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ABSTRACT 

In recent years the  analysis of crustal deformation measurements has  

become important as a result of current improvements in geodetic 

methods and an  increasing amount of theoretical and observational data 

provided by several earth sciences. 

In this study, a "first-generation" data analysis algorithm which 

combines a priori information with current  geodetic measurements was 

proposed. Relevant methods which can be used in the algorithm have 

been discussed. Prior information is the unifying feature of this 

algorithm. Some of the problems which may arise through the  use of a 

priori information in the analysis have been indicated and preventive 

measures were  demonstrated. 

The first step in the algorithm is the optimal design of deformation 

networks. A s  an example of deformation model oriented designs, it w a s  

shown that regular polygonal deformation networks composed of 

equilateral triangles are uniformly D-optimal for a homogeneous 

deformation field. 

The second s tep in the algorithm identifies the descriptive model of 

the  deformation field. A method based on the entropy measure of 

information, proposed by Box and Hill (1967), was  applied to a group of 

postulated deformation models and the  identification of t h e  correct model 

was demonstrated through an example. 
T h e  final step in the a l g o r i t h m  is the i m p r o v e d  estimation of 

deformation parameters. Although deformation parameters are estimated 

in the process of model discrimination, they can fur ther  be improved 

by the  use of a priori information about them. According to the  

proposed algorithm this information must first be tested against the 

estimates calculated using the sample data only. Null-hypothesis testing 

procedures were developed for this purpose. 

Six different estimators which employ a priori information were 

examined. Emphasis w a s  put on t h e  case when the prior information is 

wrong and analytical expressions for possible improvements under 

incompatible prior information were derived. 
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Chapter 1 

INTRODUCTION 

1.1 BACKGROUND 

Almost half a century after the theory of continental drift  was  first 

proposed by Wegener in 1912, the plate tectonic hypothesis was  put 

forward by H a r r i s  Hiss ,  J. T. Wilson and others (NASA, 1978). Since 

then it has grown up mainly as a result of an overwhelming body of 

new geological and geophysical evidence that supports t he  plate 

tectonics idea. 

The plate tectonics model depicts the outer shell of the  earth,  the 

lithosphere, as broken into small number of large plates moving relative 

to each other and with boundaries marked by the earthquake zones. 

They converge along the seismically active continental margins and 

arcs. They diverge along the  axes of the ocean ridges. They slide 

along each other in areas like the San Andreas rift zone in California 

(Drake, 1983). 

Although the  plate tectonics idea is based on a simple model, its 
surface manifestations as crustal deformations are complex in nature. In 

spatial spectrum, tectonic plates are assumed to behave a s  rigid blocks 

to the first order (global scale phenomenon). Their motions, as rigid 

entities, may reach 1-10 centimeters per year. Y e t ,  they undergo severe 

deformations at their boundaries. Regional scale phenomena take place 

over distances less than the dimensions of typical plates, a few 

thousand kilometers, but larger than a few hundred kilometers. Local 

scale phenomena occur in the immediate vicinity of a fault and i t  is 

closely related to the regional deformations. 

In the temporal spectrum, long t e r m  strain accumulations ( I  -10 

Medium term episodic years) are identified in regional and local scales. 

1 



changes (less than a year) and short  t e r m  precursory crustal motions 

before large earthquakes a re  possible (NRC, 1981). 
In recent years, the improvements in geodetic instrumentation and 

measurement techniques have made feasible the detection of crustal  

movements over reasonably short  t ime  intervals. Hence, the  

interpretation of recent crustal  movements is  now in the  realm of 

Geodesy. 

Today the classical ground based geodetic methods provide relative 

position and position changes over short  distances with a precision of 

0.1 ppm (Slater et al., 1983). They are useful for determining regional 

and local strain rates on the plate boundaries. Space techniques a re  

far superior than the classical techniques for determining plate tectonic 

motion and large scale deformation of the plates. They are precise 

enough (on the order  of 0.1 ppm - 0.7 ppm for 200 - 6000 km baselines) 

to detect possible plate motions which may reach a few centimeters per 

year (Coates et al., 1985, Davidson et al., 1985). 
Geodetic observations can provide information about the overall rate 

and direction of relative motions among the plates. I t  is now possible to 

investigate whether these motions vary along the length of the 

boundary, whether all these motions are accommodated or do all of the 

accommodations to plate motion take place along plate boundaries or are  

some distributed over a broad area. Detailed configuration of the strain 

field around the  ends of locked segments of the fault zones can be 

mapped using geodetic observations. Temporal variations can be 

detected. Precursory strain changes in local and regional scales a re  

important for understanding earthquake mechanisms. 

Today there is an increasing number of repeated geodetic 

observations and additional information about the nature of crustal 

movements provided by several other earth sciences. The analysis and 

the interpretation of this accumulated data are now more important than 

ever. Meanwhile, a need for improvement of the current  analysis 

techniques has already been recognized (NRC, 1981). 
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1.2 PURPOSE 

The purpose of this study is to exploit the use of prior information in 

the analysis and interpretation of recent crustal movement measurements 

by the geodetic methods. 

Two specific objectives are under consideration. The first is to 

develop a general data analysis algorithm in which prior information is 

introduced into the analysis of geodetic data. The second is to propose 

and elaborate on relevant methods which can be employed in this 

algorithm. 

Most of the t i m e  geodesists possess some knowledge about the 

crustal  deformation phenomenon under consideration. This knowledge 

may come from geological or  geophysical investigations, from purely 

theoretical considerations or  it may have been derived from other 

geodetical measurements. This type of knowledge is referred to as 

prior, auxiliary o r  extraneous information. It comes from outside the 

current  geodetic observations themselves. I t  may be qualitative or 

quantitative. 

The desirability of exploiting this extraneous information should be 

clear. The more the geodesists know, the more effectively they can plan 

and analyze. It is intuitive that a gain in efficiency would result  at 

different stages of the  investigation by the use of additional 

information. The introduction of quantitative information can improve 

the estimation of relevant deformation parameters under controlled 
circumstances. 

Yet ,  the introduction of prior information needs serious attention 

since there is always a likelihood that it may not be compatible with the 

sample data, Le., observations. The following questions may arise upon 

introduction of extraneous information: 

1. If a variation of descriptive models is available in modeling 

crustal  deformations, how should geodetic surveys be designed 

in order to  discriminate among these models? 

2. If prior information exists about the deformations, when should 

they be introduced into the analysis? 
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3. If prior information is chosen to be used in the estimation, 

which estimator should be used? What can be gained by using 

prior infor m a  tion? 

4. If discrepancies exist between prior and the information implied 

by t h e  geodetic measurements, can they still be combined to 

improve the analysis? If so, under what conditions? 

Relevant methods to deal with the aforementioned questions a re  

proposed. Their interactions are demonstrated in the proposed general 

data analysis algorithm. 

1.3 SCOPE AND ORGANIZATION 

Chapter 2 starts with a short  review of the geodetic aspects of 

local, regional and global deformations. A general data analysis 

algorithm is then proposed. The overall approach of the algorithm is an 
inductive one. "Every solution of a p r o b l e m  raises new unsolved 

problems; the more so the deeper the original problem and the bolder 

its solution" (Popper, 1972). It is recognized that there are no complete 

solutions. Therefore the algorithm tests different models until one model 

is tentatively established. 

The algorithm is composed of four major steps: design of geodetic 

deformation networks, discriminatory analysis of different models, 

diagnostic checking and improved estimation. The use of additional 

knowledge (qualitative or quantitative) is the unifying feature of this 

algorithm. The following chapters elaborate on these topics. 

In Chapter 3, a D-optimal design for homogeneous deformation field 

is first derived. Then an  entropy measure of information is used in a 

Bayesian setting which employs prior densities about the relevant 

deformation parameters as additional information for the sequential 

design of geodetic observations and for model discrimination purposes. 

The procedure is demonstrated through an example. 

Chapter 4 discusses the  use of quantitative prior information in the 

estimation for the purpose of improving the deformation parameters. 
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First, a statistical testing method, which checks the agreement between 

prior information about model parameters and their estimates from the 

current observations is given. Second, a comparison criterion is set u p  

to express the preferences about the estimators. The problems which 

may arise due to the use of prior information, particularly bias in prior 

information, are  discussed. , Several new theorems are  derived for 

possible improvements in such cases. 

Chapter 5 considers the estimation problem when parameters are 

assumed to be stochastic in nature. A similar discussion follows as  in 

Chapter 4. 

5 



Chapter 2 

CRUSTAL DEFORMATIONS AND AN ALGORITHMIC 

APPROACH TO THEIR ANALYSIS 

2.1 LOCAL, REGIONAL AND GLOBAL DEFORMATION ANALYSIS 

In this section the geodetic aspects of crustal movements are  briefly 

reviewed. An ideal approach to the analysis of the kinematics of 

tectonic motions would include both horizontal and vertical components 

for more meaningful inferences. However, the horizontal aspect of 

crustal movements is the main theme in this study. This is mainly due 

to the fact that  t he  plate tectonic hypothesis, which explains tectonic 

motions, is constrained to the surface of the  earth. Vertical motions are  

weakly explained through the horizontal motions which are sometimes 

considered to be a failure of the plate tectonic hypothesis in part 

(Beloussov, 1979). However, the  proposed approaches in this study are  

general enough to include any type of data if they are proven to be 

relevant . 
First the existing approaches to the local, regional and global 

deformation analysis a re  briefly discussed. Then a general data analysis 

algorithm is proposed. 

The  uniformity of relative plate motions and the rigidity of the 

major plates a re  the  two crucial unifying principles of global tectonics. 

However, these postulates a re  undoubtedly valid in the long-term 

average sense and for the  average totality of the plates. Significant 

departures and elastic deformations in both regional and local scales are  

likely to occur. In fact, such elastic deformations and strain 

accumulations have already been confirmed by the  interseismic 

deformation observations along plate boundaries using geodetic methods 

(NRC, 1981). 
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The changes of shape and dimensions of the geodetic networks a re  

considered to be deformations of the terrain surface. These 

deformations m a y  be uniform or vary with t i m e ,  Short- and long-term 

monitoring of these networks at seismically active areas provide 

information about the nature of deformations. 

Two different types of deformation networks a re  identified: relative 

networks in which all network points a r e  located on the deformable 

object and fixed networks in which there a re  stable points outside the 

deformable object. 

The interpretation of observed changes in geodetic observables in 

terms of crustal deformations a re  by no means unique. Today several 

approaches exist for the analysis of geodetic entities. The differences 

among these approaches a re  a result of the type of the network under 

consideration. 

Let the position of the network points be given a t  an initial state 

by their projections (xo,yo) on the axes of a Cartesian coordinate system 

XY. Furthermore, let the network points along the s a m e  axes  acquire 

the displacements u,v which a re  functions of the coordinates xo,yo a t  

every instant of time. The position (x ,y)  of an  arbitrary network point 

at an epoch t is then determined in the s a m e  Cartesian system by the 

following coordinates 

Displacement components u and v can be obtained by the difference 

of station coordinates adjusted a t  different epochs from the geodetic 

observations. Since physical realization of a coordinate system (fixed 

networks) on a deformable body is often very difficult, coordinale 

systems employed in these solutions should be carefully interpreted. 

Care should be given to use the same coordinate system for different 

adjustments regardless of whether or not they a re  realized as a result 

of minimum constraint, inner constraint or pseudo-inverse solutions. 

7 



A simple but not widely used approach in detecting network 

deformations is the  conditional adjustment of observed quantities for 
each epoch. Their differences as a result of deformations may then be 

expressed in an appropriate coordinate system to display the relative 

displacement components of individual network points. Alternatively, a 

mathematical model can be set up in which displacement components 

appear as parameters. For instance, if baselines are observed at two 

different epochs, then the changes in these measurements may be 

expressed in t e r m s  of the displacement function as 

where deij = - d i j .  d io j ,  and d i j  are  the  baseline measurements 

between two network points at epochs to and t respectively. ci is the 

azimuth of a baseline and 

dxj = xj - xj ,  

dYj = Yj - YJo 

If there are network points, either on the deforming surface or 

outside of it, which are observationally as well as statistically justified 

to be stable (Koch and Fritsch, 1980), then a reference coordinate 

system may be realized through these points. Otherwise, the 

displacement components a re  not estimable quantities since they 

transform under changes of coordinate systems (S-Transformations, 

Molenaar, 1981). Therefore, some type of minimum norm or minimum 

constraints solution is required. Deformations, on the other hand, a re  

independent of the coordinate system in the senge of changes in size 

and shape. 

Displacement components obtained through these procedures a re  

ambiguous in the sense that  they do not reveal much information about 

the nature of deformations. More insight is gained if the displacement 

field of the network points is approximated by means of algebraic 

polynomials (Ney, 1978). 
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L e t  the displacement function for the horizontal network points be 

written, for instance, for a polynomial of a second degree as 

u(x,y)  = a, + a,x + azy + a3xz + a,xy + asyZ 

where a and b are the coefficients of the polynomial function. It is 

possible to determine these coefficients from the individual network 

point displacements which a re  obtained through one of the  previously 

outlined methods. 

Alternatively, considering (1) and (3)  and substituting (4 )  in (Z), a 

new mathematical model is obtained in which coefficients of the 

approximating polynomial appear as parameters. A least squares solution 

of the  resulting observation equations in a fixed network system with a 

sufficient number of observations yields to the determination of 

unknown coefficients. The question of the best fitting polynomial may 

then be answered by a variance test of the significance of estimated 

coefficients (Uotila, 1980). 
Once the approximating polynomial is determined, it can then be 

used for interpolation purposes, for filling the observational gaps 

(Ellmer and Welsh, 1982), or  for fur ther  inferences about the nature of 

tectonic motions. It may also be useful in determining the  local 

interpolating polynomials of the finite element method. 

Observed relative displacement of network points due to the  tectonic 

m o t i o n s  are always small (except for sudden ruptures  along t h e  fault 

zones which occur during earthquakes). Furthermore, deformations 

which the earth’s c rus t  undergoes as a result of applied stresses can 

be considered to be elastic to a certain extent. Consequently, linear 

elasticity theory, which deals with the description of homogeneous strain 

field, becomes one of the basic tools in analyzing tectonic strain field 

and tectonic motions. 

The interpretation of the observed changes in geodetic observables 

in terms of the crustal deformations is performed in this case by 

describing them through the horizontal strains. Although this approach, 

like the others, is not sufficient for coping with all the problems arising 

9 



in the analysis of tectonic motions, it is nevertheless better suited for 

further inferences since it provides spatial information in simple 

geometries and achieves a better presentation of results. 

L e t  the displacement function be represented by the following 

polynomial 

u(x ,y>  = a, + a l x  + a2y  

V ( X , Y )  = bo + b1x + b2y 

Since infinitesimal strains are, by definition, the linear functions of 

displacement gradients and are given by 

J Y  eXy: = '[" 2 J Y .  + E] , Jy 
Jv ey: = Ju 

Jx ' 
- e,: = 

substitution of (5) into (6)  leads to the homogeneous deformation model 

which can be expressed as 

u ( x , y )  = a. + e,x + e x y Y  - "Y 

v ( x , y )  = bo + eXyx + e y y  + wx (7 )  

In this representation, the parameters have the following geometrical 

meanings: a. and bo correspond to translation elements, e, and eg are 

the extensional components of infinitesimal strain along the X and Y axes 

respectively and are positive for extension and exy ia t he  shearing 

strain, which is positive for the right lateral shear. w represents the  

infinitesimal rotation of the network points (in an average sense). When 

the above quantities refer to a certain period of t ime  with uniform 

rates, the symbols a re  marked with a dot. The dimension of all strains 

is micro strain, or part  per million, or  micro strain per year. There is 

also a multitude of other representations of deformations, such as 

engineering shear, principal strains, etc. (see Pope, 1966 and Welsch, 

1982 for a detailed description of homogeneous horizontal infinitesimal 

strains). These elements in the  sequel will be called deformation 

parameters. 

10 
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Deformation parameters can be calculated by first determining the  

displacement components and then solving for the strain elements o r  for 

some other representations using these network point displacement 

components as pseudo-observations. Alternatively, they can be obtained 

directly from a mathematical model which is obtained, for instance, by 

the substitution of (7) into (2). Both approaches yield identical results. 

Their differences are due to manipulative convenience (Brunner et al., 

1980). This is true, however, only as long as the same estimation 

techniques a re  used in both approaches. As we shall see later, there 

are alternative techniques besides least squares. Results a re  likely to 

be different if different estimation techniques are used at different 

stages. In such conflicting circumstances it is intuitively clear that  the 

direct estimation of the relevant deformation parameters is preferred 

since displacement components play a transient role in the analysis. 

The estimability of the relevant deformation parameters in this 

representation are  again determined by the  type of geodetic network 

and the type of geodetic observations. If, for instance, baselines a re  

observed in a relative network and furthermore their scales are  

compatible at different epochs through calibration procedures, then the 

principal strains, total shear and dilatation are  invariant quantities 

under coordinate transformations. They are therefore estimable. For a 
complete discussion of estimable quantities in infinitesimal strain field 

confer: Livieratos (1980), Dermanis (1981) and Welsch (1982). 

In . any event, direct representation of repeated crustal  movement 
observations in t e r m s  of estimable deformation parameters ( the ones 

which are  invariant under S-Transformations) is the s i m p l e s t  approach 

to avoid ambiguities which may arise due to the difficulties in realizing 

a coordinate system for the relative networks. Nevertheless the 

estimation of coordinate system dependent deformation parameters may 

sometimes be desirable (such as extensional infinitesimal strain normal to 

the fault trace). In this case a suitable coordinate system is introduced 

accordingly at a fundamental epoch. As a result, it is only natural to 

use at any t i m e  instant of observation the s a m e  coordinate system. 

Otherwise, these .parameters are not comparable from one epoch to the 



other. In  this framework, the coordinate system introduced becomes an 

integral part  of the descriptive model of deformations under 

consideration. 

