Co5€9€s
— Cogfof — C34€3€4 T Cag€a€s — Cas€a€s — Cas€s€s T Cap€4€6 — Cs6€sCe: (A.5)

Equating ¢ and @' term by term with respect to strain yields the following

Ci4 = —C1q
Cie = —C16
Coq = —Co4
Cog = —C26
. (A.6)
C34 = —C34
C3g = —C36
C45 = —C45
Cs6 = —Cs6
For these relations to be true, then
C1q = C1g = Cgq = Cgg = €34 = C35 = Ca5 = Cs6 = 0. (A7)

The matrix of elastic stiffness moduli is then given by
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Fcu C12 C13 C1s
C12 Coo Cog Cos
C13 Co3 C33 C3s
c = A7
[ AB] 0 0 0 Caq 0 Cas ( )
Ci5 Cg5 €35 0 c¢55 O
O O 0 046 0 066
The strain energy function is now given by
1
¢ = 5(011"—'12 + Cg0€5 + caz + € + €F + cs5ed + €2) + cpp6i6y
+ ¢13€1€3 + C15€1€5 + Coz€a€z + Cos€a€s + Ca5€z€s + Cyq€46s. (A-8)

The effect of a 180 degree rotation about the x, axis can now be considered. The

transformation matrix is given by

1 0 O
[aij] =10 -1 O (Ag)
! 0 0 -1

The rotated and original strains are related by

/
€ =€

!
€ = €9
/
€3 = €3
/
64 = 64
!
€5 = —€;5
/
€ = —€p

(A.10)

Again these are substituted into the equation for the strain energy function resulting in

1 2 2 2 2 2 2
¢ = 2 (1161 + Coo€s + Cag€ + Cqq€s + 5568 + Cop€d) + C1o€16q
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+ ¢13€1€3 — C15€1€5 + Co3€a€3 — Co5€x€s — C35€3€5 — Cyp€4€q. (A.11)
Equating term by term yields
Cs = Co5 = C35 = C46 = 0 (A.12)

and reduces the elastic stiffness matrix to

¢y C12 €3 O
Cjg Cgg Co3 O

€13 Co3 C33 O
[cAB]= 0 0 O

© O O ©

A.13
Cas (A.13)

0 0 0 0 o
0 0 0 0 0066

L o

o O O O O

The third symmetry rotation about x3 can be shown to have no further effect on the
elastic stiffness tensor and thus the final form for an orthotropic body is given by equa-

tion A.13. There are nine independent moduli for an orthtropic material.

The reduction of moduli for a transversely isotropic material can be carried out
beginning with the matrix form for orthotropy. This is because it possesses the same
symmetry conditions as an orthotropic material in addition to having an isotropic plane
perpendicular to x3 . Thus the strain energy function can be written out with the ortho-
tropic moduli and the effect of an arbitrary rotation around the x3; axis can be con-

sidered. ® is given by

1 2 2 2 2 2 2
¢ = '5(01151 + g€y + C33€3 + Cuq€q4 + C55€5 + Cop€s)

+ 0126162 + 0136163 + C23€253. (A14)

The effect of an arbitrary rotation around x; by an angle 8 on the strains is given by
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€, = cos?0e, + sinfcosfeg + sin®be,
e, = sin%0¢; + sinbcosfes + cos?fe,
€3 = €3
€, = —sinfes + cosbe, (A.15)
€5 = cosfes — sinfe,
€g = —2sinfcosbe; + (cos?0 — sin®f)es + 2sinfeosbe,.

These equations can be substituted into the strain energy function as before. Then com-

paring ® and @' term by term will yield

C11 = Coo
C13 = Co3

(A.186)
C44 = Cs5

1
Cee = 5‘(011 — ¢19)

which reduces the number of independent elastic moduli to five for a transversely isotro-

pic body. The elastic stiffness matrix can be written out as

r -

€3 €2 ¢3 O
Cjig ¢ ¢3 O

¢13 €13 ¢33 O
[CAB]— 0 0 0

© O O O

A.17
Cyqq ( )

0 0 0 0 Cy4

© O O O ©
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APPENDIX B

Using the equations derived for linear elastic wave propagation presented in
Chapter II., the expressions for the velocities of ultrasonic waves in terms of elastic
moduli and density are now derived. The expressions are derived for both transverse
isotropy and orihotropy. The case of transversely isotropic elastic symmetry is con-

sidered first.

For the case of transverse isotropy, equation (2.84) can be used to show that
there are several directions of propagation for pure mode elastic waves. Pure mode
elastic waves may be propagated along the x; axis and along any direction perpendicu-
lar to the x; axis in the isotropic plane which of course includes the x; and x, axes.
They may also be propagated in a direction which makes an angle ® with the x; axis
given by

1
C13 + 2C44 — C33 |2

tan © = . (B.1)
c13 + 2¢44 — ¢y

However, for unidirectional graphite epoxy composites where the modulus cg3 is usually
about two orders of magnitude larger than the other moduli, this direction does not

exist. Thus the pure mode directions to be considered are along each of the three coor-

dinate axes.

The components of the matrix )\, for a transversely isotropic material are given

by

1
A1 =cplf + ;(Cu — c)lf + cyqld,
1
Ngg = ;(cu —cp)lf + eyl + egqld,

Az = cyqlf + cqql? + casld, (B.2)
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1
Mg =Xy = E‘(Cu + cpo)lile,

M3 = Ag; = (c13 + cag)lyls,
and

Aoz = Agp = (C4q + ¢13)lol5.

The solutions for the wave modes propagating along the x, axis are now derived. For
waves propagating in this direction, the direction cosines of the wave normal are given

by 1l; = 1, and l; = I3 = 0 . The components of the X\;; matrix reduce to

>‘11 =CIn

1
Nog = 5‘(011 — ¢j9), (B.3)

N33 = Cyq,

and all other X\;; = 0 . These are substituted into equation (2.55) to determine the solu-

tions for the three modes of propagation in this direction by solving the equation

2
i 11 = PoVv 0 0
DET 0 %(cll - 012) - Pov2 0 =0. (B4)
| 0 0 C44 —_ p0V2‘

This can be expanded to
1
(ey — P0V2)('5'(011 — ¢19) — Pov)(Caq — PoV?) = 0. (B.5)

The solutions are then found to be

1
C11 12
v, = |—],

Po
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1
v. = ‘i ~Ci2 |2 (B5)
2 200 ’ '
and
1
v C44 |2
3= |7 | -
Po

Solving for the eigenvectors for each of these eigenvalues yields the following particle
displacements. For the first wave, the direction cosines of the particle displacements are
@y = a3 =0 and a, = 1. Therefore, since a; = |; , the first wave is a pure mode longitu-
dinal wave. For the second wave, the direction cosines are a; =a3=0and apy =1 .
Thus, since o;]; = 0, it is a pure mode transverse wave. The particle displacement vec-
tor direction cosines for the third wave are found to be a; = ay = 0 and a3 = 1 , which
means it too is a pure mode shear wave. The energy flux equations can be used to show

that there is no energy flux deviation for these waves.

The solutions for propagation along the x, axis are similar. The direction cosines

of the wave normal are l; = I3 =0, and I = 1. The X\; components are then

1
M1 = =(c1; — ¢12),
11 2(11 12)

and all other A\j; = 0 . The solutions for these wave modes are of course the same as for
propagation along x, except the first and second waves are reversed. Waves propagat-
ing in any direction in the x;, x, plane with l; = 0 can be shown to have similar solu-

tions to the waves propagating along x; and x, .

Propagation along x3 where I, =1, =0, and I3 = 1 is now considered. The com-

ponents of );; are now given by
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>\11 = C44,
Ao = Cyy, (B.7)
>\33 = Ca3,

and all other \; = 0 . Substitution into equation (2.55) yields
2\2 2
(caq — Pov) (caa — Pov°) = 0. (B.8)

The solutions for this equation are given by

1
Cyqq |2
i=ve= 70 (B.9)
0
and,
1
Caz |2

Po

Solutions for the particle displacements for these wave modes show that for the first and
second wave modes, a3 = 0 while @, and @, are arbitrary as long as af + af=1. Thus
these waves are pure mode shear waves with particle displacements in the x,, x, plane.
For the third wave, they are a; = a; = 0, and a3 = 1 , which means it is a pure mode
compressional wave. Again, it can be shown that these waves suffer no energy flux devi-

ation.

Measurements of the velocities of the waves in these three directions can be used
to determine four of the five independent elastic stiffness moduli. However, the modulus
¢13 can not be determined. To evaluate this modulus, an off axis non-pure mode wave
must be used. The wave chosen for this purpose was a wave propagating in the x;, x3

plane 45 degrees between the two axes. Thus, |, =13 = %2', andl, =0 . The com-

ponents of the \; matrix are then
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1

Ay = 5( 1+ c4)s

1 1
Nog = ;(044 + E(Cu —¢12)),
1
Ag3 = 'é‘(css + c4q), (B.10)
1
Az = ;(013 + c44),

and all other A\j = 0. These are substituted into the eigenvalue equation and the solu-

tions are given by

1
povi = T [011 + 2¢44 + ¢33 + V(e — caa)” + 4(cy3 + 044)7}
1 1
100"’22 =5 Cqq + ;(011 — ¢9) (B.11)

and

1
Povi = 7 [011 + 2c44 + g3 — V(c1y — cas)® + 4(cy3 + C44)2]-

Solutions for the par!;icle displacements of these waves show that the second wave is a
pure mode shear wave. However, the first wave is a quasilongitudinal wave and the
third wave is quasishear. Energy flux equations show that these wave modes also suffer
energy flux deviation. Kriz and Stinchcomb [45] reported the energy flux deviation
could be as high as 43.4 degrees for the quasilongitudinal wave and 28.7 degrees for the
quasitransverse wave. The energy flux deviation was reported to be about 17.8 degrees
for the pure mode transverse wave. Waves propagating in the x,, x5 plane 45 degrees

between the axes with 1, = 0 have the same solutions.

The solutions for the wave modes in an orthotropic medium will now be derived.

The )\;; matrix components are now given by




and

and all other components are zero.
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Ny =epnlf + cesl + cssld,
Mgy = ceolf + Cooli + cadld,
sz = csslf + Cagls + cgald,
Mz = A1 = (c12 + cep)lile,

Ais = Ag; = (cs5 + c13)lila,

Noz = Agp = (Cqq + Ca3)lal3-

For propagation along the x, axis, these equations reduce to

A1 = Ci1
>\22 = Cgps
N33 = €55,

wave solutions can be found to be

and

C11 |2
v, = |—

1 ’
Po

1

Ce6 |2

Vo= |71 »
Kpo

1

Cs5 |2

V3 = | .

Po

(B.12)

(B.13)

When these are substituted into equation (2.55), the

(B.14)
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with the first wave being a pure mode longitudinal wave. The second wave is a pure
mode shear wave with particle displacements along the x, axis and the third wave is

pure mode shear polarized along the x,; axis. There is no energy flux deviation for these

waves.

For propagation along x, , the components of A;; reduce to

>‘11 = Cgp»
)\22 = 022, (B15)
>\33 = Cyqq,

and all other Aij = 0. When substituted, these yield the equation
2 2 2
(co6 = Pov™)(caz — Pov*)(eqq — pov?) = 0 (B.16)

which has the solutions

IOI--

C66
Po

Vo= |—1] , (B.17)
2 Po

and

1
C44 2

Po

In this case, the first and third waves turn out to be pure mode shear waves polarized
along the x; and x3 axes respectively while the second wave is a pure mode compres-

sional wave. Again, there is no energy flux deviation for these waves.




- 136 -

Now the case of wave propagation along the x3 axis in an orthotropic material

is presented. With 1, =1, =0, and l; = 1, the components of A reduce to

A1l = Css,
>\33 = Cg3,

and all other \; components equal to zero. These yield the solutions for the three modes

of propagation as

1
Css |2
Vl = ,
Po
1
044 2
Vo = |—{ , (B.19)
2
Po
and
1
Caz |2
Va = |—
3 -
Po

In this case, the first and second waves are pure mode shear waves. The first wave is
polarized along the x, axis. The particle displacements for the second wave are along
the x, axis. The third wave is a pure mode compressional wave. There is no energy flux

deviation for these waves.

As with the case of transverse isotropy, the pure mode waves do not yield
sufficient data to determine all of the orthotropic moduli. Waves must be propagated
off axis to determine the moduli ¢z, ¢;3, and co3 . Waves propagating in the x;, X, plane
45 degrees from each axis with l; = 0 are considered first. The direction cosines of the

wave normal are given by ; = 1, = 715, and I3 = 0 . Thus the \; matrix components
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are

1
M1 = T(c11 + cgp),

[ 3]

1, .
Agg = ;(Css + cg0),
1
Aaz = 3(055 + cyq), (B.20)
1
A2 =Ny = ;(012 + cgs),

and all other \; = 0 . The solutions for the waves propagating along this direction can

then be determined to be

1
povi = T [cu + 2c65 + c20 + V(c1; — c20)° + 4(cyp + 066)2}
s 1
Povy = ‘2‘(044 + c55), (B.21)

and

1 )
Pove = y [Cu F 2¢65 + Coo — \/(c1; — Co0)* + 4(cyp + 066)2]-

The second wave is a pure mode shear wave while the first is quasilongitudinal and the
third is a quasishear wave. The energy flux deviation for these waves is small because

there is only a small deviation from isotropy in this plane.

The next off axis direction considered is that in the Xy, X3 plane 45 degrees from
either axis where the direction cosines for the wave normal are given by

=l3= VIE-, and I3 = 0 . Therefore,

[y

M1 = (e + cs5),

[\
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1
Nog = E(Css + c44),

1
Ng3 = '2‘(055 + c33), (B.22)
1
Az =g = 3(013 + cs5),

and all other \;; = 0. The solutions for these waves are then found by solving the equa-

tion
Moz = pov) (1 — povt)(Naz — pov?) — N = 0. (B.23)

The three roots of this equation are given by

1
povi = " [Cu + 2¢55 + cgg + V(e — caa)” + 4(cy3 + 055)2}

1
povs = 3(044 + cgs), (B.24)

and

1
povs = " [Cn + 2¢55 + cg3 — V(e — cas)” + 4(cy3 + 055)2}

The first and third waves are quasilongitudinal and quasishear mode waves respectively
while the second is pure mode shear. The energy flux deviations are again large as was
the case for the similar waves for transverse isotropy.

