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FOREWORD

This is the final report documenting the results of a theoretical
program to predict the aerodynamic and acoustic performance of advanced
turboprops, sponsored by the NASA Lewis Research Center. The program extended
from April 1983 to March 1985, with Dr. Kenneth Baumeister serving as Technical

Monitor.

Dr. Paul V. Marrone, Head of the Physical Sciences Department, has
overall responsibility for management and review of all technical programs
within the department. It was originally envisioned that Dr. William J. Rae
would serve as Principal Investigator, with assistance from Drs. Gregory F.
Homicz, Joseph P. Nenni, and John A. Lordi. Shortly after the program began,
the departure of Drs. Rae, Nenni and Lordi led to Dr. Homicz being appointed
Principal Investigator. To aid him in the technical effort, Calspan obtained
the services of Prof. A. Seybert of the University of Kentucky as a
subcontractor. Prof. Seybert had responsibility for the outer linearized
acoustic analysis and the preparation of Section 4 and portions of Section 5 of
this report. We wish to thank Dr. L. Bober, M. Celestina, and H. Huynh of NASA
Lewis for their generous help in familiarizing us with the NASPROP-E code and

their system.
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ABSTRACT

A hybrid numerical procedure is presented for the prediction of the
aerodynamic and acoustic performance of advanced turboprops. Because the
relative tip speed at design is typically supersonic, one must anticipate the
presence of shock waves as well as transonic three-dimensional effects in the
immediate vicinity of the blades. The strong rotational character of such flows
warrants the use of the inviscid nonlinear Euler equations in predicting
aerodynamic performance. In the outer flow regime away from the propeller such
effects have decayed significantly; here the primary concern is the sound being
propagated to the farfield. Hence in this region a linearized acoustic analysis

is justified. .

The present investigation proposes a hybrid scheme which in principle
leads to a consistent simultaneous prediction of both fields. In the inner flow
a finite difference method, the Approximate-Factorization Alternating-Direction-
Implicit (ADI) scheme, is used to solve the nonlinear Euler equations. In the
outer flow the linearized acoustic equations are solved via a Boundary-Integral
Equation (BIE) method. The two solutions are iteratively matched across a
fictitious interface in the flow so as to maintain continuity. At convergence
the resulting aerodynamic load predictions will automatically satisfy the
appropriate "free-field" boundary conditions at the edge of the finite
difference grid, while the acoustic predictions will reflect the "back-reaction"
of the radiated field on the magnitude of the loading source terms, as well as

refractive effects in the inner flow.

The equations and logic needed to match the two solutions are
developed and the computer program implementing the procedure is described.
Unfortunately, no converged solutions were obtained, due to the unexpectedly
large running times. The reasons for this are discussed and several means to

alleviate the situation are suggested.
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Section 1
INTRODUCTION

The past two or three decades have witnessed a progression in the
commercial aviation fleet from propeller to turbojet, and most recently, to
turbofan-powered aircraft. The transition has been motivated primarily by the
desire for increased speed, reduced cabin vibration, and relatively simpler
design. Early turbojet engines were rather noisy, due to the very high exit
velocities of the turbulent exhaust jet. This eventually led to the turbofan
engine, whose exhaust velocity (and resultant noise) is much lower. -To
compensate for the reduced jet thrust, a significant fraction of the inlet air
is made to bypass the core engine and flows instead through a ducted fan, which

generates a significant portion of the thrust.

In recent years the need for increased fuel efficiency has prompted
reconsideration of the propeller as a viable alternative. Operation at a
typical cruise condition (M = 0.8 at 30,000 ft.) usually ﬁeans blade relative
tip speeds which are in the transonic/low supersonic regime. The performance
degradation and "buzz-saw" noise produced by conventional turboprops at these
conditions preclude their use. Recent advances in our understanding of such
flows, and improvements in manufacturing techniques, have driven propeller
design in the direction of using many smaller diameter, thinner blades, with a
highly swept planform. The similarity to an unducted fan-is obvious, hence the‘

name "propfan".

While wind-tunnel as well as flight tests on scale models have
confirmed the propulsive efficiency of modern propfan design, the noise the&
create is still a major concern. Most noise prediction methodologies model the
blades as distributions of source and dipole acoustic singularities. The
magnitude of these singularities is determined by the blades' thickness and
loading distributions, respectively. In principle the geometric thickness
distribution is a given, but the loads themselves require another whole
prediction methodology, which for advanced propfans is generally a numerical
algorithm of some sort. Usually the numerical solution is extended only a
finite distance from the propeller, where uniform free-stream conditions are

assumed to exist. This assumption is clearly inconsistent with acoustic



radiation to the farfield. Such an approach thus completely neglects any
coupling between the aerodynamic and acoustic field, i.e. the "back-reaction" of

the radiative field on the source mechanism.

Comparisons of such noise predictions against available wind-tunnel
and flight test acoustic data, e.g. Refs. 1 and 2, show uneven agreement. The
Sound Pressure Level (SPL) for both theory and experiment exhibits a nearly
linear increase with increasing tip speed in the subsonic regime. However, as
the relative tip Mach number passes through unity, the data tend to level off at
a plateau, while the predicted SPL continues to rise. It is the discrepancy
between theory and experiment in the transonic regime which this program is
intended to address. Specifically, we hope to determine whether a direct
coupling of the aerodynamic and acoustic fields in the theory would improve the

agreement.

For propeller flows which are subsonic at the hub and supersonic at

the tip, strong transoni¢ and nonlinear éffects must be anticipated, including
three-dimensionality, swirl, and even shock waves. These phenomena dictate the
solution of the three-dimensional, nonlinear, inviscid Euler equations if
accurate aerodynamic predictions are required. For this purpose we have chosen
as our starting point the NASPROP-E computer code written by Chaussee and Kutler
(Ref. 3). This choice was dictated by the code's ready availability on the NASA
Lewis CRAY system, lack of proprietary restraints on its use or modification, and

its demonstrated success in treating advanced propfan configurations (Ref. 4).

NASPROP-E solves the Euler equations using a finite-difference
algorithm on a boundary-conforming grid. In principle the grid and solution
could be extended to the acoustic farfield, but in practice this would soon
stretch storagé requirements and CPU times to the breaking point. Out of
necessity the outer boundary of the grid is placed a finite distance, say
several blade diameters, away from the propeller where the boundary conditions

are only approximated by undisturbed free-stream values.

On the other hand, one expects intuitively that the nonlinear effects
necessitating the use of the full Euler equations are likely to be dominant



only in the immediate vicinity of the blades, In the farfield, where the
propagation of acoustic waves is the prime concern, an analysis based on the
linearized flow equations should suffice. The latter lend themselves to
semi-analytical methods which have a less voracious appetite for computer
resources. This suggests a hybrid methodology in which NASPROP-E is used in the
inner flow and matched across some suitably chosen interface to a linearized

model of the outer flow.

The scheme chosen here for the outer flow is the Boundary-Integral
Equation (BIE) method (Ref. 5). As the name Suggests, it is based on converting
the partial differential equations to an equivalent integral equation on the
interface. The number of spatial dimensions is thus reduced from three to two.
As envisioned here, the NASPROP-E solution in the inner flow is used to compute
the pressure gradient 5?%@57 (n being normal to the interface). This is used
as the inner boundary condition for the outer flow solution. The latter will
uniquely determine a new p distribution on the interface, fully consistent with
the appropriate radiation condition at infinity. This new p distribution is
then used as the outer boundary condition on a new calculation of the inner
flow. This procedure is repeated until convergence is reached, as evidenced by
continuity of pressure and its normal derivative across the interface. After
convergence, the SPL at any point in the outer flow is available as a simple

quadrature of p and 3%2A3” (which are now known) over the interface.

The discussion in the following sections proceeds logically from the
propeller outwards. Section 2 gives an overview of the equations, variables,
and algorithm used in NASPROP-E. Section 3 discusses how this solution is
matched across the interface to the BIE solution, which in turn is discussed in
Section 4. The overall structure of the combined code, termed CALPROP, is
presented in Section 5 along with a description of the additional inputs and

outputs. Large computer run times have thwarted efforts to get a converged
solution, the reasons for which are discussed in Section 6. Section 7 closes

with the major conclusions from this study and suggestions for future research.



Section 2
INNER NONLINEAR AERODYNAMIC MODEL

As noted in the Introduction, advanced propfan configurations can be
expected to exhibit strong rotational flow effects, as well as shock waves. For
this reason a solution of the full nonlinear, inviscid, three-dimensional Euler
equations is needed in the immediate vicinity of the blades. As our starting
point, we chose the NASPROP-E code developed by Chaussee and Kutler (Ref. 3).
This source code was readily available and working on the NASA Lewis CRAY
system, and has been successfully used to analyze configurations of interest

here (Ref. 4).

Actually, the overall package is a collection of three stand-alone
programs, each designed to do a different task in the analysis sequence. The
first is a mesh generation program which takes the propfan/nacelle geometry as
input and produces a suitable boundary-conforming grid. This grid is used as
input to the flowfield analysis program, which solves the equations and stores
the full three-dimensional solution at all grid points onto a disk file. The
last step is the data reduction program which reads the solution on file and
computes force and moment coefficients, generates plots of selected quantities,
etc. The flowfield analysis program is by far the most complex and time
consuming. It is this portion that we are primarily concerned with here, with
the exception of one small change noted below in connection with the mesh

generation code.

As NASPROP-E has been documented elsewhere, we give here only an
overview sufficient to introduce certain variables and concepts. We also
discusss what modifications were found necessary to allow interaction with the

outer solution field.

Grid Transformation

It is assumed that the inlet flow, at subsonic Mach number, M, is
uniform. Hence to an observer in a blade-fixed reference frame (Z,7, ¢ ) the
flow appears steady, and it is in such a frame that the equations are solved.



Further, since all of the B blades are assumed identical, it is only necessary
to solve for the flow through one blade passage, say O ¥ ¢szrr/5 . To
facilitate implementation of the blade and nacelle boundary conditions, the flow

is mapped into computational coordinates,

é ’6 (Z,?",¢,Z‘)

nsh(zr,et) (2-1)
¢ =26 (2,7,6,¢)

7 =t¢

The transformation is boundary-conforming,'i.e., the flow boundaries in the
computational domain all lie along constant values of one of the coordinates.
In this domain the flow occupies a rectangular prism, within which a uniform
Cartesian grid is employed. Such a transformation makes it easy to adapt any
number of finite-difference algorithms to the solution. It also allows one-to
"bunch up" grid points in regions of strong gradients without compromising the

accuracy of the difference scheme.