The general procedure for calculating strain or displacement field on 

a regional scale can be achieved using the above approaches in 3-D 

(Harvey, 1985). However, treating the network as a whole as 

homogeneous may not be realistic in areas where complex faulting 

systems exist, In this case a nonhomogeneous (homogeneous with 

discontinuities) strain field is modeled that best accounts for the 

observed changes in observations (Chrzanowski et al., 1983). Also, the 

treatment of the  strain field a s  homogeneous over the whole area 

covered by the network implies averaging relevant deformation 

parameters. If such assumptions are considered to be unrealistic, the 

area of interest  can be dissected into smaller elements, such a s  

triangles. These are then analyzed either individually in local scale, or 

a finite element solution which involves the geometric aspect of 
displacement field is possible (Welsch, 1983). 

In the case of global deformation analysis, it is assumed that the 

lithospheric plates move as rigid bodies on the asthenosphere with 

respect to each other. The rigid body motion of these tectonic plates, 

as a first approximation of global crustal  movements, is the crucial 

assumption of the  plate tectonics idea. A f t e r  all, t he  entire concept of 

plate tectonics would not have much meaning if there are points which 

move relative to each other with velocities comparable to the velocities 

of relative plate motions. Therefore the axiomatic modeling of crustal  

motions on a global scale is much simpler than the local and regional 

scale phenomena. 

Since long baselines can today be measured with sufficient accuracy 

using space geodesy techniques, the plate tectonics theory becomes the 

initial working hypotheses in the analysis of repeatedly measured long 

baselines. 

L e t  Fi and F j  be the position vectors of observing stations on 

different tectonic plates expressed in an adopted coordinate system XYZ. 
Then the  chord length for a baseline vector Fij, at an  epoch t, 
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connecting two different plates is given by 

(F i  - F j )  

Linearization of t h i s  model about the baseline vector F i o j ,  referr ing t o  

an  initial epoch to yields 

where df i  = fi - Fio ,  dFj = F j  - Fj, are  the infinitesimal displacement 

vectors as a resu l t  of global tectonic motions. r i j  and r i o j o  are the  

observed baseline lengths at epochs t and to respectively. Now if the 

observational e r rors  u in baseline measurement differences y are  

Considered, then the above model (9) leads to the general Gauss-Markov 

setup of linearized observation equations in which components of station 

displacements appear as parameters x to be estimated. For each 

baseline observed at epochs t and to ,  one observation equation is 

formed, 

The solution of this system, in a least squares sense, can be achieved 

by fixing at least one plate and having at least two stations on each 

plate (three repeated baseline observations). An inherent assumption in 

the above model is that the scale of the baseline measurements is the 
s a m e  at both epochs. This can be achieved by a priori field calibration 

procedures. Parameters to be solved in this case are the relative 

displacement vector components referenced to the  fixed plate. 

Alternatively , minimum norm solutions are possible. Through this 

method the coordinate system is defined in an optimal fitting sense. 

Similarly, if additional information exists about the displacement vector 

for a t  least one plate a unique solution for the above set up is again 

possible (Bock , 1982). 

Nevertheless, as in the case of local and regional deformation 

analysis, recovered displacement components are  ambiguous as they 
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stand. They do not reveal much information about the nature of plate 

motions. They simply supply refined quasi-observational data though 

which kinematical or theoretical models can be tested. However, if such 

models are  postulated beforehand, they can then be expressed directly 

as a function of baseline observation differences. 

Of such models, instantaneous plate kinematics is the most popular 

in today’s studies. In this approach, displacements assumed to be 

constrained on a spherical earth model are  the results of rigid motion of 

plates. Consequently, t he  motion of the plates can be described by an 

axial rotation following Euler’s theorem (Goldstein, 1965). 

Consider dFi and dFj to be changes in the position vectors for 

stations located on different plates i and j respectively. Then the 

f ollo wing relations hips hold 

where iii and R j  are the pseudo-vectors of angular velocities on plates i 

and j respectively. Their  Cartesian components a re  given by 

& cos Q cos A 

ii = [ = [ c i  cos 4 s i n  A ]  

I, s i n  Q 

0 and A are  the  spherical coordinates of instantaneous rotation axis and 

cj is the  magnitude of the angular pseudo-vector. 

Substituting (11) into (9) with the assumption of linear velocities 

results, after some simple manipulations, in  the following matheniatical 

model of instantaneous plate kinematics 

I .  - At 
r i  r i o j o  - - [ 0 x F ~ ~ ]  i [ F ~ ~  x rjo 

r i o j o  
- 
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where A t  = t - to. In this expression components of angular velocity 

pseudo-vector appear a s  parameters to be estimated as a result of the 

hypothesis which is put forth. 

Estimation of these parameters follows the same arguments as in the  

case of estimation of displacements components. (13) can also be 

expressed as a function of spherical coordinates using the  formulas of 

geometric geodesy (Drewes, 1982). 
So far, current  approaches to the representation of tectonic motions 

have been briefly discussed within the geodetic framework. Common to 

all these methods is the assumption of uniform t i m e  dependency. I t  is, 

however, recognized that  strain accumulations at local and regional 

scales are likely to be nonlinear in t ime (Thatcher, 1983). There is also 

the possibility of nontectonic motions of network points a t  all scales. 

Therefore, fur ther  refinements in such models become a necessity. 

These problems, along with some new methods in the analysis of 

tectonic motions, are  discussed in the following proposed general 

deformation analysis algorithm. 

2.2 AN ALGORITHMIC APPROACH TO CRUSTAL DEFORMATION ANALYSIS 

It is widely recognized today that  most of the  information about the 

nature of crustal movements is  supplied by the repeated geodetic 

surveys (NRC, 1982). Providing a choice of reliable quantitative data 

about the network deformations has  been the traditional undertaking of 
geodesy in crustal dynamics studies. Beyond this routine task is that 

of a growing necessity to conjure up more detailed operational 

hypotheses about the  kinematics of tectonic motions by geodesists. In 

the meantime, increasing information provided by other disciplines and 

different techniques can now be introduced into the analysis of current  

geodetic observations for more meaningful inferences. 

In the present chapter, an  algorithm which combines additional 

information and sample data is proposed. It is a more general approach 

in comparison of the  current  trends in analyzing geodetic data. 
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The algorithm is composed of the following stages (see Figure 1): 
deformation model oriented network design, discriminatory analysis of 

several concurring models, diagnostic checking and improved estimation. 

Relevant methods that can be used in this algorithm are exploited in the 

following chapters. 

The identification of a suitable model of the deformation process 

which fits well to the changes in the observed geodetic quantities and 

also explains the differences between local regional and global scale 

components of tectonic motions is the main purpose of crustal movement 

analysis. Predicted results derived from such models can then be 

compared with theoretical data supplied by other disciplines and thus be 

used to test the validity and credibility of the fundamental assumptions 

of geotec tonics theory. 

Since the underlying physical phenomenon which causes the plate 

motions and the deformations along plate boundaries is still poorly 

understood, the modeling efforts in all scales a re  to be descriptive. 
These descriptive models, if not capable of constructing the actual 

phenomena by the critique of repeated geodetic surveys,  do a t  least 

play an essential role in demonstrating what hypothesis should not be 

put forth. Questions such as: "Does the rate of tectonic, motions 

observed change with time?", "Does the rate of movements vary from 

one place to the other?" and "What can be learned from them about the 

nature of driving forces?" lend themselves to different models. 

Sometimes discrepancies found in different scales can be due to the 

coarseness of the model used. In such cases more detailed models a re  

needed to explore the possible modes of deformations, especially in the  

active plate margins where severe deformations are  likely to occur. 

Other times there may be more than one descriptive model which 

concurs w i t h  the differences of repeated geodetic surveys. Thus ,  the 

modeling efforts are  unescapably iterative in nature on different 

postulates. 

Although postulating a general class of models is mostly based on 

the experience and intuition of an experimenter, the qualitative 

information provided by other disciplines and previous in situ 

1 
1 
1 
I 
s 
1 
1 
I 
I 
I 
I 
I 
1 
1 
1 
1 
1 
I 
1 

16 



I 
I 
I 
I 
I 
1 
I; 
1 
8 
I 
I 
I 
I 
i 
1 
I .  
8 
I 
I 

measurements play an important role in the identification of different 

models. Discrepancies found in the  interpretation of different types of 

information can help geodesists to postulate such models. 

The selection of the best model can be achieved by performing 

repeated geodetic observations and using statistical tests on estimated 

parameters of different models. Therefore, the model discrimination 

process is intimately related to the design of optimal deformation 

networks and optimal observations. 

Model oriented deformation network designs are necessary in this 

respect. However, such designs are still not differentiated from the 

classical network designs, mostly due to the fact that  deformation 

parameters a re  obtained from the adjusted coordinates in a two step 

procedure as summarized in the previous section. A model oriented 

D-optimal design for the homogeneous deformation field is constructed 

analytically in Section 3.1 as an example. 

Meanwhile, such designs may not be satisfactory if they are  

confined to a single model of the displacement field. Therefore, it is 

also necessary to develop designs which do well for different competing 

models. However, analytic construction of such designs is difficult even 

in simple cases. Iterative methods for constructing model robust linear 

optimal designs are  given in a series of articles by Cook and Nachtsheim 

(1982) and Lauter (1974). 

The next step in the algorithm is the identification of the  best 

working hypothesis among the others. Since these a re  temporal models, 
their identification should be a result of sequential experimental designs. 

That is, the observations and the analysis are designed in stages. In 

this way, the data collection procedure can be carried out in an optimal 

fashion since the  geodesists set forth the end-purpose of the 

investigation being conducted. 

First, models of the deformation process are postulated. A network 

design which does well for such models is  set up. This initial design is 

surveyed at least at two different epochs and the models are evaluated. 

The tectonic motions observed in nature are  always small and very often 

they remain well below the observational accuracies of geodetic methods. 
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Furthermore, they are likely to be temporally nonlinear, such as in 

exponential decay in strain rates (Thatcher, 1983). Therefore preference 

of one model over the others is not conclusive if it is based solely on 

observations performed a t  a few epochs. The data may tend to favor 

one model over the others a s  the number of surveys increase. This 

information can be used to design new observations. This model 

discrimination procedure is carried out until one model is selected. 

Each t ime new observations a re  designed and performed using the 

information gained from the previous resurveys and model evaluations. 

Such a method of model discrimination is formulated in Section 3.3 in a 
Bayesian setting using the entropy concept of information. 

Descriptive modeling is quantified by the estimation of the relevant 

parameters. These two processes are mutually exclusive. Once the 

parameters a re  estimated, they can in turn  be used to design new 

improved models and better estimates. The limiting factor in this 

process, first lies in the accuracy of geodetic measurements. Their 
uncertainties include contributions from both s y s t e m a t i c  and random 

er rors  which can be reduced effectively only up to a certain level 

(Mierlo, 1975; Baarda, 1975). Secondly, the coverage of deformation 

measurements for monitoring tectonic motions is still confined at  

particular regions because these techniques are still t ime consuming and 

expensive. Therefore, such a finite number of samplings may not reveal 

the overall behavior of the deformations since they are  representative of 

only a regional and temporal average sense. 

On the other hand, deformation parameters estimated from these 

sample observations can fur ther  be improved to some extent by the 

introduction of extraneous information in the estimation (it is obvious 

that there is no need to introduce additional information if the model 

parameters are  found to be satisfactory). Perhaps the most important 

example of the use of prior information in geodesy may be proven to be 

in crustal  dynamics since the process includes many entities of the 

lithosphere in a complex way, and it involves several disciplines. 

Therefore, there is an abundance of qualitative and quantitative 
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information in addition to the information provided by the geodetic 

m e t  hods. 

The qualitative aspect of this information is useful, a s  discussed, in 

postulating different models. Quantitative information may arise in 

various ways in crustal  movement analysis. Sometimes theoretical 

solutions such as global motion of plates based on the driving force 

models for plate tectonics (Solomon and Sleep, 1974; Kaula, 1975) or  the 

global intraplate stress fields predicted by various force systems, other 

t i m e s  the  results of past samples such as in situ measurements of strain 

through extensometers, resurvey of old geodetic networks or examination 

of stress induced geological structures,  are thought to  give information 

about parameters. In all these cases, prior information does not arise 
from the particular body of data currently being analyzed. If this 

information is correct, then it is surely useful to incorporate it into the 

statistical estimation procedures as well as physical modeling of such 

phenomena. Such prior information may be valuable in increasing the 

precision and the reliability of the estimates, particularly when samples 

are limited in size. 
Therefore, the study of valid prior information becomes an  integral 

part of the proposed algorithm which will be referred to as diagnostic 

checking in this study. In this step of the algorithm, quantitative prior 

information should be identified and tested against the sample 

information. A null-hypothesis testing procedure is given in Section 4.2. 

If prior and sample information are found to be compatible then they 
can be combined in the improved estimation of parameters. 

However, noncompatibility as a result of such tests by no means 

impl i e s  that  prior information is erroneous and should be totally 

disregarded. Testing procedures themselves are likely to contain 

fur ther  uncertainties, after all. For example, probability distributions 

attributed to the  sample observations may not be realistic or 

significance levels, if used, may be too s m a l l  compared to  the signal to 
noise ratio. There may also exist t he  possibility that  the  information 

contained in current  data is different than the additional information 

simply because the latter is representative of tectonic motions only in 
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the long-term average sense, Similarly, prior information as a result of 

global solutions may be different than the small scale information 

because of the local properties of tectonic motions. 

Consequently, prior information in practice is not known with 

certainty. What then is the purpose prior information if w e  can never 

be sure  of the validity of such constraints? The answer lies in the 

fact that  additional data may always contain a certain component of 

reality. If the value of it is found to be small then it is clearly unwise 

to use dubious information. However, if the value of improvement is 

large, then it may pay to use even dubious information. 

A better alternative is to use estimation techniques which are 
insensitive to wrong prior information about parameters but which still 

result in better estimates than those using sample observationB only. 

A t  this point, it is necessary to identify two different concepts in 

estimation. First, the well known approach, namely, estimation when the 

model parameters a re  deterministic; and second, estimation when the 
model parameters are considered to be stochastic (random). In  the 

latter case, statistical model setups a re  known to be random effect 

models (Searle, 1974; Harville, 1976). Estimation of random parameters is 

also called prediction (Searle, 1974; Schaffrin, 1983). 

So far implicit in the discussion is that  the mechanism of the 

underlying phenomena is deterministic but unknown to the user. The 

representation of displacement field with stochastic parameters does not 

contradict with this  view. 

There i s  no conflict between causality or randomness or. 

between determinism and probability i f  we agree, as we must,  
that scientific discoveries are not discoverie8 of nature but 
rather inventions of  human mind. Their consequences are 

presented in deterministic f o r m  i f  we examine the results of 

a single trial; they are presented as probabilistic statements i f  

we are interested in averages of many trials... (Papoulis, 1984). 

Similarly, in crustal  movement analysis, averaging strains over whole 

areas as well as over certain periods of t i m e  can be interpreted to mean 
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strain parameters are  random with certain mean and variances. This .  

becomes much more clear in the case of global plate kinematics. In this 

process the  deformations in temporal and spatial spectrums can be 

interpreted as smooth motions as trends over geological time scales with 

superimposed short  term jerky motions (Kaula, 1978). Solutions such as 

numerical analysis of instantaneous plate kinematics (Minster and Jordan, 

1978) can be recognized as the expected values of possible tectonic 

motions whereas current  global observations a re  contaminated, in 

addition, with short  term random effects. 

Therefore, information as a result of temporal and spatial averaging 

can be introduced into the analysis of current tectonic motions within 

this interpretation. However, in all likelihood such information may be 

wrong. Hence, it is desirable to have estimates which a re  not dominated 

by erroneous prior information. 

Of course estimators with such virtues are hard to find. Moreover, 

it would be a mistake if one estimator or  predictor is  singled out among 

the others and used under all varying conditions. Therefore the study 

of suitable estimators, their behavior under different types of prior 

information and the gain from using prior information becomes the  last 

part  of the proposed algorithm. These problems are examined in 

Chapters 4 and 5. 
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Figure 1. Algorithm for Crustal Movement Analysis 
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Chapter 3 

DESIGN AND MODEL DISCRIMINATION 

3.1 D-OPTIMAL DESIGNS FOR HOMOGENEOUS STRAIN FIELD 

A geodetic network is defined through geodetic measurements between 

observation points and t h e  definition of a datum (coordinate system). 

Geodetic networks a re  designed according to a particular task under 

consideration, type of measurements and their  accuracies using a 

predefined optimization criteria. Optimization of geodetic networks are 

well established in the geodetic literature (see (Grafarend et al., 1977) 

for a comprehensive review). Design of deformation networks can also 

be examined within the existing approaches. Bock (1982), using 

approximate theory for optimal designs, has established D and A optimal 

polyhedra designs for the distribution of crustal movement monitoring 

stations over the earth. However, as  discussed in Chapter 2, the 

two-step procedures (first point displacements in terms of coordinate 

differences at different epochs a re  determined then the deformation 

model parameters are solved using the results of t h e  first step a s  quasi 

observations) can equivalently be replaced by the direct estimation of 
relevant parameters. In this case it is natural that  optimal design of 

deformation networks should be oriented to these particular models of 

deformation. But this  problem has not been fully exploited in the  

geodetic area. 

In this section, a model oriented D-optimal network design is 

constructed as an example of the homogeneous deformation field model 

using probability measures. 

Consider the  linear model 

y = AX + u , u (0,a:I) 
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where y is an  nxl vector of observations, A is an nxm design matrix of 

full column rank and is composed of l x m  vectors of rows (a i )  depending 

on the form of the  model assumed. x is an m x l  vector of unknown 

parameters. u is the vector of independently and identically distributed 

random variables with mean zero and variance ui. The experimental 

region is denoted by x and a i  are continuous on x .  Then from the  

ordinary least squares, the  dispersion matrix of P is 

where N:= U,'~(A'A). In subsequent discussion N will be called the 

information matrix of the experiment e and will be denoted by N ( e ) .  

The design problem, therefore, consists of selecting vectors of 

control variables a i  E x , i = 1, ..., n such that the design defined by 

these n vectors is in some defined sense optimal. 

Definition 1: W e  define the optimal design for deformation networks as 

the one that minimizes the determinant of the covariance m a t r i x  of 

parameters. 