The final direction of propagation considered is that in the xg, x3 plane 45
degrees from either axis. This is similar to the previous case with the final solutions

reducing to

1
povi = n [022 + 2c44 + c33 + V (coe — cas)® + 4(cos + 044)2}

1
povy = '2‘(055 + co6); (B.25)
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and

1
povs = 1 [022 + 2c44 + ¢33 — V(co — c33)° + 4(co3 + 0432]-

Again, the second wave is pure mode shear while the first is quasilongitudinal and the
third is quasishear. These equations reduce to those given for transverse isotropy if the
appropriate substitutions are made. These equations allow the determination of all of

the second order moduli for an orthotropic material.
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APPENDIX C

The relationship between the measured time between echos (t) and the true time

of flight (5) was given by McSkimmin [19] as

t =pé— B+ | = (C.1)

In this equation, p is an integer expressing the difference between the number of echos
used for the overlap measurement. Since the first and second echos were used for these
measurements, it was always true that p =1 . The variable n in this expression is an
integer which gives the number of cycles of incorrect overlap between the two echos. If
the echos are overlapped correctly, then n = 0 . If the second echo is overlapped one
cycle before the first then n = —1 and if the reverse is true then n = 1 . ~ is the phase
angle (in degrees) accounting for phase shifts at the transducer-specimen interface. F is

the frequency of the tone burst and not the repetition rate frequency.

Substituting the fact that p = 1 simplifies this equation to

Y n

t=0— |—=|+ |=| C.2
360F F| (©2)

Thus both 4 and n thust be determined to evaluate the true round trip time. Therefore

a second equation is introduced which is

hl 7
Atg=—1—n——l——1 L

-_— - . C3
F, 360 | F, | 360 (C3)

This equation expresses the change in measured time between echos as a function of a
change in the frequency of the pulse from a higher frequency (F}) to a lower frequency
(F)) . The phase shifts at these two frequencies are designated 7, and v; . For these
measurements Fy was chosen to be that of the resonant frequency of the transducer and

F) was chosen to be 0.9 times that value. Thus, this equation can be rewritten as
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1 N 1 Yr

At =

_ _ — C4
09F, |" 360| F, | 360 (04)

where F, is the resonant frequency of the transducer.

The phase angles 7 and 4, can now be calculated from standard electrical
transmission line theory. It is defined that Z,, Z,, and Z4 are the mechanical impedances
of the trangducer, bond material, and sample respectively. Z, is the mechanical

impedance of the transducer-bond composite resonator and it is defined that
r=—. (C.5)

Therefore,

r tan k212 + tan klll
r — tan k;l; tan kol

where 1, 1, are the thicknesses of the transducer and bond respectively,

and k,, ko are the wave numbers for the transducer and bond given by

k=221 (c7)
Vi

i

where v; are the respective velocities of sound in the transducer and bond
and \; are the wavelengths of sound in the transducer and bond.
Now it is assumed that the bond thickness is zero, and thus equation (C.6) can be

reduced to
Z4 = iZl tan klll' (CS)
Since at the resonant frequency of the transducer,

F, =L (C:9)

¢y
21’

it is true that
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kql; = 180 degrees.

k;l; = (0.9 - 180) degrees.

Therefore at F, ,

and at

N
N
I

o

F,

Z4 =17, tan (0.9 - 180)

(C.10)

(C.11)

(C.12)

(C.13)

For an elastic wave reflecting from the transducer-specimen interface, the ratio

of the reflected pressure (P,) to the incident pressure of the wave (P;) is given by

P, Zy4-14
P,  Z,+12,
and the phase angle is given by P
Im | =
m Pi
tan v = .
~ o P,
e P,
AtF=F,,
Pr O - Z3
P, 042,

and therefore

AtF =

Y% =tan"1 0 =0.

F,

(C.14)

(C.15)

(C.16)

(C.17)
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P iR4 - Z3
— = [P (C.18)

Pi 1R4 + Z3

where R, = Z, tan (0.9 - 180) .
Thus 7, can be calculated to be

2Z3R

-1 3+\v4
Y = tan —_— (C.18)

| R} — 2§

Therefore 7, can be calculated from knowledge of the mechanical properties of the sam-

ple and the transducer.

Since 7, = 0 , the equation for the change in measured time of flight as a func-

tion of frequency can be reduced to

(0.111n — ,/324)
F,

A0 =

(C.19)

where the superscript (0) implies that this equation is true for zero bond thickness.

If n = 0, this equation reduces to

M
324F

At00) = —

(C.20)

where the second superscript O implies that n =0 .

If measurements are made at F, and F, for a number of different overlap numbers
(n) and the At's calculated for each n, the correct choice of n = 0 can be determined by
comparing the experimental results with those predicted by the previous equation. The
agreement will not be exact, but the one closest to the calculated value of At(%9 and

obeying the stipulation that
Abmeasured > At(00) (C.21)

which implies a positive bond thickness will be the correct choice for proper overlap.

This theory can be extended to account for nonzero bond thickness. However, the
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corrections were determined to be less than experimental error for these measurements.
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APPENDIX D

108 REM  CROGRAM TO COLLECT AND ANALYZE DATA FROM PULSE ECHO
119 REM  NVERLA® ULTRASONIC TECHNIQUE. WRITTEN BY PROSSER
120 REM 9/25/83.
158 REM
148 REM variable list
178 RENM
132 REM variahle description tvpe
19@ REM i raae of file character (32
202 REM i transducer saterial " {
218 REM b$ bond material "
20K 5§ sample I "
23 d$ date data taken .

al data pts/overlap numeric

e? series foreat af m! ’

73 AYE, EXP, TRANSIT TIME *

72 AVE, EYF, DELTA T(E} "

EiIV,E0fy TRANSIT TIME, CORR, DELTA Y °

52 R FZ YDUCER RES, FREQ. IN HI *

243 REM it TaMAL "
241 REM F3 DATA FILE NI, '
252 REM l FILE LENSTH COUNTER '
257 REM { FREQ, LIVISION BY MATEC 11@ °
264 RENM pii:,@4I) Avg, DELTA T AT RES.,LOW FREQ. "
265 REM §iI;,R{I} S§7T. DEV. OF TIME AT RES.,LOW FREQ. °
286 REM oin DELTA T'S "
247 REM g UNCERTAINTIES IN DELTA T ’
248 REM W, X SUM TGTALERS FOR AVR, 'S '
278 REM t sample teap, '
280 REM 1 xducer resonart freg.
298 REM 1K INTEGER LOOF COUNTERS °*
I8@ REM LGk data at low freg. {.9¢1) "
318 REM hii,ki dats at res, freg. "
320 REM
738 RENM character variable dimensioning
148 RENM
I5@ DIM F$I3Z),X${32),B8(32),04(20),5¢(I2!
158 REM
370 REM file naming and variables
73@ REX
I9@ REM

403 PRINT "what is the name of the file?"

419 INPUT F$

428 FRINT "what is the sample 107"

438 INPUT S

440 PRINT "what is the xducer aaterial?"

458 INFUT X8

44@ PRINT “what is the bond saterial?”

478 INPUT BS

428 FRINT "what was the date data was taken?”
49 INPUT D$

ORIGINAL PAGE IS
OF POOR QUALITY
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5@ PRINT "what was the teap. of the sample in deq. C?”
S18 INPUT T

528 PRINT "what was the xducer resonant freq. in NHz?'
538 INPUT F!

. 540 PRINT "what was @MAX:?"

558 PRINT "= aax. % of apparent echos in front of"
548 PRINT "or behind the reference burst”

578 PRINT "(ref. burst is taken to be the °

598 PRINT "larger amplitude burst)®

598 INPUT JI

428 PRINT "what is the # of data pts per overlap”
618 INPUT Mi

528 PRINT "if series format of al was 1:2:3:4,.."
432 PRINT "then input 1*

648 PRINT "if series format of e2 was 1:2:4:8..."
458 PRINT "then input 2°

663 INPUT M2

478 IF M2=1 THEN 718

£88 IF M2=7 THEN 710

698 PRINT “expecting input of 1 or 2°

782 60 TO 620

718 REM
720 REM description of echo-overlap data
738 REM arganization; each data set has 2

748 REM arrays (1 for res. freq. and ! for .9¢res freq.)
738 REM each with {2#iGMAXi+1}#e] datapoints.
742 REM a final data set contains xducer material,
778 REM band material, teasp., etc.
798 REM dimensioning arrays
808 REM
B1@ LET I=2#{J1+1)-1
828 LET K=M!
R3@ DIM H(I,K),P(D), 041D, F(D)
848 DIM L(I,K),RCDY,S(10,DCT,UCD),ECT)
850 REM
848 REM input data
878 FOR k=1 7O M1
988 PRINT *INPUT FREQ. DIVISION FACTOR FROM MATEC 11@°
898 INPUT C1
988 FOR I=1 TO 2#(Jl+D)-1
918 PRINT "freq. = resonant freg.®
220 I=1-(J1+1)
929 PRINT "PRESS RETURN T0"
938 PRINT *enter array sesher®;7,K
931 PRINT "INPUT YES TO CHANGE FRER. DIVISION FACTOR FROM: *;Ct
932 INPUT A$
33 IF A$<>"YES® THEN 948
934 PRINT *INPUT NEW FRER. DIVISION FACTOR "
935 INPUT CI
940 INPUT @28:H(I,K)
941 H(I,Ki=H(I,K)/18*C1
942 PRINT H(I,K)
947 PRINT " *
938 NEXT I
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958 NEXT K OF POND ~rr o v s
970 FOR ¥={ TO M!
971 PRINT "INPUT FREQ., DIVISION FACTOR FROM MATEC i1@"
972 INPUT C1
988 FOR I=1 TO 2#{Ji+l}-{

998 PRINT "freq. = .9%res. freq.”

1008 I=I-(Jt+1)-

1889 PRINT "PRESS RETURN 70 *

1812 PRINT "enter array meaber";i K

1811 PRINT "INPUT YES TO CHANGE FRER. DIVISION FACTOR FROM: ";C!
1812 INPUT AS

{813 IF A${>"YES* THEN (@2e

1814 PRINT "INPUT NEW FREG. DIVISION FACTOR®
1815 INPUT O

1828 INPUT @20:L([,K!

I BRSNS SFAT N

1822 PRINT L{I,¥}

1823 PRINT = *

1838 NEYT |

1848 NEXT K

105@ REM  COMPUTE AVE. 'S AND ST. DEV.'S
1848 RENM

1878 FOR I=1 TO 2#{J1+1)-{

108@ w=e

1898 1=2

118@ FOR K={ TO M1

1118 IF M2:<>1 THEN 1140

1128 W=W+K/H(L,E)

138 60 TO (148

1148 2=2%¥-1)

1130 W=W+I/H{I,K!

1148 NEXT ¥

t17@ P{L)=N/N!

118@ FOR K=1 70 Mt

119@ IF M2<31 THEN 122

1200 X=X+{K/H{I,E)-P(I}1"2

121@ 60 TO (240

1228 1=2*(k-1!

1238 (=X (Z/HUT, K -PLIN) 2

1242 NEXT K

1258 S(D=(X/M11*0.5

1268 NEXT 1

1270 FOR I=t TO 2#(J1+1}-!

1280 =0

1298 =@

138@ FOR k=1 TO Mt

1310 IF M2<>1 THEN 1340

1328 W=W+E/L{LK)

1338 60 70 %60

1348 71=2%1K-1)

1358 W=W+1/L(1,K)

1758 NEXT &
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1378 2ATi=W/N1

1388 FOR K=1 TO Rl

1390 IF X231 THEN 1420

1408 X=X+(K/L(T,KD-RUD00°2

1410 GO TO 1440

1428 7=2"(k-1)

1478 =X/, 0 -0(0)*2

1440 NEXT K

1438 RII)=(X/M1) 0.5

1440 NEXT I

1478 REM

1480 REM CALCULATES DELTA T AND UNCERTAINTIES IN DELTA T

149@ REM

136@ REM

1318 FOR I=t 70 2#idl+1i-1

1528 pil)=R41I-PID)

1530 UiIi=G(Ii4R{T

1540 NEXT ]

1558 REM

1568 REM CALCULATES DELTA T{(@)

1570 REX

1588 PRINT "WHAT IS THE IMPEDANCE {#1ES MECH. OHMS) OF°

159@ PRINT "THE ";X$;" TRANSDUCER?"

1688 INPUT 1!

1612 PRINT "WHAT IS THE IMPEDANCE (#1E3 MECH. OHMS! OF SAMPLE °;S3
1628 INPUT 13

1438 PRINT "WHAT IS THE IMPEDANCE (#!ES MECH. OHMS! OF THE ";B$;" BOND"
1648 INPLT 12

1458 74=T1#TAN(Q,9#P]!

15668 B=ATN{2#24#13/(14°2-13"2})

18461 [F 6@ THEN 1670

1662 G=6+P]

1678 F2=Fixio000Q0Q

1480 Q1=-1/{2+P{#F2)2(6/0.9)

1658 REM

1780 REM IDENTIFY CORRECT N AND FIND DELTA T(@) FROM EXP., DRTA
1710 REM

1728 REM

1718 PRINT “COMPARE THE CALCULATED DELTA Ti@) = ";01;" (SEC.}*
1748 PRINT *WITH THE FOLLOWING VALUES®

1758 PRINT °*

1758 FOR 1=t 70 2#0d1+1i-t

1770 PRINT "DELTA T {";1-(f¢1p3™) = %;DCI);" (SEC.}®

1788 PRINT °°

1798 NEXT 1

1828 PRINT "ENTER THE # OF DELTA T THAT MOST CLOSELY MATCHES THE®
1818 PRINT "CALCULATED DELTA Ti@:*

1828 INPUT 8

1838 W=8

1648 REM

185@ REM CALCULATE EXPERIMENTAL DELTA T(B) AND AVE. TRANSIT TIME
1968 REM AND THEIR UNCERTAINTIES USING A WEIGHTED AVE.