* A cross-section in the ( Z, # ) plane of the difference grid used
here is shown in Fig. 1. This displays the non-uniform curvilinear grid in
physical space corresponding to a uniform Cartesian grid in¢£ and . The
corresponding integer indices are J and K, respectively. J = 1 represents the
horizontal stagnation streamline coming in from the left. Higher values of J
are the lines rotating to the right, with J=Ja denoting the specific<£ =
constant line intersecting the upper left corner of the grid. The vertical
outflow boundary is denoted by J = JMAX. Note the bunching near the stagnation
point and the blade leading and trailing edges. The intersecting grid lines are
for » and K constant; K = 1 is the nacelle surface, while K = KMAX along the '
vertical inflow boundary and the horizontal cylindrical sidewall. In the
azimuthal direction, L is the index for coordinate & (not shown in Fig. 1, see
Ref. 4); L = 1 lies along the blades' suction surface, and L = LMAX along the

blades' pressure surface.

Transformed Equations .

In the computational space the Euler equations can still be written in
weak-conservation law form as follows:

C%, + £, + F

A e+ G o+ H = O (2-2)
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where subscripts are used to denote differentiation. Q is a column vector

consisting of the unknowns,
-7 7
Q =V [p,pu,pv, pr; e/ (2-3)

wherejo is the fluid density, (u, v, w) the velocity components in the (257;¢)
directions, respectively, and e is the total energy per unit volume defined by

2 L plu?r vis w?) (2-4)
(r-1) =

e =

where p is the pressure. The quantity J is the Jacobian of the transformation
defined in Eq. (2-1), i.e.

2(¢,7n,¢)
(E, 7, )

(2-5)

J

and / is the ratio of specific heats for an ideal gas.

Before going further, it should be noted that all variables in the
code have been nondimensionalized. Lengths are normalized by the propeller
diameter, D. Pressure and density are normalized by their freestream values, P,
and '/0” . Velocities are normalized by @, VY , where a _ is the free-stream
sound speed, 73Qo/6€p . Time is normalized by [>1f;T74%” . Finally, from
Eq. (2-4) the energy per unit volume is also normalized by p, .

The quantities E, F and G are the column flux vectors in the¢ﬁ » and ¢

directions defined in terms of the unknowns as,

£ ==erﬁQ;oCC /6M(6/+70£;5,jozré/+faf;‘,/ou/é/+7g§;lﬁp) (é'*7ﬂ)é/‘¢bf;J77.

F

J'/_/'/ol/, puv +pon , pr¥+on ,/awV+;7)7¢/f, (erp)V-p5.7 4

>

| G J—I[fh/:/uh/"ﬁé; ’ /’v‘h/*p¢,,/0wh/+7a§‘¢/r, (e+p)W-0¢,]
(2-6)
Here (U, V, W) are the contravariant velocity components in the ( df » 7 ,C:.)

directions, respectively:



U=£z‘+ ub, + vé, » wé,/r
V = Wy + UMy + U, w-)z’,/-r (2-7)
W=¢ » u, = v6, * wly/r
The undifferentiated source term H is given by
H = (Jr)_/[/ozf,/aav,/o (rw?), zprw, (erp)] T (2-8)

The metrics of the transformation appearing in Eqs. (2-6) and (2-7) can also be

evaluated in the computational space using the chain rule, e.g.
‘fz = °7_(<7% Bpe - 9@7’?-)
b = (8,2 - 2,8.) (2-9)
€¢ =S -7 E)

and similarly for the )7 a.ndC metries.

Numerical Algorithm

The vector Eq. (2-2) is a shorthand for 5 scalar equations
representing, respectively, conservation of mass, conservation of momentum (3
components), and conservation of energy. Note that the time derivative has bgen
retéined even though we seek the steady-state solution. This renders the
equations hyperbolic and thus amenable to a time-marching algorithm. That is,
the solution is integrated from some (arbitrary) initial condition through a
sequence‘of‘ finite time steps until all transients have decayed. This

aaymptotic field is then the desired steady-state solution.

The use of an explicit finite-difference algorithm, though
straightforward, is hampered by the very small time steps required to maintain
numerical stabllity when small grid spacings are present. This is particularly
nettlesome in applications such as the present, where the transients are not of
interest, and we wish to converge to the steady solution as quickly as possible.
For this reason NASPROP-E employs an implicit marching algorithm. Though more
operations are required at each time step, implicit schemes allow greatly
increased step sizes without sacrificing stability. The net result is a

significant savings in CPU time.



The particular scheme used in NASPROP-E is the Approximate-
Factorization Alternating-Direction-Implicit (ADI) scheme in so-called "delta™"
form (Refs. 6, 7). Basically, after applying differencing formulae to Eq.
(2-2), the resulting three-dimensional spatial difference operator is factored
into the product of three one-dimensional operators. Each of these operators
represents a block-tridiagonal matrix. The latter can be inverted one at a time
sequentially, a significant savings in both storage and time requirements
compared with inverting the much larger matrix for the full three-dimensional
operator. A method for speeding the calculation even more through further
diagonalization of the block matrix structure (Refs. 8, 9) is also used. For
more details on the Approximate-Factorization ADI algorithm and its
implementation in NASPROP-E, see Refs. 3, 4, 6-9. No changes.to this part of

the code were made during the'bresent investigation.

Initial and Boundary Conditions

The usual initial condition when starting a case from scratch is to
set all the flow variables in the vector Q equal to their free-stream values.
Optionally, one can also start the calculation using the flowfield solution
stored as the result of a previous run. No changes have been made to the code

in this regard (Section 4.4 of Ref. 3).

The boundary conditions used are those appropriate to an invisecid
calculation. Since the blades and nacelle are impermeable the surface tangency
condition is invoked, i.e., the ve_locity normal to the surface must be zero.

In the computational space the blades map to a surface of constant C', so that
the corresponding contravariant velocity, W, must vanish. Similarly, the
nacelle maps té a surface of constant PL, along which the.contravariant velocity
V must be zero. Details of how these are enforced may be found in Ref. 3; no

changes were made for the present application.

As originally written, the outer boundary of the NASPROP-E grid was
not as depicted here in Fig. 1. The upstream portion, rather than terminating
in a flat vertical surface, consisted of a hemispherical cap of the same radius
as the downstream c¢ylindrical portion. This will be'referred to as the

hemisphere-cylindrical grid. On the hemispherical cap and cylindrical sidewall,



K = KMAX, free-stream values for all the flow quantities were imposed for all
time. On the vertical downstream outflow boundary (J = JMAX) only the pressure
was assumed to have returned to a constant value of p, . Significant variations
in the velocity field must be expected, however, because of the added momentum
and swirl imparted to the flow. Appropriate values for the velocity components
were computed using the Method of Characteristics (MOC); see Ref. 3 for details.
The density was obtained from the isentropic relation, and the total energy per

-unit volume then follows from Eq. (2-4).

The above scheme, assuming as it does a constant value for the
pressure over the whole boundary of the grid, is clearly inconsistent with
acoustic radiation to the farfield. It is this portion of NASPROP-E which had

-to be modified for the present application. First, the shape of the outer

boundary in physical space was changed from the hemisphere-cylinder combination
described in the last paragraph, to the fully cylindrical shape shown in Fig. 1.
Although the matching to the outer flow solution can in principle be
accomplished for an arbitrarily shaped interface, for reasons which will become
clearer in Section 3 it is much easier if each portion of the interface is
parallel to one of the coordinate directions. We are indebted to Drs. L. Bober
and H. Huynh of NASA Lewis who made the necessary mesh alterations for us and
stored the new grid on their CRAY system where we could directly access it. It
should be noted that this change involves only the mesh.generation program, and

is essentially transparent to the three-dimensional flowfield program.

Changes have also béen made within the flowfield program to allow for
a variable pressure distribution on the interface. As.explained in Sections
3 and 4, NASPROP-E is used to compute 593430 on the interface, which is used by
the BIE package to compute a new p distribution there. This new information
must somehow then be used as an updated outer boundary condition for the next
iteration through NASPROP-E; this is complicated by the fact that p is not one -
of the primary variables stored in the solution vector Q, cf. Eq. (2-3).
Accordingly, at the upstream vertical face and the cylindrical sidewall in Fig.
1 the updated pressure from BIE is used in Eq. (2-4) to compute and store new
total energy values on the interface, assuming the velocity components retain
their free-stream values. On the downstream vertical face, where, u, v and w

vary significantly, the same MOC method is still used to set new values for the

10



velocities, density and energy. However, now the p values from BIE are used as

input rather than p_, .

This completes the discussion of the NASPROP-E portion of the code.
The next section discusses in detail the theory behind its interaction with the
BIE solution of the outer flow.

11



Section 3

MATCHING ACROSS THE INTERFACE

The preceding section gave an overview of how the NASPROP-E code
solves the nonlinear Euler equations in the inner flow region, and what changes
were necessary to allow it to accept arbitrary outer pressure boundary conditions
from the BIE package. This section discusses in more detail the theory behind
how the two codes were intended to interact. There were three major
incompatibilities between the codes which had to be addressed: NASPROP-E
originally used a hemisphere/cylinder outer boundary, while BIE was designed
with a fully cylindrical inner boundary in mind; NASPROP-E works in blade-fixed
coordinates whereas the coordinate system in BIE does not rotate; NASPROP-E
allows for a uniform subsonic axial flow, while the classical acoustic analysis
in BIE does not. The first of these was easily resolved by switching to a
cylindrical outer boundary in NASPROP-E, as described in Section 2. As will be
seen shortly, this also facilitates transfer of the boundary conditions between
the two. Resolution of the remaining incompatibilities is described below.

Evaluation of Normal Pressure Gradient at Interface

Figure 2 is a sketch of the same cylindrical interface shown in Fig.
1, but here with emphasis on the 6uter flow region. 3Sp refers to the upstream
vertical face at axial location g,, Sg to the cylindrical sidewall of radius Rg,
and Sp to the downstream vertical face at &4; the total ensemble is denoted by
S. Keep in mind that S is a fictitious surface sufficiently far removed from
the propeller, several blade diameters say, so that nonlinear effects such as
shock waves are assumed to be negligible. -

We have the choice of using NASPROP-E to specify é?aﬁén on S and then
using BIE to get p, or using NASPROP-E to specify p on S and wusing BIE to )
determine 5?%A9ﬂ . Due to the way in which the outer boundary conditions are
set in NASPROP-E (cf. Section 2), the first alternative is clearly preferable.
We thus need to evaluate the outward normal pressure gradient in the blade-fixed
(z,r ,gﬁ) frame in terms of the solution computed in the boundary-conforming
(cﬁ ,JZ ,( ) coordinates. Using the chain rule for differentiation on surface

Sy we have

G [dn = ~po, = Loty * Nuty * Sa £p) (3-1a)

12
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while on Sg,
aL/3n

[

Pr = St Pyt Cr P QRS

and on S,,

3f/3/7 703 = fzﬁ’ * 7270)( * ¢z%¢ (3-1c)
The metrics ‘52 ,cf,. etc. are already stored (ef. Eq. (2-9)). Evaluation of the
pressure gradients on the right is a two-step process. First the pressures at
grid points on and near S are evaluated for the stored solution vector Q using
Eq. (2-4). Then standard second-order accurate difference formulae are applied
to get p£ ’ pn and p¢ .