Let n denote the number of repetitions of the  ith observed quantity 
n 

I = 1  
such that  N =  1 n i  and Nis the  t o t a l  number of observations; then ,  

Definition 2: (Fedorov, 1972). A normalized design e is the collection of 

variables p l ,  p a , . . . ,  P n s  a 1 s  * . * s  a n ,  where p i  = 1 and p i  = n i / M  
i = l  

Theorem 1: (Fedorov, 1972). The family of matrices N ( e )  corresponding 

to all possible normalized designs, is convex. 

Corollary 1: If I N ( e ) l  is the determinant of the design of an 

experiment, then maximizing I N ( e )  I is equivalent to minimizing I N ( e )  I - l .  

Definition 3: (Silvey, 1980). The design that maximizes I N ( e ) l  is called 

D-optimal. If the e r rors  are  normally distributed then a confidence 

ellipsoid for the parameters x (of given confidence coefficient and for a 

given sum of squares arising from the design e), has the form 
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{x: (x - 1) 'N( (x  - 2) < constant} (3)  

where 2 is the least squares estimate of x. The content of this ellipsoid 

is proportional to INI-%. Hence, D-optimal design makes th i s  ellipsoid a s  

small as possible. In summary, e is  D-optimal iff N ( e )  > 0 (positive 

definite) and 

where e* is the optimal design. 

also a minimax design (Kiefer, 1961). 
Since u - (O,uiI), D-Optimal design is 

Definition 4: (Fedorov, 1972). e is G-optimal iff 

min m a x  d(a,e)  = m a x  d(a,e*) 
e a c x  

where d(a,e) is the variance of the expected response E(y). In words, 

the optimal design e minimizes maximum of d(a,e). A sufficient condition 

for e to satisfy G-optimality is 

max d(a,e*) = m 
a = x  

Theorem 2: The general equivalence theorem (Kiefer, 1961): Conditions 

4, 5 and 6 a re  equivalent. 
W e  are now ready to set up a semi-intuitive approach to determine 

an  optimum design for the configuration of deformation networks with 

baseline observations satisfying D-optimality criteria. By consideration 

of continuous analogs of discrete designs we will arr ive at certain 

conditions under which discrete designs can be constructed. Such an  

approach reflects the approximation of continuous designs with a 

distinct number of points in their spectrum. 

Definition 5: A design measure is a probability measure denoted by .( 

on x .  Specifically, # c { D )  of all measures defined on the Bore1 field B, 
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generated by the open sets of x and such that 

f d t ( a )  = 1 0 < # < 1 (7 )  
X 

Given a measure in D the information for the experiment e will be taken 

as 

N ( e )  = a’a d#(a)  
X 

When #(a) is an absolutely continuous distribution, it has a probability 

density function given by p(a). Equations (7) and (8) then reduce to 

N ( e )  = a’a  p(a)  da 
X 

(9)  

In  the case of a design with finite spectrum having n points 

Then for any discrete design e it is  possible to form a measure t by 

attaching a m a s s  n i /N  to each point of e. From these definitions we see 

that if a continuous design is found then the discrete designs can be 

constructed by solving the  equations in (10) for a and p. 

Consider now the mathematical model for repeated distance 

observations at two different epochs (Pope, 1966) 

d l  = d sin’d e, + d cos’d ey + s i n  2d exy 
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This model appears a s  a trigonometric function in azimuths where e,, ey 

and exy  are the deformation components of the  infinitesimal strain tensor 

to be estimated and 

a i  = d[sin20ci cos*oci sin20ci] (12)  

di is the  azimuth of an arbitrary baseline observation 1 and dd = d - d o  

is the difference of two baseline observations performed a t  two different 

epochs, Then the information matrix for these pseudo-observations is 

If a uniform measure 

d((a)  = (2n)-' doc 

such that 

is selected in the  domain of all possible azimuths [0,2n], then from (13) 

N ( e )  = ( & ~ ) - ~ f : ' ( o c )  a(&) doc 
0 

Now considering the following relationships 

?:in kx cos ax dx = 0 l * k  
0 

f:in'kx dx = fEos'kx dx = 0 
0 0 

it can easily be shown using (12) and (16) that 

d(oci,e) = a i ( & )  N(e)-'a;(oc) = m = 3 
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Therefore, baseline observations with the above uniform measure are 

G-optimal, From (4 )  and the equivalence theorem it follows that uniform 

design is D-optimal and minimax. 

Now a discrete design can be found. The azimuths d i  and point 

masses p i  must be such that the following equations hold (from equation 

10 and 12) 

(19) pi  = 1, i = 1, 2, . . . )  n C p i a l 3  = C Pia23 = 0 

I t  is not difficult to verify that for d l  = 4, = 13, n = 3 and pi = 1/3, 
the above equations a re  satisfied. I t  follows that  an  equilateral triangle 

is D-optimal, Similarly, regular polygonal designs composed of 

equilateral triangles are also uniformly D-optimal for the homogeneous 

strain field. I t  can be shown that certain arbi t rary designs of 

equilateral triangles are D-optimal. But uniformity of the design is no 

longer valid for these configurations, Le., p i  f l/n. 

Since the above approach is oriented to the optimal configuration of 

deformation networks in the homogeneous deformation field, it can be 

classified under the first-order design problem of geodesy. In the case 

of p i  # l /n ,  resulting configurations composed of equilateral triangles 

can be classified within both first- and second-order design problems 

by interpreting p i  as observational weights. Meanwhile this approach 

is not sufficient if more than one model which can represent the 

deformation field, as recognized and discussed in the proposed 

algorithmic approach, are postulated. In  this case, it is necessary to 

design deformation network oriented network designs which does well 

for different competing models. Such designs can be constructed 

iteratively using also prior preferences a s  weights on each model. This 

problem can also be examined, as proposed by Schaffrin (1986, private 

communication), within the  reliability aspects of geodetic networks 

(Baarda, 1977). This problem will not be discussed in this study. 
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3.2 SEQUENTIAL MODEL DISCRIMINATION 

In Chapter 2 the importance of model discrimination in crustal  movement 

analysis was discussed in conjunction with the proposed algorithm. 

Currently five major approaches to the model discrimination problem can 

be identified (Chrzanowski, 1981): Delft, Hannover, Karlsruhe, Munich 

and Fredericton. 

The Delft approach (Mierlo, 1978; Kok 1977, 1980) consists of first 

testing each single network measurement by so-called data snooping; 

second, testing the stability of the reference points using data snooping 

again but this t i m e  treating coordinates from individual network 

adjustments a8 observations; third, testing of single point displacements 

at each point of the network; and fourth, testing of deformation models 

which are postulated a priori as systematic relative displacements of a 

group of points in the network during an epoch. 

The Hannover approach (Pelzer, 1974; Niemeier ,  1979) is based on 

global congruency tes ts  using analysis of variance techniques. First an 

outlier check of observations for each single epoch is performed, and 

the observational weights within and between epochs are  determined. 

Second, the global congruency of the network geometry between tho 

epochs is tested to detect significantly moved network points a t  

different epochs with respect to the mean geometry of the network. 

Then the corresponding displacements are  computed. 

The Karlsruhe approach (Heck, 1980) is based on the analysis of 

variance and use of confidence regions for point displacement vectors. 
The approach consists of the following steps. First, measurements for 

each epoch are adjusted for outlier control and for the final 

determination of observational weights. In the second stage, the 

internal stability of a group of reference points is tested. Then a 

simultaneous adjustment of all epochs is performed using the stable 

network points as reference points. From the resulting coordinate 

differences of the other network points, displacement vectors with 

respect to these fixed points and their corresponding confidence regions 

are  computed and displayed for the visual interpretation of the 

resulting deformations. 
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The Munich approach (Welsch, 1982) puts emphasis on t h e  

description of deformations in consideration of coordinate system and 

geodetic datum invariants. First the existence of significant 

deformations is checked using a datum invariant statistical test. 

Repeated observations are  then modelled as a function of certain 

parameters of the deformation field which are  again invariant with 

respect to the underlying geodetic datum and coordinate system. These 

parameters a re  then estimated for each epoch together with their 

significance based on a certain level of probability. 

The Fredericton approach (Chrzanowski, 1981; Chrzanowski e t  al., 

1983) cdmbines some of the aspects of the  previous approaches in a 

more general algorithm. In addition it analyses and interprets the 

resulting changes in the repeated observations within the infinitesimal 

homogeneous as well as nonhomogeneous deformation field. First, 

observational data is screened for outliers and possible trends of 

deformations are investigated. Second, single point displacements or 
relative displacements of the network points are determined employing 

the changes of the observed quantities a t  different epochs as 

observations using a minimum constraint solution. The resulting 

displacement components a re  then used as  quasi observations which are  

then modelled as a result of postulated deformation models. Finally 

these deformation parameters are  estimated for each model and the best 

fitting model is selected using the results of global statistical tests and 

the calculated significance levels of deformation parameters for each 

model. 

In summary, the existing approaches to the analysis of crustal 

deformation measurements are oriented first  to the detection of crustal  

movements and in a limited sense to the descriptive niodel discrimination 

problem. However, in the analysis of statistical decision theory, two 

problems are  generally distinguished. One is the problem of making the 

best decision (identification of an appropriate model in our case) on the 

basis of a given set of data, and the other is the problem of designing 

the best experiments in order to get information upon which a decision 

will be made. In this respect model discrimination procedures in an 
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algorithmic approach should include these two problems. But the 

existing approaches to the analysis of crustal movements address only 

the problem of model discrimination. A combined analysis based on the 

design of measurements to facilitate the discrimination procedures within 

the scope of an  experimental design concept has yet to be exploited. 

In this  section, a method based on Bayesian philosophy and entropy 

measure of information is proposed for the  elucidation of time-dependent 

models of crustal  motions. The method, which is due to Box and Hill 

(1967) , combines model discrimination and design of measurement 

concepts in a sequential strategy. First the  method is reproduced, then 

the strategy is adapted to the time dependent models of crustal 

movements through an example. 

Assume that geodetic surveys are  performed at different epochs. 

The data indicate that crustal  motions occurred during these time 

intervals and a set of concurring descriptive models a re  postulated 

either as a result of the displayed dislocation patterns of the network 

points and/or previous information. The question is how to use the 

data to select the  best model and to design new optimal observations to 

facilitate model discrimination. 

Since in general every decision is a result of some type of decision 

rule, it is necessary at this  point to define a discrimination criteria. 

Let the state of the deformations be represented by the parameter 

vector x and suppose that H is the set  of concurring models 

(hypothesis). The preference of one model over the others (best  model) 
can be ranked by means of a loss function L(H,x).  If 

holds, then H I  is preferred to H2 where H I ,  H2 c H. But since x is 

unknown and must be estimated from a set of observations y which a re  

random variables due to the observational errors,  it is intuitively much 

more appealing to make a decision based on the smallest possible 

expected loss over all conceivable set  of samples S rather than loss 

only. Therefore, 
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r(L,x):= jJ(H,x)f(ylx) dy (21) 
S 

where r(L,x) is the expected loss (or r isk)  and f(y1x) is the density 

function of y given x. Thus, the problem of selecting the best model 

can be judged by examining the above risk function when x is unknown. 

However, if some a priori information is already available about x 

before the observations are performed, this information can be used to 

make the best selection after the data is available. If, in particular, 

this  information is a probability function on x then, 

R(J,x):= L(H,x)f(ylx)f(x) dydx 
P S  

or  considering (21) 

where f(x) is a multivariate density on the parameter space P 
representing the prior information and f (y lx)  is now interpreted as the 

conditional density of y given x. Again, it is possible to make a 

selection, this t i m e  in the  presence of prior information, which minimizes 

the r i sk  given in (23). This approach in general is known as  the 

Bayesian solution. Equivalently, considering the  Bayes formula, the 

conditional distribution of x given y is defined as 

where 

is the marginal density on y. Then (23) takes  the following form, 

2-p 
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Now if a loss function that measures the relative importance of various 

selection e r rors  is specified, the posterior density function is derived 

from the prior density and the likelihood function f (y lx)  of the process 

is known then the  optimal decision can be made for the hypothesis 

which minimizes the expected loss. 

A number of solutions can be obtained to this  problem for different 

loss functions assigned. For instance, a commonly used function for the 

selection e r ror  (x - a i )  is its quadratic function, where x is the t rue  

parameter vector and 2'  is the estimated parameter vector for the  i th  

model. 

An alternative approach is to use entropy measure of information 

(Box and Hill, 1967) which has been developed in communication theory 

(Shannon, 1948). 
Consider a complete set of events, E l ,  i = 1, 2,. .., III whose probabil- 

i t ies  are p l ,  pa , . . . ,  pm such that  C pi = 1.  The expected information 

(I) of the message on the occurrence of one of these events is defined 

as 

m 

i = 1  

m 1 
= 1  

which is also known as the  entropy of the distribution whose 

probabilities are p i ,  i = 1, 2, ..., m (Shannon, 1948). The least possible 

information occurs when p1 = pa...pm l /m,  which can be derived by 

maximizing the above equation subject to the constraint C pi  = 1. In 

this case, the  amount of information is small and the  entropy as a 

measure of disorder is maximum. In other words, all events are equally 

likely. In situations where the probability of one event pi is larger 

than the probability of other events p j ,  j f i t h e  amount of information 

is considered to be large and entropy is small. This concept can now 

be applied to the discrimination of different competing models. Let 

there be a set of m competing models and the a priori probability of the 

i t h  model being t rue  is p i .  If the observations are performed and the a 

posteriori probability for the  ith model is computed then the information 

gained by th is  experiment is specified, from (26), as 
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This expression is s i m i l a r  to the previously discussed loss function 

L(H,x). However in this case the maximum of AI(H,x) is of interest in 

order to obtain the greatest  amount of information out of the 

experiment. Now, substituting (27) into (22) and considering that there 

exists a finite number of models, the expected change in entropy 

(information) E(A1) =:AJ before and after the nth observation is obtained 

where 

Substituting (29) into (28) 

Now an  observation which maximizes (30) is considered the optimum one. 

Evaluation of (30) however, is quite complicated but an upper bound for 

this expression leads to a tractable form. Consider 

(31)  

which is a result of Corollary 3.1 of Kullback (1959). Substitution of 

(31) into (30) gives an upper bound A J u  for AJ 
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Let  now a group of competing models be given by 

E(y(')) = A(i)x(i) , i = 1, 2, . . . , m (33)  

where y ( i )  is t he  m x l  vector of observations for the ith model, A ( ' )  is 

the nonstochastic nxu design matrix, and x( ' )  is the uxl unknown 

parameter vector for the i t h  model. u is not necessarily the s a m e  for 

all models. If the observations yn are  assumed to be distributed 

normally with mean E(y,) and known variance d, the  following 

relationships hold (Box and Hill, 1967) 

where f i t )  is the predicted value of yn  under model i using n - 1 

observations and its variance is u? which is given by 

where  a i 1 )  is the row vector of A ( i ) .  From the definition of the 

probability density function of y n  under model i given u and n - 1 

observations 

If (34) and (35) are substituted in (37) and integrated then 

Substitution of (38) into (32) results in the following operational form of 

discrimination function 
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(39) 

where 941) and 9jJ) are  the predicted observations for model i and j, 

a; and u3 are the predicted variances obtained from (36) for these 

predicted observations and a’ is the known a priori variance of the 

observations. 

I t  is now possible to design sequential geodetic surveys to 

discriminate the descriptive models of deformations using this entropy 

measure of information. The scenario which is depicted in Figure 2 is 

as follows. 

First an initial network design for the area under consideration is 

constructed, for instance, using the D-optimal design criteria which is 
discussed in Section 3.1. Geodetic surveys a re  then performed at two 

different epochs covering the whole network. This is followed by the 

estimation of deformation parameters from the differences of observed 

quantities. A t  this point, information provided by the current  estimates 

and prior qualitative information about the models are examined and 

prior probabilities are assigned to each model. If no preference is 

inferred from the existing information each model is assigned equal 

probabilities p = l / m ,  where m is the number of models. The  next 

optimal observation (not necessarily the resurvey of the whole network) 

that gives the maximum expected discrimination among m rival models is 

sought in (39). Then the new optimal measurement(s) is performed and 

posteriori probabilities for each model are computed using equation (29). 
Finally, the current  standing of each model is examined. This procedure 

is repeated each time, using posterior probabilities of previous 

observations as prior probabilities for the  succeeding observations, until 

one model emerges from the others. The  following numerical example 

illustrates the procedure. 
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Figure 2. Sequential Model Discrimination 
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3.3 NUMERICAL EXAMPLE 
In Chapter 2, the necessity for sequential experimental designs for the 

crustal movement analysis w a s  discussed and became part  of the 

proposed algorithm. In the previous section, a method based on the 

entropy measure of information is presented as a possible candidate for 

the discrimination of several competing time-dependent models. In order 

to get a better feeling for the applicability of the method to the crustal 

deformation analysis, this section describes a numerical example. 

Consider the case of homogeneous deformation field. The following 

descriptive models are postulated as a result of prior experiments to 

represent possible network deformations, 

dx = (e,x + eXyy) A t  

dy = (eXyx + eyy) A t  
model 1. 

model 2. dx = e,x A t  (41)  

dx = e X y y  A t  

dy = e X y x  A t  
model 3 .  

where dx and dy  are the displacement components of network points for 

the period A t ,  e, and ey a re  the extensional strains in X Y directions. 

eXy is  the shearing strain. If the  baselines a re  observed at different 

epochs then the baseline length a i  at epoch t is given by the following 

expression, 

Linearizing this expression about the initial epoch to and considering 

equations (40), (41) and (42) results in the following mathematical models 

model 1: a i j t  - aijt, = At~ij(sin2dije,+cos2dijey+sin2dijeXy) (44) 

model 2: a i j t  - aijt, = A t  a i j  sin2dij e, (45) 

model 3: a i j t  - aijt, = A t  a i j  sin 2dij exy (46) 
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where ejjt and epochs t and 

to respectively, and di is the azimuth of the observed baseline i - j. 