1878 REM

ORIGINAL PAGE IS
OF POOR QUALITY
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1288 X1=@
1398 X2:0

1908 v1=0

1918 Y2:0

1928 FOR I=1 T0 2#(J1+1)-1

1938 2=1-(J141)

1931 NeI-B

1948 E(T3=D(114N/F2¢(1/8.9-1)

1958 F(1)=P(1)+N/F2

1958 K1=X14E(D R (L/U(DIA2

1978 Yi=Y1+F (D #(1/5(1)°2)

1988 ¥2=X241/0(1)*2

1999 Y2:Y2+1/§(11°2

2008 NEXT I

2818 T2=11/12

2020 TI=V1/Y2

2030 Hi=12%-8.5

2048 H2=Y2"-8.5

2080 SOSUB 3430

2098 REN STORE DATA

2108 REM

2018 TLIST

2128 PRINT **

2138 PRINT "ENTER # OF (LAST) FILE TO STORE DATA ON"
2140 INPUT F3

2150 1=30

2168 1=T+LEN(S$) +2+4LEN(DS) +2+¢LEN(BS) +2+LEN(F$) 42
2178 1=T+LEN(X$)+2

2080 1=1+10% (9428 (2611 +1)4M1))
2198 2=7+1Q4 (6828 (J1+1))

2208 FIND F3

2210 MARK 1,1

2220 FIND F3

2232 WRITE F$,5%,B%,D8, 18,01

2240 WRITE T,F1,F2,M1,K2,11,22
2258 WRITE 13,14,6,01,D,C6,C7

2268 FOR 1=1 TO 2#(31+1)-1

2278 WRITE P(1),0(11,5(1),R{1),D(D) U
2288 NEXT 1

2298 FOR =1 TO 2¢(1141)-1

2180 FOR K=1 T0 M

2318 WRITE H(I,K),L(T,K)

2328 NEXT K

2330 NEXT 1

2348 WRITE T2,T3,H1,H2

2350 CLOSE

2368 PRINT "DATA STORED"

2378 PRINT **

2410 PRINT @2:*FILE NAME IS ";F$
2428 PRINT 82:"FILE # IS *3F3

2438 PRINT @2:*TRANSDUCER MATERIAL IS *;X$
2442 PRINT €2:"BOND MATERIAL IS *;B$

ORIGINAL paGp 1g
OF POOR QuaLTy
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2458 PRINT @2:"SAMPLE ID IS ";5%

2448 PRINT @2:*DATE DATA WAS TAKEN IS ;D¢
2441 PRINT @2:"SANPLE TEMP WAS ";T;" C*
2470 PRINT €2:"DATA PTG/CVERLAP IS *;MI
2482 IF M2{>1 THEN 2520

249@ PRINT @2:"SERIES FORMAT CF M1 VALUES 1S;°
2580 PRINT 82:"1:2:3:4..."

2510 60 0 2348

2928 PRINT @2:"SERIES FORMAT OF MI VALUES 1S;°
2530 PRINT €2:"{:2:4:8...°

2348 PRINT @2:" *

235@ FOR 7=1 T0 2

2560 IF I<:1 THEN 2590

2570 PRINT €2:"DATA AT RESONANT FREQ.®
2388 60 TO 2610

259@ PRINT &2;* *

2502 PRINT @2:"DATA AT .9+RESONANT FRER.®
2610 PRINT @2:" °

2620 IMAGE 3A,1X,S

2578 IMAGE 20,8X,S

2642 PRINT 82: USING 2628:70Q/M"

265¢ FOR I=1 70 Ai-t

266@ [F M2{>2 THEN 2690

2678 W=2~(1-1)

2488 60 TO 2700

2698 W=!

2702 PRINT @2: USING 2630:W

2718 NEXT ]

2720 IMAGE 2D

2730 IF M2<32 THEN 2760

2740 W=2"(N1-1)

2738 G0 1O 2778

2760 W=M!

2778 PRINT @2: USING 272@:M

2760 FOR I=! TO 2#(J1+1)-1

2798 IMAGE 20,1X,S

2880 PRINT @2: USING 279@:1-(J1+1i

2818 FOR k=1 TO MI-t

2828 IF I¢>1 THEN 2864@

2838 INAGE 7D.20,1X,5

2848 PRINT €2: USING 2838:H{I K]

285e 60 TO 2870

2868 PRINT 82: USINE 2838:L(I,K)

2878 NEXT K

2889 IF 141 THEN 2920

2898 PRINT @2: USING 29@@:H(I,Ni)

298@ IMAGE 7D.2D

2910 5C T0 2930

2920 PRINT 82: USING 29€@:L(I,M1)

2938 NEXT I

2948 NEXT I

2958 PRINT €2:" *

294@ FOR 1=1 10 2
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2978 IF 1=2 THEN 3848 g RIGIN4L, PAGE g
298 PRINT 2:*DATA AT RESONANT FREQ. " OE Poog QUAL
2998 60 T0 3010 Ty
3000 PRINT 2:DATA AT .9RESONANT FREQ.®

3010 PRINT 02:* *

1820 PRINT €2: USING 3838:°Q°

3830 TNAGE 28, 1X,S

1048 PRINT 82: USING 3858:°AVG. TINE (SEC.)*

3058 INAGE 204, 1X,S

7868 PRINT 82: USING 3878:°STD. DEV. (SEC.)"

3078 INAGE 204

7089 PRINT 82:* *

3899 FOR 1=1 T0 26(J1+1)-1

7108 IF =2 THEN 3180

3118 PRINT 82: USING 3128:1-(J1+1)

7120 INAGE 20,1X,5

3138 PRINT €2: USING 3148:P(1)

T148 INAGE 1€, 10X,5

3158 PRINT €2: USING 3168:5(1)

7160 INAGE 1€

3178 60 T0 3218

7188 PRINT 82: USING 3128:1-(J1+1)
3198 PRINT 82: USING 3148:0(1)

3208 PRINT 82: USING 3168:R(1)

321 PRINT 02:° *

3228 NEXT 1

3238 PRINT 02:* *

3248 NEXT 1

3258 PRINT 82:* *

7260 PRINT €2:"INPEDANCE OF XDUCER IS *3215° (+1E5 NECH. OHNS)®
7278 PRINT @2:*INPEDANCE OF SANPLE 1S *;Z3;* (F1ES NECH. OHMS)®
3260 PRINT 82:*INPEDANCE OF BOND IS *;12;* (+LES MECH. OHNS)®
3298 PRINT €2:"PHASE SHIFT AT LOM FREQ. IS *;G4368/(24PD);* (DEG.)®
1108 PRINT 82: *CALCULATED DELTA T(B) IS *301;* (SEC.)®

3318 FOR [=1 T0 26(J1+1)-1

1328 PRINT 82 *

3330 PRINT 82:°DELTA T(*3 [-(J1+1);") S ;D(1};* (SEC.)"

7348 PRINT &2: "UNCERTAINTY (%31-(J1#1);%) IS *;U(I);* (SEC.)®
1350 NEAT 1

3368 PRINT @2:* *

337 PRINT €2:°CHOICE FOR CORRECT OVERLAP 1S *;B

3380 PRINT 82:°AVG. EXPERINENTAL DELTA T(N=@) IS *;T2;* (SEC.)®
1399 PRINT 82:°ST, DEV. IS *sHL;* (SEC.)*

3480 PRINT €2:° *

3410 PRINT @2:"AVS. TRANSIT TINE FROM EXP. DATA 1S *;T3;* (SEC.)®
7420 PRINT 2:°ST. DEV. 1S *jH2;* (SEC.)®

321 PRINT €2:* *

7422 PRINT @2:*BOND ANGLE IS *;C6;" DEGREES®

3473 PRINT 02:*TIME CORRECTION FOR BOND IS *3C7;* SEC.®

3424 GO T0 3740

3430 REN

448 REN  BOND CORRECTION



=152~

3450 REN

3468 DIN V(30),C038),0(38)

3478 FOR 1=1 T0 30

3480 Ci=(1-1)/24(24P1) /360

498 15=12¢(12/11#TAN(CL) +TAN(O, $4PT) )/ (12/11-TAN(R. 4P 1) #TAN(CL))
3580 C2=-2¢15413

3518 C3=13#13-15+15

3520 CA=-2#124TAN(C1) #13

3530 CS=13#23-124TAN(C) # (Z26TAN(CE))
3548 V(1) =ATNICA/CS)

3541 VD) =V(1) 4368/ (24PT)

7550 C(1)=ATN{C2/C3)

3551 IF C(1)3@ THEN 3555

3552 C1)=CA11+P1

3555 CUIM=C(1)#368/ (24P )

1568 0(1)=V(1)/{36B8F21-CL1)/ (36048, 94F2)
3570 NEXT 1

3588 PAGE

1581 VIEWPORT 1@,128,18,98

7599 WINDOW 9,15,0(1)45¢0¢11/12,@
3591 MOVE @,8

7592 FOR 1=2 TO 16 STEP 2

3593 MOVE 1-2,8

1594 PRINT *KH";1-2;

7595 NEXT 1

3688 AXIS 2,0(11/10,8,8

1618 MOVE 2,001

3670 FOR i={ TC I8

7430 DRAW (1-11/2,000)

3448 NEXT 1

1450 MOVE 2,72

7668 DRAK 38,72

Te1 MOVE B,T2¢H!

3662 DRAN 15,T2+H!

1467 MOVE 8, T2-H!

464 DRAW 15,T2-41

1665 MOVE 8,5¢0:10 /18

Y178 BETUT RTNDIT DUARE Anfs & NE aTELETo- A
TL7@ PRINT “INDUT PHESE AAGLE QF InTERSZIT 74 ¢

- . e 3w .-

JH5Q INPUT Lt

148! HOME

JLBT PARE

2492 I=2#lA-:

I70E CRsVel} i TLBeRD
e
n
Bt

Ap e
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188 REM  PROGRAM TO MEASURE STRESS VS. STRAIN
128 REM WRITTEN BY PROSSER 7/15/86

138 REM

142 REM  VARIABLES

138 Ren

158 REM SAMPLE ID.

178 REM DIRECTION OF STRAIN !
188 REM DIRECTION OF STRAIN 2
200 REW  ° * LOADING
228 REM DATE

278 REM CROSS SECTIONAL AREA OF SAMPLE (5@. IN.)Al

28@ REM EXCITATION VOLTAGE FOR STRAIN GAGE
299 REM ' ' e 2
108 REM NUMBER OF DATA POINTS

338 REM VOLTAGE MEASUREMENTS FOR LOAD

348 REM VOLTAGE MEASUREMENTS FOR STRAIN 1
5B REM " ' * STRAIN 2
483 REM STRAIN 1

418 REM STRAIN 2

458 REM STRESS

328 REM MIN STRESS

338 REM MAX STRESS

348 REM MIN STRAIN !

358 REM MRX STRAIN !

360 REM MIN STRAIN 2

378 REM MAX STRAIN 2

371 REM SUM (D)

572 REM SuM (D(1))~2

573 REM Sum L(D

974 REM SUM {L{1))~2

373 REM SUm S(I)

376 REM SUM (S{I))+2

377 REM SUNM (D{D1)#1(i)

578 REM SUM (D(I))#sii))

39@ REM DUMMY VARIABLE

488 REm " "

630 REM DUMMY VARIABLE

648 REM INTEGER COUNTERS

638 REM DUMMY ARRAY FOR PLOTTING

658 REM " VARIABLES FOR PLOTTING

678 REM PLOTTER &

6@ REM REGRESSION COEF. FOR STRESS-STRAIN 1
681 REM " ! ' STRESS-STRAIN 2
698 REM SLOPE FOR STRESS-STRAIN 1

691 REM *  * STRESS-STRAIN 2

692 REM Y-INTERCEPT FOR STRESS-STRAIN 1

§93 REM ! * GTRESS-STRAIN 2

788 REM '

718 REX  DIMENSION CHARACTER VARIABLES
728 REM

OF POOR QUALITY

NAME TYPE

5% CHARACTER(32)
s ¢ uzl
N$ ' 2
L$ a2
0$ CHARACTER(12)

A2

A3

Bt .
F) ARRAY
v, 1) '
ViI,2) '
L ARRAY
S(I) '
M) '
W '
W2 '
W3 '
W4 .
WS '
W6 '
03 :
X4 '
15 .
1) .
X7 '
18 ’
W7 .
W8 '

C$ CHARACTER (32)
A$ '

AS '

1,1 '

PUI) ARRAY

AB, A9 NUNERIC

B2 :

Rt .