Equations (3-1) define the normal pressure gradient only within the
pie-shaped sector formed by one blade passage, say O < +§4, and 0s@<273.
Because all the blades are identical, this pattern will repeat itself B times
around the axis in both hub-fixed and blade-fixed coordinates. It is natural

then to represent the variation as a Fourier series:

Bp(2,, 7, $)/on = AL r) v 2R 2 ALlr)e 0P B2

Op(2,R.,¢)/on = Bl(z) + z@mzi B (2) e"m‘% (3-2b)
op (=, S = Cl) + 2RE CI)e? G
o (2,7, 8))0n =CJltr) + 2Rz Cl(#)e :
where the coefficients are found, using -Eq. (3-1) as input, from
. [2“,1" ¢) -imBg '
A, = 2”_/ 70 e ag (3-3a)
g7~ B8 7 spraR,p) -imBB (5-30)
= _& J H
m 2/7'0/ >, e @
27/8 .
c” - 8 370/24,7; &) e—zm5¢a/¢ (3-3¢)
m 27T A an
14



The above forms apply to surfaces S,, Sg and Sc respectively. For later

reference we also quote here the analogous expansions for the pressure itself':

PRt P)= A(r) + 2 R 5 4,,6) e ém b (3-42)
P (23R, 8)= BE) » 2/ ,,,ZT, 8, (2) ¢ 77 (3-4b)
PP = C#)+ 2&,;‘:/ Ctr) 2P (3-4c)
where
A, (7) = 2—57;—.0/”@ (2., 7, &) P dp (3-5a)
2r/8
Cn?) = 2 / 2”/; (z,,+4) &7 dy (3-5¢)

Note that the subscript m on the coefficients is the Fourier index, while the
absence or presence of the superscript n indicates a coefficient of either the

pressure itself or its normal derivative.

Equations (3-2) and (3-4) are written in a blade-fixed frame. The
transformation to coordinates (Z , > ,é;) which_trgnslate with the hub but do

not rotate is simply

zZ == 7 -7 $ = F-s2¢ (3-6)

for-a propeller rotating in the —¢— direction (as assumed by NASPROP-E) with
constant angular velocity.r2. When applied to Eq. (3-2) the result is

- o, im8B (B +11¢
o2, ,7, P, z‘)/ifr = ,4,,"/17)7‘2/&”%/,4,,,/77/@'” (#+12t) (3-7a)

imB(@Prat) (3-7b)

— e _ ” - & m
Op(Z,R.,8,4)/dn = BF 428 I Br(Z)e
= imB (P+12¢
Pp(E, 76, t)fon = CIF) 12l ChE)e P 7
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and similarly for Eq. (3-4). This clearly shows that the disturbance field on
S, and by inference the entire field external to 'S, consists of a steady
component plus a time variation at the Blade Passage Frequency, 812, and its

harmonics.

Transformation from Mean Flow to Statie Flow

So far our attention has focussed on the boundary conditions to be
applied to the outer flow at the interface S. We now consider the equations to
be satisfied in this region, where nonlinear effects are assumed negligible.
The linearized equations governing the outer flow including the effects of a
subsonic axial Mach number, M, can be reduced to a single equation for the

pressure,
2 —_— ) - g 4 &
PP + 7 TLz)+F L -2/‘1.7%5/4” ~for 2z =O (3-8)

where,/32'= 1-M2, and subscripts indicate differentiation. This relation,
written in the same hub-fixed coordinates as Eq. (3-7), is the convective form
of the wave equation. As noted earlier, the BIE program is des}gned to work for
the equations of classical acoustics with no mean flow. Setting M = 0 in Eq.
(3-8), and further assuming a harmonic time dependence with frequency & = mB8AN

in accordance with Eq. (3-7), we get
et o U
Sz * T AFL)s + F s + ko p = O (3-9)

which is the classic Helmholtz equation solved by BIE, k, being the wavenumber
of the mth harmonic, mB[Z/am .

Consider the foilowing transformation of both independent and

dependent variables (Refs. 10, 11):

~ -

7= é -4 e ;’.-’/,d (3-10a)

£=p exp(-iMKEB) (3-10b)

Applying this to Eq. (3-8) and cancelling common factors yields

Por + P TN + Fhg + (kaJB)2F = O (3-11)



Hence if we identify
£ = k,.//” (3-10¢)

as part of the transformation, we recover the classic Helmholtz equation, (3-9).
Thus we have transformed from a convective flow equation in ( 2', 7, ¢;',70 )
space to an analogous static flow equation in (é? ,ir, ér,ﬁ;) space. An
integral formulation can be used to solve the latter problem directly as

follows.

Briefly, the solution to Eq. (3-11) in the outer flow in Fig. 2 is
uniquely determined by conditions on S and at infinity (outgoing waves only).
Letaf denote the operator on the left-hand side, and G denote the Green's

funetion satisfying the analogous inhomogeneous equation,

LG (b, X ) = -d(X-X) (3-12)

where J is the Dirac delta function and ¥, and ¥ are generic symbols for the
vector coordinates of the source and field points in ( £ , 2 , gz’ﬁv) space,
respectively. As derived in any standard text on mathematical physics, e.g.
Baker and Copson (Ref. 12), the solution to Eq. (3-11) can then be expressed
in the following integral form,

A(F) =//G//2;,X, X,) —-—9{;’;""}-75/,} %/’6"’ )/c/s (3-13)
J o

where the integral is over the whole surface S(X,) and n, denotes the outward

normal at the source point ib an S. This form assumes only outgoing waves at

infinity, and that there are no sources external to S.

If a Green's function G can be found which vanishes on S, Eq. (3-13)
reduces to a simple quadrature over p. This corresponds to replacing S by a
dipole distribution. Conversely, if 29Gyé9no can be made to vanish on S, the
solution reduces to a quadrature over 590/90% » corresponding to a monopole
representation on S. In general an analytical representation for G with either
of these convenient properties is not possible for an arbitrary surface S,
including the finite length cylinder used here. In this case it is
convenient to use the free-space Green's function; either p or 590/49M5 is
assumed known on S, and Eq. (3-13) in the limit where ¥ approaches the surface

provides an integral equation for the remaining unknown. The inversion of this
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integral equation is the function served by the BIE method described in Section
4. The choice of whether to regard p or 5?3/9ng as given in the BIE solution is
here dictated by how easily the solved quantity could be incorporated in the
outer boundary condition of NASPROP-E. From the discussion toward the end of
Section 2, it is clear that 5%y4?ﬂ would be difficult to enforce as a boundary
condition on the inner flow. So we have chosen to have 5?54?” specified by the
finite difference solution, as anticipated by Eqs. (3-1) through (3-7).

It remains to be seeﬁ how the transformation in Eq. (3-10) affects
the boundary conditions. First we note that the radius of the cylindrical
interface S is unchanged by (3-10a), but its length is increased by the
factor//?-/. The wavenumber of each harmonic of the acoustic field is also
increased by this factor. Further, BIE will need as input not the 299/¢9n
specified in Eq. (3-7), but rather 5%5727; in the transformed space.
Differentiation of Eq. (3-10b) yields the following relation between the two:

5 ;7 Mk
op o n ; Mk, 24 j e (3-14)

o5 “landr ~° @ P77

Thus we see that in order to specify 3}%493’ in the transformed space, in
general both the pressure and its normal derivative must be supplied in

physical space. Note that on S and Sg,

on o7 = o2[0F =8 0% /o5 = 7 1
while on Sg,
On|35 = or|OF =1 5%[57 =0

so that Eq. (3~-14) specializes to

M
" P 20 - Mhm iy L (3-15a)
gﬁéL' Z(%y or M /5 f{)76
2 _ e Lt /Zf z (3-15b)
on on
2 ap - Mk - ﬁﬂik‘"i“/
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on surfaces S, Sg and S¢ respectively. Had an arbitrary curvilinear interface
been used, the evaluation of Eq. (3-14) would not have been so simple; it was
for this reason that the cylindrical shape was chosen. It follows from Eq.
(3-15) that the Fourier coefficients of é%&?éir are related to those for p and
5779” (ef. Eqs. (3-2) through (3=7)) by:

(M A
~ V.7
A (F)= [BA50) + ¢ —%’h/l,,,/r/] e A (3-162)
AN o B (M b
B.(2)=G) e 5 = (3-16b)
¢ M km
24 (3-16c)

-~ —~ ” . k - 2
Cne) =LpCit) - i) e 7
which again apply to S,, Sp and S¢ respectively. Note that when evaluating the

above for m = 0, kp = O.

It is the Fourier coefficients defined by Eq. (3-16) which are
actually passed to the BIE package as a representation of 5%a%é;7'over S. -BIE
then inverts the integral equation derived from (3-13), as discussed in Section
4, for the transformed pressure p on S. Actually, BIE must do an independent
calculation for each harmonic, as the constant Eﬁ in Eq. (3-13) will be
différent for each value of m. It returns a set of Fourier coefficients Kﬁ, §h
and E; representing the variation of p over Sp, Sp and Sc¢ in the transformed
plane. These coefficients are converted to their counterparts in physical,

blade-fixed coordinates through Eq. (3-10b), giving:

~ o LMhm z
A, @) = A4,(#) e A “ (3-17a)
M ~
~ £ Ll Am
8,2 = 8,(%) ¢ /3 = (3-17b)
i Mbme =
C,(7) = C, () e B (3-17¢)

When substituted into Eq. (3-4) these define a new pressure distribution over

the surface S.
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Update to Boundary Conditions

The new pressure distribution found by BIE in general will not match
that used as the boundary condition on the nonlinear flow equations solved by
NASPROP-E. The disparity is used to update the boundary conditions used for the
next time step as follows. Let Pg denote the pressure distribution on S used as
the boundary condition on the inner flow at the qth time step. This solution is
used as input to the BIE package, as per the procedure described above, to
determine the pressure over the same surface based on the outer linearized
equations, p% say. The boundary conditions on NASPROP-E for the next time step
are then updated as follows:

P = pt e a (pt -2
= czfg¢ +-(7—ag}¢qﬁ

The parameter o{ , where O<olS/ , has been introduced to allow for

(3-18)

underrelaxation of the iterations. This was found necessary for convergence of
a similar iterative process used at Calspan in our studies of adaptive-wall
wind tunnels (Ref. 13). As noted at the end of Section 2, p is not one of the
primary variables uéed by NASPROP-E. Therefore, on Sy and Sg the new values
from Eq. (3-18) are used to recompute the local total energy at the boundary
grid points using Eq. (2-4). On surface Sc, the Method of Characteristics
(MOC) is used to update the boundary values for density, velocity, and energy

using the new pressures.