I t  is assumed that  the scale of baseline observations are the s a m e  for 

different epochs and no stable points or  external reference observations 

are available on the deformable object. Although the differences of the 

observed baselines can be expressed in terms of the  coordinate system 

invariants of the homogeneous deformation field , the above 

representation is chosen to investigate and model the contributions of 

the infinitesimal strain elements in an "adopted" orientation of the 

coordinate system. Since the above mathematical models (44)-(46) are 

functions of the baseline azimuths d i  j J  the orientation of the coordinate 

system should be kept the s a m e  from one epoch to another. Otherwise 

model parameters a re  not directly comparable at different epochs. 

are  the  observed baseline lengths at 

In this framework, model 1 implies that  observed baseline 

differences a re  explained by all three components of the infinitesimal 

strain elements within the adopted orientation of the coordinate system. 

Model 2 suggests t h a t  these differences are only due to extensional 

strain in x direction, whereas model 3 investigates the differences as a 

function of the shearing strain. Note that  models 2 and 3 are special 

cases of model 1. For particular orientation of baselines within the 

adopted coordinate system, models 2 and 3 and models 1 and 2 cannot 

be differentiated from each other for d i  = 0' and d i  = 90' 

respectively. However, as we  shall see, the discrimination function 

successfully selects the alternative orientations (namely, the baselines in 
the N-E and N-W directions) for which all three models are identified. 

In  this example, model 3 is chosen to be the correct model and the 

pseudo-observations (ejjt - J i j t o )  are  derived using t h i s  model. They 

are  also contaminated with a noise from a normal distribution wi th  mean 

zero and variance 1 mm2. Shearing strain, exy, in the correct model 

(46) is 0.50 ppm and the t i m e  interval between observations is constant 

and equal to a month. The sequential model discrimination procedure 

can now be performed using the algorithm depicted in Figure 2. 

An initial design is set u p  for the measurement of deformation 

parameters (Figure 3a). This is a D-optimal design of model 1, which 
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was derived in Section 3.1, with some additional observations. I t  is 

initially postulated that all three models are equally likely. In other 

words, prior probabilities for each model are 1/3. Part of the network 

is resurveyed a month later to compute initial estimates for each model's 

parameters. This makes it possible to predict a new observation for the 

next month that maximizes the discrimination function AJu (39) for each 

model and selects the possible observation which gives the  maximum 

discrimination. In this example three alternatives a re  possible: 

baselines which are in the north-east direction, baselines which a re  in 

the south-west direction, and baselines which are  in the east-west 

direction. The predicted observation is then performed and posterior 

probabilities for each model are computed using the new observations 

and prior probabilities (29). 
The rest of the experiment continues following this prediction and 

observation procedure u n til com pu ted poster io r probabilities indicate 

that one model is superior to  the  others (Figures 3c, 3d and 3e). 
Figure 3 shows that the correct model 3 is identified effectively with 14 

baseline observations after 6 months. 

As a comparison, null-hypothesis tests (H,: Model 3 is the same as  

model 1, H,: Model 3 is t he  s a m e  as model 2)  are  performed using the 

estimated parameters obtained by the least squares method at 5% and 1% 

significance levels. Neither hypothesis is rejected at 1% significance 

level until A t  = 5 months (Figure 3e). In the case of d = 0.05, model 2 

is rejected at A t  = 5. Model 2 is rejected at A t  = 6 months a t  both 

levels. However, the results w e r e  ambiguous in the sense that model 2 
and model 3 were still likely candidates until the last measurement was 

performed. This problem is clearly eliminated by t h e  proposed method 

due to the history of accumulated measurements and calculated posterior 

probabilities of each model. 

Meanwhile, the assumptions underlying (39), mainly the  normal 

distribution of observations, will not always be satisfied in practice. 

Nevertheless, (32) can B t i l l  be used to derive different criteria for the 

expected changes in information provided that suitable approximations 

(distributions) are available for evaluating (32). 
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Figure 3. Results of Sequential Experiment for the 
Discrimination of Three Competing Models 
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In addition, H, the set of hypotheses, is assumed to be complete; in 

other words, t h e  t rue model is in the set of postulated models in the  

given example. On t h e  other 

hand, H may contain a suitable approximation of the t rue model. In this 

case the discrimination procedure will require more iterations to identify 

this approximation. A stopping criterion needs to be established under 

these circumstances. Also the use of one of the previously outlined 

model discrimination approaches together with this  method will provide 

some insight to identify a suitable model when more than one model 

competes after several iterations. If a suitable model cannot be 

identified, then the discrimination procedure continues, as described in 

the  proposed algorithmic approach, by postulating a new set of models 

and performing new observations until one model is selected. The 

methodology presented in this section predicts a single observation for 

the following epoch. More observations can be predicted using (39). 

However, in this case, (29) needs to be modified to evaluate the 
posterior probability of each model. 

This is certainly not the case in practice. 

In any event, the usefulness of the proposed method should be 

investigated fur ther  by applying it to more complicated real world 

deformation problems. 
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Chapter 4 

ESTIMATION USING PRIOR INFORMATION 

4.1 INTRODUCTION 

So far,  initial design of optimal deformation networks and the 

experimental design problem for the discrimination of possible crustal . 

movement models has been discussed within the context of the proposed 

approach. As a result of these steps a n  operational model which 

describes the differences of repeatedly measured quantities is identified. 

Relevant deformation parameters of this model are then estimated using 

these measurements (sample data). If these estimates are found to be 

satisfactory, then there is no need to go further. As long as predicted 

results derived from this model are in agreement with measurements 

performed at later epochs, it can be used for fur ther  investigations. 

Otherwise the model loses its credibility and the whole procedure starts 

again to obtain a better model. 

Meanwhile uncertainties attributed to these parameters may be large, 

for instance, due to the precision of repeated observations. In such 

situations current  model estimates can be improved to a certain extent 
by introducing prior information provided by theoretical models and/or 

previous investigations about these parameters. 

Since this information can be introduced into the estimation process 

using different types of adjustment techniques, the last par t  of the 

proposed algorithm examines some possible alternatives. 

Clearly no method of estimation can be perfect, but one method may 

perform better than the alternatives under a fixed situation. Estimation 

with prior information is no exception. Our main concern in the 

proposed algorithm is with the problem of improving the estimation of 

crustal movement parameters using prior information rather  than finding 
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"the best estimator'' which will govern the whole. analysis under all 

possible circumstances. I t  is proposed that different estimators should 

always be considered for the particular problem under investigation and 

decision (selection) should be made by assessing the gain for each of 

the estimators which employs prior information. The results of one 

estimator which is more efficient than the alternatives a re  then 

accepted. Such an  approach is obviously inefficient for practical 

geodetic problems, yet it pays off in crustal movement analysis, where 

improvements in parameters are very crucial. 

In this chapter, first a qualitative criterion to compare different 

estimators is established. Then, three estimators, the well known mixed 

model estimation (Best Linear Uniformly Unbiased Estimation BLUUE),  

B e s t  Linear Estimation (BLE) and B e s t  Linear Unbiased Estimation 

(BLUE) ,  which all use prior information, a r e  examined under the 

established criterion. 

Since the purpose of using prior information is to improve the 

estimation of relevant parameters, the above estimators are compared to 

the Generalized Leas t  Square Estimator (GLSE) which is independent of 

prior information using the criterion of betterness. 

In these comparisons, it is f i rs t  assumed that observations a re  

affected only by a random noise, that  the linear model explains the 

phenomena and that the prior information is in agreement with the 

current estimates. 

Today controlled instrument calibration procedures, replication a n d  

reproduction of observations with different techniques, as well as 

investigation of different models which fit the data, can guarantee to a 

certain extent the validity of the first  two assumptions. However, 

possible incompatibilities between prior information and the current  data 

a re  harder to control and modify. This situation is much more likely to 

occur in crustal movement analysis simply because the previous data 

may represent tectonic motions only in the long t e r m  average sense or 

it may be a result of purely theoretical considerations. The existence of 

these discrepancies can be detected by null-hypothesis testing. 

However, since the rejection or acceptance of the agreement between 
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data and extraneous information is also a result of established 

confidence levels and some additional assumptions, the  rejection of the 

null-hypothesis by no means suggests that  such information is totally 

wrong and should be completely discarded from the analysis. 

Therefore, the additional question: "How incorrect can the prior 

information be so that  the  resulting estimation with prior information is 

still advantageous compared to GLSE?" is examined by deriving the 

necessary conditions for the proposed estimators under biased prior 

information. A testing procedure is first given for the compatibility of 

prior and sample information. 

In this chapter the following linear model is under consideration 

y = A x + u  ( 1 4  

where y is an  nxl vector of random variables (differences of observed 

quantities at different epochs). A is an nxm fixed design m a t r i x  of full 

rank. x is the m x l  vector of unknown parameters and deterministic in 

nature. In other words the linear model (la) is the classical functional 

relationship model of geodesy. m<n for an  overdetermined system. u is  

the nxl vector of disturbances which are random and unobservable with 

the following assumed properties 

where I,, is the nxn known covariance matrix of disturbances. In 
addition w e  will a s s u m e  that an m x l  vector of prior information xo is 

available about the parameters x in the following stochastic form 

where e is the m x l  vector of disturbances with the  following 

distributional proper ties 

where I,, is the known covariance matrix of disturbances. Also we will 

consider the case where xo is the only information available about the 

parameter vector x in a deterministic form (i.e., when Cee+O). 
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Under this setup, (1)-(2), the general problem is the estimation of 

the t rue parameter vector x in the presence of prior information. 

4.2 COMPATIBILITY TESTING 

Once the model of deformation is identified (discriminatory analysis), the 

next step is to check whether  prior and sample information (i.e., the 

estimates obtained from the sample observations only) are in agreement 

with each other. This s tep can be used a s  a supporting factor to 

decide if the prior information should be included in the estimation 

procedure. 

Let  xo denote the m x l  vector of prior information on the  deformation 

parameters and let xo = x + e where e is the m x l  e r ror  vector, E,, its 

known covariance matrix and x the vector of t rue parameters. Then the 

hypothesis H,: "Prior and sample information a re  in agreement", can be 

tested following the s imi l a r  lines given in (Theil, 1963). 
Under this  hypothesis, if prior information and an estimate of 

parameters of GLSE type 2, are in agreement, then their difference is 

expected to be close to zero, 

( 3 )  6:= xo - GS = e - N ' A  CUAu 

where N:= A'E;;AA, E,, is the nxn positive definite covariance matrix of 

observations, u is the corresponding nxl e r ror  vector, and A is the nxu 

design matrix and assumed to be full rank. The matr ix  of second 

moments of this difference is 

E(66') = (Eee + N1) 

since E,, + N'' > 0, (positive definite) E(66') can be expressed a s  

E(66') = ZxZx 

where Z:= ( E e e  + N - l ) .  Then it can be shown that 

6'z-K - ( 0 , I ) .  
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If the disturbance t e r m s  on sample observations and prior 

information a re  assumed to be distributed normally, Le., 

then 

6'Z-% - N(0,I). (9) 

Therefore, the scalar 7:= 6'Z'16 can be used as a test statistic since it 
follows a central x z  distribution (Theorem A.lO). 7 is called the 

compatibility statistic (Theil, 1963). If d is a predefined error  

probability of the f i rs t  kind, then the null-hypothesis will be accepted 

for 7 4 x:-&. 
In the case where xo is assumed to be strictly correct (Eee 3 0), the 

testing procedure is performed using the compatibility statistic which 

would have the following form 

4.3 COMPARISON CRITERION FOR ESTIMATORS 

In comparing two estimators, i t  is necessary to weigh the advantages of 

both estimators against their disadvantages. Obviously, such 

preferences can be expressed in various ways. Each can be best for 
different purposes and a unique universal criterion unfortunately does 

not exist for all conceivable situations. Manipulative conveniences of 

possible alternatives and intuitive arguments about their properties a re  

important in choosing a comparison criterion. 

Here the Mean Square Error (MSE)  matrix criterion is considered to 

express qualitative properties of the estimators. This is portly because 

it gives fairly simple results but mostly because all unbiased estimators 

t u rn  out to be biased when even one of the assumptions of 

unbiasedness is violated in practice (Bibby, 1977). This property is 

especially important in crustal movement analysis when additional 
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information is introduced into the estimation procedure (we consider 

additional information on the  parameters in this study); Since there is 

no way to guarantee that the additional information is strictly correct, 

the effect of this information must be exploited for different estimators. 

Therefore an estimator which is not dominated by the  erroneous prior 

information (i.e., robust against e r rors  in this information) of its 

alternative can be considered a better estimator, 

Also, we expect that  this estimator should improve the results in 

some sense; otherwise there is no reason to introduce additional 

information into the analysis. The MSE criterion will be used to exploit 

these types of properties of different estimators. 

This choice, however, can be criticized due to the  fact that  t h e  MSE 

matrix involves a biact vector which is in practice rarely known and 

moreover if known can be eliminated. But as it is readily demonstrated 

in the following sections in comparing different estimators, an unknown 

bias may still be used as an  effective tool in making inferences about 
the properties of different estimators. 

The comparison criterion is defined as follows. 

Definition 1: Matrix valued Mean Square Error criterion. An estimator 

2, of x is said to be better than another estimator 2, of x if the 
difference 

is positive semi-definite (non-negative definite) or equivalently ( 2  0) ,  

where 

MSE(22) = E(x - %,)(x - 22)' (13)  

Now let one of the estimators be chosen as the Generalized Least 

Squares Estimator (GLSE) gS of x which is obviously independent of 

prior information and is assumed to be unbiased. L e t  another estimator 

5i of x belongs to a class of biased estimators which employs prior 

information or much more importantly it may be biased. as a result of 
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erroneous prior information. Therefore, the corresponding MSE matrices 

are given by 

MSE(2,) = D(2,) 

MSE(2) = D(2) + bb' 

Here, D(2s) and D ( 2 )  are  the mxm dispersion matrices of %, and % 

respectively and b is the m x l  vector of bias. Hence, under Definition 1, 

the estimator 2 which uses prior information is uniformly better than 

the sample estimator ks of x if 

MSE(jZ,) - MSE(2) = D(2,) - D(2) - bb' 0 (16) 

Since 

tr MSE(2,) = E(x - 2,)'(x - 2,) 

t r  MSE(2) = E(x - 2)'(x - 2) 

the ordinal criterion of betterness given by (16) leads to the following 

cardinal criterion 

The advantages of using the mean square e r ror  concept as a 

comparison criterion should now be clear. (19) indicates that the biased 

estimator 2 of x is superior to the sample estimator 2, of x of GLSE 

type if its total bias (b ' b )  is less than the total decrease in variances 
of all estimates. In other words, the use of prior information is 

justified as long as the total bias introduced remains less than the total 

improvements of all parameters. This  property forms the logical basis in 

deriving the conditions for the selection of suitable estimators under 

possibly incompatible prior information. 

As we shall see in the following chapters, the mean square error  

matrix of an estimator usually depends on the t rue parameter vector x. 

Consequently, Definition 1 does not exclude the possibility that  for some 

values of x the  mean square e r rors  of both estimators will coincide (i.e., 

tr MSE(kl)  = tr MSE(2,)) .  In these particular cases, there is no basis 
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for preferring one of the estimators over the other, although Definition 

1 is still fulfilled. Other properties of the estimators need to be 

considered. 

In the following sections three estimators which employ prior 

information, namely Best Linear Estimator (BLE) ,  Best Linear Unbiased 

Estimator (BLUE) and B e s t  Linear Uniformly Unbiased Estimator (BLUUE),  

are examined using the MSE matrix criterion. They are  compared 

against GLSE under correct and possibly wrong prior information. 

4.4 BEST LINEAR ESTIMATION WITH PRIOR INFORMATION 

Theorem 1: B e s t  Linear Estimation, BLE, (Tautenburg, 1982; Schaffrin, 

1983). L e t  Gy be a linear estimator of x in the linear model (1). Then 

the optimum value of G (in the sequel the optimum value of G is denoted 

with the same letter to simplify the notation) for which 

E(x - Gy)‘(x - Gy) = tr GCuuG‘ + tr(1 - GA)xx’(I - GA)’ = min (20) 
G 

yields to the BLE kl of x 

where  

N:= A‘CLtA 

G = (1 + x’Nx)-’xx’A’~,: 

The dispersion matrix D ( k l )  of kl is given by 

D(Gl) = (1 + x’Nx)-zx’Nx~xx’ 

Since bias vector b 

b:=  x - E(G1) = (I - GA)x (25) 

is not enforced to be zero in the target function given by (20), t h e  

resulting estimator is biased and the bias, by substituting (23) into (25),  

is 
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b = ( I  - GA)x 

b = [I - (1 + x'Nx)-'xx'A'~,:A]x 

b = N'(N-' + xx')-'x 

and the mean square error  matrix MSE(2') of the estimated parameters, 

considering (24) and (28), is 

MSE(21) = D(51) + bb' 

MSE(2,) = (1 + x'Nx)-'xx' 

Now let u s  compare this estimator against the sample estimator 2 s  of 

GLSE type. The following theorem holds: 

Theorem 2: BLE 2, of x is better than the s a m p l e  estimator j t S  under 

Definition 4.3.1. 

Proof: Consider 

MSE(2-,) = N' 

and 

MSE(kl) = (1 + x'Nx)-'xx' 

then 

A > 0 iff 

(x'Nx)(l + x'Nx)-' 4 1 (33) 

(Theorem A.l) .  Since x'Nx > 0, (33) is always less than one for 

0 < x'Nx < 0. This completes the proof. 

Although this estimator is better than the sample estimator kS, it 

contains the t rue parameter vector x and it is applicable only if a valid 

prior information xo about the parameters x such that xo = x is 
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available. This information, however, can not be strictly realized in 

practice. If it is, then there would be no need for the estimation of 

parameters. Consequently xo to be used in (21) and (29) to replace x in 

these relationships is in general different from the t rue parameter 

vector (irer, xo f x), In this case it is necessary to compare this 

estimator versus the sample estimator when the wrong prior information 

is used in the estimation. 