R2
cl
€2
Et
£2
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738 DIM S5$(32),M$(12) N${12},L8(12),D8(12)
740 DIM C#(32),A$(32

758 REM

748 REM INPUT INITIAL VARIABLES

778 RENM

732 PRINT "INPUT SAMPLE ID.®

798 INPUT 54

@@ PRINT *INPUT DIRECTION OF LOADING"
818 INPUT L

828 PRINT *INPUT DIRECTION OF STRAIN {°
930 INPUT M$

848 PRINT "INPUT DIRECTION CF STRAIN 2°
838 INPUT N$

848 PRINT *INPUT EXCITATION VOLTAGE FOR STRAIN GAGE 1 "
388 INPUT A2
898 PRINT *INPUT EXCITATION VOLTAGE FOR STRAIN GAGE 2 :

891 INPUT 43

98@ PRINT *INPUT DATE"

918 INPUT D$

99@ PRINT *INPUT CROSS SECTIONAL AREA OF SAMPLE (S@. IN.)"
1200 INPLT Al

1300 REM

131@ REM DIMENSION VARIABLES NAXIMUM 28@ DATA PTS. TAKEN ABOUT EVERY
1328 REM ONE SECOND

1338 DIN F(200),v(220,2),L{288),5(208),0(20@)
1358 REM

135@ REM SET UP INSTRON AND TAKE DATA

137@ REX

1388 PRINT "PRESS RETURN TO BEBIN TAKING DATA®
1398 PRINT "PRESS BREAK TO STOP TAKING DATA"
1391 PRINT "ENTER RUN 1518 TO RESUME PROGRAM"
142@ INPUT A$

1419 FOR I=1 70 209

1429 INPUT @24:F(D)

1470 INPUT @12:V1I,1)

144@ INPUT @23:9(1,2)

1450 B1=l

1470 FOR J=1 70 1880

1498 89=y

1499 NEXT J

1588 NEXT I

151@ REN CALCULATE STRESSES AND STRAINS

152 REM

1548 FOR I=t 70 Bi

1558 D{D=(F{D)-F (1)) /A1 #1300#4395

1550 LD =-4% V(1 1)-V(1,1))/ (A2#2.875)

1578 S(1)=-48(Y(1,2)-V{1,2)}/(A322.875)

1598 NEXT 1

1899 REN .

199@ REM CALCULATE MAX AND MIN STRESS, STRAINS
1910 Wi=1



1920 W2=-1

1930 W3=t

1948 W4=-1

195 W3=1

1968 Wo=-1

1978 FOR I=1 T0 Bl

1980 IF L(I):W3 THEN 2p0@
1999 WI=L(1)

2pee [F L{I)<W& THEN 2020
2218 we=L (D)

2828 IF DCI)>W1 THEN 2048
2038 Wi=D(])

2840 IF D(I)<W2 THEN 2040
2858 W2=D(1)

2068 [F S(I) W5 THEN 2888
2078 WS=5¢(1)

2080 IF S(II<W6 THEN 2109
2098 we=5(1)

2100 NEXT I

2118 REN

2120 REM LINEAR REBRESSION
2130 REN

-214@ 50SUB 7008

2150 REM PLOT STRESS AND STRAIN
215@ REN

2170 60SUB 2198

218@ 60 70 3200

219@ B2=32

2200 FOR I=1 T0 2

221@ PAGE

2211 PRINT @B2:°DATE: ";D$;*

2212 PRINT @B2:°DIR. OF STRAIN {: ";M$;"

2220 VIEWPORT 20,120,38,98
2232 DIN PI8)

2240 P(1)=W1

2250 P{2)=W2

2258 P(3)=9

2278 IF 1=1 THEN 2318

2238 P(5)=NS

2299 Pl4)=Nb

2388 50 TO 2338

2318 P{5)=W3

2320 P{4)=N4

2330 P(7)=5

2348 P5<3

2350 GOSUB See8

2350 PS=7

2370 6OSUB 5808

2398 WINDOW P(1),P(2),P(5),P14)
2390 AXIS €B2:P(31,Pi7),8,8
2400 PS=4

2410 As="HiH"

SAMPLE: ";S%;°

~155~

DIR. OF STRESS: ";L$
DIR. OF STRAIN 2: ";N$
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2470 5OSUB sael

2479 PS=8

2440 As=""

2458 505UB 4oee

2448 IF 1=2 THEN 2578
2479 MOVE €B2:D(1),L{1)
2488 FOR J=1 10 B!

2490 DRAW EB2:Did),L(J)
2558 NEXT J

2548 50 10 2560

2570 MOVE 8B2:D(1),5(1)
238@ FOR J=1 TO B1

259@ [RAW 8B2:D(J),5Ji
2558 NEXT J

2568 IF I=2 THEN 2723
2678 AB=N3

2580 A9=N4

259@ 60 TC 2722

2709 AB=W3

2718 A9=Wb

2770 MOVE 8B2:W!,A9

2730 PRINT 8B2: "HHHHHII";
2740 G0 TO 2818

2759 FOR J=1 TO LEN(C$!
2760 A$=SEGICH,d, 1)

2778 PRINT 282:44;"HJ";
278@ NEXT

2799 MOVE @B2:W1,AB

258@ PRINT @B2:°J3J ";
2981 50 T9 2842

291@ IF I=2 THEN 2848
2520 C$="GTRAIN 2°

293@ 60 TC 2738

2940 C$="GTRAIN 1"

2841 GO TO 2738

2842 C$="GTRESS (Pa)"
2843 PRINT @B2:($

2852 IF B2{)32 THEN 288Q
2048 19=18

2879 €0 TO 2898

2980 19=2

2899 HOME

290@ FOR 78=1 TC 19

291@ PRINT @B2:* °

2920 NEXT I8

7978 PRINT 9B2:"MIN. STRESS: ";Wi;* Pa  MAX, STRESS: ";#2;" Pa*
2948 IF I=2 THEN 2998
297Q PRINT @B2:°*MIN. STRAIN [: ";W3;*  MAX. STRAIN L: ";¥4
2980 60 TO 3028

2999 PRINT @B2:"MIN. STRAIN 2: ";W5;®  MAY. STRAIN 2: ";Wé
1828 IF I=2 THEN @38
JB38 PRINT @B2:°SLOPE 1S: ®;CL;" (Pa*-1)*
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ORIGIN i
QF P AL Py
3849 60 TC 388 OOg GE 19
3850 PRINT €82: *SLOPE 15: *jC2;* (Pa*-1)" Warry
1880 IF 1=2 THEN 5118

3899 PRINT @B2:*Y-INTERCEPT: "€l

3189 50 TQ 3130

3118 PRINT 882:"Y-INTERCEPT: ";E2

3138 IF 1=2 THEN 3148

T14@ PRINT B2: *REGRESSION COEF.: *;R1
3150 60 T0 3178

3168 PRINT @B2: "REGRESSION COEF.: ";R2
3178 INPUT AS

3188 NEXT 1

3198 RETURN

1200 HONE

1201 PAGE

3218 PRINT "HARD COPY OF PLOTS? YES=1 NO=2°
3228 INPUT AS

3238 IF ASCY THEN 3278

124@ PRINT "INPUT FLOTTER NUMBER®

3241 INPUT B2 '

1259 GOSUB 2200

1260 60 T0 3300

3278 IF AS=2 THEN 3388

7290 PRINT "BAD CHOICE, TRY ABAIN®
3299 50 T0 3218

3308 PRINT *STORE DATA? YES =1 N0=2'
3318 INPUT AS

3320 IF AS()1 THEN 3350

1330 6OSUB 3200

3340 60 T0 3380

335 IF AS=2 THEN 3380

1340 PRINT "BAD CHOICE, TRY AGAIN*
1378 60 T0 3360

1780 REN

3460 PRINT *ANOTHER RUN? YES=1 NO=2"
347 INPUT AS

3480 [F A3(>! THEN 3500

1450 80 T0 137

1508 IF AS=2 THEN 7538

7518 PRINT "BAD CHOICE, TRY AGAIN®
3528 60 T0 1468

3530 END

5800 REM SUBROUTINE FOR PLOTTING

5081 REM P(PS)=MINIMUM & OF TICS

5218 PL=(P(PS-11-P(PS-2))/P(PS)

5A20 P2=1°INT(LET(PY))

5838 P1=PL/P2

5848 IF P1>2 THEN 5080

5850 IF Pi=1 THEN 5128

5868 P2=24P2

5878 60 10 5128

5088 IF P13 THEN 5118
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5998 P2=5#P2
5108 60 TQ 5120
5118 P2=1@#P2
5120 REN ADJUST DATA MINIMUM
5130 P1=INT(P(PS-2)/P2)
5148 PI=P2t(P1+2)
5158 IF P3CP(P5-2) THEN 5180
516Q P3=P3-P2
5178 60 TO 5150
518Q P{P5-2)=P3
5198 REM ADJUST DATA MAXIMUM
5200 P1=INT(P(PS-1)/P2)
521@ PI=P2¢{P1-2)
5220 IF P(P5-1)<P3 THEN 5250
1@ P3=P3+P2
@ 60 T0 5220
2 P(P5-11=P3
@ REM P(P5)=ADJUSTED TIC INTERVAL
5270 P(P5)=P?
5280 RETURN
- 6209 REM LABLE AXIS
4818 P4=P(P3-1}
6820 Pid)=P(1)
4230 Pi8)=PI(5)
848 P3=ABS(P(P5-3)+P4) MAX ABS(P(P5-2)-P4)
4@5@ PI=INTILET(P3)+1,0E-8)
4268 P2=19%-P3
4878 P1=P(P5-2)-P4/2
4088 P(PS)=P(PS)+P4
£@9@ IF PIPS):P1 THEN 4140
6188 MOVE €B2:P(4),Pi8)
6118 PRINT A$;
4128 PRINT @B2: USING "-D.20,5":P(PS)#pP2
4130 60 TO 4088
6148 IF P3=0 THEN 4180
6150 P(P5)=P1
§160 MOVE @B2:P(4),P(8)
£17@ PRINT @B2: USING “2A,+FD,S":* £%;PI
4189 RETURN '
7008 REN
7@1@ REM SUBROUTINE TO O LINEAR REGRESSION ON DATA
7028 REN
7830 X3=0
7042 Y4<@
7858 ¥5=9
7058 16=0
7878 X7=0
7298 X8=8
7098 W7=0
7180 W8=8
711@ FOR I=1 70 BY

3
3
5
5

17
L
24
as
)
28



-159-

2 X3=X3+D(1)
38 X4=X44D{1) "2
@ X3=x3+L{
B X6=1a4L{D)"2

7168 17=47+5(1)
7178 X8=X8+S(1)*2
7188 W7=K7+D(I1#L(1)
719@ Wo=W8+D (1) #5(1)
7208 NEXT I
7218 Cl=(BL1#W7-X3#X5}/ (BL1#X4-X3"2)
7220 C2=(B1#MB-XJ#XT7)/ (BI#XA-X3*2]
7230 E1=(XA#XS-XTHNT}/ (B1#X4-X3*2)
7248 E2=(X4#X7-XJN8) / (B1#X4-13"2)
7250 Ri=(B1¥W7-XJ#X3)/ ((BIEX4-X3*2) #(B1#X6-X5"2)) B, 5
7240 R2=(B1%WB-XZ#X7)/({BL#K4-A3 2} #{B1#XB-X72)) 0.5
7278 RETURN
£aee REM
3218 REM SUBROUTINE T@ STORE DATA
B8@2@ PRINT "INPUT TITLE FOR STESS-STRAIN I FILE (MAX &4 LETTERS)®
3830 DIM Bf(64) ,KE(64)
384@ INPUT B4
9850 PRINT *INPUT TITLE FOR STRESS-STRAIN 2 FILE (MAX 64 LETTERS)"
9850 INPUT K$§
387@ AS-@
8871 AS=ATHLEN(BS) +LEN(KS) +10%(B1%2) +10
geee TLIST
8279 PRINT *°
§10@ PRINT "INPUT & OF (LAST) FILE TO STORE DATA FOR STESS STRAIN 1°
2118 INPUT M3
8120 FIND M3
8138 MARK 1,AS5
8148 FIND M3
3158 WRITE B$
8150 WRITE Bt
3178 FOR 1=1 7O B!
g18@ WRITE D(I},L(T)
8198 NEXT I

288 CLOSE
8210 FIND M3+l
3229 MARK 1,A3
§238 FIND M3+l
3248 WRITE K$§
9230 WRITE B1
B26@ FOR I=1 TO Bl
8270 WRITE D(I),S¢I)
8288 NEXT I

829@ CLOSE
3388 PRINT *DATA FOR STRESS-STRAIN t STORED ON FILE ";M3
831@ PRINT "DATA FOR STRESS-STRAIN 2 STORED ON FILE *;M3+1
§320 RETURN

-
H
.'
7
i

19
id
IR
i
14
7S
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APPENDIX F

In this appendix, the derivations of the independent third order elastic moduli for
the symmetries of transverse isotropy and orthotropy are considered. After considera-
tions of the symmetry of the stress and strain tensors and the existence of a strain
energy function, the number of independent third order moduli for the most general
anisotropic solid is reduced to 56. The number of independent third order elastic
coeflicients can be reduced further if the effect of the elastic symmetry of the material is
considered. As with the case of the linear elastic moduli, the effect of symmetry rota-
tions on the strain energy function which is extended to include terms up to third order
can be used to determine the independent moduli for the different symmetries. Since
only third order terms are being considered, only the portion of the strain energy with

third order terms (®;) need be considered. It is given by

1

1
P; = EAECAAAWX + 2 S caapfATs + Y cappfafpfp.  (F.1)

A»B A<B<D

The process is exactly the same as was the case of reduction of the second order
moduli. The strain energy function is written out. Then the effect of a specified rota-
tion on the strain tensor components is determined and then substituted into the strain
energy function. Then the rotated and original strain energy functions are equated
term by term to determine the relationships between the moduli. However, it would be
both too time consuming and space consuming to write out the necessary equations for
each symmetry rotation. Thus, in this appendix only the effects on the moduli for each

rotation will be given. These are determined by simple algebraic manipulations.

The orthotropic moduli are determined first by considering the effects of two fold
rotations about each of the three axes. For a 180 degree rotation about the x, axis

which has a transformation matrix given by
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-1 0 0
[aj]=]0 1 0 (F.2)
0 —1

24 of the moduli drop out leaving 32 independent moduli. The moduli which drop out

areé  Cyy €116 C124) C126: C134» C136) C145s €156y C224) C228, C234) C236) C246) C256, C334) C336; C345) €356,
C44ds C448) C456) C408, Csse, aNd Cqgq . These can all be shown to equal zero.

The effect of a two fold rotation about the x; axis is to reduce the number of
independent moduli to twenty. The moduli cggg, ¢115, Coos, Caas, C4asr €148 €125, €135,
Cogs, Caqe, and cgee all become equal to zero. This leaves the remaining independent
moduli as ¢y, 11, €113y C122) C128) €138 Caas C166) C108) C2225 C223) €233, Couay Cas6r Coger C333,
C344, C355, C3gs, aNd C456 . As with the case of the second order moduli, the third sym-
metry rotation about the x5 axis does not reduce the number of independent moduli
further. Thus the 20 independent moduli for an orthotropic material are those listed

above with all other c,gp =0 .