Eventually, the above iterative process should converge in the sense
that the discfepancy between 6% and 6% grows progressively smaller. Convergence
is evaluated in CALPROP by testing whether

/ 3 2 "%
[/T/;Z/f’f""’)j e </ (3-19)

where the sum is over the total number, Nt = JMAX+KMAX-1, of grid points on S,
and € is set by the user. When Eq. (3-19) is satisfied, the composite solution
provided by NASPROP-E and BIE should consistently satisfy the blade boundary
conditions, the free-field radiation conditions, and match p and 5%2/2”7 across
the interface S.

The above procedure for interfacing between NASPROP-E and BIE is

summarized briefly in Section 5 as a means of introducing the new routines in
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the combined code CALPROP. This recapitulation makes clearer the sequence in

which each of the operations is performed,

After convergence the acoustic near-field can be evaluated by
interpolation in the finite-difference grid. The acoustic far-field is easily
evaluated from Eq. (3-13), which now becomes a simple quadrature over the known
p and éﬁaﬂaﬁ distributions. This is also done in BIE, which is described in

more detail in the next section.
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Section U
OUTER LINEARIZED ACOUSTIC MODEL

Review of the BIE Method

A solution technique utilizing a discretized surface integral is
commonly referred to as a Boundary Integral Equation (BIE) method. The
outstanding feature of this method is that the dimension of the problem is
reduced by one, since only the boundary (surface) of the body is dealt with.
Thus, the BIE method is particularly suited for field problems involving an
infinite domain or a finite domain in which the field variables are needed at
only a few points. The BIE has been used successfully in solving problems
governed by linear elliptie, parabolic, and hyperbolic partial differential
equations (Ref. 14). Recently, Shaw (Ref. 15) has given an excellent review of

the application of the BIE to wave problems,

In prineciple, the BIE formulation can be derived: from Green's theorem
(Ref. 12, 16, 17) which relates the surface integral over S to the volume
integral over V bounded by S for any two functions p and 99 sufficiently smooth

and nonsingular in V:
Y P 2 2 -
JP5 —v 5 - [Ty -yip)ar -1
J (4
where n is the outward normal of S (i.e., n is directed out of the region V).

We apply this identity to three-dimensional acoustic problems, e.g.,
sound radiation from a vibrating body of surface area Sy, using the freespace
Green's function exp (—Z;('A?)/,Q =)/ and the acoustic pressure p, where R is the
distance between any two points P and Q in V, and k is the wave number. This
problem is classified as an exterior problem governed by Helmholtz's equation
where all physical quantities are defined outside of the body S,. The volume V
is the space bounded by S, and the surface /2. at infinity. The surface at
infinity can be represented by a sphere of infinite radius. The acoustic
pressure p is smooth and nonsingular, but 99 is singular when P = Q. To remove
this singularity, we exclude a portion of V in a small sphere o of radius &
surrounding P as shown in Fig. 3. Now, since P # Q, both y’and p satisfy the
Helmholtz equation V2¢+/<2¢=O and V;o +A'270 =0 in V, the volume
integral in Eq. (4-1) is 0:
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ay 3
/ (P57 = YL)ds = o. (4-2)
S+aT s

Taking the limit as € tends to zero for the integral over o

Jp & v as
kR

5 re*Y &% s |
L {/7037 ) TR W =P

R=€& =0
which results from using a spherical coordinate system centered at P and the
fact that 9/9/7 = - 2/3@ where p(P) is the acoustic pressure at P. The
surface integral over the portion of S at infinity, i.e., Z , 18 zero because
of the Sommerfeld radiation condition. Defining a new normal ¥ = -n directed
outward from the body (i.e., into V), then Eq. (4-2) becomes

kR -M’AQ op
/[70 37 ( “5—) — o sy /9L = #rplP) @)

Now consider Q as a source point on the surface S, and allow the field
point P to approach Sg. Providing that the surface Sg has a unique tangent at
Q, the singularity that occurs as Q = P may be removed by excluding the portion
of V in a small hemisphere ¢ around P. Following the same procedure used in

deriving Eq. (4-4), the following result is obtained:

(kR

2 2
//;o Z (__) L L) ds = 2npp). (49
5 |

Equation (4-5) is called the Surface Helmholtz Integral Equation.

If the field point P is inside the body, then 'y/ and p are always
nonsingular in V. Therefore Eq. (4-1) yields, for this case,

5/;0 jz/ (-—-—} :f ds, = (4-6)
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which is called the Interior Helmholtz Integral Equation. Equations (l-4)

through (4-6) can be written in a compact form:
-t'k»? kR

//70 v ( ) e %O/a’d; = C(p)f(p} (4-7)

where
C(P)= 417 for the field points outside the body,

=217 for the field points on the surface of the body,
0 for field points inside the body.

As mentioned before, for field points on the surface S, CRP)=2m
only when the surface has a unique tangent at P. A more general expression for
C(P) is necessary if there is no unique tangent plane at P, i.e., when P is at a
corner or edge of S,. For this more general expression, note first that the
counterpart of Eq. (4-7) for a function U satisfying Laplace's equation inside

the region bounded by S, has the form

ﬂ 22 -V ()]s = ctrum (4-8)

in which (1/R) is the counterpart of exp(-ikR)/R for the Laplace operator, and
CO(P) is the result of the limit of the integrals over a small "bubble-like"

region O with "base" centered at P similar to the hemisphere mentioned
earlier. However for P at an edge or corner, the bubble-like region is not a

hemisphere and the base is not flat in the limit. The required result can be
obtained from Eq. (4-8) using U = 1 which gives

c°(P) = ./a K?} a5 (4-9

which has the interpretation of the inner solid angle at P. Since the limit
processes depend only on the order of singularity of ¢’which is the same for
both the Laplace and Helmholtz operators, and since C(P) in Eq. (4-7) may be
obtained in the limit as P approaches S, from outside S,, C(P) has the
interpretation of the outer s0lid angle at P so that
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CP)+ C°(P) = 4r. (4-10)

Thus, C(P)=4m -C%p) and Eq. (4-5) can be rewritten:
- AR —kR

[P35 ()50 B4 = [rre [ % () 3] 22

(4-11)

(-]

Equation (4-11) is a general Surface Hemlholtz Integral Equation applicable to

any arbitrary surface.

Axisymmetric Formulation

When the surface is a body of revolution (Fig. 4) then
s, = p(Q)dP dL, (Q)
where dL, is the differential length of the generator of the body. We now
rename our normal ¥ to n to conform with convention in acoustics. Further, if
we expand p and 970/0"/2 on S, into Fourier series in the ¢ direction:

p@)=Z A, e 0"

ap _ n _imBg
on 2) ;%- '4”’ €

where B (the blade number) is a constant, then Eq. (4-11) may be written for a
n -

single harmonic, Ap and Ap, as

27 . 27 . .
/ /;, ”:/‘ 2P "B 14 -4,7/ v e % jjo di, = CPA, (P
L, o °

(4-12)

imBg(p)
where AMCD/=/4,,,6 ¢ is the pressure at a field point P. The axisymmetric

formulation above allows us to decouple the integration of Eq. (4-11) into the
evaluation of two line integrals in the (é°,¢) coordinate directions, Eq.
(4-12). Further, the integrals in the ¢ direction are independent of the

n
boundary data, Ap and Ap, and can be evaluated without the use of nodes and
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elements. Thus, all element discretization can be confined to the generator of
the axisymmetric body, i.e. the elements are now line segments. The boundary

data need only be specified at the nodes on the generator.

Numerical Implementation

Because the exterior solution reduces to a discretization of the
generator, only one-dimensional elements (line segments) are needed. The same
quadratic interpolation is used for both the geometry and the function variation
on each segment (isoparametric elements). The coordinates Co, Z-) of any point

on the generator (see Fig. 4) can be represented as:

ﬁ@zzf?, N, (§)pu (4-13)
z(€) =¢ZJ_, N, €) 2, (4-14)

where /Vd[éf) are the shape (interpolating) functions in the mapped domain
(—/Sé:S/ ) corresponding to node & (each element is a line segment consisting
of three nodes) and (ﬂx,z“) are the physical coordinates of node o¢ . It is
implicit here that all elements are mapped into a "clean" -1 to 1 region. All
integrations are carried out in this new region. The /\é(ﬁ) are

"'jé’éf + Ef‘ﬁ.z >

N, (§)

(4-15)

N, )= r-&7%

Eé <5_1‘ 2?‘5 N >

N, (&)

where (f: is the coordinate in the -1 to 1 mapped space.

n
For an element k, Ap and Ap are represented using the same shape
functions, Eq. (4-15):

4
’4'»/( (6) = cl.‘;l Aég (é) Amko&
(4-16)

e (8) = &M E) Al

where /4,,,1(,‘ and ;4,:/“,‘ are the pressure and normal derivative of the pressure,
respectively, at node o on element k for harmonic m. Substituting Eq. (4-16)
into Eq. (4-12) yields:
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E[Z A ) Kam CING)p @) G E) 4

(4-17)

-7 A / Ko ()N (8 p (&) G (8) [~ comA, @)

where

oy him @)= )Y & 8,

(4-18]

K is the total number of elements on the generator and oz;ﬂf) is the Jacobian of
the mapping from (/o)z) to d , given by:

G - [ (L]

In the same manner, the constant C(P) in Eq. (4-17) is given by:
/( /
Cth) = 4w + F [ KEIpl)GE)ad , @19
=<, .

where
K (&) =°/ ”‘—;% (7)d¢ . | (4-20)

If we put P on the surface at a node which we identify as j
(j = 1 to L, where L is-the total number of elements) then An(P) = Apj, and Eq.
(4-17) may be written as

éﬁ-‘};’, Anka @ty = Ay (2 *,é_,( </ = Af/;f de‘; Akt biey 7 (4-21)
where 2y = % / W, (BN p I ) (4-22)
%y = 7%/ Ko (C) M. E)p(8) G (&) (4-23)
< =%/ K. (&) p) i) 24 (4-24)
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In the above expressions j denotes the global node number where P is located and
k,o denote the element number and local node number, respectively, of the
location of Q. If we let-é be the global node number for Q corresponding to a
given k,&X combination, Eq. (4-21) may be written as

{é A’,,,,é‘,,,g A /2 * [c‘_] Z At bty > (4-25)
or
z
Z; a,,,,/ At = Z b,,,( (4-26)
where

A
A
ugym gy = 20 25] G

where q&( is the Kronecker delta function. Equation (4-26) may be written in

matrix form as:

[@n] (Am} = [bn] (Am/ (4-27)

If the normal derivative of the acoustic pressure, {A;}, is specified on the

surface, then from Eq. (4-27) we may calculate the acoustic pressure {Am}.