Substituting xo for x in (21 )J  the  resulting new estimator 2, is 

given by 

where 

G o : =  (1 + x~Nxo)-'xox~A'C~: (35) 

and xo f x. The dispersion matr ix  D(2,) of 2, is now given by 

and the bias bo is 

bo:= x - E(%,) = (I - G0A)x 

bo = N1(N1 + xox~)-'x. 
(37) 

The mean square e r ror  matrix of 2, now has the following form 

MSE(Sl) = D(2,) + bob; = (1 + x ~ N x ~ ) - ' x ~ N x ~ ~ x ~ x ~  + N'(N' + x~x~)-' 

* XX'(N' + XOX~)-'N' (38) 

Comparing (38) with the MSE matrix of the sample estimator 2, which is 

obviously not affected by any type of prior information results in the 

following relationship 

*xx'(N' + x,x~)-'N' (40) 
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I t  can be shown by using Theorem A. l  that  the difference of the first 

two terms in the above equation is always positive definite. Now let 

then using Theorem A.1 again, (39) is p.s.d. iff 

x'N-'(N-' + xox;)-'B-'(N-' + xOX;)-'N-'X 4 1 (42) 

This expression reduces after some simple but lengthy manipulations to 

x'(N-' + ZX~X;)-'X 1 (43) 

Hence the following theorem is proven. 

Theorem 3: The necessary and sufficient condition for the biased 

estimator 2' under wrong prior information to be better than the sample 

estimator j iS for all xo x with respect to Definition 4.3.1 is 

x'(N' + 2xox&)-'x < 1 (44) 

The implications of this theorem will be examined at the end of this 

chapter together with the other theorems which will be derived in the 

following sections. 

L e t  u s  now examine the behavior of bias introduced by the use of 

wrong prior information when the above condition holds. The quadratic 

bias, from (37)J is given by 

which can be expressed, after a simple transformation, as 

bibo = z ' ( 1  + zOz~)-'N-'(I + z0zi)-'z (46) 

where 

z :  = Nxx 
z o  : = Nxxo 
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Hence, the condition for betterness under erroneous prior information 

(Theorem 3)  takes the following form 

z ' ( 1  + 2202;)-'2 1 147) 

The following corollary holds. 

Corollary 1: The quadratic bias due to the incompatible prior 

information under the condition of betterness (44) is bounded. The 

supremum of the total (quadratic) bias as a result of the wrong prior 

information is equal to or less than the largest eigenvalue A, of N-', 

Le., 

SUP ~ ' ( 1  + zOZ;)-'N-'(I + z~z;)-'z 6 A, 

s.t.: z ' ( 1  + 2zoz;)-'2 1 

(48) 

(49)  

Proof: Let  N-'  = TAT' be a spectral decomposition of the symmetric:  

matrix N" and also let 

then 

d'd = ~ ' ( 1  + zOZ;)-'(I + z~z;)-'z 

so that 

rn 

4-1 
sup b;bo = sup d'Ad = sup C Aid? (52) 

where A i  are the eigenvalues of N-I .  If these eigenvalues a re  written 

in descending order then the above equation (52) satisfies 

in m 
sup C Aid? < A, sup d? 

i = 1  i - 1  

Using Theorem A.7, it  can be shown that 

~ ' ( 1  + ~z~z;)-'z - d'd 0 
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therefore 

since z ' (1  + 2 z o z ~ ) " z  1. This completes thc proof. 

It should be noted here that the boundedness in the quadratic bias 

also implies the boundedness of its elements (Voievodine, 1976). 

4.5 BEST LINEAR UNBIASED ESTIMATION WITH PRIOR INFORMATION 

In this section another estimator, namely Best Linear Unbiased Estimator 

(BLUE), which is recently derived by Schaffrin (1983), is examined. The 

estimator and the relevant statistics are  stated. Since the  purpose of 

using such an estimator, in the scope of the proposed algorithm, is to 

improve the estimates, it is compared against GLSE. This estimator, 

s imilar  to BLE, requires additional information xo about the parameters 

to be estimated. Comparisons are also made for the case when the prior 

information is wrong. The main difference between BLE and BLUE! is 

that the  unbiasedness condition is weakly introduced into the target 

function given by (20) which appears to be a novel in statistical 

liter at u re. 

Theorem 1: B e s t  Linear Unbiased Estimation, BLUE, (Schaffrin, 1983). 
L e t  Gy be a linear estimator of x in the linear model (1). Then the 

optimum value of G for which 

tr D(Gy) = tr G E,, G' = min 
G 

subject to 

b:=  x - E(Gy) = (I - GA)x = 0 

in the  sense of, 

tr[GC,,G' - 2(I  - GA)xA'] = min 
G 
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where h is a Lagrange multiplier vector and D(Gy) is the dispersion 

matrix of Gy, yields to the BLUE 2, of x 

where 

G = (x‘Nx)-’xX’A‘C,: 

N: = A’CGAA 

The dispersion matrix D(Z2)  of 2, is given by 

D ( G 2 )  = (x’Nx)-’xx’ 

(59) 

Since the bias b 

is  enforced to be zero in the target function ( 5 6 ) ,  the resulting 

estimator tu rns  out to be unbiased, that  is 

E ( G 2 )  = E[ (x’Nx)-’xx’A’C,:y] = (x’Nx)-’xx’A’C,hAx = x (64) 

Therefore, the mean square error  mat r ix  of the estimate is 

Since the unbiasedness condition is  introduced through (57) which 

has a solution only for the scalar multiples of x, the resulting estimator 

is weakly unbiased (see (Schaffrin, 1983) for the general concept of 

unbiasedness). If the condition of unbiasedness is introduced through 

the homogeneous equation ( I  - GA) = 0 which obviously holds for any x, 
then the resulting estimator is the well-known best linear uniformly 

unbiased estimator (or equivalently GLSE) which is independent of prior 

information. 

Note that this estimator reduces to GLSE for the univariate caBe 

(Le., m = 1). 
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Proposition 2: 
with respect to Definition 4.3.1. 

BLUE 2, of x is better than the sample estimator 2s of x 

Proof: Consider the differences of the dispersion matrices of both 

estimators 

then from (62) 

A = N' - (x'Nx)-'xx' 

which can also be written as 

A = K K I I  - NK(x'Nx)-'xx'NX]N~ 

therefore A > 0 iff 

which holds as a result of Theorem A.1. This completes the  proof. 

Similar to BLE, this estimator is a function of the t rue  parameter 

vector x and it is applicable if valid prior information xo = x (x, is 

proportional to x, Le., xo = cox where c is a real number) is available. 

Again this condition cannot be achieved in practice. Therefore the 
resulting estimates are  no longer unbiased since xo pC x (xo is not 

proportional to x) in general. This biased estimator 2, is now given by 

wi th  xo tC x. The dispersion m a t r i x  D(2 , )  of jt2 is, from (70) 

D(2,) = (x~Nxo)-'xox~ (72) 
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and the bias bo caused. by the wrong prior information is 

bo:=  x - E(%,) (73) 

It is clear that the  dispersion matrix of the  estimate does not fully 

measure the effect of the bias caused by the introduction of erroneous 

prior information. We therefore consider Definition 4.3.1. Considering 

(72) and (73) 

(74) 

where 

Since B 0 (Theorem 2) ,  it can be represented as B = BxBK (Theorem 

A.2), then 

and this expression is p.s.d. iff 

I - BKNXX’NBX o 

Using Theorem A. l ,  (77) is p.8.d. iff 

x’NBNx 1 

which can also be expressed, substituting (75), as 

(x ’ Nxo ) ’ 
xiNx, X’NX - 4 1  

(77) 

(774 

To explore the behavior of the  above inequality under varying wrong 

prior information, consider the extrema of the second quadratic form 
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(x'Nx,)' 
= x'Nx sup xiNxo 

XO 
(79) 

as a result  of Theorem A.3. 

is correct. On the other hand 

This  is the  case when the prior information 

(x'Nx,) ' z&, 
= i n f  - = A, 

2020 
20 

inf xiNxo 
XO 

as a result of Theorem A.4, where 

c : =  NKXX'NX 

2 0  = fix, 

and A, is the minimum eigenvalue of C. 

Therefore 

(x'Nx,) 
xANxo = o  i n f  

XO 

Since rank(C) = 1, A, = 0. 

which, together 

Theorem 3: A 

with (79), leads to the following theorem. 

sufficient condition for the biased estimator 2, to be 

better than the sample estimator j iS  for all xo + x with respect to 

Definition 4.3.1 is 

x'Nx 6 1 (84) 

Corollary 1: If u * N(O,aiI), then a sufficient condition for the biased 

estimator j Z z  to be better than j'is for all xo + x is 

- x'A'Ax < 1 4 

which holds basically when the signal to noise ratio 
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is sufficiently smal l .  
Again leaving fur ther  implications of the above results to the end of 

this chapter, let us examine the amount of bias committed by the use of 

incompatible additional information. From (73) and (82) the quadratic 

bias is given by 

and the condition of betterness (84), after a simple transformation, is 

2'2 4 1 (88) 

where z:= Nxx, Now observe that 

and 

sup .*[I - -1. =azo = 2'2 
20.0 

20 

Considering the spectral decomposition of N-' 

N' = CAC' 

(90) 

where C is a n  orthogonal matrix and A is the m x m diagonal matrix of 

h i  eigenvalues of N-I ,  equation (87) can be written as 

where 

Now, from (92) 

(94) 
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then 

m m 

1 = 1  i = 1  
sup bGbo = sup 1 Aid: 4 A, sup C d: 
20 

(95) 

where A, is the largest eigenvalue of N-l .  Substituting (89) and (90) 

into the last t e r m  in (95) and considering (88) 

is obtained. Therefore, the following corollary is proven. 

Corollary 2: The total bias due to the wrong prior information is 

bounded under the condition of improvement given by (84). The 

supremum of it is equal to or less than the largest eigenvalue of N - l ,  

i.e., 

SUP bib0 4 A, 
s.t.: X'NX 4 1 

(97) 

4.6 BEST LINEAR UNIFORMLY UNBIASED ESTIMATION WITH PRIOR INFORMATION 
In the previous two sections, the two estimators examined require prior 

information on the parameters to be known in an exact sense. There 

m a y  be situations, however, that  an  independent "stochastic" auxiliary 
information vector xo on x is available, i.e., 

x o = x + e  

where e is the m x l  vector of disturbances on xo and C e e  is the mxm 

covariance matrix. The. availability of this information leads to the 

following mixed model 

F = A x + i i  (99) 
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where 

y : =  [ E o ]  , i:= [ :] 

Here y, A, x, u and E,, have the s a m e  meaning a s  defined in the linear 

model given by (1). The problem of estimation in this  mixed model is 

well known. In this  section first  the B e s t  Linear Uniformly Unbiased 

Estimation (BLUUE) technique is summarized. I t  is then compared 

against the  GLSE. Results a re  due to Terasvirta (1979). However, the 

amount of bias committed by the use of extraneous information given by 

Corollary 2 s e e m s  to be novel. 

Theorem 1: B e s t  Linear Uniformly Unbiased Estimation, (Theil and 

Goldberger, 1961). Consider the linear model given by (98) - (101). Let 

57 be a linear estimator of x in this  model, then the optimum value of 5 
for which 

tr D(G~) = tr Gc;;G* = min 

(I - G i )  = 0 

- 
G 

s.t.: 

for all x, yields to the B L U U E  ?3 of x 

whose dispersion matrix is given by 

(105) 

where N:= A'CiAA. 

Since the effect of additional information is expected to improve the 

estimates, the following theorem is of interest. 
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TheoremA: 

of Definition 4.3.1. 

The BLUUE 2, of x is a better estimate ZS of x in the sense 

Proof: Since both estimators are  unbiased, Definition 4.3.1 tu rns  out. to 

be a variance comparison. From (105) 

D(Is) - D ( I 9 )  = N' - (1,; + N)-' (106) 

This expression is p.8.d. as a result of Theorem A.7. 
proof. 

This completes the 

The unbiasedness assumption, however, can hardly be realized in 

practice. The compatibility of auxiliary information with the  information 

implied by the observations is especially difficult to achieve. Since the 

current  observations are performed under controlled circumstances, it is  

expected that incompatibility is more likely to be due to the additional 

information. 

Assume that the t rue but unknown form of the additional information 

on the  parameters is in fact 

x o = x + s f e  ( 107) 

where s f 0 is an m x l  vector of possible deviations (systematic e r rors )  

and deterministic in nature. This in turn implies that, from (104) 

(108) 

where xo is now given by (107).  Since 

th i s  estimator is no- longer unbiased, and it will be denoted by j i 3 t o  

emphasize the bias. It is easy to show, using (107) and (108), that 

Hence the last t e r m  is the bias caused by the  wrong prior information 
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Now the next question is, "under what conditions can wrong prior 

information still be used to improve the  estimates?". Following Definition 

4.3.1, the biased estimator 2, dominates the sample estimate g5  iff 

MSE(2,) - MSE(23) 3 0 

tr[MSE(G.,) - MSE(%,)] 2 o 

tr[D(2,) - D(jZ,)]  - s'B'Bs o 

where  B:= (I + CeeN)". Now using Theorems A.l and A.9, (113) and 

(112) hold iff 

s'(Cee + N')-'S 4 1 

This form leads to the following corollary. 

Corollary 1: (Terasvirta, 1979). A necessary and sufficient condition for 

the biased estimator 2, to be superior than the sample estimator gS in 
the sense described by Definition 4.3.1 is 

Let  us  now examine the amount of bias introduced by the use of 

extraneous information under the  above improvement condition. 

Corollary 2: The total bias due to the wrong prior information under 

the condition of improvement (116) is bounded. The supremum of it is 

equal to or less than the largest eigenvalue A, of ( I  t Nxee)-IN- ' ,  Le., 

sup b'b < A, 
XO 

(117) 
s.t.: s'(C,, + N')-'s 4 1 

Proof: A f t e r  a simple transformation the total bias, from (lll),  and the 

condition of improvement, from (116), can be written as 
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z;zo 4 1 

where zA:= s'(Cee t N-')-% then, 

sup b'b = A, 
Z O  

s.t.: z;z,  4 1 

as a result  of Theorem A.4, where Am is the largest eigenvalue of 

(Iee + N1)+=NIN1(Iee + N1)-x 

Since 

m 

I=' 
tr[(Cee+N1)-XNIN1(C,,+N-')-~] = tr[(I+NCee)-'N1] = A i  

the largest eigenvalue of (122) is equal to the largest 

value of ( I  t NCee)-'N-'. This completes the proof. 

4.7 FURTHER DISCUSSIONS 
In the previous sections, three different estimators which employ prior 

information were examined. Since the  purpose of using prior information 

about the parameters is to improve the sample estimates (Le., the 

estimates which a re  obtained without priors) according to the  proposed 

algorithmic approach, they w e r e  compared against t he  GLSE technique in 
order to determine the effect of this information. Comparisons were 

made using the  MSE matrix criterion. It was  shown that introduction of 

prior information improves the results according to the  MSE matrix 

criterion (except BLUE which reduces to GLSE in the case of univariate 

application) for the case when prior information is strictly correct. 

Comparisons were  also made when prior information is not compatible 

which is the case in practical applications. Improvement conditions over 

GLSE were  derived for this case. Results are summarized in Table 1. 
In this section these results are interpreted within the  scope of the 

proposed algorithmic approach. First these estimators are compared 
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with respect to each other under correct prior information; then it w a s  

shown that direct comparisons are  not possible when prior information is 

not compatible. In this case their corresponding improvement conditions 

can be used to select a suitable estimator. 

Now consider BLE, from (21) 

This estimator is better than GLSE (Theorem 4.4.2) but not practical as 

it is, since it is a function of the t rue parameter vector x. To overcome 

this difficulty several approaches are given in statistical literature. For 

instance, Farebrother (1976) replaces x with 2, of GLSE type. ' Vinod 

(1976) iterates the Farebrother estimator and gives an  analytic solution 

to  this iterative form. Another estimator results by postulating the 

linear model (1) as y = Ax + ku where k is an arbi t rary number and 

modifying (123) accordingly. Ullah and Ullah (1978) introduce in (123) 
two constants k,, k2 where k,>O, k2  are arbi t rary stochastic or 

nonstochastic scalars (double k-class estimators). They also show that 

for particular values of k, and k 2  this new estimator reduces to a 

J a m e s  and Stein Estimator (1961). 
Common in all the above approaches is the use of sample 

information. However if valid prior information xo which is independent 

of the current  observations is available about the t rue values of the  

parameters, then (123) can readily be exploited by substituting xo for x. 

In this case the  usefulness of the resulting e s t i m a t o r  depends on how 

close xo is to x. In the meantime since the purpose of introducing prior 

information, according to the proposed approach, is to improve the 

estimates, the introduction of prior information is not only helpful in 

reducing the MSE of estimates in an  algebraic sense but also meaningful 

in the sense that this information may contain a component of reality 

which is not captured by the sample observations. 

If this  information xo is available, then (123) can be written as ( w e  

denoted this estimator as 2, when xo=x, and x1 when xo # x in the 

previous sections) 

- 
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For the univariate case (124) reduces to 

91 = d . 9 ,  

where 

uu2 -1  

xo 2n d :=  11 + - ] , 0<&<1 fo r  a l l  xo 

which indicates that  this estimator provides a shrinkage of the sample 

estimator 2, of GLSE type, and since 

E ( 9 , )  = d x (127) 

it also underestimates the t rue  parameter vector on average, and it is 

therefore a biased estimator. Y e t  it is better than the GLSE (Theorem 

4.4.2) provided that xo is strictly correct (Le., xo = x). Obviously this  

information is not known strictly in practice. In this case (when xo # 
x), uniform improvements over GLSE by using xo cannot be guaranteed. 

Nevertheless it is still useful if the general improvement condition which 

was  derived in section 4.4 holds. The following considerations lead to 

simpler interpretations. From (44) 

Since 

N - (N' + ~ x O X O ' ) - '  > 0 for xo # 0 (129) 

an upper bound for (128) with respect to xo is 

For the  sake of simplicity assume that disturbances are  

Substituting (131) into (130) and using the spectral decomposition of 

(A'A)- l ,  (130) can be replaced by 
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where A i  are the eigenvalues of (A 'AI- ' ,  t i  are the elements of t = C'x.  

This expression indicates that the prior information will improve the 

results when 

(i) 
(ii) The component of signal x is not very pronounced when Ai is  

The signal-to-noise ratio (x'x/uU2) is sufficiently small. 

small. 