Again, the transversely isotropic moduli can be determined by further reducing
the orthotropic moduli by applying the additional symmetry condition that the material
be isotropic in the x;, x, plane. This means that the material can be rotated by any
angle around the x3 axis and be in an elastically equivalent position. This reduces the
number of independent moduli to nine. They are ¢y, €110, €113, €123, €133, C144

Cy85) Cass, and cay . The following relations hold for the remaining nonzero moduli

Coo9 = C111y C355 = C344

1

Co23 = €113y C166 = Co66 = 4 (c111 = €112)

Coss == Cpq4y Co03 = C)33 (F.3)

Co44 = C1559 C366 = 2 (Cus - 0123)
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1
€192 = C112y C456 = ‘2‘(0155 — Cr44)-
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APPENDIX G

180 REM  PROGRAN TC MEASURE P2L2 FREQUENCY

11@ REM CHANGES AS A FUNCTION CF APPLIED LOAD AND PLOT AND

129 REM STORE DATA. WRITTEN BY PROSSER 2/23/84

138 REM

143 REM  VARIABLES NAME
158 REX

168 REM SAMPLE ID. 5%
178 REM MODE OF WAVE N$
188 REM DIRECTION OF PROPAGATION N$
198 REN ~ ° " POLARIZATION P$
208 REW  * * LOADING L$
228 FEM DATE D$
278 REM CROSS SECTIONAL AREA OF SAMPLE (S@. IN.)AL
8@ REM NUMBER OF DATA FDINTS B1
J3@ REM FREQUENCY MEASUREMENTS  (Hz! F(I
34Q REM VOLTAGE MEASUREMENTS FOR LOAD (VOLTS) V()
4@ REM STRESS (Faj L
462 REM DELTA F/F AT EACH POINT M
528 REM MINIMUM DELTA F/F L)
538 REN MAXIMUM DELTA F/F W2
548 REM MINIMUM STRESS {Pal LN
538 REM MAXIMUM STRESS * L]
571 REM SUM D(I) 13
972 REM SUM (DMI)172 X4
973 REM SuM L(I) 13
574 REM SUM (L{D)1°2 X6
377 REM SUM (DEDI#1{i} W7
398 REM DUMMY VARIABLE ¢
68e REM  ° ! A$
638 REM DUMMY VARIABLE A3
648 REM INTEGER COUNTERS I
63@ REM DUMMY ARRAY FOR PLOTTING Pl
668 REM "  VARIABLES FOR PLOTTING AB, AT
678 FEM PLOTTER # B2
48¢ REM REBRESSION COEF. FOR STRESS-DELTA F/F RI
498 REM SLOPE FOR STRESS-DELTA F/F !
692 REM Y-INTERCEPT FOR STRESS-DELTA F/F Et
708 REM

718 REM  DINENSION CHARACTER VARIABLES
72 REM

730 DIM 5§(32),%$(12),N$112) ,P$(12),L8(12) ,D8(12)
748 DIN C$(32),A$(32)

758 REM

748 REM INPUT INITIAL VARIABLES

778 REN

788 FRINT *INPUT GAMPLE 1D.°

79 INPUT 5%

888 PRINT "INPUT MODE OF WAVE®

810 INPUT M$

228 PRINT *INPUT DIRECTION OF POLARIZATION®

TYPE

CHARRCTER{32)
" 12)
12
o2
o)

CHARACTER({2!

ARRAY

ARRAY

CHARACTER(32)

ARRAY
NUMERIC
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830 INPUT P$
84@ PRINT "INPUT DIRECTION OF PROPAGATION"

BS@ INPUT N$

848 PRINT *INPUT DIRECTION OF LOADING®

878 INPUT L$

998 PRINT *INPUT DATE"

918 INPUT D$

99¢ PRINT "INPUT CROSS SECTIONAL AREA OF SAMPLE {SQ. IN.)®
1888 INPUT Al

1309 REM

131@ REM DIMENSION VARIABLES MAXIMUM 2@@ DATA PTS. TAKEN ABOUT EVERY
1328 REM ONE SECOND

1338 DIN Fi200),V(280),L(200),D(200)

1358 REM

1340 REM SET UP INSTRON AND TAKE DATA

1370 REM

1389 PRINT *PRESS RETURN TO START TAKING DATA"

1398 PRINT "PRESS BREAK T0 QUIT TAKING DATA"

1391 PRINT *THEN ENTER RUN 518"

1488 INPUT AS$

1419 FOR I=1 TO 288

1420 INPUT €3:F ()

1430 INPUT @€24:V(D)

145¢ Bi=!

1472 FOR J=1 TO 85

1488 B9=J

1499 NEXT U

1580 NEXT I

151Q REM CALCULATE STRESSES AND DELTA F/F
1528 REM

1548 FOR I=1 TO Bt

1558 L{D)=(V{D)-V(1}) /A1 #4B95+1200¢-1

1578 D(D=(FID-FUN/F)

1588 NEXT I

1892 REN

1999 REM CALCULATE MAX AND MIN STRESS AND DELTA F/f
1918 N1=1

1928 W2=-1

1930 W3=t

1948 WA=-1

197@ FOR I=1 TO Bt

1988 IF L(I))WI THEN 2800

1998 W3=L{(1)

28088 IF L(I)<W4 THEN 2028

2018 We=L(I)

2828 IF D(I)7N1 THEN 2048

2038 Wi=Dil)

2048 IF D{I)<W2 THEN 2188

2058 W2=D(1)

2108 NEXT I

2110 REN

2128 REM LINEAR REGRESSION

2138 REM
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2149 505U 7020
2158 REM PLOT STRESS VS, DELTA F/F
2168 REN

2170 5OSUB 2198

2188 60 T0 3208

2190 B2=32

2218 PASE

2211 PRINT @B2:"DATE: *;D$;*  SAMPLE: *;§6;"  WAVE MODE: ";M$
2212 PRINT @82:"DIR. OF PROPAGATION: *;N$;®  DIR. OF STRESS: ";L$
2213 PRINT @B2:*DIR. OF POLARIZATION: *;P$
2220 VIEWPORT 20,128,38,99
2270 DIN P{8)

2240 P(5) =1

2258 Pl4i=N2

2262 P(3)=5

2318 PULI=N3

2320 P(2)=N4

2330 PI7}=5

2340 P5<3

2350 §0SUB 5280

2368 P5=7

2370 605U 5000

2388 NINDOW P{1},P(2),P(S),P(4)
2799 AKIS &B2:P(3),P(7),,0
2498 PS=4

2410 A$="HEH"

2420 §0SUB 5280

2438 P5=8

2440 Ag=""

2450 50SUB 4@0@

2470 MOVE #B2:L(1),D(1)

2488 FOR J=1 T0 B

2499 ORAW €B2:L(J),D(J)

2550 NEXT |

2578 AB=H3

2680 A9=N4

2728 MOVE EB2:A8,W2

2730 PRINT 8B2: "HHHHHII®;

2749 C$="DELTA F/F"*

2750 FOR J=1 TO LEN(CS)

2752 A$=SEGICS,J, 1)

2770 PRINT @B2:48;"HI";

2780 NEXT §

2790 MOVE €B2: A8, NI

2808 PRINT 2B2:*JJ *;

2820 C$="STRESS (Pa)"

2941 PRINT €B2:C$

2858 IF B2¢332 THEN 2989

2850 19-38

2878 §0 TO 2890

2880 192
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299@ ROME

2988 FOR 18=1 10 19
291@ PRINT @B2:" °
2928 NEXT I8

297@ PRINT @B2:°MIN. DELTA F/F: ";W13"  MAL.

2978 PRINT €82:"NIN. GTRESS: "iW3;" (Pal”;*
7870 PRINT @B2:"SLOPE IS: *;Cl;* (Pa*-1)"
3099 PRINT @B2:°Y-INTERCEPT: “;E1;" (Pa*-1)"
3148 PRINT B2:*RESRESSION COEF.: *;R1
3170 INPUT A8

7199 RETURN

7200 HOME

1201 PAGE

3219 PRINT "HARD COPY OF PLOTS? YES=1 NO=2"
1228 INPUT 43

3230 IF ASCYL THEN 3278

7248 PRINT "INPUT PLOTTER NUMBER®

3241 INPUT B2

3250 605UB 2210

7268 GO 70 3329

3270 IF AS=2 THEN 3300

1288 PRINT "BAD CHOICE, TRY AGAIN®
7299 50 10 3210

1300 PRINT *STORE DATA? YES =1 N0=2"
3318 INPUT 43

3320 IF 45031 THEN 3750

3338 60SUB 320

7340 60 T0 3389

3350 IF AS=2 THEN I38@

1368 PRINT *BAD CHOICE, TRY AGAIN®
3378 50 T 3368

3780 REN

3460 PRINT "ANDTHER RUN? YES=t NO=2"
3478 INPUT AS

7080 IF ASCM THEN 3580

1499 50 70 1378

1500 IF AS=2 THEN 3530

3510 PRINT *BAD CHOICE, TRY AGAIN®
3520 60 7O 3460

1578 END

5808 REN SUBROUTINE FOR PLOTTING

SR81 REM P(PS)=NININUN & OF TICS

SR10 P1=(P{PS-1)-P(P5-2)} /P(PS)

5028 P2=18" INTILGT(P1))

5878 P1=P1/P2

<048 IF P1)2 THEN 5060

5850 IF Pi=1 THEN 5128

5040 P2=24P2

5878 60 70 5120

5882 IF P13S THEN 5110

S09@ P2=54P2

DELTA F/F: ";W2
MAX. STRESS: ";W4;" (Pa)"
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3128 50 T0 5128

3119 P2=19#P2

5128 REM ADJUST DATA MINIMUM
138 P1=INT(P(PS-2}/P2)

G140 PI=P2(Pi+2)

515Q IF P3(P(P3-2) THEN 518

5168 PI=P3-P2

5178 50 70 5150

5180 P{P3-2)=PI

519@ REM ADJUST DATA MAXINUN

5288 PL=INT{P(P3-1}/P2)

5218 PI=P2#(P1-2)

5228 IF P(P3-1)<P3 THEN 323@

3238 PI=PI+P2

5248 50 TO 3220

3252 P(PS-11=P2

5258 REM P(PS)=ADJUSTED TIC INTERVAL

3270 PiP3Y=P2

3280 RETURN

5200 REM LABLE AXIS

6810 P4=P{PS-1)

5828 P(4)=P (1)

5838 P{§=P (5}

4848 PI=ABS(P(P3-31+P4} MAX ABS{P(P53-2)-P4)

405@ PI=INTILGTIPI}+1.0E-8)

4860 P2=10°-P3

&878 Pi=P{P3-2)-P4/2

6088 P(P3)=P(P3}+P4

5892 IF PIPTIZPL THEN 514

5100 MOVE BB2:P(4},P(B)

5118 PRINT A$;

4120 PRINT @B2: USING *-D.20,8":P(P3)#P2

4138 50 TO saee

6149 [f P3=R THEN 5180

4158 PIP3)=P!

£16@ MOYE &B2:P(4),P{8)

6170 PRINT @B2: USING "2A,+FD,S":" E";P3

418Q RETURN

7000 REN

7819 REM SUBRCUTINE 7O DO LINEAR REGRESSION ON DATA

7020 REM

7838 13-8

7848 14=2

7258 ¥5=0

7868 X6=2

7890 47=0

7110 FOR I=1 T0 B!

7128 X3=43+D(D)

7138 14=X4+D11)"2

7149 X3=3+L(D)

7158 X&=16+L(11°2
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7188 W7=W7+D(I)+L(1

7200 NEXT I

7218 Cl=(B1#W7-13#X5)/ (B1#X4-X3"2)

7230 E1=(X4#X3-X5eW7)/ (B1#X4-X5"2)

7250 R1=(B1#W7-X3#X5)/ ((BL1#X4-X32) #(B1#X6-X5"2})".5
7279 RETURN

3008 ReM
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APPENDIX H

182 REM NONLINEAR DATA ANALYSIS PROGRAM (TRANSVERSE ISOTROPY!
118 REM DETERMINE 7 OF 9 NONLINEAR COEF. BY LEAST SQUARES FIT
128 REM USING 24 SAC MEASUREMENTS

{32 REM WRITTEN BY PROSSER 11-18-86

ORIGINAL PAGE ¥
OF POOR QUALITY

148 REM
138 REM VARIABLES
148 REM LINEAR ELASTIC STIFFNESSES K
178 REM  * ) COMPLIANCES §{I)
182 REN SAC MEASUREMENTS - R, 1)
198 REM UNCERTAINTIES IN SAC'S H(I,2)
200 REM NONLINEAR COEF'S Cir, 1
218 REM MAX. UNCERTAINTY IN NONLINEAR COEF'S C(I,2
228 REM PROB. * o " £eL,3)
238 REM RECALCULATED SAC'S R, 3)
°40 REM MAX. UNCERTAINTY IN REEALCULATED SAt § H{I,4)
230 REM PRCB.  ° " HII,S)
268 REM COEFICIENTS OF EQ'S (24 EQ., 7 UNKNOWNS) AL
278 REM ALL,J1#ALL, M) B,
282 REM INVERSE OF E(I,J) Fil, 1}
298 REM PRODUCT OF E AND F UL
0@ REM PRODUCT OF F AND E F2(,0
118 REM CONDITION NUMBER OF E ;3
320 REM H(I,1])+CONSTANT TERMS Y
30 REM INTEGER COUNTERS L,
348 REN FERCENT DIFFERENCE BETWEEN MEASURED AND CALC SAC'S V(D)
A REM " UNCERTAINTY IN CALCULATED SAC'S Ti,2)