Calculation of Farfield Sound Pressure

After Ay has been determined we may determine the sound pressure at an

exterior point P using Eq. (4-12), or its numerical counterpart, Eq. (4-17),
with C(P)=4m . This is a simple quadrature process since (now) both Ay and A;

are known on the surface.

The Interior Eigenfrequency Problem

It has long been recognized (Ref. {8) that integral equations of the
type given in Eq. (4-12) will not yield a unique solution at certain
characteristic frequencies associated with the shape of Sy. These
characteristic frequencies are the eigenfrequencies of the interior of S, with
an "altered" boundary condition. That is, if we are solving Eq. (4-12) by
specifying¢%qé% on So’ then the characteristic frequencies where the nonuniqueness

problem arises are the eigenfrequencies of the interior of S, determined by

setting p = 0 on S,. For a cylinder these frequencies are (Ref. 17, p. 429):
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2 -
Kmoin = [ﬂ’”ﬁ) * [7;"4/'0)2;7{ , (4-28)
where: n,« =1, 2, 303 m =0, 1, 2 .o.; R and L are the radius and length of

the cylinder, respectively; and'Z;uare the zeroes of the mth order Bessel

function.

The modal density (average number of characteristic frequencies per
unit frequency) is proportional to k3, Even at moderate values of k the
eigenfrequencies are closely spaced. The following table shows the
eigenfrequencies between 19 £ ERS € 22 for the CALPROP interface (L/Rg = 1.21)

for the m = 0 circumferential mode.

R
o

Koou nRs

19.00
19.54
19.68
19.79
20.13
20.84
20.91
21.37
21.49
21.58
21.66
21.84

~NEUTNNN=2000LWUVITOVEN
NI OEJVTWOND

It has been observed (Refs. 5, 19 and 20) that symmetric boundary data
will select only certain of the eigenfrequencies. Thus, only the eigen-
frequencies above would result in nonuniqueness for symmetric (m = 0) éyzﬂin
boundary data; i.e., the m = 1, 2 ... eigenfrequencies would not produce
nonuniqueness. This is due to the interplay between the coefficient matrix and
the right-hand-side vector (Ref. 19) in Eg. (4-27). In the present problem
there is symmetry in the circumferential direction due to the blade spacing.
Thus for eight blades only the m = 8 modes will cause nonuniqueness problems.
However, a calculation using Eq. (4-28) yielded 32 eigenfrequencies in the range

99 <kRg <101 for the CALPROP interface.
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Attempts to Circumvent the Eigenfrequency Problem

There is no general and systematic way to handle the nonuniqueness
problem. This fact is evidenced by recent papers (e.g. Ref. 19) proposing new
ways to achieve a unique solution to Eq. (4-12)., However, the most common
method (Refs. 18, 21) to handle nonuniqueness is called CHIEF. In CHIEF
a least-squares solution is found by overdetermining the system, Eq. (4=27),
with additional points interior to S, where p = 0. These additional equations

are given by Eq. (4-6). .

A second method (Ref. 22) forms a new intégral equation from a linear
combination of Eq. (4-12) and its normal derivative. The normal derivative of
Eq. (4-12) has a nonunique solution at certain characteristic frequencies, but
these eigenfrequencies are not the same as those for Eq. (4-12). Thus, a linear
combination of Eq. (4-12) and its derivative will have a unique solution for all
values of frequency. This method has been used successfully recently with a

combination finite element/boundary element solution approach (Ref. 10).

Nonuniqueness of the solution to Eq. (4-12) is manifested as
ill-conditioning in the algebraic system, Eq. (4-27). This ill-conditioning
reduces the accuracy of the (unique) solution in a frequency band:Ak in the
neighborhood of the eigenfrequencies. If it were not for this ill-conditioning
over Ak , the nonuniquenessAproblem would be only of academic interest because
it is always possible to avoid the eigenfrequencies by a proper choice of
frequency. Thus, it is the ill-conditioning that results from nonuniqueness, .
and not nonuniqueness per se, that produces inaccurate results in solving Eq.
(4-27).

The method used in Ref. 22 works when the eigenfrequencies of Eq.
(4-12) and its normal derivative are sufficiently spaced so that the Ak do not
overlap. When this condition is met ill-conditioning will not occur. However,
at higher frequency, e.g., kR > 20, it is expected that this method will not
yield good results. It was this consideration that led us to pursue the CHIEF

method over the method in Ref. 22.
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Another method to overcome the fictitious eigenfrequency problem is
the Exterior Overdetermination Method (EODM) (Ref. 19). Based on a combination
of the Surface and Exterior Helmholtz Integral Equations, EODM uses an iterative
approach. The square system of equations obtained from the Surface Helmholtz
Equation is overdetermined by additional equations formed by evaluation of the
Exterior Helmholtz Integral Equation at selected points outside the body. An
approximate impedance function is assumed on the surface of the body to initiate
the iterations. The selection of the locations of the exterior points used in
the iteration was found to be critical as a result of some numerical experiments
we performed using EODM. If the points are too far removed from the body, two
ad jacent points yield almost the same equation, thus causing severe
ill-conditioning. If the points are too close to the surface, it is not
possible to have many points for the same reason. The optimal selection of the
number of additional points and their locations corresponding to the desired

rate of convergence remains unresolved.
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Section 5
PROGRAM CALPROP

Sections 2 through 4 were devoted to the theory and algorithms used in
the NASPROP-E and BIE codes and how they were intended to interact in the
resulting combined program, CALPROP. This section is concerned more with the
mechanics of how all this was implemented. Originally it was envisioned that
CALPROP would consist of a new MAIN program and associated I/0 which would
essentially treat NASPROP-E and BIE as subroutine packages. However, it was
soon realized that since NASPROP-E would comprise the majority of the source
code, and already contained much of the required I/0 structure, it was easiest
to build the new program about its existing framework, with BIE incorporated as
a package of subroutines. This approach has the added advantage of making
CALPROP that much easier to run for previous users of NASPROP-E. Since
NASPROP-E has been documented in Refs. 3 and 4, the emphasis here will be only
on modifications to existing routines and descriptions of whatever new routines
have been added. The source code images are stored on the NASA Lewis CRAY
system as PDN = SRCLIB1, and the executable object code as PDN = OBJLIB1; both
have ID = FSSPAN. The program takes up approximately 652K words of storage.

The overall structure of program CALPROP is shown in Fig. 5. Although
all subroutines in the progam are shown, this is not intended to be a detailed
flow chgrt, but merely to display the major interconnections. The starting
point was the NASPROP-E version running on NASA Lewis' CRAY computer, which was
permitted to us for this work by Dr. L. Bober. Those routines outside the
dashed line are native to NASPROP-E. Some of these required changes and are
discussed first below. This is followed by a description of the new routines
unique to CALPROP, i.e., those inside the dotted line in Fig. 5. Finally, a
description of the BIE package is provided.

Changes to NASPROP-E Routines

The only existing NASPROP-E routines which required modification were
AIR3D, INPUT, INITIA and BNDRY as follows:
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l NOISE
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' Figure 5. OVERALL STRUCTURE OF CALPROP
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AIR3D. This is actually the Main, or driving, program; the only
change here is the addition of labelled COMMON/ACOUST/, which is the primary
means of transferring data between the NASPROP-E and BIE routines. The

variables, in the order which they appear, are defined below.

Variable Name

EPS
RMS
FSBETA

JA

JMPKM

MMAX
NINf
NSIG
RLXBC

RSIG(IS),ZSIG(IS)

Desecription
Convergence criterion used in Eq. (3-19)
Left-hand side of Eq. (3-19)
(1-M2)1/2

Value of J grid index at upper left corner of

cylindrical grid in Fig. 1
JMAX+KMAX

Highest value of harmonic index m, i.e., 0<m<MMAX,
MMAX € 5

Integral number of time steps between boundary

condition updates using BIE

Number of observer positions at which the acoustic

signal, SPL, is to be evaluated; NSIG <20

Relaxation factor on boundary conditions, ot , in Eq.
(3-18) '

Dimensionless #, Z coordinates of the ISth observer
position at which the acoustic signal, SPL, is to be
evaluated; normalized by propeller diameter, D;

1< IS £ NSIG
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Variable Name Description
SPL(MDUM, IS) The Sound Pressure Level of the mth harmonic at the ISth

observer position, referenced to p, ; MDUM=m+1,
1< MDUM < MMAX+1, 1=<1IS=NSIG

WAVK(MDUM) Dimensionless wavenumber of mth harmonic of acoustic
field, k,, normalized by the reciprocal of propeller

diameter

DELPHI, PHASE Working arrays containing azimuthal grid spacing and

phase information used in Fourier decomposition

RTR(I),ZTR(I) Dimensionless ¥, %Z coordinates of Ith grid point on
cylindrical interface, 1< I < JMAX+KMAX+1

P(L,I),PN(L,I) Dimensionless pressure and normal pressure derivatdive,
normalized by p. and p. /D respectively; evaluated at the

Ith grid point in the 'i", Z plane and the Lth fgr'id

point.
PC(MDUM,I), Dimensionless complex Fourier coefficients of the
PNC(MDUM,I) pressure and its normal derivative, normalized by p,, and

P /D respectively; corpespond to the mth harmonic,
m=MDUM-1, at the Ith grid point in the T, Z plane.

Labelled COMMON/ACOUST/ also was added to existing routines INPUT, INITIA, and
BNDRY.