Consider now BLUE given by (59) and which can also be expressed 

as 

xx'N A 

X'NX x5 
- 2, = (133) 

Since the elements of xx'N /x'Nx are bounded, BLUE displays similar 

properties as BLE. Again prior information xo about x needs to be 

known in order for this estimator to be applicable. In addition, i t  is 

unbiased if xo is proportional to x (x, = x). However, i t  reduces to 

GLSE for the univariate case and thereby offers no improvements. If 

BLUE is compared to BLE when xo=x under Definition 4.3.1 

i s  obtained. This expression i s  p.s.d. due to i t s  quadratic nature. 

BLUE is therefore not as efficient as BLE over GLSE under strictly 

correct prior information. On the other hand, if this information is not 

strictly correct then it is rather difficult to establish the  superiority of 

one estimator over the other by examining their corresponding EvlSE 

matrices. From (38),  (39) and (68),  (69). 

MSE(Ei2) - MSE(21) = D(22) - D(Sl)  + bzb; - bib; (135) 

Since the matrices which appear in (135) are of rank one and they 

are not a linear combination of each other, (135) is indefinite in general. 
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In this case improvement conditions for both estimators are  m o r e  

informative. Considering (84) and (44) these are 

x'Nx < 1 for  BLUE i 136) 

x' (N' + 2xox0')-' x < 1 for BLE (137) 

Since the difference (136)-(137) is larger than zero for xo # 0 as a 

result of Theorem A.7, the improvement condition for BLE is 

comparatively easier to achieve than the improvement condition for 

BLUE. 

L e t  u s  now consider a general property of shrinkage estimators 

which can also be observed in BLE and BLUE. These estimators can be 

expressed in the following forms respectively 

9 ,  = dl*xo (138)  

2, = d2*x0 (139)  

where  

x,'NQ, 
1 + xo'Nxo d, : =  

xo'N2, 
xo'Nxo d, : =  (141) 

and 2, is  the  GLSE of x, xo is t he  prior information vector about x tis 

previously defined. Since d ,  and d 2  are  scalar quantities which operate 

on xo in the  above representations, the  usefulness of BLE and BLUH 

depends closely on the relative magnitudes and directions of the 

components of xo with respect to the components of the sample estimates 

2 ,  (or equivalently x). If the elements of xo are appropriate on t h e s e  a 

priori grounds, BLE and BLUE give reasonable estimates. O n  the other 

hand, i f  the elements of xo are different in magnitude and directions 

with respect to the elements of 2,, the  null hypothesis testing 

procedure given in section 4.2 can easily detect these inconsistencies. 

This can be seen directly from the test  statistics given by 4.2.10 a s  
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7 will be larger when xo is different than j i s  in direction and magnitude. 

In this case it is dangerous to use these estimators except when 

deformations a re  below the noise level of observations as implied by the 

improvement conditions derived for BLE and BLUE. If these conditions 

hold, the direction and the magnitude of xo are no longer relevant 

because g5 in (138) and (139) will shrink the estimates toward zero. 

Meanwhile improvements over GLSE can also be obtained if the  prior 

information about the parameter vector to be estimated is stochastic in 

nature. In  this case BLUUE can be used to introduce this information. 

This technique corresponds to the well-known "least square solution in 

the case of observation equations with weighted parameters" (Uotila, 

1980). In section 4.6 this technique w a s  examined within the scope of 

the proposed algorithmic approach. It was  shown that introduction of 

prior information improves the results with respect to GLSE. The 

condition of improvement under incompatible prior information was  given. 

Results a re  due to the discussion paper of Terasvirta (1979), except 

Corollary 2 which is about the amount of total bias committed by t h e  use 

of incompatible prior information; is new. 

Corollary 1 provides additional insights about the properties and 

usefulness of this estimator. From (116) the improvement condition 

reads as 

the presence of s in the above condition indicates that. the magnitude of 

systematic error  vector ( s )  is important for (143) to hold rather than 

the amount of t rue parameter vector x in the case of BLE and BLUE. 

Therefore, this estimator is not robust against incompatible prior 

information. The stochastic nature of prior information, however, 

compensates for this disadvantage of BLUUE as w e  shall demonstrate 

using the following simplifying assumptions which also provide fur ther  

insight about the properties of BLUUE under incompatible prior 

information. 
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If 
u ..., (0,  U " 2 I )  

k : =  uu2 / 6,' 

(144) 

where uuz and u e 2  are  the a priori variances of the disturbances and 

t h e  additional information respectively, the ( 143) reduces to 

uU2 s' [k-'I + (A'A)-l]-'s g 1 (147) 

Using Theorem A . 5 ,  (A'A)= C A C ' ,  (147) can be written as 

where t i  a re  elements of t = C ' s  and h i  are the eigenvalues of ( A ' A ) - l .  

Therefore, (143) under the assumptions given by (144)  and (145), is 

likely to hold when 
( i )  Bias-to-noise ratio (s's/uu2) is sufficiently small 

(ii) A i  a re  large 

(iii) x o i  is not erroneous (i.e., s i  is not too large) in directions w h e r e  

there is little information (i.e., when A i  is small) 

k" is large (Le., when uuz is sufficiently small or CY,' is large. (iv) 

Due to the stochastic nature of prior information a direct analytical 

comparison of B L U U E  with BLE and B L U E  which use prior information in 

a nonstochastic sense is not meaningful. Conditions such as (130) and 

(143) allow the experimenter to make qualitative inferences about t h e s e  

estimators. The following upper bounds for (130) which hold both for 

BLE and BLUE, and (143) which holds for BLUUE can easily be proven.  

Considering the minimum eigenvalues of (A 'A) - '  these a re  
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where Amin is the minimum eigenvalue of ( A ' A ) - l .  

Since A m i n  and uuz is  the same in both expressions the preference 

of one estimator over the other depends on the other t e r m s .  If the 

magnitude of the parameter vector x is expected to be small enough (in 

the scope of crustal movement analysis t h i s  corresponds to very small 

deformations) with respect to the magnitude of possible biases (s )  in x,,, 

BLE and BLUE are preferable over BLUUE. However, if there exist 

pronounced deformations and the observations a re  precise enough (149) 

cannot be fulfilled. Therefore the usefulness of these two estimators 

are limited to the amount of signals. 

On the other hand, the advantage of BLUlJE over the other 

estimators lies in the fact that  the experimenter can control the effect . 
of systematic e r rors  by the gradual reduction of i ts  effect through its 

uncertainty cr', in x3. In  addition, the above expressions allow the 

experimenter to achieve this efficiency without. extensive simulation 

studies. 

- 

The advantages of using stochastic prior information can fur ther  be 

exploited by the introduction of the concept of random parameters. This 

interpretation opens the possibility of employing another group of 

estimators which use prior information about the expected values of 

stochastic deformation parameters. This is the subject of t h e  following 

chapter. 
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Chapter 5 

PREDICTION USING PRIOR INFORMATION 

5.1 INTRODUCTION 

In our consideration of the improved estimation problem in the previous 

chapter, we  have assumed that the deformation parameters to be 

estimated were fixed (deterministic) though prior information available 

about them was  stochastic or  fixed in nature. 

The interpretation and availability of stochastic prior information as 

well as its possible discrepancies with the information obtained from 

s a m p l e  observations (for instance, the difference between relative plate 

velocities implied by the long-term average models of global tectonics 

and the ones which a re  deduced from the current local and regional 

strain accumulation measurements for the Pacific and North American 

plates indicated by (Lyzanza et al., 1985)) suggest that  these parameters 

themselves may act as random variables which can take on different 

values at different places and at different times. Within this 

interpretation, if a realistic density function can be postulated for these 

random variables, the problem of improved estimation in the presence of 

prior information, which is in this case about the expected values of the 

parameters, can also be examined using the Bayesian inference methods. 

In other words, prior information with i ts  prior probability combined 

with a likelihood function using Bayes’ Theorem yield the estimates of 

deformation parameters and their posterior probabilities. 

Existing knowledge about the nature of crustal  movements, 

unfortunately, is not sufficient (at least for today) to postulate a 

realistic density function about these deformation parameters. 

Nevertheless, the estimation problem with prior information can also be 

formulated independent of the density function of random deformation 
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parameters using the sampling theoretic approach. 

In  this framework two approaches are  identified. The conventional 

approach which estimates the mean (expected values) of stochastic 

parameters and the estimation of random variables themselves which may 

be relevant when the short-term realization of random deformations is of 

interest, Estimation of stochastic parameters is also called prediction 

( b o ,  1965; Schaffrin, 1983). 
In this chapter we formulate the improved estimation problem as 

follows, Deformation parameters are stochastic in nature. They exhibit a 

temporal and spatial behavior which fluctuates about an  a priori known 

fixed mean and an  a priori known dispersion. Although stochastic 

deformation parameters cannot be observed directly, they can be 

realized from another random vector (such a s  baseline differences) 

which can be obtained through observations (repeated baseline 

measurements). The estimation of random variables themselves combined 

with the prior information about their means is under consideration. 

Three prediction techniques, namely: Best Homogeneously Linear 

Prediction (HOMBLIP), B e s t  Homogeneously Unbiased Prediction 

(HOMBLUP), and B e s t  Inhomogeneously Unbiased Prediction (INHOMBLUP) 

which are proposed by Schaffrin (1983) for the estimation of random 

deformation parameters in the presence of prior information, are  

examined in th i s  chapter. 

Since the purpose of introducing prior information in the  proposed 

approach to crustal deformation analysis is to improve the  estimation of 
random parameters, they are compared against a reference estimator 

which uses only observations. This predictor, as it is demonstrated in 

section 5.4, tu rns  out to be GLSE. On the other hand, prior information 

about the expected values of random parameters are not known in 

practice with certainty. Therefore the effect of noncompatible prior 

information needs to be examined a s  we did in the  previous chapter for 

the functional relationship linear model. 

Although the  assumption of random deformation parameters s e e m s  to 

be intuitively plausible in crustal movement analysis, especially for the 

plate tect0nic.s models where additional information about the plate 
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motion parameters are derived from data which spans over geological 

t ime  intervals, it is also possible to check the validity of the following 

model using the principle of the likelihood ratio developed by Rao 

( 1965). 

In this chapter the following linear model is under consideration 

where y is an  nxl vector of random variables, A is an nxm (m<n) fixed 

design matrix of full rank. u is an nxl vector of disturbances which are 

random and unobservable. x is the m x l  vector of unknown stochastic 

parameters. u and x have the following distributional properties 

where I,, is the nxn covariance matrix of disturbances. p and C,, are  

the  m x l  vector of the expected values of x and m x m  covariance matrix of 

the random (stochastic) parameter vector x respectively. I t  is assumed 

that the random parameter vector x and disturbances u a re  statistically 

independent. As a consequence of (la)-( Id) ,  the following relationships 

hold 

Under this setup, (1) - (2) ,  we  shall consider the problem of estimating 

(predicting) the random variable x in the presence of prior information 

about p and I,,. 

5.2 COMPATIBILITY TESTING 
If the model parameters are interpreted as random variables wi th  certain 

mean and variances available to the experimenter a s  a result of prior 

investigations, then this information and the information implied by the 

sample observations can be tested, as in the case of deterministic 
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parameters, to decide whether they are compatible. Th i s  step can be 

used to check the validity of prior information about the expected 

values of random parameters before they are introduced into the 

improved estimation procedure within the scope of the proposed 

approach. In  this section a null hypothesis testing procedure is 

developed for this purpose. 

Consider the linear model given by (1)-(2). L e t  p o  denote the 

known prior information about the expected values of random parameters 

and I,, is the known positive definite mxm covariance matrix of x. 
Then the null hypothesis Ho is 

H,: po  = p :=  E ( x )  ( 3 )  

Lemma 1: (Rao, 1965) L e t  ji := Gy t d be an  inhomogeneous, linear 

estimator of p := E(x) in the linear model (1)-(2). Then the optimum 

values of d, G for which 

i) E ( p  - ji) = 0 fo r  all values of p 

ii) E(p - p ) ( p  - ji)' is a minimum 

are  

d = O  

G = N' A'C,; y 

which imply 

The dispersion ma t r ix  of ji is given by 

where N : =  A'IiAA. 

In addition, if x * N(Ap, I,,), u .* N(O,C,,) and x and u are  

stochastically independent, as implied by (2),  then 

77 



i) ji = N-lA'C;: y -. N(p, I,, + N-'1 

ii) ji is inference suff ic ient  fo r  the parameter p 

Therefore the best inhomogeneously linear estimator fi of p with 

respect to the conditions (4a)-(4b) is the same as GLSE. But the 

dispersion matrix of the estimator is different (note that this estimator 

is independent of p) .  

Proposition 1: The following quadratic form is x 2  distributed wi th  m 

degrees of freedom as a result of Lemma 1 

Proof: L e t  

6 : = p - - j i  

then from (5c) and ( l a )  

It is easy t o  show that 

Since Ex, + N-' > 0, it can be expressed as (Theorem A.2) 

+ N-' = zxzx 
C X X  

where 

Zx = (Ixx + N-')% 

and 

z-x 6 -. (0, I) 

Using Theorem A . l l  

Z-% 6 -. N(0, I) 
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and as a resu l t  of Theorem A.10 

(8d) 

This completes the proof. 

Now substituting p o  for p in (8d) w e  obtain a test  statistic to check 

the validity of prior information p,, about tho expected values of x, 
before it is introduced into the estimation process. 'If d is a predefined 

error  probability of t h e  first, kind, then the null hypothesis H, will be 

accepted for 6 ' 2 - ' 6  E ,y;,'-&. N o t e  the interesting structural  duality 

with the testing procedure in section 4.2 of the functional relationships 

model. 

5.3 COMPARISON CRITERION 

The statistical theory used in the previous section for comparing 

different estimators can also be extended to cover the linear prediction 

problems. 

The comparison criterion is formulated as follows. 

Definition 1: Let x be an m x 1 vector of random variables such that 

E(x) =:p and let 2 denote the corresponding predicted values. The 

matrix valued Mean Square Error of Prediction (MSEP) of 2 is then 

defined by 

MSEP(k):= E(x - 2)(x - 2 ) '  = D(x - 2)  + bb' (9) 

where b is the bias vector of prediction and is defined as 

b : =  E(x - 2) ( 9i1) 

(Schaffrin, 1983). Now the comparison criterion is formulated, 

Definition 2 (MSEP Criterion): A predictor of the random variable x 
is said to be better than the another predictor k2 of x if the difference 

matrix 
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MSEP(22) - MSEP(jZ.1) 

is positive semi definite (p.s.d.), where 

MSEP(2.I) = E ( x  - ~ Z . , ) ( X  - 21)' 

MSEP(g2) E(x - C: ,>(X - 22)'. 

(10)  

(11)  

(12) 

Consider now the following case. L e t  2, be an unbiased predictor 

of x, and furthermore let this predictor employ only the sample data. 

L e t  2 be another predictor of x, possibly biased. If Definition 2 holds, 

then 

b'b t r [ D ( x  - GS) - D(x - 211 ( 1 3 )  

where  b is the bias vector of 2. This property is similar to (4.19) and  

forms the logical basis of using MSEP criterion. Now, as in Section 4.3, 

it  i s  necessary to define a reference predictor. T h i s  is the topic: of the 

following section. 

5.4 PREDICTION USING SAMPLE INFORMATION ONLY 

Consider the linear model described by (1) - ( 2 )  with the exception that 

no prior information is available about the random pariimete1.s. Thc: 

following theorem defines the sample predictor. 

Theorem 1: Let Gy be a linear predictor of the random parameters x in 

the linear model described by (1) - (2 ) .  Then the optimum value of G 

(this value is denoted by the s a m e  letter for the sake of simplicity in 

the notation) for which 

E(x - Gy)'(x - Gy) = min 
G 

subject to 

E ( x  - Gy) = (I - GA)p = O 
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for all p, that is, 

I - G A - 0  

(16) 

The dispersion matrix of the predictor 2, is 

Proof: Considering (14) ,  let the target function to be minimized be 

Q:= t r [ E ( x  - Gy)(x - Gy)’ + 2A’(I - GA)’] (18) 

where A is  a Lagrange multiplier matrix. Substituting ( 1 4 )  in (18) w e  

obtain 

Q = tr[GC,,G‘ + Z A ’ ( 1  - GA)’]. ; 1 !-I 1 

Now minimizing Q with respect to G 

GI,, - A ’ A ’  = 0 

G = A’A‘I;; 

and multiplying both sides of (21) by A on the right-hand side and  

considering (15)  

is  obtained. From (21) it follows that 

G = (A’C;:A!-~A’I;: 

and 
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This completes. the proof. 

Observe that (25) is equivalent to GLSE. Hence, if no additional 

information is available, then the GLSE is also the best linear unbiased 

predictor in the sense of (15) and (19). This predictor can now be used 

as a reference predictor against which the effect of additional 

information that are used by alternative predictors can be compared. 

5.5 BEST HOMOGENEOUSLY LINEAR PREDICTION WITH PRIOR INFORMATION 
Theorem 1: B e s t  Homogeneously Linear Prediction, HOMBLIP, (Schaffrin, 

1983). L e t  G y  be a linear predictor of x in the linear model (1) - (2) .  

Then the optimum value of G for which 

E(x - Gy)'(x - Gy) = min 
G 

yields to the HOMBLTP 2, of x 

where 

This predictor is biased and the resulting bias is given by 

The mean square error  matrix of the prediction is 
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Since our interest is in the gain of using prior information, the 

following corollary is of interest. 

Corollary 1: HOMBLIP 2'  of x is better than the  sample predictor ks 
under Definition 2. 

Proof: 

(17). Then 

L e t  us  again consider MSEP(il) and MSEP(2,) given by (31) and 

MSEP(2,) - MSEP(gir,) = N-' (I - NE,,) - (I - C,,N)E,, 

- (1 + p'ip)-'(I - C,,N) pp'(1 - C,,N)' (32)  

Considering the following identity 

(32) can be written a s  

MSEP(2,) - MSEP(P1) = (I - C,,N)fj-'(N-' + p p * ) - ' k ' ( I  - E,,N)' (34) 

Since all the matrices within the parentheses a re  positive definite, (32) - 
is also positive definite. This completes the proof. 