1808 REM INPUT DATA

1801 DIN K(3),5(4),H(24,5),A(24,7},CI7,3)

1018 PAGE

1828 PRINT "INPUT LINEAR ELASTIC STIFFNESS MODULI (GPa)"
1830 PRINT *1{-1,12-2,44-3"

1848 FOR I=1 T0 3

1858 PRINT "INPUT C*;1

1868 INPUT K(D)

1070 NEXT 1

1088 PAGE

1098 PRINT "INPUT LINEAR ELASTIC COMPLIANCE HODULI (6PA)"-1*
1188 PRINT *11-1,12-2,13-3,33-4"

1118 FOR I={ 10 4

1128 PRINT *INPUT §7;1

1138 INPUT S(1)

1148 NEXT 1

1158 PAGE

1168 PRINT "INPUT SAC'S AND UNCERTAINTIES (GPaj*-1"

1178 PRINT *122-1,211-2,322-3,311-4,121-5,212-4,312-7,321-8"
1188 FOR I=1 T0 8

119 PRINT *INPUT SAC *;1

1208 INPUT H(I,1)

1218 PRINT *INPUT UNCERTAINTY®

1228 INPUT HUI,2)

238 NEXT I
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1248 PAGE
1258 PRINT "SAC'S CONT'D."

1268 PRINT "123-9,213-18,323-11,313-12,131-13,232-14,132-15, 231~ 14"
1278 FOR 1=9 10 15

1288 PRINT "INPUT SAC ";1

1298 INPUT HII,1)

1308 PRINT "INPUT UNCERTAINTY®
1318 INPUT H!I,2

1328 NEXT 1

1338 PASE

1348 PRINT "SAC'S CON'T."

1358 PRINT "81i-17,822-18,812-19,821-20,0!3-21,823-22,031-23,32-24"
1368 FOR 1=17 T0 24

1378 PRINT "INPUT SAC *;1

1388 INPUT H(I,1)

1398 PRINT "INPUT UNCERTAINTY®
1428 INPUT H{I,2)

1418 NEXT 1

142 REX CALCULATE COEF'S OF £Q.§
1438 A=9

1448 ALL,1)=5(2)/ (26K(1))

1458 AL1,2)=5(1) /(28K (1))

1468 AL, 3)=5(3H/ (20K(1))

1478 A(3,1)=A(1,3)

1490 A(3,2)=A(1,3)

1490 A(3,3)=5i4) /(28K (1))

1508 A(5,1)=(5(11+5(2))#0,25/ (K (11-K(2))
1518 A(5,2)=-A(5,1)

1528 A(5,3)=8.5¢5(3)/ (K(1)-K(2))
1538 A(5,4)=-A(5,3)

1531 A(7,1)=A(5,3)

1532 A(7,21=A(5, 4]

1548 A(7,3)=8,5#5(4)/ (K(1)-K(2)}
1550 A(7,41=-A(7,3)

1568 A(9,5)=5(1)/ (2%K(3))

1570 A(9,51=5(2)/ (24K (3})

1588 A19,7)=5(3)/(2#K(3))

1598 A(11,51=A(9,7)

1608 A(11,6=A(9,7)

1618 A(11,71=S(4) /(25K (3))

1628 A(13,5)=A1(9,6)

1630 A(13,6)=A(9,5)

1648 A(13,7)=A(9,7)

1650 A(15,5)=A(9,5)

1668 A(15,6=A19,6)

1678 A(15,7)=A(9,7)

1688 B=S(1)+5(2)45(3)

1498 D=215(3)45(4)

1708 A(17,1)=B/ (28K (1)}

1718 A(17,2)=A(17,1)

1728 ALL7,3)=D/ (24K (1))

1738 A{19,1)=0, 548/ (K(1)-K{2)}
1748 A119,2)=-A(19,1)
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1758 A(19,3)=D/(K(1}-K{2))4@.5
1768 A(19,4)=-A(19,3)

1778 A(21,5)=B/ (2#K(3))

1780 A(21,6)=A(21,5)

1798 A(21,7)=D/ (24K (3))

1698 A(23,51=A(21,5)

1818 A(23,6)=A(21,5)

1628 AL23,T)=A121,T)

1838 FOR J=1 T0 12

1842 FOR 1=1 10 7

1858 A(28,11=A(2¢J-1,1)

1868 NEXT 1

1678 NEXT J

1880 REN ADD CONSTANT TERMS TO SAC'S
1898 DIN Y(24}

1998 ¥ (1)=-(H(1,1145(2)]

1918 Y{2)=-(H{Z,1145(2))

1928 Y(3!=-(H(3,1145(3))

1938 Y (4)=-(H(4,1)48(3))

1948 Y (5)=- (H(S, 1145 (1))

1958 ¥8)=-(H{g, 1)45i1))

1968 ¥(7)=~(H(T, 1145(3))

1978 Y(8)=-(H(8,1)45(3))

1988 Y(9)=-(H(9,1145(3))

1998 Y{10)=-(H(18,1)4§(3))

20008 Y(11)=-(H(11,1)45(4))

2018 Y(12)=-(H{12,1)45 (4))

2028 Y{13)=-{H(13,1145 (1))

2030 YO14)==(H(14,1)45(1))

2048 Y(15)=-(H(15,1)+5(2))

2058 Y{16)=-(H(16,1145(2))

2068 Y(17)=-(H(17,1)+B+1/ (2K (1))
2078 Y(18)=-(H(18,1)+B+1/ (24K (1))
2088 Y{19)=-(H{19,1)+B+1/ (K(1)-K(21))
2098 Y(28)=-(H(28,1)+B+1/ (K(1)-K{2}))
2188 Y(21)=-(H(21,114D+1/ (28K(3)})
210 ¥{(22)=-1H(22,1)4D41/ (24K (3D
2120 Y{23)=-(H(23, 1) +B+1/ (28K (3)))
2130 Y(24)=-(H(24, 1) 4B+1/ (28K (3)))
2148 REM COMPUTE A(I,M)#A(I,J)
2150 DIN E(7,7)

2168 FOR M=t TO 7

2178 FOR J=1 10 7

2188 E(M,J)=0

2198 FOR 1=t T0 24

2200 E(M,3)=EN,J)+A (T, M) 4ALT,]
2218 NEXT 1

2220 NEXT 1

2238 NEXT M

224 REM COMPUTE INVERSE OF E(N,J)
2250 DIN F(7,7),FL7,7),F2(7,T)
2268 F=INVE)

2278 REM COMPUTE CONDITION NUMBER
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82 71=-1.8E+100

99 22=-1,0E+108

Be FOR =t T0 7

18 FOR J=1 10 7

2120 IF E(1,3)421 THEN 2340
8 24=E(,0)

2348 IF F(I,3)1412 THEN 2360
2358 12=F(1,])

2368 NEXT 3

2370 NEXT 1

2388 13=ABS(12+11)

7398 F1=E WPY F
2498 F2<F WPY E

2442 REN COMPUTE NONLINEAR COEF'S
2450 FOR 1=1 T0 7

[N SCTN N R SR N I S T N B o ]
<l /‘“LJM(J"J'\!

2468 C(1,1)=0

2478 C(1,2)=0

2488 C11,3)=0

2498 FOR J=1 T0 24

2508 FOR L=t T0 7

2518 CUI,1=CT, 114F (L, TI4ACT, L) #Y (D)

2528 C(1,2)=C(1,2)+ABS (FIL, TI#A(J,L))H(,2)

2538 NEXT L
2548 NEXT J
2558 C(1,30=C(1,2)/23%0.5

2568 NEXT 1

2578 REM RECALCULATE SAC VALUES USING DERIVED VALUES

2580 HUL,3)=- (26K(1)#§(2)45{1140(2, 1145 (2)4C(L, 1)45(313C(3, 1))

259 Hi1,3)=H(1,307 (26K (1))

2688 K3 ,3)=- (24K (1115 (3146 ()4 (L1, 114012, 11145 (A1 CL3, 1))

2618 H{3,3)=H(3,3)/ (281D

2628 H(5,3)=(K(1)-KI2))#5(1)+2, 25# (S{1)+5 (21 #(C L1, 1 -C(2,1)

2438 H(5,3)=H(5,31+0.545(3) £ (C(3, D -Ca, 1)

2648 H(5,31=-H(5,3)/ (K{1)-K(2))

2658 H(7,3)=(K(1)-K(21)#5(3) +0. 545 {3 #(L{1,11-C2, 1))

2668 H(7,3)=H(7,3) 40,545 () #(C(3,11-Cd,10)

2678 Hi7,3)=-H{7, 30/ (K{1)-K(2)

2688 H(9,3)=- (26K (3) 45 (3145 L1140 (5, 1145 (2140 (6, 1) +§(31HCLT, 1)}/ (28K (3))
2498 H(LL,3)=- (28K (345 (4) 45 (3)(C(5,1)4C 16, 1)1 45(3)4C(7,1)) /(24K (3))
2708 H{L3,30=- (26K (346 (1148114 (6, 1148 (2) 4C(5, 1148 (314C(T, 1))/ (24K(3))
2710 HULS,3)=- (26K (314620 4811 #C(5, 1) 45214 (8, 1) 48 (3)4CL7, 111/ (24K(3))
2728 HIL7,3)=- (1+20K (1) #B+BE(CHL, 114012, 1)) +DEC (3,100 / (28KL1))

2730 H(19,3)=1+{K(1)-K(2) 1 4B

2748 H(19,3)=H(19,3) +0.5¢ (B(C(1,1)-C{2,11)+D# (C(3,1)-C (A, 1))

2750 HU19,3)=-H(19, 31/ (K(1)-K(2))

2760 H(21,3)=- (L+20K (3 DB (CLS, 14C{6, 1)) +D4C(T, 111/ (28K(3))

7778 H(23,3)=- (1428 (3 4B+BR(CIS, 1) +C 6, 1) +DRCLT, 11D/ (24KT))

2790 FOR 1=t 10 12

2790 H(2+1,3)=H(281-1,3

2888 NEXT |

2818 DIN W{7,2)

7820 FOR I=1 T

2830 FOR J=1 T

o
&
b3
i

0
0
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2648 W(J,1)=ABS(CLJ, T+1}/CHI, 1)
2850 NEXT J

2868 NEXT I

2878 FOR I=1 10 2

2888 FOR J=t T0 4

2898 HJ,1+3)=(H(L, 1 +H (2,1 4N (3,11 #H(3,3)

2988 NEXT |

2918 FOR J=5 10 8

2928 H(J,1+30= (00, T1+H(2, 1) +H (3, D +NCA, 1)) #HET,3)
2930 NEXT J

2948 FOR J=9 T0 1

2958 H(J,1+3)=(H(S, 11 +R(6, 1) +R(7, 1)) #H(T,3)

2968 NEXT |

2978 FOR J=17 10 18

2980 HJ,T+30=(N(1, T1+R(2, 1) +H I3, )1 #H(T, 3

2998 NEXT J

7080 FOR J=19 10 28

018 HIJ, 14302 (N(L, TI+H(2, 1) +H (3, 1) +HL4, 1)) 4H(J, 3)
3828 NEXT J

3038 FOR J=21 TO 24

3042 H(J,T1435=(NI5, 1i+R (6, 1) +R(T7, 1) 4HUT,3

3850 NEXT J

3068 NEXT 1

3078 FOR 1
1088 FOR J
3099 H(J,1
7100 NEXT

118 NEXT 1

3128 DIM V(24)

3430 FOR I=1 T0 24

3048 VI)=ABSCLHIT, 1) -KUT, 3N /HIT, 1))
2150 Y(I)=V(I) 108

3168 NEXT 1

3178 DIN T(24,2)

3188 FOR I=t 10 2

3199 FOR J=1 T0 24

3208 T(3,D)=H(T, 1431 /H(T, 3) 100

3281 T(J,1)=ABS(T(J,1))

1218 NEXT J

3220 NEXT 1

3238 REM PRINT OUT DATA

3248 REM

3250 N=32

3268 PAGE

3278 GOSUB 3388

3280 PRINT "PRINTED COPY? YES =1 NO =2 *
3299 INPUT 15

3380 IF I5=1 THEN 3340

3318 IF 15=2 THEN 4219

7320 PRINT "BAD CHOICE"

7330 60 TO 3280

3349 PRINT *INPUT PRINTER #*

3358 INPUT N

105
024

4
tT
=ABS(H(J, 1)

~ un u

ORIGINAL PACE i3
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I369 G0SUB 3368
3370 60 10 4010
I35 PRINT @N:"NONLINEAR DATA ANALYSIS FOR TRANSVERSE ISOTROPY MODEL®
I39@ PRINT €N:* *

3408 PRINT &N:* INPUT DATA"

3410 PRINT &K:® *

J428 PRINT @N:"LINEAR ELASTIC MODULI®

J430 PRINT &N:" °
J44@ PRINT @N:"CH1 = *;K(1);" (GPa)  Sif
I45@ PRINT @N:*C12 = ";K(2);" (BPaj  S12 = ";§{2);" (BPa)~-1"
J46@ PRINT @N:"CH4 = *;K(3);" (BPa) 513 = ";5(3);" (BPa)*-1"
I478 PRINT @n:* §33 = *;5(4);" (BPai~-1"
I488 PRINT @N:* *

7498 PRINT @N:*VELOCITY DERIVATIVE DATA (GPa)*-1"

I508 PRINT &n:* °

I510 PRINT @N:"1. H122
3520 PRINT @N:"Z, H211
I33@ PRINT eN:"3. H322
I54@ PRINT €N:"4, HItI
I35@ PRINT &N:"5. HI21
J56@ PRINT @N:®6. H212
J57@ PRINT @N:"7. H312
7388 PRINT @N:"8. HI2
3390 PRINT @N:"9. H123
3680 PRINT @N:*1@. H21Z
3618 PRINT €N:"11, HI23
3620 PRINT &N:"12, H313
3638 PRINT €N:"13, H131
T648 PRINT @N:"14, H232
3638 PRINT @N:"15. Hi32
3648 PRINT &N:*16. H23!
3678 PRINT @€N:*17, HB!it
3580 PRINT @N:"18. HR22
T690 PRINT @N:*19. HO12
I780 PRINT €N:"20. HE2!
J718 PRINT @N:"21. Hel3d
3720 PRINT @N:"22, H@2I
J730 PRINT €N:"23. He31
J740 PRINT @N:"24, HRI2
J750 PRINT eN:" *

3762 PRINT @N:"THIRD ORDER ELASTIC CONSTANTS DERIVED FROM LEAST®
3770 PRINT @N:°SQUARES FIT AND MAX. ERROR AND PROB. ERROR (6Pa)*
1788 PRINT €N:* *
J790 PRINT @N:"Cit!
3808 PRINT @N:"C112
1818 PRINT @N:"C113
1828 PRINT @N:"C123
3838 PRINT eN:"Cl44