INPUT. The principal change here was the addition of new input
variables required by CALPROP. The original NASPROP-E would read in 4 input
records from TAPE 5 for a start from scratch. In CALPROP, a fifth record is
added to read in NINT, MMAX, NSIG and JA with a format 6I5, followed by a sixth
record containing EPS and RLXBC with a format 6F10.5. Finally, the coordinate
pairs ZSIG(IS), RSIG(IS) for IS = 1,NSIG are read in using as many input records
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as needed with a 6F10.5 format, i.e., 3 pairs to a record. The values for NINT,
MMAX, NSIG, JA, EPS and RLXBC are also written on the output file after the

other input variables.

INITIA. If NINT € NMAX (ef. discussion of BNDRY below), this t‘outipe

will now make initialization calls to new routines OUTER and BIE,

BNDRY. There are two routines in NASPROP-E with similar names, BNDRY
and BNDRY2. BNDRY2 updates the boundary conditions only on the blade surfaces,
and was not changed in any way for CALPROP. BNDRY is responsible for updating
the boundary conditions on the nacelle (no changes here), and on the outer
surface of the difference grid, i.e. the interface surface S. As mentioned
before, this surface was changed from the hemisphere/cylinder shape used in
NASPROP-E to a finite length cylinder in (Z,‘}’, ¢) coordinates. This
modification only necessitated changes to the mesh generation program which
produces the boundary-conforming grid. Hence to BNDRY, which works in the

resulting ((f ,7l,¢,) coordinates, this particular change was transparent.

As for updating the outer boundary conditions on S, BNDRY was altered

so that how the boundary conditions are handled depends on the relative values

-of the three parameters NC, NMAX, and NINT. NC is the integral value of the

current time step count, and is found in labelled COMMON/COUNT/. NMAX is an
input which represents the maximum value of NC to be allowed on this run, and is
found in labelled COMMON/BASE/; both are native to NASPROP-E. NINT is the
interval, i.e., some integral number of time steps, at which BIE is called tg
update the boundary conditions. It is an input parameter communicated through
labelled COMMON/ACOUST/ (see above), and is new to CALPROP.

Three alternative logic paths are.possible. First, if the user
specifies his input values such that NINT:>NMAX, BIE is never called, and BNDRY
assumes a constant pressure of p  over S for all time. Hence this represents a
fallback option which will cause CALPROP to produce output identical to that
from NASPROP-E. A second possibility occurs if NINT < NMAX, but NC is not an
integral multiple of NINT. BIE will not get called on this step, and none of
the boundary conditions on S are updated (though those on the nacelle will be).
The third and final possibility is that NINT < NMAX and NC is an integral
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multiple of NINT as well. This triggers a call to BIE as well as several other
new routines unique to CALPROP which are used to correct the boundary
conditions., Thus, if NINT = 3, BIE will be used to correct the conditions only
every third time step, while for NINT = 1 the conditions are updated on every
step. The other new routines that are called in addition to BIE and the

functions they serve are described below.

The only other change made in BNDRY occurs when NC equals NMAX and is
also a multiple of NINT. BNDRY then makes calls to NOISE (also described below)
to compute the Sound Pressure Level, SPL, at those (RSIG, ZSIG) points inside
the finite difference grid, and to the BIE package to get the SPL at points
outside S.

New Routines Unique to CALPROP

These routines are called by BNDRY, directly or indirectly, when the
step count NC is an integral multiple of NINT. They include OUTER, FRFIT,
TRFORM, FREVAL, PR, and NOISE. We first give a brief description of each,
followed by an explanation of how they interact. (The BIE package will be

described separately.)

Subprogram Description
OUTER Evaluates p and %b/bh in physical space at the outer

cylindrical surface needed for the acoustic field; once
the acoustic solution is obtained, this routine also
updates the pressure on the cylindrical interface

accordingly.

FRFIT Fits a Fourier series to p and:%gé%ﬂ ; output is the set

of Fourier coefficients.
TRFORM Transforms Fourier coefficients of p andé%aA%v between

the physical and transformed space, the latter

corresponding to no mean flow.
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Subprogram Description
FREVAL Using the coefficients passed by BIE, this routine

evaluates the Fourier series for p at the grid points

on the cylindrical interface.

PR A function subprogram which calculates static pressure
at any grid point from the density, velocity

components, and total energy stored in solution vector

Qo

NOISE Evaluates the Sound Pressure Level (SPL) for observer
locations within the finite difference grid by

interpolation.

All of these subprograms, except PR, contain the labelled COMMON/ACOUST/, which
is their primary means of communication. No attempt has yet been made to
vectorize them, as their run times are much smaller than the already existing
NASPROP-E routines. A few are called with a single input parameter, IGO, whose
value determines which of several logic paths is to be followed on that call.
How these routines interact is best explained by recapitulating in sequence the
steps described in Section 3 for communicating between NASPROP-E and BIE; at
each step the routine responsible for its execution will be identified. In this

way we are able to provide a convenient summary of the procedure, and the order
of presentation will parallel the logic flow in the code. —

A preliminary step is the initialization of various variables and

arrays in COMMON/ACOUST/ and in BIE which can be calculated and stored once and

for all. For this purpose NASPROP-E routine INITIA calls both routines OUTER
and BIE with their input parameter IGO = 0. OUTER then calculates FSBETA, JMPKM
and the wavenumber array WAVK; also arrays DELPHI and PHASE to be used
subsequently in routines FRFIT and FREVAL.

The most important function served by this call to OUTER is the

filling of arrays RTR and ZTR. These are the transformed coordinates ¥, Z of
the outer grid points on S. They are obtained from NASPROP-E arrays Y and X,
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corresponding to ¢ and Z, and Eq. (3-10a). RTR(I) and ZTR(I) are
one-dimensional arrays whose index I = 1 at the lower left corner of Fig. 1 (J =
1, K = KMAX), and increases as one moves clockwise around the circumference,
attaining its maximum value at the lower right (J = JMAX, K = 1), where I = JMAX
+ KMAX + 1. This is two more than the number of points actually on S, because
at the corner points (J = JA, K = KMAX) and (J = JMAX, K = KMAX) the normal
pressure gradient is double-valued. Hence the two points corresponding to I =
JA and JA + 1 will have identical coordinates and pressures, but different
values of ¢%p/3n . The same is true of the two corner points corresponding to

I = JMAX+1 and JMAX+2.

After exiting INITIA, and subsequently EIGEN (urichanged), CALPROP
enters the main loop in Fig. 5, which is over the time step counter, NC. Each
time NC is an integral multiple of NINT, the following sequence is triggered
from BNDRY:

1. OUTER is called with input parameter IGO = 1. This signifies that arrays P
and PN in labelled COMMON/ACOUST/ are to be filled with values for pressure and
its normal derivative. Array P is filled by calling function PR for each outer
grid point. PR simply solves Eq. (2-U4) for p in terms of the stored values of
density, veiocity, and total energy. Array PN is filled by evaluating the
appropriate form of Eq. (3-1) at each point, using second order accurate
difference formulae for Pe » Py and pe . The valués for I = JA and JA + 1 will
differ because of the switch from Eq. (3-1a) to (3-1b), as will the values for
I = JMAX+1 and JMAX+2 because of the switch from Eq. (3-1b) to (3-1e).

2. FRFIT is called to do the Fourier decomposition. Equations (3-3) and
(3-5) are approximated via the trapezoidal rule, using the discrete values of p
and 2%0‘3” stored in P and PN in Step 1. PHASE holds the necessary array of
complex phase factors in Eqs. (3-3) and (3-5), and DELPHI the uneven increments
in the abscissa,A¢ . Both of these were computed in the initialization call to
OUTER. The end result of FRFIT is the set of Fourier coefficients for pressure
and its normal derivative, stored in arrays PC (MDUM,I) and PNC (MDUM,I)
respectively. MDUM is an offset index for the mth harmonic, i.e., m = MDUM-1,

1 <MDUM < MMAX+1; again, I refers to a particular point on S.
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3. TRFORM is called with the input parameter IGO0 = 1., This specifies that
the routine is to compute the Fourier coefficients of the normal pressure
gradient in the transformed variables by applying Eq. (3-16) to PC and PNC in
physical space. The new transformed values are stored in array PNC, overriding

those computed in Step 2.

4y, BIE (discussed below) is called with input parameter IGO0 = 1. This
signifies that the outer solution is to be obtained by inverting the appropriate
integral equation, using the data in PNC as the inner boundary condition. BIE
returns the solution for the pressure on S as a set of Fourier coefficients at
the same grid points. The coefficients are stored in array PC, overriding those.
calculated in Step 2. Note again that BIE must essentially solve a separate

problem for each of the harmonics, m=0,1..MMAX.

5. TRFORM is called again, this time with IGO = 2. This indicates that the
Fourier coefficients returned by BIE, which are in the transformed variables,
are to be converted back to physical space. TRFORM does so by applying Eq.
(3-17) to array PC. The new values override those returned by Step U4 as they

are computed.

6. FREVAL is called. The coefficients PC returned by Step 5 are those
appropriate to Eq. (3-4) in physical space. FREVAL simply evaluates the
Fourier series at all grid points on S. The resulting pressures are stored in

array P, overriding those computed on Step 1.

7. OUTER is called again, this time with IGO0 = 2. 1Its job now is to use the
newly estimated pressures from Step 6 to update the outer boundary conditions to
be used on the next pass through NASPROP-E. First the new pressure values are
relaxed using Eq. (3-18). The resulting values are used in Eq. (2-4) to compute
new values for the total energy on Sp and Sp, assuming that the velocity
components retain their free-stream values. The new energy values are stored in

solution vector Q.

8. Control is returned to BNDRY, where the relaxed pressure values on the
downstream surface S are used with the Method of Characteristics (Ref. 3) to
calculate updated values for the density, velocity and energy. BNDRY also

computes and prints out the r.m.s. change in pressure, as defined by Eq. (3-19).
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9. If NC = NMAX, routine NOISE is called from BNDRY to compute the SPL at
those observer locations, read in as coordinate pairs (RSIG, ZSIG), which lie
within the finite difference grid. First, the quadrilateral cell in the
computational ((f.b ,r() plane containing the observation point is identified.
Then bilinear interpolation is used to get the pressure, PP(L), at each of the
corresponding azimuthal locations, PHI(L), L = 1...LMAX. A Fourier
decomposition is then performed on this data, again using a trapezoidal
approximation like that in FRFIT, to yield the complex amplitude for the mth
harmonic, stored as CP. Finally, the SPL is computed from

SPL = 20 log, ICP/.

