APPLICATION OF PHOTOSYNTHETIC N2-FIXING CYANOBACTERIA TO THE CELSS PROGRAM

Ian V. Fry, Jana Hrabeta, Joe D'Souza* & Lester Packer

Membrane Bioenergetics Group, Applied Science Division
Lawrence Berkeley Laboratory University of California, Berkeley CA 94720

*Dr. D’Souza is a Fulbright scholar, on leave from Goa University, Goa, India.

ABSTRACT

The feasibility of using photosynthetic microalgae (cyanobacteria) as a subsystem component for the CELSS program, with particular emphasis on the manipulation of the biomass (protein/carbohydrate) has been addressed. Using factors which retard growth rates, but not photosynthetic electron flux, the partitioning of photosynthetically derived reductant may be dictated towards CO2 fixation (carbohydrate formation) and away from N2 fixation (protein formation). Cold shock treatment of fairly dense cultures markedly increases the glycogen content from 1% to 35% (dry weight), and presents a useful technique to change the protein/carbohydrate ratio of these organisms to a more nutritionally acceptable form.

INTRODUCTION

The use of biological components in the CELSS program as subsystems for air revitalization, waste processing or the production of food has been proposed for long-term space flight /1/. Employment of algae (particularly cyanobacteria), which generate biomass from relatively simple components (minerals and light) and their ability to fix atmospheric N2, make them an attractive component for incorporation into the CELSS program. However, if use of cyanobacteria is envisaged as a major food source, manipulation of the composition of the biomass is required. Cyanobacteria (aptly described as single cell protein) are approximately 50% protein, with varying levels of carbohydrates, 1% (dry weight) in freshwater non-nitrogen fixers /2/, and up to 30% in some nitrogen fixing strains /3/. The average human nutritional daily requirement is for 20% protein and 50% carbohydrate (table I).

MATERIALS AND METHODS

Nostoc muscorum was grown in BGll medium minus nitrate and Synechococcus 6311 was grown in KMC medium, in a 2 litre Bethesda Research Laboratories Airlift Fermentor at 30°C unless otherwise stated, 150 u Esum2 light (using Bethesda Research Laboratories 2201 LB day light white 300-700nm) with an airflow rate of 2 litres/min, supplemented with 0.5% CO2. 200 ml aliquots were withdrawn daily, the fermentor volume made up by addition of 200ml of sterile medium. Cells were centrifuged at 10,000xg/10 min and resuspended to 2 ml in BGll or KMC medium supplemented with 10 mM Tes buffer pH 7.0.

O2 evolution was monitored polarographically in BGll or KMC plus 10mM Tes pH7.0 with a cell density equivalent to 1-2 ug chlorophyll/ml. Nitrogenase activity was determined in whole filaments by monitoring acetylene reduction using a Varian Model 3700 gas chromatograph fitted with a Poropak T column. Cells (3 ug chlorophyll in 3 ml) were assayed in a 5 ml vial under air plus 10% (v/v) C2H2 in a shaking waterbath at 28° under 50um2/m2 light.

Light intensities were measured using a Li-Cor inc. integrating quantum/radiometer/photometer Li-188B, with a Li-190SB quantum sensor. Glycogen was extracted and determined colorimetrically by the method of Van Handel /4/.

We have previously reported on the affects of salt shock on cellular glycogen content of a freshwater non-nitrogen fixing cyanobacteirum,
Fig. 1 Scheme for the sources of reductant and ATP for CO₂ and N₂ fixation.

Fig. 2 A 21 Bethesda Research Laboratory Air-Lift fermentor.
Fig. 3 Nitrogenase activity during exposure to salinity of *Nococ muscorum*.

Fig. 4 Cellular glycogen content of *Synechococcus 6311* during growth under saline conditions.
Fig. 5 Redirection of photosynthetically derived reductant under stress conditions.

Fig. 6 Effect of temperature on the growth of *Synechococcus* 6311.

Fig. 7 Effect of temperature on the glycogen content of *Synechococcus* 6311.
TABLE I Average Daily Requirements For Humans

<table>
<thead>
<tr>
<th>Food Type</th>
<th>Daily Requirement*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grams</td>
</tr>
<tr>
<td>Protein</td>
<td>330</td>
</tr>
<tr>
<td>Carbohydrate</td>
<td>825</td>
</tr>
<tr>
<td>Lipid</td>
<td>429</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1584</td>
</tr>
</tbody>
</table>

Assumptions:

* Body weight of 70kg (150 lbs.)

TABLE II Rates of N₂ Fixation and Photosynthesis During Growth in Airlift Fermenter

<table>
<thead>
<tr>
<th></th>
<th>Maximal Rate*</th>
<th>Fermentor Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photosynthetic O₂ evolution (umoles O₂/mg chlorophyll/hr)</td>
<td>300</td>
<td>72+</td>
</tr>
<tr>
<td>N₂ fixation (umoles C₂H₂ reduced/mg chlorophyll/hr)</td>
<td>25 (air)</td>
<td>43#</td>
</tr>
</tbody>
</table>