":501) ;" (GPa)~-t"

n wn n
" (13 [1]

SH(L 105" /- "3HILLD)
nHI2,105" 4= "3H(2,2)
LR35 4/ H3, D)
CHUL L) - SHULD)
LIS, 13 +/- *3H(5,2)
"Hib, 103" +/- *;HI6,2}
CHT L 4= R,
“HIB, 105" /- *;H(8,2)
SH9, 1050 +/- "3HI9,2)
LROB, 10 ¢/~ ";HI18,2)
HL 1" 47— *5HI11,2)
CHIU2,1050 4/ *H12,2)
GR350 4/~ HI3,2)
LA, DY 4~ *HIIA,2)
HUI5,103" +/- "3H(15,2
YL, 1050 +/- "iHU16,2)
SHUT, 0 4~ SHUT,D)
H18,1);" +/- "3H(18,2)
SHO9, 1037 +/- *3H(19,2)
“H28, 103" 4/ ";H(20,2)
VI, 0050 4= *3HI21,2)
CH22,105 4/ "H(22,2)
23,0057 /- H23,2)
A, 15T 4/ HOA,2)

1] " 1] " n L] " " n " n u " Ll “" n n n i " 1] 1" " "

O, LT 4= 00200+ 0(01,T)
SO, 00 4= m002,2)5 +/- 02,0
S03, 100 +/- 045,257 +/- 02,0
O, 1) /- 004,205 +/- " C04,3)
3,2
I84Q PRINT €N:*C155 = *;C(4,1);° +/- *;C(8,2)3" +/- ";C{6,3)
I85@ PRINT @N:"C244 = *;C(7,1);" +/- *;0(7,20;" +/- %C(7,3)
3862 PRINT @N:°C133,CI33 UNDETERMINED DUE TO LACK OF DATA"
I870 PRINT @N;® *
J88@ PRINT @N:"RECALCULATED VELOCITY DERIVATIVES USING FITTED TOEC'S*

LLS, 1" - 05,2050 +- 4053
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3898 PRINT @N:"AND MAX. AND PROB. ERRORS I[N SAME ORDER AS BEFQRE*
7908 PRINT &N:" *

O FOR [=1 TO 4

3928 PRINT @N:I;®. ";H(I,3);* +/- ";H(I, 405" +/- "H(,S

3938 NEXT I

J94@ PRINT €N:* °*

7950 PRINT @N:*"PERCENT DIFFERENCES, MAX. AND PROB, UNCERTAINTIES®
3960 PRINT &N:® *

3970 FOR I=1 TO 24

1980 PRINT @N:I;®. ";V(D)TULL,1THL,2)

J998 NEXT I

1991 PRINT eNs* "

3992 PRINT @N:"CONDITION # FOR INVERTING MATRIX IS: *;13

4808 RETURN

4918 END

ORIGINT, Py "
OF PC: g

ORIGINAL PAGE i3
OF POOR QUALITY
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188 REM NONLINEAR DATA ANALYSIS PROGRAM (ORTHOTROPIC MOCEL)

119 REM DETERMINE 15 OF 2@ NONLINEAR COEF. BY LEAST SQUARES FIT
128 REM USING 24 SAC MEASUREMENTS

138 REM WRITTEN BY PROSSER 11-13-86

140 REM

15@ REM VARIABLES

148 REM LINEAR ELASTIC STIFFNESSES (I}
178 REM " . COMPLIANCES §t0
168 REM SAC MEASUREMENTS R
198 REM UNCERTAINTIES IN SAC'S H(I,2)
200 REM NONLINEAR COEF'S c,n
210 REM MAX, UNCERTAINTY IN NONLINEAR COEF'S CiL,2)
220 REW PROB. " 't ' £, 3
270 REM RECALCULATED SAC'S H{L,3)
248 REM MAX. UNCERTAINTY IN RECALCULATED SAC'S H(I,4)
258 REM PROB. i ' ' ' H(I,5)
248 REM COEFICIENTS OF £@'S (24 EQ.,13 UNKNOWNS) Al 0l
278 REM A(I,J1#A(T M) E(I,d)
280 REM INVERSE OF E{I,d) FeL
299 FEM PRODUCT OF € AND F FLil,d)
J8@ REM PRODUCT OF F AND E UL
I1@ REM CONDITION NUMBER OF E 13

320 REM H(I,1)+CONSTANT TERNS Y0
338 REM INTEGER COUNTERS I,d,L,M
140 REM PERCENT DIFFERENCE BETWEEN MEASURED AND CALC SAC'S V()
338 REM ° UNCERTAINTY IN CALCULATED SAC'S T{1,2

100@ REM INPUT DATA

1001 DIM K!6),5(4),H(24,5),A(24,15},C(15,3)

1818 PAGE

1228 PRINT "INPUT LINEAR ELASTIC STIFFNESS MODULI (GPa)®
1038 PRINT "11-1,22-2,33-3,44-4,55-5,66-4"

1048 FOR I=1 TO 6

1258 PRINT *INPUT C*;1
1858 INPUT K(I)

1878 NEXT 1

1888 PAGE

1898 PRINT *INPUT LINEA
1180 PRINT *11-1,22-2,3
111@ FOR I=t T0 &

1128 PRINT "INPUT %1

1138 INPUT S(I)

1148 NEXT I

1158 PAGE

1158 PRINT *INPUT SAC'S AND UNCERTAINTIES (GPa)*-1"

117@ PRINT *122-1,211-2,322-3,311-4,121-5,212-6,312-7,321-8"
1188 FOR I=1 T0 8

119 PRINT “INPUT SAC *i1

1208 INPUT HII,1)

121@ PRINT "INPUT UNCERTAINTY"

1228 INPUT H(I,2)

1238 NEXT I

R ELASTIC CONPLIANCE NODULY' (6PA}*-1*
3-3,23-4,13-5,12-4"
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124@ PAGE
1258 PRINT *SAC'S CONT'D."
1268 PRINT *123-9,213-10,323-11,313-12,131-13,232-14,132-15,231- 16"
1278 FOR =9 70 14

1288 PRINT "INPUT SAC *;I

129@ INPUT H(I,1)

1320 PRINT "INPUT UNCERTAINTY®
1318 INPUT H{I,2)

1320 NEXT I

1338 PAGE

134@ PRINT *SAC'S CON'T."

1350 PRINT *811-17,822-18,812-19,821-20,813-21,823-22,031-23,832-24*
1340 FOR I=17 T0 24

1378 PRINT "INPUT SAC ;1

1388 INPUT HII,1)

1398 PRINT *INPUT UNCERTAINTY®
1480 INPUT H(I,2)

1410 NEXT I

1420 REM CALCULATE COEF'S OF EQ.5
1438 A=0 '

1448 ALL,4)=5(1)/ (2#K(2})

1441 A(1,5)=5(8)/(28K(2))

1442 A(1,6)=5(5)/ (28K (2))

1443 A(2,1)=516) /(28K (1))

1844 A(2,2)=5(2)/ (24K(1))

1445 A(2,3)=5(4)/ (28K(1))

1446 A(3,4)=5(5)/(2#K(2))

1447 A(3,5)=5(4) /128K (2))

1448 A(3,4)=5(3)/ (2#K(2))

1449 A(4,1)=5(5) /(28K (1))

1458 A(4,2)=5(4)7(2#K(1))

1451 A(4,3)=5(3)/(28K(1))

1852 A(5,13)=5(1)/(2#K(6))
1453 A(5,14)=5(4) /(28K (8))
1454 A(S,15)=5(5)/(2#K(4))
1455 A(4,13)=508) /(28K (4))
1456 A4, 14)=5(2)7 (28K (8))
1457 Al4,15)=5(4)7 (28K (6))
1458 A(7,13)=5(5) /(28K (4))
1459 AL7,14)=5(4) /(28K (6))
1468 A(7,15)=8(3)/(2¥K(4))
1461 A(8,13)=A(7,13)

1862 A(B,141=A(7,14)

1443 A(8,15)=A(7,15)

1464 A(9,7)=5(1)/ (26K (4))

1445 A(9,8)=5(8) /(24K (4))

1466 A(9,9)=5(5)/ (24K (4))

1447 A110,18)=5(4)/ (2#K(51)
1448 A(10,11)=5(21/ (28K(5})
1469 A(18,12)=5(41/(28K(5))
1470 AULL,T)=6(5)7 (24K (4))
1471 ALL1,8)=5(4) /(24K (4))
1472 AULL,9)=5(3)/ (28K (4))



1473 A(12,10)=5(5)/(28K(3))
1474 A(12,11)=5(4) /(23K(3))
1475 A(12,12)=8(3}/ (2#K(3))
1476 A(13,10)=5(1)/(2%K(5))
1477 A113,11)=8(6) /(28K (5))
1478 A(13,12)=8(3}/ (28K(5))
1479 A(14,7)=6(6) 7 (28K(4))
1480 A(14,8)=5(2)/(28K(4))
1481 A{14,9)=8(4)/ (28K{N))

1498 A(15,7)=A(9,7)
1588 A(15,81=A(9,8)

1518 A15,9)=A(9,9)

1520 A(16,10)=A(10,10)
1538 A(16,11)=A(18,11)
1542 AL16,12)=A(18,12)
1558 BI=5(1)+5(6)+5(5)
1560 B2=5(4)+5(2)+5(4)
1570 B3=5(5)+5(4)+5(3)
1588 A(17,11=B1/ (24K (1))
1598 A(17,2)=B2/ (28K (1))
1698 A(17,3)=B3/ (28K (1))
1618 A(18,4)=B1/ (28K (2))
1628 A(18,5)=B2/ (28K(2))
1678 A(18,5)=B3/(28K(2))
1648 A(19,13)=B1/(2#K(4))
1658 A(19,14)=82/ (24K (b))
1668 A(19,15)=B3/ (24K (8))
1678 A(28,13)=A(19,13)
1680 A(20,14)=A(19, 14}
1698 A(20,15)=A(19,15)
1788 A(21,10)=B1/(2#K(S))
1710 AL21,11)=82/ (24K (S))
1728 A21,12)=B3/ (24K (5})
1738 A(22,7)=B1/ (28K (4))
1748 A(22,8)=B2/ (24K (4))
1750 A(22,9)=B3/ (28K (4))
1768 A(23,10)=A(21,18)
1778 A(23,11)=A(21,11)
1780 A(23,12)=A(21,12)
1798 A(24,71=4(22,7)

1800 A(24,81=4(22,8)

1818 A(24,9)=A4(22,9)

-178~

1888 REM ADD CONSTANT TERMS TO SAC'S

189@ DIM Y(24)

1980 Y(1)=-(H{1,1)+8(6))
1918 Y(2)=-(H(2,1)+5(6))
1928 Y(3)=-(H{3,11+5(4))
1930 Y{4)=-(H{4,1)+5())
1948 Y(3)=-(H(5,11+5(1))
1958 Y(6)=-(H(b,1)+8(2})
1968 Y(T)=-(H(7,1145(4))
1979 Y{8)=~(H(8,1)+5(3})
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1988 Y(9)=-(H(9,1)45(5))
1998 Y(18)=-(H(12,1)45(4))

2008 Y(11)=-(H(11,1)45(3))

2018 ¥(12)=-(H{12,1148(3))

2028 Y(13)=- (H(13,1145(1))

2030 Y(14)=- (H(L4,1)45(2))

2048 ¥(15)=-(H(15,1145(6))

2050 Y(16)=-(H(16,1145(8)}

2068 Y(17)=-(H(17,1)4B1+1 /(28K (1)))
2078 Y(18)=-(H(18,1) +B2+1/ (28K(2)})
2088 ¥(19)=-(H(19,1)+B2+1/ (2¥K(6)))
209 ¥(20)=- (H(20,1)+B1+1/ (28K (8)))
2180 Y(21)=-(H(21,1)+B3+1/ (28K(5)))
2010 Y(22)=- (H(22,1)+B3+1/ (28K (4)))
2128 Y(23)=-(H(23,1) +B1+1/ (23K (5}))
2138 ¥(24)=- (H(24,1)+B2+1/ (28K (4)))
2148 REM COMPUTE A(I,M)eACI,J)

2158 DIN E(15,15)

2168 FOR M=t T0 15

2178 FOR J=1 10 15

2180 E(N,J)=8

2198 FOR I=1 TO 24

2200 E4,D)=E(N,J)+A(T, 201, 0)
2218 NEXT 1

2228 NEXT J

2238 NEXT N

2248 REN CONPUTE INVERSE OF E(M,J)
2250 DIN F(15,15)

2268 F=INV(E)

2278 REN COMPUTE CONDITION NUMBER
2288 11=-1.0E+108

2298 12=-1,8E+188

2388 FOR =1 0 15

2318 FOR J=1 10 15

2328 IF E(1,d)<21 THEN 2348

233 11=E(1,0)

2340 IF F(1,1)<12 THEN 2368

2350 12=F(1,J)

2360 NEXT

2378 NEXT 1

2388 13=ABS(12¢11)

2448 REN COMPUTE NONLINEAR COEF'S
2454 FOR I=1 T0 15

2468 C(1,1)=8

2470 C{1,2)=0

2488 C(1,3)=0

2499 FOR J=1 T0 24

2588 FOR L=1 10 15

2510 CUILD=CUT, 1+F L, DA, LY (D)
2528 C{I,2)=C(1,21+ABS(F (L, [)3A(I,L) ) #H(J,2)
2538 NEXT L

2548 NEXT

2558 C{1,3)=C(1,2)/23%0.5

ORIGINAL pPAGEH IS
DE POOR QUALITY
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2348 NEXT I
2578 REM RECALCULATE SAC VALUES USING DERIVED VALUES