Since the pressures, and hence CP, have all been normalized by p, , the above
SPL is a relative scale referenced to p, . To put it on an absolute basis once
P, and a reference pressure, Dpofr, have been specified, one has merely to add
the constant value, 20 log1g (D, /Pprefr). NOISE concludes by writing the
coordinates of the observation point and the SPL predicted there for each
harmonic. For observer positions outside the finite difference grid, the
acoustic signal is computed with a call from BNDRY to BIE with input parameter

IGO = 2-

Modified Mesh for the BIE

The BIE method involves integrations of kernels (e.g., exp(-ikR)/R)
which are of oscillatory nature. The oscillations increase with frequency. An
estimate of the length for an element to perform satisfactorily accurate
integrations can be determined. It is assumed that the kernel exp(-ikR)/R can
be integrated accurately, along with the shape functions, in an element of
length equal to one-half the wavelength using five Gauss points per element.
Thus, an element length of ny% is adequate. This is considered to be a

conservative estimate of the element length.

The high frequencies (ERS 2 100) involved require much smaller
element size than some of the elements in the NASPROP-E mesh. Since the BIE
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code requires quadratic elements and the NASPROP-E mesh did not conform to such

a mesh, it was decided to generate a new mesh based on the NASPROP-E mesh.

The NASPROP-E mesh 1s optimized for variations in boundary data, the
nodes being crowded in regions of high gradients. Hence, it was decided to
modify this optimal mesh rather than to generate a new mesh without

consideration of boundary data.

It was also observed that the NASPROP-E mesh contains two distinet
groups of two-noded elements, the "wide"™ and "narrow" elements. The elements
longer than SMALEL=0.5 (SMALEL may be changed as noted below) are considered to
be wide elements and the rest as narrow elements. The NASPROP-E mesh also
incorporates "dual nodes" at the corners of the cylinder. The BIE requires
ad jacent elements not to differ very much in length. Considering all these

factors the following mesh generation scheme was adopted (see Fig. 6).

One of the dual nodes was dropped at each corner. One node was
introduced in the narrow elements and an odd number of nodes (NPTS) was
introduced in the wide elements. NPTS is required to be an odd number so that
an integral number of quadratic elements is generated in any wide element.

One node was introduced in the narrow elements to make them quadratic elements.
In this way, all the elements involved have their mid-nodes in the middle of
the element. The narrow elements could not be combined (without addition of

more nodes) into qugdratic elements since an element might have been generated
at the point of transition from the narrow to the wide elements, in which case

the mid-node might have been very much off-center. This would cause singularity

problems in the shape functions.

Extra elements of the same size as the last narrow element were
introduced in the nacelle to close the grid, and Jﬁ/ah" was prescribed to be zero
on these elements. The given boundary data were approximated by a piecewise

spline fit and the boundary data for the newly introduced nodes were determined.

Description of Routines in BIE

The block labelled BIE in Fig. 5 actually represents a package of

several subprograms used to solve the outer acoustic field. A schematic of how
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they are interrelated is given in Fig. 7, and below is a brief description of

the function served by each.

Subprogram

BIE

SR1

SR2

SR5

HEAX

SR6

FILLPC

Description

Driver program for the rest of the package. IGO = 0
represents an initialization call; for IGO = 1 a new
outer solution is obtained; for IGO0 = 2 the SPL at

points outside the interface is computed based on the

last solution.

Called only by BIE. Puts exterior coordinates
(initially in arrays RTR & ZTR) into array XI.

Called only by BIE. This is the new mesh generation

routine. Generates new nodes between existent nodes.

’Drops dual nodes at corners. Establishes node

correspondence via arrays CORR1 and CORR2 between the
given mesh and the new generated mesh. Introduces extra

nodes in nacelle.

Called only by BIE. Calls SPLFIT and function FS.
Interpolates the given boundary values of the given mesh

to determine the same for all nodes of the new mesh.
Also establishes the local-global node correspondence

for the new mesh.

Called only by BIE. Calls GAUSS, SHFUN, COEF, EXTR,
SOLVER and BIVL. Solves for the unknown surface and
field pressures using the BIE method.

Called only by BIE. Calculates the Sound Pressure Level.
Called only by BIE. Fills array PC, i.e., finds the

Fourier pressure coefficients on the surface at the

nodes of the given mesh.
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Subprogram Description
GAUSS Calculates abscissas and weight factors for numerical

(Gaussian) quadrature,

SHFUN Calculates and stores values of shape functions and

their derivatives for quadrature.

COEF Caiculates and stores the matrix of coefficients and the

known (i.e.,é?iéﬁ?) vector.

EXTR Modifies the matrix of coefficients and the known vector

for exterior problems.
SOLVER Solves the system of linear algebraic equations.

BIVL Prints nodal values of p andéﬁ/&? and prints the values

of pressure at exterior points.
SPLFIT Interpolates é%%éﬁ?'to get cubic spline coefficients.

FS Uses spline coefficients from SPLFIT to determineéyaéb7
at additional nodes,

Description of Important Parameters in BIE

The following are major parameters governing the operation of the BIE

solution:

Variable Description
NG Number of Gauss points per element for integrations

along the generator when both source and field points

are on the surface. Maximum value is 10.
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Variable Description
NGG Number of Gauss points per element for integrations in

the direction of the angle of revolution. Maximum value

is 10.

NPTS Number of nodes introduced in every wide element in

NASPROP-E grid. Must be an odd number.

NSS Number of subdivisions (elements) in 7 radians in the

direction of revolution.

SMALEL A length such that elements of NASPROP-E grid longer
than this length are classified as "wide" elements. A

value of 0.5 is suggested.

The first four parameters are related - all affect the numerical
accuracy. We recommend setting NG and NGG to a value between 5 and 10. When
this is done we have found that a conservative element (subdivision) length is
given by‘ﬂ/k where k is the wavenumber. This criterion can be used to select
NPTS and NSS such that high numerical accuracy is achieved. Using the ﬂaﬁ(

criterion we determine NSS by:

one-half of circumference of cylinder
7§/k

NSS = + 1,

NSS

5k + 1,

since Rg=5 is the radius of the cyiinder. The 1 in the above equation insures
that there is a singleAsubdivision in T radians in the direction of revolution
when k=0 (i.e. the m=0 term of the Fourier series). We use the same 7§/k
criterion to determine the maximum element length along the generator. We do
this by selecting the wide element with the maximum length (= 1), divide this
length by'ﬁ/k and pick NPTS accordingly (noting that NPTS must be an odd
number). The relationship between k, NPTS and the total number of nodes on the

generator is given below (for SMALEL = 0.5).
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k< NPTS TOTAL NUMBER OF NODES
1'( 1 139

21 3 161

3m 5 183

4 7 205

51 9 227

61 1 249

T 13 271
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Section 6
RESULTS

We have not been able to get the new CALPROP code to run a case
through to completion, and so have little in the way of numerical results to
report. Basically, the code takes too long to executé. In the discussion
below, we will first describe the sample case we have been working on, followed

by a description of the difficulties we encountered.

Figure 8 displays the input data as printed by the code for the case
we worked with, corresponding to an eight-bladed SR-3 propeller at a nominal
flight Mach number of 0.8. The angle -of attack is 0° (neither NASPROP-E nor the
BIE package can handle the asymmetric inflow case), and the advance ratio is
3.06. The finite difference grid used was that generated for us by H. Huynh
(cf. Section 2) based on the SR-3 blade geometry and the new cylindrical outer
boundary. Referring to Fig. 1, the radius of the outer boundary was set at
Rg = 5 propeller diameters. The upstream and downstream faces of the cylinder
were put at z,; = -5 and z4 = 1.05. 1In the coordinate system used by the outer
solution, these transform to iu = -8.33 and %3 = 1.75. The grid has JMAX = 45
points in the(ﬂ direction, KMAX 21 in the n direction, and LMAX = 11 in the ¢
direction (not shown). The line of constant(ﬂ intersecting the upper left-hand
corner of the cylindrical interface is at J = JA = 7. The grid point
coordinates of this mesh can be accessed through permanent dataset name OURMESH

with ID = FSSPAN. Because this was to be a demonstration run, the maximum
number of iterations (time steps) asked for was only NMAX = 5. A Courant

number of 20 was specified for calculating the step size used by the ADI

difference scheme.

The new inpﬁt parameters unique to CALPROP are listed near the end in
Fig. 8. NINT = 1 specifies that the BIE package is to be called on each time
step to update the outer boundary conditions applied to the inner flow.
MMAX = 2 specifies that the m = 0, 1 and 2 Fourier components are to be included
in the acoustic calculation. These correspond to the steady-state component,
the fundamental blade passage frequency, and its first harmonic, respectively,

ef. Eq. (3-7). This is considered minimal; the program is dimensioned to
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" MACH NO.= 0.80

ANGLE OF ATTACK= (.00 DEGREES
RATIO OF SPECIFIC HEATS=1.4
PINF=C. 1000E+Q1

RADINF=0, 10GOE+0!

ADVANCE RATIO =-0.30600000E+01
BETR 3/4= -38.70 DEGREES
BLADE DIAMETER= 1.0G FEET
OMEGA= -0.31 REVOLUTIONS PER SECOND
NO. BLADES= 8

PERIOD = 45,00000RADIANS
IMAX=45

KMAX=21

LMAK=11

ITERATIONS= 3

METHOD=2 (1=EXPLICIT, 2=IMPLICIT)
COURANT NO.=20.90

4TH ORDER SMOOTH CONST=0.1000
2N GRDER DISSIP CONST=0.2000
DIFFERENCING METHOD=4 (2=SECOND ORDER,4=FOURTH GRDER)
IREAD=0

[WRIT=1

IFTCH=1

JLE=20

JTE=33

KTiP=12

IBC= &

INETOT= O

NCHKGE= 7000

I6RID= 1

NINT =

MMaY = 2

NSib = |

ja= 7

EPS = 1.000E-92

RLXBC = 1,000

"

Figure 8 INPUT DATA FOR DEMONSTRATION CASE
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allow MMAX to be as large as 5., Values of the other input parameters are not

critical to the following discussion.

After first mating the NASPROP-E and BIE codes together with the new
routines required for the matching (Section 5), it was found that the combined
CALPROP code would not execute. What ensued was a period of several months
during which a series of trial-and-error runs were made to "get the bugs out."
These included an initial incongruity between NASPROP-E and the new fully
eylindrical grid, subtle logic errors which passed muster at compile time but
raised havoc during execution, and incompatiblities between NASPROP-E and BIE
which became evident only when passing information between the two. Without
going into detail, suffice it to say that this initial debugging period took

many times longer than anticipated.