Consider now the HOMBLIP 2' of x rewritten in t h e  following 

modified form 

where 

- 
B:= ( I  - C,,N) E (T + C,,N)-' (36) 

As in the case of BLE, BLUE and BLUUE, t h i s  predictor is practical if 

the  expected value of the stochastic parameter and its covariance matrix 

are both available as prior information. To give a more realistic validity 

to the prediction of crustal motion parameters, it would be logical to 

assume that this prior information is of the  form p0, which is an m x l  

nonzero vector, and that it is different than the true value p,  Le., 
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po f p : =  E ( x )  ( 3 7 )  

Such deviations a re  quite likely to hold in crustal movement analysis; 

for instance, due to the inhomogeneous properties of the earth's crust  

where the prior information is not fully representative of the long term 

averages at different areas. Another possibility for such deviations 

could be some systematic model or measurement errors  which occur in 

the process of obtaining the prior information. However, it  is likely 

that this information may contain a component of reality which can be 

used to improve the prediction of the random parameters in t h e  sense of 

Definition 2 under controlled circumstances, These conditions are the 

topic of the following discussion. 

Consider the bias vector of the prediction when p f po. From (9a) 

where 

and using identity (33)  the following expression for the bias vector is 

obtained 

L e t  u s  now investigate the improvement conditions, When p,, = p I& 

predictor (27),  which will now be denoted b y z : , ,  has the following form 

and its corresponding MSEP is 
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Considering the MSEP of the sample predictor 2 s  

MSEP(2,) = D(x - gS)  = D(2,) = N-' k ' B  (43) 

the corresponding difference matrix, under the general condition of 

betterness, Definition 2, is 

This expression is p.s.d. if the matrix differences within the curly 

brackets is p.s.d. Using Theorem A . l  and considering 

for all p o ,  it can be shown that (44) is p.s.d. iff 

This expression can also be written, using Theorem A.9, as 

p' (G-1 + 2pop;)-1p < 1 (47) 

This result proves the following theorem. 

Theorem 2: The necessary and sufficient condition for the biased 

predictor 2, to be better than the sample predictor fi, for all po p 

under Definition 2 is 

- 
j~'(I'4-l  + Zpop;)-'p 4 1 

Now observe that 

ii - (k' + 2p&)--' a 0 

for all p o ,  as a result of Theorem A.7. Therefore, 
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p8Np 4 1 (49b) 

is an upper bound for (48). If now, u (O,utI), and x .* (u,ai/k I)  

where k is a proportion constant relating the variances of u (a : )  and x 

(u : ) ,  then (49) can be written as 

ui2p'[k-'I + (A'A)-']-'p 4 1 (50) 

This expression is an increasing function of k and it approaches zero in 

the  limit 

lim {~;~p'[k-'I + (A'A)'']p) = 0 (51) 
k O+ 

Therefore the following corollary holds. 

Corollary 2: If u .* (0,a:I) and x * (u,u:/k * I ) ,  then a k* always exists 

such that MSEP(2,) - MSEP(P,) 'b 0 for all p o  t p where 0 

Now let 

k < k*. 

and consider the identity 

then, the quadratic bias from (40) and the condition of 

from Theorem 2 each take the following forms respectively 

bbbo = z' ( I+z,zk)-+"-BB'k~( I+z,z~)-'z 

z'(I+zz~z~)-'z 4 1 

(54) 

improvement 

(55) 

I t  i s  now easy to prove the following corollary using the same steps 

followed in Corollary 2 of BLE. 

Corollary 3: The quadratic bias due to the erroneous prior information 

is bounded under the condition of improvement and 
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z'~I+zz*z;)-' 1 

1 
I 
I 

where A, is the largest eigenvalue of ( I  + NZXx)-'N-', 

5.6 BEST HOMOGENEOUSLY LINEAR UNBIASED PREDICTION WITH PRIOR 

INFOFMATION 

Theorem 1: Best Homogeneously Linear Unbiased Prediction, HOMBLUP, 

(Schaffrin, 1983). L e t  G y  be a linear predictor of x in the linear model 

(1) - (Z), then the optimum value of G for which 

E(x - G y ) ' ( x  - G y )  = min 
G 

subject to 

E(x - G y )  = ( I  - G A ) p  = 0 (57) 

in the  sense of 

t r [ E ( x  - G y ) ( x  - G y ) '  + 2 ( I  - G A ) p A ' ]  = min 
G 

where A '  is a Lagrangian  m u l t i p l i e r  v e c t o r ,  l e a d s  t o  the HOMBLIJP G 2  of  x 

The mean square error  matrix of the prediction is given by 

I 
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MSEP(jZ2) = (I + C,,N)-'p(p'~p>-'p'[(I + C,,N)-'l' + (I + C,,N)-'Cxx 

(62)  
Note that this predictor, similar to BLUE (section 4,6), reduces to GLSE 

as a result of the weak unbiasedness condition (57) for the univariate 

case, thereby no improvements a re  possible through prior information. 

Proposition 1: HOMBLUP f2 of x is better than the sample predictor 2, 
of x with respect to Definition 2. 

Proof: Consider the difference of the MSEP matrices of it, and it, given 

by (62) and (17) respectively 

which reduces after some manipulations to 

- 
Since (I - CxXN) f (I  t I,,N)" as a result of Identity A.9 and since the 

term within the  brackets is symmetric, (64) is p.s.d. iff 

(Theorem A.6). Now let 

then (65) can be written as B - dd'  and 

B - dd' 2 0 

iff 
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d'B-'d 1 

(Theorem A.l). Since, from (66) and (67) 

d'B-'d = ( p , & ~ ) - ~ ( p * N p )  = 1 

this implies 

MSEP(2,) - MSEP(G2) > 0. 

This completes the proof. 

As shown in Corollary 1, this predictor is better than the s a m p l e  

predictor under the MSEP criterion of preference, and it is applicable if 

there exists a valid prior information p o  and a covariance I,, such that 

Yet this condition is seldom m e t  in practice. Therefore, it is also 

necessary to examine the possibility of improvements when po  P p (po  is 

not proportional to p). Consider the predictor given by (59). If the 

prior information p o  to be used in this expression (by replacing p with 

p o  in (59)) is different than the expected value of the random 

parameters the resulting predictor is no longer unbiased. Let u s  denote 

this predictor under wrong prior information by a, then 

Substitution of (69) into (70) gives the following bias vector 

Now, it is easy to see that for p o = p  bias vanishes. Similarily for = p 
the prediction remains unbiased. Consequently, the incompatibility due 
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to scale differences between sample information and additional 

information on the expected values of the parameters do not have any 

influence on the predicted values. 

To investigate the conditions under which biased prediction as a 

result of wrong prior information is better than the sample prediction 

consider the MSEP of the biased predictor j ; ,  of x with prior information 

p o  P p := E(x) and the nonvanishing bias vector bo given by ( 7 1 ) .  Then 

leads to 

Let us  also observe that 

- - 
MSEP(2,) = D(2,) = N-' 5 "-'(I - NExx) (74) 

Now, under the definition of improvement as given by Definition 2 it  can  

be shown, after a simple transformation, that 

where 

Since B is symmetric and p.s.d. for any p o ,  it can be expressed as B = 
RXBX (Theorem A.2) .  Hence, (75) takes the following form 

MSEP(2,) - MSEP(jZ2) = C(I - dd')C' 

where 

C:= (I - CxxN)BX 

d:= BXNp 
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Now, (77) is p.s,d. iff 

as a result of Theorem A.1. However, 

(Theorem A.3). Also 

(Theorem A.4), where ho  is the  minimum eigenvalue of 

Since this matr ix  is  of rank one, Xo = 0. Therefore, as a result (80), 

(75) is p.s.d. iff 

Hence, the following theorem has been proven. 

Theorem 2: A sufficient condition for the biased predictor 2, of x to be 

better than the sample predictor 2, of x for all po  + p := E(x) under the  
MSEP of preference is 

Now, if u * (O,a$I) and x (u ,  u$/k * I)  where  k is a proportion 

constant relating the variances of u (a:) and x (uz), then the above 

condition can be written as 
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(note that this condition is independent of p o ) .  This expression is a n  

increasing function of k- l ,  and it approaches zero a s  

( 8 7 )  

Therefore the following corollary holds. 

Corollary 2: If u - (0,u;I) and x * (u, a;/k * I ) ,  then there always 

exists a k* such that MSEP(2,) - MSEP(Z2) > 0 for all p o  g p where 

0 < k 6 k*. 

Now let 

then the quadratic bias, from (711, is given by 

and the condition of improvement under erroneous prior information (85) 

transforms to 

z ' z  4 1 (91) 

The following corollary holds. 

Corollary 3: The quadratic bias due to the erroneous prior information 

is bounded under the condition of improvement and 

where A, is the largest eigenvalue of (I  + NIXx)-lN-l. 
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Proof: Considering 

sup z ' [ I  - z~(z;)- 'z;]z = 2'2 s 1 
Z O  

and following Definition A.4 

where A m  is the largest eigenvalue of 

*%(I - NC,,)(I - NCxx)4i-~ 

(93)  

(95) 

Now, using Theorem A.9, it can be shown that 

tr[i-x(I - Nc,,)(I - Nc,,)"-XI = t r [ ( l  - Nc,,?(T - i~,,>*N-~l 
= tr[(I + NC,,)-lN-'] (96) 

Therefore the largest eigenvalue of (95) is equal to the largest 

eigenvalue of ( I  t N C X x ) - l N - l .  This completes the proof. 

5.7 BEST INHOMOGENEOUSLY LINENl UNBIASED PREDICTION W'ITH PRIOR 
INFORMATION 

- Theorem 1: B e s t  Inhomogeneously Linear Unbiased Prediction, 
INHOMBLUP, (Schaffrin, 1983). Let G y  + d be an inhomogeneous linear 

predictor of x in the linear model given by (1)  - (2).  Then the optimum 

value of G and d for which 

leads to the INHOMBLUP k3 of x, which is given by 
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where, N:= A'C';:A. The mean square error  matrix of the  prediction is 

(100) MSEP(C3) = D(x - 2,) = (N + C,i)-' 

Corollary 1: INHOMBLUP 2, of x is a better predictoi 

predictor gS of x according to Definition 2. 

Proof: Consider the MSEP(f,) ,  from (loo),  and MSEP(2, 

MSEP(2,) - MSEP(2,) = N' - (N + C,i)-l 3 0 

following Theorem A.7. 

than the sample 

, from (17), then 

(101) 

Again, as in the previous cases, for this predictor to be applicable 

additional information about E(x)  =:p and its covariance matrix I,, needs 

to be available. However if this information p o  is not compatible, that is 

p o  p, then the prediction is no longer unbiased (this biased predictor 

is now denoted by Z3) and the bias of the prediction is given by 

bo:=  E(x - a , )  = (I + C,,N)-'(p - po) (102) 

and the biased predictor is 

( 1.03) 23 = (I + C,,N)-'(C,XA'C,:Y + PO) 

Considering (102) and (103) the following theorem holds. 

Theorem 2: The necessary and sufficient condition for the biased 

predictor 2, of x to be better than the sample predictor fs of x for all 

p o  * p according to Definition 2 is 

( p  - P o m p  - P o )  4 1 (104) 

Proof: The mean square matrix of the biased predictor 2, of x is, from 

MSEP(23) = D(23 - X) + bob;, (105) 

94 

1 
I 
c 
1 
I 
1 
I 
I 
I 
I 
I 
1 
I 
1 
I 
I 
1 
I 
I 



where  bo is given by (102) and 

Now the difference matrix implied by Definition 2 is 

MSEP(2,) - MSEP(S3) = N' - [(N + E,:)-' + bob;] 

which reduces after some manipulations to 

MSEP(2,) - MSEP(2,) = B ( k '  - SS')B' 

where  

B : =  (I + E x x ~ ) - l  

s:= p - p o  

Therefore, (108) is p.s.d. iff s 'ks  6 1 (Theorem A . l ) .  

proof. 

This completes the 

Now assume that 

(llla) 

( l l l b )  

where  k is a proportion constant. Then (104) takes the following form 

This expression is again an increasing function of k and it approaches 

zero in the limit. Thus the  following corollary holds. 

Corollary 2: If u .5 (0,a:I) and x .*r (p, a:/k I)  then there always 

exists a k* such that M S E P ( 2 , )  - M S E P ( Z 3 )  3 0 for all po  t p where 

0 6 k 6 k*. 

L e t  us  now examine the amount of bias introduced by the use of 
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incompatible prior information, under the improvement condition given 

by (104). 

Corollary 3: The total bias due to the erroneous prior information 

under the condition of improvement (104) is bounded. The supremum of 

it is equal to or less than the largest eigenvalue A, of (I + NZXx)-’N-l, 
i.e., 

SUP bib0 A, 
XO 

s.t.: s’is 1 

(113)  

The proof follows the s i m i l a r  lines given in Corollary 4.6.2. 

5.8 FURTHER DISCUSSIONS 
In the previous sections three different predictors were examined. L e t  

us  emphasize that prediction in technical or in everyday usage has 

different connotations. I t  can be defined generally as a statement 

about an  unknown and uncertain event. Prediction in this study implies 

the estimation of stochastic parameters whose meaning is also 

encapsulated by the preceding general definition (for a comprehensive 

discussion, confer (Bibby and Tautenburg, 1977)). In the linear model 

described by (1) one might be interested in the estimation of the 

expected values of random parameters (classical approach) or the 

estimation of random parameters themselves ( b o ,  1965; Schaffrin, 1983). 

Within the scope of crustal  movement analysis the latter implies that. 

short-term deformations which are regarded as stochastic with certain 

expectations over longer periods of time are  of interest.. Within this 

context, the above examined prediction techniques estimate short-term 

realization of random deformation parameters provided t h a t  prior 

information about their long-term behavior (their expected values and 

dispersion matrix) are known beforehand. 

I t  w a s  demonstrated in section 5.4 that the GLSE technique, in the 

absence of any prior information, is also a predictor which can be used 
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to estimate the random model parameters. Note that the expected values 

of random parameters can also be estimated using the estimator given in 

Lemma 1 which is s i m i l a r  to the  GLSE but has a different dispersion 

matrix , 

Since the purpose of using additional information is to iniprove the 

estimates, the  above predictors w e r e  compared against the sample 

predictor GLSE. If the prior information is correct then its introduction 

into the estimation with these techniques improves the results a s  

compared to GLSE according to the MSEP criterion (except for HOMBLUP 

in the univariate case). 

Comparisons w e r e  also made when prior information is not compatible 

which is obviously the case in practical applications. Improvement 

conditions over sample predictor GLSE when the prior information is not 

compatible were derived. Results are summarized in Table 2. 

In this section these results are interpreted within the scope of the 

proposed algorithm as we  did in Chapter 3. First some additional 

information is given about these predictors. They are  then compared 

with respect to each other under correct prior information using the 

MSEP matrix criterion. Similar comparisons are  not definitive with 

respect to their corresponding MSEP matrices when the prior information 

is not compatible. In this case their corresponding improvement 

conditions can be used to decide when each estimator is suitable for the 

improved estimation of deformation parameters. 

Now let us consider HOMBLIP. Using (27) and matrix identities 

given by Theorem A.9, t h i s  predictor can be written a s  

2, = [ I  - N'(N-' + pOpO')-']Ps = & * G s  (114) 

where 
- 
N :=  N ( I  + C,,N)-' 

d :=  I - N-'(k' + popo ' ) - '  

and ZS is the sample predictor. For C,,+O, (114) reduces to BLE. 

Therefore, this estimator is s imi l a r  to BLE. Indeed, for the univariate 

case the expected value of 2, is 
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where 

Since O < d < l  for all p := E(x), this predictor provides a shrinkage of the 

sample predictor 2s of GLSE type, and it underestimates the estimates of 

the  expected values of the random parameters. Hence it is a biased 

predictor in the sense of E(kl) # p. 
The usefulness of this predictor depends on the availability of prior 

information po about p and the covariance matrix C,, of the random 

parameter vector. It w a s  shown that  if this information is available and 

it is strictly correct then HOMBLIP improves the estimates with respect 

to the sample estimator (Corollary 5.5.1). Since po = p cannot be 

realized in practice, improvements over the sample estimator is possible 

if 

as a r e s u l t  of Theorem 5.2.2,  or if 

which is an upper bound for (119). Under the assumptions given in 

Corollary 5.5.2, namely u *(O, u:I) and x -(p, (ui /k)I) ,  where k := a t /a : ,  

this expression reduces to 

where t i  are  the elements of t=C'p,  and A i  are  the eigenvalues of 

(A'A)-'  = CAC'. The following deductions can be made in order for 

(121) to hold 

i) Signal-to-noise ratios t f / u i  should be sufficiently small. Note that 

- t i  is a function of p := E(x). 
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ii) Components of signal vector should not be very pronounced when 

A i  is small. 

k should be sufficiently small (Le., uc is large). iii) 

Consider now HOMBLUP given by (59) which can also be expressed 

after a simple manipulation as 

Since the elements of the  matrix within parentheses are bounded, 

HOMBLUP displays robust properties with respect to an incompatible 

prior information (i.e., when po which is used in (122) to replace 

unknown p is not proportional to p). This predictor is also unbiased in 

the sense of E(?,) = p. However, it reduces to the sample predictor ?, 

for the univariate application, thereby offering no improvements in this 

case. 

If HOMBLIP is compared to HOMBLUP when po = p under Definition 2, 

holds. HOMBLUP is therefore not as efficient a s  HOMBLIP over ks under 

strictly correct prior information. On the other hand, if prior 

information is not compatible, then, as in the case of estimation with 

deterministic parameters, the  superiority of one predictor over the other 

cannot be established directly using Definition 2 since the resulting 

difference matrix is indefinite again. In this case the improvement 

conditions given by 

p,ip 1 

for HOMBLUP and HOMBLIP respective,y are more informative. Since (123) 

is an upper bound for (124), the improvement condition for HOMBLIP is 

comparatively easier to achieve when po>>O. Since (124) w a s  used in 
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making inferences about (125) as an upper bound, the s a m e  results 

given by (121) hold also for HOMBLUP. 