* direct measurements from diluted samples

+ calculated from total CO₂ plus N₂ fixed (as carbohydrate and protein)

calculated from the total N₂ fixed as protein

TABLE III Factors Affecting The Carbohydrate Content Of Synechococcus 6311

<table>
<thead>
<tr>
<th>Growth Condition (30°C)</th>
<th>Generation Time (hr.)</th>
<th>Respiration (umoles O₂/mg 'chl/hr.)²</th>
<th>Glycogen (% Dry Wt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>19.7</td>
<td>2.9</td>
<td>0.9</td>
</tr>
<tr>
<td>+0.5M NaCl</td>
<td>24.0</td>
<td>20.0</td>
<td>12.0</td>
</tr>
<tr>
<td>+60ppm SeO₄²⁻ (SO₄²⁻ = 14ppm)</td>
<td>32.0</td>
<td>8.0</td>
<td>2.2</td>
</tr>
<tr>
<td>Grown at 20°C</td>
<td>33.1</td>
<td>41.3</td>
<td>35.0</td>
</tr>
</tbody>
</table>

Photosynthesis (after 48 hrs) is at control rates in all cases.

TABLE IV Effect Of Growth Temperature On Synechococcus 6311

<table>
<thead>
<tr>
<th>Growth Temp. (°C)</th>
<th>Generation Time (hr.)*</th>
<th>Photosynthesis (umoles O₂/mg 'chl/hr.)* #</th>
<th>Respiration (umoles O₂/mg 'chl/hr.)* #</th>
<th>Glycogen (% Dry Wt.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>40</td>
<td>20.1</td>
<td>180.7</td>
<td>3.6</td>
<td>1.7</td>
</tr>
<tr>
<td>30</td>
<td>19.7</td>
<td>178.2</td>
<td>2.9</td>
<td>0.9</td>
</tr>
<tr>
<td>20</td>
<td>33.1</td>
<td>198.8</td>
<td>41.3</td>
<td>35.0</td>
</tr>
</tbody>
</table>

* Determinations made on 72 hr culture

Assayed at growth temperature (Q₁₀ (photosynthesis)=35%, Q₁₀ (respiration)=68%, between 30°C & 40°C for 30°C & 40°C grown cultures)
Synechococcus 6311 /2/, and we have continued to use this organism, in addition to the nitrogen fixing cyanobacterium Nostoc muscorum. Both CO₂ fixation and N₂ fixation utilize the pools of photosynthetic reductant and ATP (fig. 1), and we have investigated environmental factors such as salinity, growth inhibition and temperature effects on the distribution of the reductant between N₂ or CO₂ fixation, to determine the feasibility of using such effects to direct the photosynthesize to one particular pool of macromolecule.

RESULTS

Measurements of photosynthetic electron transport (O₂ evolution) and nitrogenase activity (C₂H₂ reduction) in Nostoc muscorum show that only 8% of maximum electron transport (4e⁻ per O₂ evolved, 2e⁻ per C₂H₂ reduced) is utilized for N₂ fixation (Table II) and one would expect higher levels of CO₂ fixation to occur. However, estimations of rates of actual photosynthesis during growth in an airlift fermentor (fig. 2), calculated from the rates of carbohydrate and protein formation, show that the total photosynthetic rates are much lower, probably due to a cut-off effect, the attenuation of light by the density of the culture during growth. It is interesting to note that, even under this reduced photosynthetic activity, the rate of N₂ fixation is maximal (Table II). Clearly, N₂ fixation, under these conditions, has priority for photosynthetic reductant, and is probably the limiting factor for growth under these conditions.

SALINITY EFFECTS

Blumwald and Tel-Or have reported the effects of salinity on N₂ fixation (5) which is clearly inhibited during the first 2 days (fig. 3). Under similar conditions, using Synechococcus 6311, we have reported the marked accumulation of glycogen (/2/ & fig. 4). In both cases, salt resulted in a retardation of growth /2,5/ and to a much lesser degree, photosynthesis /2/. Under conditions where growth rate is reduced more than photosynthesis, reductant is directed towards CO₂ fixation rather than N₂ fixation (fig. 5).

FACTORS AFFECTING CELLULAR GLYCOGEN CONTENT

Table III presents the effects of several regimes employed to reduce growth rates, while not affecting photosynthesis. Both NaCl and selenate (a competitive inhibitor of sulfur metabolism) reduce growth rates and stimulate glycogen content. The greatest effect is observed, however, when cells are grown at below optimal temperature (20⁰C).

TEMPERATURE EFFECTS

Growth of Synechococcus 6311 at different temperatures is shown in table IV, and while photosynthesis is relatively unaffected by growth temperature, the generation time is almost doubled and glycogen content increased by a factor of 39 at 20⁰C.

Although this presents a useful tool for the modification of biomass towards carbohydrate, growth rate (and therefore total biomass production) is slow at 20⁰C. Therefore, cultures of Synechococcus 6311 were grown at 40⁰C for two days, the temperature then being reduced to 20⁰C. Fig. 6 demonstrates the rapid inhibition of growth during cold treatment of an already dense culture of Synechococcus 6311. Analysis of samples taken before and after transfer to 20⁰C, show a marked accumulation of glycogen during the period of growth inhibition (fig. 7).

CONCLUSIONS

Results so far indicate that temperature modification is the most effective tool for the manipulation of the biomass in favor of glycogen. This technique is particularly attractive, since the algae subsystem would only require adjustment of the cooling system, without manipulation of the nutrient supply. Future experimentation will continue along this line of research, using established food compatible systems (e.g. Spirulina).

REFERENCES