2508 H(1,3)=-(28K(2) 45 (4) +5(1)4C (4, 1) 46 (61 C(5,1)45(5)2C (6, 1))
2581 H(1,3)=H{1,3)/(28K(2)) '

2582 H(2,3)=- (28K (1)95(6) +5(614C L1, 1)45(2)8C(2, 145 (4)4L(3, 1))
2583 H(2,3)=H(2,31/(28K(1))

2584 H(3,3)=- (26K (2) 45 (4) #(5) 4 (4, 1) 45 (4)4C(S, 1) +5(3)#C L6, 1))
2585 H(3,3)=H(3,31/(28K(2))

2586 H(4,3)=-(28K(1)95(5) +5(S) 40 (1,145 (4)2C(2,1)45(3)4C(3,1))
2587 H4,3)=H(4,3)/(26K(1)

2588 H(5,3)=- (26K (6) #1145 (1)4C (13, 1) #5(6)4C(14,1)45(5)2C(15,1))
2589 H(S,3)=H(5,3) /(28K 6))

2599 H{b,3)=- (28K (6)45(2)+5(6) #C113,1)45(2)4CC14,1)+8(4)4C(15,1))
2591 H(6,3)=H(6,30/(20K(6))

2592 H(T,3)=- (24K (6) 45 (4)+5(SH4C (13, 1) 4§ (41 4C (14, 1)+5(3)4C(15,11)
2593 H{7,3)=H(7,31 /(28K (b))

2594 H(B,3)=- (24K (6)45(5)+5(S)eC(13,1) 4514 4C (14, 1)45(314C(15,1))
2595 H(8,3)=H(8,31/(2eK(4))

2596 H(9,3)=- (26K (4)4(5)+5(1)8C(7,1)+8(6) 4L (8, 1)+5(5)eC (9, 1))
2597 H(9,3)=H(9,31/(28K(4))

2598 H(18,3)=- (28K(5)#5(4) 45 (6) 40 (18,1045 (24C (11,1145 (AL 12, 1))
2599 H(18,3)=H(18,3)/(28K(S))

2608 H(11,3)=- (20K (4)#5(3) 45 (5)4C (7,11 45 (14C(8, 1) +§(3)4C(9, 1))
2681 HUL1,3)=H(11,3) /(26K (4))

2682 H(12,3)=-(28K(5)45 (3) +G {51 £C (18,1145 (4)4C(11,1148(3) 012, 1)
2683 H(12,3)=H(12,3) /(24K (5))

2604 H(L3,3)=- (28K(5)#5(1) 45 (1) £C(10, 1S (61HTTEL, 1+S(THCL2, 1)
2685 H(13,3)=H(13,3)/ (28K(5))

2686 HU1A,3)=- (26K (465 (2045 (514017, 11 4S5 120 40(B, 11+ LA 4L (9, 1))
2607 H(14,3)=H(14, 31/ (20K (4))

2688 H(15,3)=- (20K (4145 (5) #5111 4C (7, 1145 (6)4C(B, 1) +8(5)4C(9, 1))
2489 H15,31=H(15,3)/ (28K (4))

2618 H(16,3)=- (28K (5)#5(6) #§ {41 4C (12,1145 (214011, 1) 48 (4)2C{12,1))
2611 H(14,3)=H{16,3)/(28K(5))

2620 H(17,3)=-(1+26B1#K (1) +B18C (1, 1)4B26C (2, 114BT4C 3, 1))

2630 H(17,30=H(17,31/(28K( 1))

2648 H(18,3)=- (424K (20 #B2+B1#C (4,11 4B24C (5, 1) +B34C (6, 1))

2650 H(18,3)=H(18,3)/(24K(2))

2668 HU19,3)=-(1428K(5) #B2+B12C (13,1)4B24C (14, 1) +B3¢C(15,1))

2670 H{19,3)=H(19,3)/ (28K (6))

2688 H(20,3)=- (1426K (6) #B1+B16C (13, 1) +B2¢C(14,1) +B34C (15,1)}

2690 H(28,3)=H(28,3)/ (24K (6))

2700 H(21,3)=-(1+28K(5) #B3+B12C (18, 1) +B28C(11,1)+B34C (12, 1))

2710 HI21,3)=H(21,3)/ (24K (5))

2720 H{22,3)=- (142K (4) #B3+B14C (7, 1)+B24C (B, 1) +B34L (9, 1))

2738 H(22,3)=H122,3) /(24K (4))

2748 H(23,3)=- (142K (5) #B1+B1+C (18, 1)+B28C (11,1} +B34C(12,1))

2758 H(23,3)=H(23,3) /(28K (5))

2760 H(24,3)=-{1424K (4) #B2+B1#C(7, 1) +B24C (8, 1) +B34L(9, 1))

2778 H{24,3)=H(24,3) /(24K (4))

2810 DIN W(15,2)

2828 FOR I=1 10 2
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2338 FOR J={ 70 1S
2840 WLI,10=ABSICHT, I+13/C0, 101
2858 NEXT ]
2868 NEXT 1
2870 FOR 1=t 70 2
2880 HUL, I43)=iW{4, [i+N(5, I +W(8, 1) )R {L,3)
’881 H’Z,I+" lHll,‘ W2, 14N(E, 1) fH(.,A
2882 HU3,[+3i=(Wi4, D +w{5, 11 +Wib,T11#HI3, D)
2883 HUA, T+30=(N(L, D #N(2, 11 +WL3, T) I RH(4,T)
2884 H(5,1+3) (Hl.u,I)+H(14,T)+H(‘5 T #4(5,33
2885 H{G, 1+3)=C4 (1T, 1) +N (L4, 1) +H{15,1)) #H(4,T)
2886 HUT,I+3i=(M(LZ, 1) +W(L4, I+ {15, T I#H(7, D)
2887 H(B,I+3}=€H({I,l)*ﬁ(l4,1)+i(15,I})*H(B,S)
2688 H(9,I+33=(Wi7,1)+W(8, 1 +W(9,1))#4{9,3)
2889 H{1Q, I+,,‘lHtIB,..+H(11 [V+RU12,101#H(10,3)
2099 HULL, T+31=4WCT, 1) +W{B, 1) +M(9, 1) aH (1L, D)
2891 H(12,1+33=6H(18,I)+H(11 )+Hl12,') *H(l-,u,
2692 HOL, 1+30=(WCL0, D) +W(LE, 1) +WQ12, 10 4H{13,3)
2893 HOL4, [+3Y=(H(7, T1+N(8, 1) +H (T, 111 #H{14,3)
2094 HOLS, T+30=(M(7, 1) +0 (B, 1) +N(9, 1} 1 #H{1S,3)
2893 H(la,Afu =OWCHR, DD +HOLL, TI+Wi12,10) #H(14,3)
2896 HI17,1+3)=1W{! I)+H‘2,f)‘ﬂ(4,l)?*H{17,3)
2897 H(1i8 I+Z§=iH(4,I}+H(5,I)+H‘6 Ii1+4(18,7)
2393 HOL9, D+3i=(We1T, I +W 14, )+Hk15,L,»!H(19,J
2899 HI20,[+431=1WI13, [1+W(13, 11 +R(15,1})#4(20,3)
"900 (21, 143000018, 1N+ WL T+ L2, T RHE 2L, D)
2981 HI22,1+431=1N(7, I‘+H'9,I‘+l(9 ")iH'EZ,I

2902 HIZ3,1+10=0M018, D) HHCLL, THoR (12, 1) 14HE23, )
2903 HI2E, T+T3=0007, THeN(8, 114M{9, 1)) #H(24, 3)
060 NEXT 1

707¢ FOR =4 10 §

1090 FOR J=1 T0 24

T899 HIJ,TH=ABS(HUI, 1))

11808 NEXT ]

I11Q NEXT !

?": ' ,2 } - worTQ

%ize Eé; §i1‘m 24 ORIGINAL PAGE 13
OF POOR QUALITY

;149 l('? SRBSCIHIT, D) -H{T, 3N /Mg 1

T158 VI=V(I) 4100
150 NEXT I
178 DIN T(24,2)
7180 FOR =t 79 2
7199 FOR J=t 15 24
1280 THI,D=H{E, 1eT0 /0D, T 4100
328¢ T3, 11=ABS(T4S, 1N}
1

I229 NEXT I
IZI@ REM PRINT QUT DATA
3240 REM
3250 N=32
’”63 PAGE
3278 80SUB 3332
3280 PRINT "PRINTED COPY? YES =1 ND =2 *



1298 INPUT I3

7€

1700 [F I3=1 THEN J342
3318 [IF-15=2 THEN 4@1@
1320 PRINT "BAD CHOICE®

1330 60 TO
1340 PRINT
1358 INPUT
1348 50SUB
IR 60 TG
1330 PRINT
1399 PRINT
J400 PRINT
I412 PRINT

1428 PRINT

3438 PRINT
1040 PRINT
7450 FRINT |
450 PRINT
1478 PRINT
474 PRINT
3472 PRINT
1482 PRINT
7499 PRINT
7580 FRINT
3518 PRINT

':”@ DR NT
1570 PRINT
T549 PRINT
1550 PRINT
7548 FRINT
1578 PRINT
1589 PRINT
7599 PRINT

3500 PRINT &

3618 PRINT
T528 FRINT
I47Q PRINT
1540 PRINT
T558 PRINT
3440 PRINT
1573 PRINT
1569 PRINT
1699 PRINT
1700 PRINT
ITIQ PRINT

32080
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"INPUT PRINTER ¥

N
3382
1312

aN: "NONLINEAR DATA ANALYSIS FOR

Nt e
N’
N

INPUT DATA®

24 "LINEAR ELASTIC MomuLI®

an:*
anN:*Cl

N tC22
aN: "33
aN: "Cad
@N:"C3s
EN:tCh6 =

aNst

{

"

ng ()" (SPa) 51t

= ":KI12);" {6Pa) g72
= ";K{3);" (GPa) 833

"’

“Kid);t {3Pad 523
“KIT) " (GPat 813
“:Ki43;" (GPal  SiZ

ORTHOTROPIC MCDEL *

1NN
= ":502);"
= " 803
*:54150
", 505"
BEICIES

@N:"VELOCITY DERIVATIVE DATA {GPa}~-1"

Nt
aN:tt,
L H
LR
aN: '4,
aN: "5,
N th,
.
aN: g,
aN: "9,
"1
N,
aN: 12,
aN: 13,
LLTRST
eN: 15,
aN: 16,

L]

Nt 17,

aN:"18. H

an:'19,

AN: "2 H

eN: "2

3720 PRINT AN:"22

it

1733 PRINT &)

1743 PRINT
I752 PRINT
I76@ PRINT
1778 PRINT
3782 PRINT

H122

. HBLZ

. HE2Z

3t

24, He32

N ®

AN:*THIRE ORDER ELAST
AN: "SBUARES FIT AND MAX.

aNs*

"W

LSS NS 1y {-
= GH(13, 10" 4

1H 1.1)." +i- UHILD)

H\.,L Pt 4= HHE2, D)
ST IR PLIRY R TR S
RO 1" #7- Uy HUA T
VHS, 105"+ "HIS, 2
LISV AR SRR O W
T, LY 44 HGLD)

foHUB, L) 4 ";e‘
THO LT A M
TR, LY -
';Hill,l‘;” é/-

“,H(’S e
SHLE, LY -
HET LG e

,H‘.AS,L y

“HI2, L 4
CHO L 4
LA Hl?“ fhaf +/-
o H(LJ’1I; +/-
SHOM LG

. ﬂ('e,.,
"R .,.)

iH14,2)
I}H(" Ay

ik

o let,l)

ﬂuﬂ”’,)

T e e

n AT 9
U LJ..\

“ hlq4,hl

1C CONSTANTS DERIVED FE
ERROR AND PROB. ERRQR (GPa}®

{§Pa) 1"
(5P} *-1*
(§Pa)*-1"
(6Pa)*-1"
(6Pa)*-1"
(8Pa) 1"

oM LEAST®
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ORIGINAL PAGE IS
G0+ 02t 4= e, OF POOR QUALITY
L2050+ 002,200 H- EL2,0)
SO, 13+ 03,250 +- 03,3
SO LT H- 0,20 - 40,3
OS5, 1057 +- "CIS,2050 4= %5Ci5,3)
HC(6, 105" +/- B50L6,2057 /- "5TI,3)
SCUT, 103+ ET,20 +- 4ET,3)
108,105 +/- *3008,2);" +/- "iC(8,3)
nC9, 1 4= 0,25 /- 009,30
nCO18,105" 4= 430018,20;7 +/- *;CU18,3)
SO LG" +- SEUL 20" +i- 500 D)
N2, 10 H- 832,200 +- 5002,3)
3956 PRINT @N:"C166 = "CC13,103% +/- ";C(13,203" +i- *;C(13,3)
1657 PRINT @N:*C266 = “jCUIA, 105" +/= 3CUIA, 205" #/- "5C(14,3)
1958 PRINT aN:*CI86 = “;C(15,103" +/- *;C(15,2)5" +/- ;CU15,3)
7850 PRINT N:*C133,C233,C333,C123,C436 UNDETERMINED *
7878 PRINT aN:* ° :
7890 PRINT @N:"RECALCULATED VELOCITY DERIVATIVES USING FITTED TOEC'S®
3899 PRINT 4N:*AND MAX. AND PROB. ERRORS IN SAME ORDER AS BEFORE®
1900 PRINT @N:*
3910 FOR 1=t 10 24
1920 PRINT 8N: 13", "3HUE,3);® +/- ";HUL,A13" +/- 5H(L,5)
7930 NEXT |
3940 PRINT aN:* °
7950 PRINT &N:"PERCENT DIFFERENCES, MAX. AND PROB. UNCERTAINTIES®
1960 PRINT 8N:* *
1970 FOR [=1 T0°24
7980 PRINT @N: 13", “3V(D);T(L, 1742
1999 NEXT |
3991 PRINT @N:* °
7992 PRINT @N:*CONGITION & FOR INVERTING MATRIX IS: *;I3
4808 FETURN
4810 END

379Q PRINT @N:"Clil
390@ PRINT @N:*Cit2
1818 PRINV @N:*C113
3820 PRINT aN:"C122
3838 PRINT @N:®C222
3848 PRINT @N:"C223
185@ PRINT @N:"C144
3851 PRINT &N:"C244
3852 PRINT @N:"C344
3953 PRINT @N:"CL35
3854 PRINT @N:"C235
3853 PRINT aN: (353

n [1} H 1)

" a0 i " (1] [1] " 1 n
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