The third predictor, INHOMBLUP, which was examined in section 5.7 

possesses different properties with respect to HOMBLIP and HOMRLUP. 

Using (99) and matrix identities given by Theorem A.9, this  predictor 

can be written as 

Compared to (114) and (122) this predictor is sensitive to prior 

information due to the unbounded effect of p o  in (126) (actually this 

statement is not strictly correct since the effect of p,, can be controlled 

artificially through I,, as  we shall examine later under certain 

simplifying assumptions). This is not desirable if the prior information 

is likely to be wrong. However large discrepancies between po and p 

can easily be detected through the testing procedure given in section 

5.2 according to the proposed approach? and prior information may 

either be corrected or  not used at  all. 

In the case of sma l l  discrepancies this predictor can still be used to 

improve the estimation of stochastic parameters provided that 

improvement condition (104) derived in section 5.7 holds. 

Before w e  elaborate on this condition it should be noted that this 

predictor? in addition to being unbiased, is better than the other two 

predictors with respect to Definition 2 when prior information is 

compatible. That is, f r o m  (31) and (100) 

Hence it is better than HOMBLIP and also HOMBLUP as a result of (123). 

Now consider the improvement condition (85) for INHOMBLUP when p o  

# P  

s"s 6 1 (128a) 
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condition reduces, as given in (112) ,  to 

u: where k: = 2 and o : l ,  u: are the a pr ior i  variances of the ( l i s t  ut-banc.es 
U X  

and the stochastic parameters respectively. Using Theorem A.5,  ( A ' A ) - '  

= CAC', (128b) can be written as 

where t i  are the  

function of mx 1 

I >' ! 39 1 

elements of t = C ' s  (note that the mxl t vector is a 

vector s of systematic deviations rather  than t h e  

function of p := E(x)  as in the case of HOMBLIP and HOMBLUP). A i  are  

the eigenvalues of ( A ' A ) - I .  Now 1129) is likely to hold w h e n  

i )  The bias-to-noise r a t i o  (s's/ui) is suf f ic ien t ly  s m a l l  

i i) A i  are not small 

iii') s i  is not too erroneous i n  d i rect ions where there i s  1 i t t l r .  I I I F O I  

m a t i o n  i i . c . ,  tv1w.n h i  is s m a l l  s, is also s m a l l )  

i v )  .k-I is  large ( i  . e . ,  u: is Zargej 

Now let u s  compare these three predictors w i t h  1-esoc:c:t Lo w ( : h  

other using their corresponding improvement condit,ions u\-er CT,?E whorl  

p,, # p. If t h e  following inequality is considered 

? 'io '! 

the improvement conditions' for HOMBLIP and HOMRLUP given by (120)  

and for INHOMBLUP given by (129) can further be simplified to 
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where Amin  is the minimum eigenvalue of (A'A)- l .  Since the left-hand 

sides of the above equations a re  the  s a m e ,  t he  preference of one 

estimator over the  other is determined by the magnitude of the expected 

value of the random parameter vector p and the  magnitude of the 

systematic e r rors  s.  

Before we elaborate on this topic let us  examine the other variables 

which may contribute to improvements over the sample predictor. Since 

in practice crustal  movement observations such a s  repeated baseline 

measurements a re  performed using the most precise existing 

measurement techniques, uuz (the a priori variances of the observed 

baseline differences) can be considered to be fixed and obviously cannot 

be used as a control variable in achieving the  improvement conditions. 

Similarly, Amin (minimum eigenvalue of (A 'A) - l )  would not play an 

important role in achieving the improvements since it is expected to be 

small as a result of the  optimal design of deformation networks. For 

instance, t he  D-optimal design given in Chapter 3 renders the 

eigenvalues of (A'A)'' small, whereas the third variable k := ui/uz can 

be used effectively to achieve the improvement conditions. 

More uncertainty can be attributed to the prior information through 

u:. However, the larger uz is the less the effect of prior information on 
the estimates will be. This  in tu rn  implies that  the gain by using prior 

information would decrease. Although the gradual reduction of the 

effect of additional information on the estimates by this  way is known in 

geodetic practice in general, the above conditions can be used 
effectively in reducing the effect of prior information efficiently. 

Since the right-hand sides of the  simplified improvement conditions 

(131a) and (131b) a re  the s a m e ,  the usefulness of the predictors 

depends on the magnitudes of s and p .  Although these quantities are  

unknown in practice, the above improvement condition has  already 

provided enough information about the central aspects of these 

predictors without resorting to extensive simulation studies in order to 

decide whether to incorporate prior information into the estimation of 

random deformation parameters in the improved estimation stage of the 

proposed algorithmic approach. 
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In the meantime, sample estimates j&, of p computed, for instance, 

using the estimator given by Lemma 1 can be used to get some 

information about p and s to evaluate the improvement conditions, 

provided that the null hypothesis testing i s  not rejected. In this case, 

if >S;jLs < G ' G ,  where ( 6  := jis - p o ) ,  then HOMBLIP and HOMBLUP are  

preferable; otherwise INHOMBLUP is advantageous in introducing prior 

information. If null hypothesis testing is rejected, prior information 

should be introduced cautiously by attributing more uncertainty to 

priors or  it should not be used at all. 

In Chapter 4 the  MSE matrix criterion for the estimation of 

deterministic parameters, and in this  chapter its predictive version 

(MSEP), has been used to derive the improvement conditions with 

respect to the sample estimator GLSE as a result of noncompatible prior 

information. However, many different methods in comparing estimators 

a re  in use in statistics. 

Among these, the unbiasedness property has not been given much 
attention in this study because even the unbiased estimators tu rn  out to 

be biased when prior information is not compatible, as readily 

demonstrated in Chapters 4 and 5. Moreover, the  unbiasedness property 

is not a measure of closeness to the t rue  value especially when the 

number of observations is not very large. 

Alternatively, t he  minimum variance criterion has not bee used 

since the variances of these estimators can always be made arbitrarily 

small by increasing artificially the amount of bias. Although the  MSE 
and MSEP matrix criteria compensate for these deficiencies, there is no 

special reason to think that this is the best way of comparing 

estimators. It s e e m s  that  they give too much weight to the case when 

the  observations are not very precise or the prior information i s  badly 

wrong. 

The Bayesian interpretation of these estimators i s  also possible 

(see, for example, (Mood et  al., 1974) for a Bayesian derivation of 

INHOMBLUP for normally distributed random parameters). 

Kubik ( 1986, private communication) has indicated equivariance 

properties of estimators in connection with changes in origin and scale 
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of measurements. These properties may have important ramifications in 

the selection of estimators depending on the type of observations and 

the nature of the estimates. They are defined as follows. 

If Y 1 ,  '* 'J  yn represent nieasurenients and a parameter' being 

estimnted are in the same units with these measurements, i t  is 

reasonable to require that an  estimator jZ  satisfies the following 

property, 

for every value of y l ,  y2, ..., yn and constant c. In  other words, t h e  

estimate should increase by an  amount c if each measurement increases 

by c. This property is also known as location invariance. 

Similarly an  estimator j Z  is said to be scale equivariant (scale 

invariant) if 

for every y l ,  ..., yn and constant c. The idea is that the estimator 

should be independent of measurement units employed. 

Now let u s  consider the following linear model 

yi = x + ui i = 1, ..., n 
ui - (0, m u Z >  

(134) 

for a location estimator of x where y i  denotes observations, t i i  denotes 

identically and independently distributed disturbances with a priori 

variance u u z  and x is  the parameter to be estimated (stochastic or 

deterministic). Then the sample mean X, for instance, is a scale 

invariant estimator since 
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Similarly if a priori information about x is  available, BLE of x under the 

above linear model is given by 

6" 

x 0 2 n  21 = (1 + - ) - I  z ( 136) 

This  estimator is also scale equivariant (in this case changes in scale 

affect xo and uu2 also) because 

C Z Q " 2  

) - I  cz = cz c2xo 2n cjl, = (1 + (137) 

The scale equivariance of the other estimators and predictors can be 

demonstrated in a similar way. 

The sample mean I is also a location equivariant estimator since, 

using (132), 

n n 

( 1  38) 

BLUUE, BLUE, HOMBLUP and INHOMBLUP are  also location equivariant 

under the  linear model (134). However, BLE and HOMBLIP are  not 

location equivariant. The  following proposition, which can be easily 

proven using t h e  principle of reductio ad absurdum, generalizes the 

demonstration to different estimators: "If 2 is a location equivariant 

estimator of x then no multiple of 2 satisfies location equivariarico 

property." Therefore BLE and HOMBLIP cannot be location equivariant 

because they can be expressed a s  shrinkage of the  sample mean which 

is location equivariant. 

In terms of the improvement conditions for BLE and H O M B I J P  this 

implies that these conditions can always be satisfied or dissatisfied b y  

the proper choice of origin of measurements. However in crustal 

movement applications where measurements are generally differences of 

baseline observations or angles, any changes in the origin of these 

observations do not make much sense. Hence we need not insist on  the 

location equivariance in these cases. In those applications where the 
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origin change is meaningful, . these two estimators should be carefully 

handled because the estimates can arbitrarily be changed when the 

origin of the measurements is changed. 
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C h a p t e r  6 

CONCLUSIONS AND RECOMMENDATIONS 

In recent years, the analysis of crustal deformation measurements has  

become important as a result of current  improvements in the geodetic 

methods and an increasing amount of theoretical and observational data 

provided by several earth sciences. However, a combined analysis of 

different types of information h a s  not received proper attention. 

In this study, a "first generation" data analysis algorithm which  

combines extraneous information with current  geodetic measurerrienls w a s  

proposed. Relevant methods which can be used in the algorithm h a v e  

been discussed. Prior information i s  the  unifying feature of this 

algorithm. Some of the problems which may arise through the use of 

additional information in the analysis have been indicated a r i d  

preventive measures were demonstrated. 

The first step of the algorithm is the optimal design of tho gwtlot,ic: 

networks. Although the current  research on optimal designs o f  geodet,ic: 

networks is extensive, deformation model oriented network designs have 

yet to be exploit,ed. The duality between geodetic axiomatic model 

oriented designs and deformation model oriented designs deserves 

further investigations. A s  an  example to deformation model oriented 

designs, it was shown that the regular polygonal deformation networks 

composed of equilateral triangles a re  uniformly D-optimal for 

homogeneous deformation field. The methodology used in this derivation 

can easily be extended to the optimal design of possible alternative 

deformation models which may arise in practice. 

The concept of optimal network designs, which does well €or the 

totality of different postulated models, w a s  identified. Such designs can 

in general be constructed iteratively using prior preferences as weights 
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on each model. Formulation of the problem for deformation networks is 

open to fur ther  investigations. 

The second step in the algorithm identifies t h e  descriptive model of 

the deformation field. Previous information about the nature of crustal 

movements as a result of previous measurements and/or theoretical 

considerations may suggest more than one model to represent the 

deformations. In  this case, sequential experimental designs are 

necessary to identify the suitable model. A method based on t h e  

entropy measure of information, proposed by Box and Hill (1967),  w a s  

applied to a group of postulated deformation models and the 

identification of the correct model was  demonstrated through an example. 

The method uses prior information in the form of prior preferences for 

each model in a Bayesian setting. This additional information, in turn,  

allows prediction of optimal observations and computation of the 

likelihood of each model. Although the numerical example indicated t h a t  

the method effectively identifies the correct model, i ts  usefulness needs 

to be demonstrated in practice. 

The next step in the algorithm is the improved estimation of 

deformation parameters. Although these parameters a re  estimated in the 

process of model discrimination, they can fur ther  be improved by the 

use of extraneous information about them. Compared to the previous 

topics and the regular estimation techniques, the use of additional 

information in the estimation of deformation parameters has not been 

exploited in detail in crustal movement analysis. Therefore, a m a j o r  part 

of this s tudy has been devoted to this subject. 

According to the proposed algorithm, prior information must f i rs t  bo 

checked through null-hypothesis testing against the estimates calculated 

using the least squares method, which employs only sample observations, 

before it is introduced to the final estimation. This procedure is likely 

to detect large discrepancies between two different estimates, but may  

not be conclusive if both estimates a re  generally in the same direction 

and close in magnitude. However, it w a s  demonstrated that even in 

these cases, incompatible prior information can still be used to improve 

the final e s t i m a t e s  under certain circumstances. 
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Introduction of prior information can be achieved using different 

estimation techniques. Schaffrin (1983) proposed a group of estimators 

that  can be used for such purposes. Of these techniques, B e s t  Linear 

Uniformly Unbiased Estimator BLUUE, B e s t  Linear Unbiased Estimator 

BLUE, and B e s t  Linear Estimator BLE, were  examined due to their rather 

unknown statistical properties in the  geodetic area. 

Since the purpose of using prior information is to improve the 

estimates in the proposed algorithm, these estimators were  analytically 

compared against GLSE. I t  was shown that they are in general better 

than GLSE with respect to their corresponding mean square error  

matrices. However, these inferences can only be made as long as prior 

information is known adequately. Otherwise, possible discrepancies 

between prior information and the t rue  value of ,parameters render 

BLUUE and BLUE biased and introduces additional biases in the biased 

estimator BLE. Under these circumstances the advantage of using 

additional information w a s  investigated. Comparisons of these estimators 
under spurious prior information against GLSE led to the conditions for 

improvements (Table 1).  These results also provide the  means to select 

a suitable estimator under wrong prior information. In general, 

improvements are possible for biased BLUUE if prior information is not 

too erroneous or  observations relatively poor. Meanwhile, it w a ~  shown 

that BLUE and BLE are  robust against wrong prior information. If the 

t rue values of the parameters are relatively sma l l  with respect to the 

observation noise, then improvements over GLSE are  possible by using 

these estimators. 

As discussed in Chapter 5, deformation parameters can be regarded 

as random quantities with certain means and variances. This 

interpretation led to the study of estimation of stochastic parameters 

(prediction). In this class, B e s t  Inhomogeneously Linear Unbiased 

Prediction INHOMBLUP, B e s t  Homogeneously Linear Unbiased Prediction 

HOMBLUP and B e s t  Homogeneously Linear Prediction HOMBLIP were 

considered. A null hypothesis testing procedure was developed to check 

the  compatibility of prior information about the means of the stochastic 

deformation parameters with the estimates implied by the sample 
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observations. It w a s  demonstrated that, as a reference criterion, GLSE 

is also a Best Homogeneously. Linear Unbiased Prediction if no prior 

information is available. The above predictors w e r e  then compared 

against GLSE using the mean square matrix of prediction criterion 

assuming that correct prior information on the  mean of the t rue 

stochastic parameter vector and its covariance matrix are  available. In 

each case, it w a s  shown that prior information improves the estimation 

of stochastic parameters. 

Following the similar discussions in the case of estimation of 

deterministic parameters with erroneous prior information, once again 

the conditions for improvements w e r e  derived (Table 2). I t  was  found 

that these predictors not only possess the properties of the  estimators 

with deterministic parameters examined, but they also enjoy the  

additional flexibility provided by the  stochastic interpretation of 

deformation parameters through their covariance matrices. 

Finally, analytic conditions derived for these estimators and 

predictors are not only useful for understanding their properties but 

are also important in deciding which estimator or predictor is to be 

used in the improved estimation stage of the proposed algorithm. These 

conditions also replace extensive simulation studies for different 

applications. Particular cases can easily be inferred from the general 

conditions (Tables 1 and 2).  
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Appendix 

SOME USEFUL THEOREMS AND IDENTITIES 

- Theorem A.l: L e t  I be the nxn identity matrix and g an nxl vector. 

Then 

1 - gg' >/ 0 i f f  g ' g  < 1 

For proof see (Yancey et  al., 1 9 7 4 ) .  

___ Theorem A.2: L e t  A be an nxn symmetric matrix; if A > 0,  then A (*:in be 

written as 

and Ay, is  also symmetric. For proof see (Mardia e t  ul . ,  1979). 

Theorern A.3: Let A be an nxn matrix a n d  TJ an nx l  vector. Then 

and the supremum is attained at x = A - l U .  For proof see (lino, 1072) .  

Theorem '4.4: I,et '4 tx: an nxri matrix and  a 1' ... > A, ,  bc :  i t s  

eigenvalues then 

sup x'Ax - 
- A 1  x x'x 

For proof see (Rao, 1 9 7 3 ) .  

Theorem A.5: L e t  A be an nxn symmetric matrix. Then there exists an 

orthogonal matrix P such that 
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P'AP = A 

with P'P = PP' = I, where A = diag(A,, ..., A,) are  the eigenvalues of A.  

For proof see (Mardia et  al., 1979). 

Theorem A.6: L e t  A be an  nxn p.s.d. matrix; then PAP' is p.s.d. for any 

nxn matrix P. For proof see (Graybill, 1976). 

Theorem A.7: If A > 0 and B 3 0, then A-' - (A t B)-I is  p.s.d. For 

proof see (Goldberger, 1964). 

Theorem A.8: L e t  A be an  nxn symmetric matrix; then 

t.r{A} = C A i  

where A i  are the eigenvalues of A. For proof apply theorem A.5. 

Theorem A.9: If A is an nxn matrix, p.d. and (A + BDC) > 0 and BDC are 

conforming matrices then 

(A + BDC)-' = A-' - A-'BDCA-'(I + BDCA-')-' 

= A-' - (I + A-'BDC)-'A-'BDCA-' 

holds. For the derivation see (Henderson and Searle, 1981). Usefu! 

extensions of this theorem in the general notation of the text are 

and fo r  a conforming vector x 

(N' + xx')-' = N - N xx'N 
1 + x'Nx 

where 

N : =  A'Cu,A 

Theorem A.lO: If x - N,(p,C),  C > 0, then 
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For proof see (Tautenburg, 1982). 

Theorem A . l l :  Let pxl random vector x N ( p ,  C) w h e r e  C is ful l  rank. 

Let A be a qxp matrix of constants, and let b be any qxl vector of 

constants. Then 

y = Ax + b - Np(Ap + b y  .4CA') 

For proof ,  see (Graybill, 1976). 
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