In our defense, we should point out that NASPROP-E and BIE were
developed independently for somewhat different purposes, and on different
systems at that. -Our efforts were also hampered by the geographical separation
between ourselves and Prof. Seybert, the time needed to familiarize ourselves
with the idiosyncrasies of the NASA/Lewis CRAY operating system, and the
limitations imposed on us by having only remote access to the system. The
limited number of telephone access ports relative to the apparently large
community of users pretty much restricted our useful window of access to the

CRAY to a few very early-morning hours.

Our preliminary development efforts have now brought us to the point
where the code runs, but a more serious obstacle has been encountered. This was
discovered when a run bombed for having exceeded our self-imposed job time

limit of 100 secs., without completing the first time step. As a point of

" reference, the original NASPROP-E code completed 10 time steps in approximately

12 sec. using the same finite difference grid. We activated the TRACEBACK
option on subsequent runs, and added internal diagnostic messages to let us know
which of the new routines unique to CALPROP had been successfully exited. This
pinpointed the problem to routine COEF, part of the BIE package supplied by
Prof. Seybert, which was entered but never exited. (This was the first time the
code had gotten far enough along to call COEF.) As a further check we also made

a run in which the entire BIE subroutine package was removed and replaced with
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a "dummy" BIE routine that simply filled the PC array with the complex constant
(1.0, 1.0). Though the results were meaningless, the modified code made it
through two complete time steps in a few seconds. This demonstrated that the
other new routines in CALPROP (dashed outline in Fig.5) ran in a reasonable

amount of time.

Our initial suspicion was that perhaps a DO LOOP parameter in COEF had
been left undefined, and the code was looping ad infinitum. A careful
inspection of the COEF structure turned up the following set of five nested DO
LOOPS:

DO 500 K = 1,M
DO 100 IG = 1, NG

DO 515 1J
DO 51 IIG

1,NS
1 1,NGG

51 CONTINUE
515 CONTINUE

90 CONTINUE
100 CONTINUE

500 CONTINUE
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A system timing routine was added to COEF on an ad hoc basis, which confirmed
that the program was in this section of code when it ran out of time. The
symbolic dump triggered by the TRACEBACK disclosed that M = 89, NG = 10, N =
179, NS = 80 and NGG = 10. This means that the block of statements within

the innermost loop would have to be executed épproximately 1.3 x 108 times. The
block contains on the order of 102 floating-point operations, which is probably
on the low side. Hence a total of 1.3 x 1010 operations are needed; assuming a
sustained rate for the CRAY of 2 x 107 floating-point operations per second,

this section of code alone would require in excess of 10 min. CPU time.

The above estimate is just for one Fourier component at one time step.
For the present demonstration case which includes only three Fourier components,
and assuming that onh the order of 100 time steps would be needed to converge
(typical of the original NASPROP-E code, ef. Ref. 3, p. 100), something in
excess of 53 hrs. of CRAY time would be required to get one solution.
Admittedly this is only a ballpark figure, but it is clearly unacceptable even

for a research oriented code.

COEF is not a peripheral routine which can be temporarily bypassed.
It is at the heart of the BIE package, in that it calculates the coefficient
matrix in the set of linear equations to which the original integral equation is
transformed by the discretization. The elements of the coefficient matrix
involve quadratures in two dimensions over the cylindrical interface. It is
these quadratures, for each of the M elements on the generator of the eylinder,
which are being done in this nested loop construct. Parameters such as NGG, NS,
etc., refer to the number of Gauss quadrature points and subdivisions to be used
in the integrations (cf. Section 5).

We consulted Prof. Seybert regarding our problem, who felt in
retrospect that perhaps he had been overly conservative in choosing the number
of discretization elements and Gaussian quadrature points. As a result, the BIE
package was restructured so that a different number of interface elements and
azimuthal subdivisions was used for each frequency (the lower the wavenumber,

the coarser the grid), and NG and NGG were both reduced from 10 to 5.
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Another attempt was made with these changes to CALPROP, and this time
the first call to COEF was successfully completed for the m = 0 (i.e.,
steady-state) Fourier component in only 15 sec. However, for the m = 1
component (the fundamental blade passage frequency), the code again bogged down
in COEF and ran out of time, taking 175 sec. just to complete the K = 6 pass
through the outermost loop, out of the 129 passes required. On this call,
M =129, NG = 5, N = 259, NS = 10, and NGG = 5, for a total of approximately 4 x
107 passes through the innermost loop. This represents only a marginal
improvement from the previous run, and does not augur well for what would be

required if it ever got to the m = 2 harmonic.

Thus in its present form the CALPROP code can be made to run in some
sense, but it is economically unfeasible to use. This is not because of any
known errors per se, nor is the problem amenable to a "quick fix" resolution.
The way the code is structured, it simply generates such a volume of arithmetic
for the outer solution that it overtaxes the capabilities of even a CRAY.
Unfortunately, at the point this was discovered there was neither the time nor
resources remaining to do any major restructuring of the BIE package. More will

be said about this in the next section.
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Section 7
CONCLUSIONS AND RECOMMENDATIONS

Since we were not able to get any converged solutions with CALPROP, no
meaningful conclusions éan be drawn regarding the aerodynamics and acoustics of
advanced propfans per se. Nevertheless, we still feel strongly phat such a
hybrid numerical scheme is a viable approach for such predictions, and would

like to offer some comments that may prove useful to future investigators.

This is the type of problem that would ordinarily form the basis for
a long-term program of developmental research. Instead, because of time and
manpower limitations, we were forced to turn to "off-the-shelf" software
wherever possible. 1In retrospect we may have been overly optimistic in thinking
we could easily marry two such disparate codes as NASPROP-E and BIE. Each had
originally been developed for independent purposes, and on different systems.
NASPROP-E was attractive because it was under no proprietary restraints, and the
mechanics of how to fold in the complex SR-3 blade geometry had already been
done for us. Similarly, BIE was chosen because it was readily available, and

had already been used with a finite cylindrical boundary.

But neither code had been designed to communicate with another.
Hence there were many inconsistencies between the two, some documented and some
not, that had to be ironed out on an ad hoc basis. This and the logistical
problems introduced by the long-distance collaboration with Prof. Seybert, and
having only remote access to the CRAY system, diverted too much effort away from
the real technical issues. Ideally, a program of this complexity should command
sufficient resources that the inner and outer flow solution packages would be
developed in concert, on the same system, with the task of communication betweeh

the two always kept uppermost in mind.

Having said that, there remain two obstacles to further development of
the CALPROP code, viz., its very large run times, and the potential
ill-conditioning of the outer solution near the interior eigenfrequencies
(Section 4). The root cause of the run time problem is routine COEF, which
calculates the coefficient matrix in Eq. (4-27) anew at each time step. Yet

there is no reason to do so, since the matrix depends only on the acoustic
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frequency and the node placement, which remain fixed. It is only the right-hand
side vector in Eq. (#4-27), which contains the boundary conditions, that must be
updated on each iteration. Hence it is recommended that BIE be restructured so
that the matrix is calculated and stored once and for all at the beginning of a
run, preferably on the initialization call from INITIA with IGO = 0. Since a
separate matrix must be stored for each Fourier component, this will greatly
increase storage requirements. But with the memory available on the CRAY it

should prove feasible, and the savings in run time would be tremendous.

Even with only a single calculation of the coefficient matrices, the
timing statistics quoted in Section 6 suggest that the run time might still be
large. Further reductions could be gained by reducing the number of nodes used
on the interface, and hence the size of the matrices, in the outer solution.
The BIE package presently uses the grid intersection nodes from NASPROP-E as a
starting point, and then inserts extra nodes between them as needed, cf. Section
5 and Fig. 6. This is done to avoid abrupt transitions from closely to widely
spaced nodes, which causes problems in the BIE method. But even the modified
node structure that results is hardly optimal from the BIE viewpoint. It is
suggested that a better approach is to base the node placement for the outer
flow primarily on the needs of that solution, more or less independently of the
grid points used in the inner flow. Cubic splines could be easily used to
transfer data from one set of points to the other as needed. Such a scheme

should allow fewer nodes for the BIE solution, and reduced run times.

These last two points, i.e., when should the BIE matrices be
calculated.and‘for what node distribution, are good examples of the problems
that arose because BIE was originally developed with other applications in mind.
It had previously been applied only to comparatively coarse grids, where the
boundary conditions had a very simple variation that was prescribed a priori;
hence no iterations were necessary. Run times were minimal, so that

considerations of computational efficiency such as those above never arose.

Assuming the time needed for the outer solution can be reduced
sufficiently, that still leaves the question of nonuniqueness. That is, the
matrix equation for the exterior Neumann (Dirichlet) problem is known to be

strongly ill-conditioned near the eigenfrequencies of the complementary interior
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Dirichlet (Neumann) problem. As discussed in Section 4 for the frequency range
of interest here, iRs 72 100, the eigenfrequencies are much too closely spaced
to get solutions by simply "tweaking" k until it lies betwen ad jacent
eigenfrequencies. For the present program the CHIEF method (Refs. 18, 21) was
chosen as the most promising scheme to overcome this difficulty. Test cases
have been run for simple point sources within the same cylindrical interface
used here, but to date accurate solutions ﬁave only been obtained up to
Eﬁsﬁfzo. This is well below the range needed for even the fundamental blade
passage frequency, which for the case cited in Section 6 is E1RS = 109.5. For
this reason the additional routines required to implement CHIEF are not
presently included in CALPROP,.

Professor Seybert's statements at the end of Section U4
notwithstanding, the author believes that the method used by Meyer, et al. in
Ref. 22 is a preferable means of removing the ill-conditioning. They solve a

modified integral equation, formed as a linear combination of the original

“equation and its derivative normal to the interface. The new equation has been

shown to possess a unique solution at all wavenumbers, Numerical results
presented in Ref. 22 confirm this, even at conditions coincident with the
interior eigenfrequencies. This method was successfully implemented by
Baumeister and Horowitz (Ref. 10) in a similar hybrid scheme applied to turbofan
inlet acoustics. A finite element solution was applied to the inner nonlinear
flow. The boundary integral method of Ref. 22 was used for the linearized
acoustic field. Assuming (conservatively) that the radius of their interface
was at the outer surface of the nacelle, for their blade passage frequency
E1Rscf35. The computed results were obtained with only 59 boundary segments and
show no evidence of ill-conditioning. Reasonable agreement with experiiental

data was also demonstrated.

The nonuniqueness of the solution to Eq. (4-12) near the
eigenfrequencies is not a manifestation of any physical phenomenon. It is a
purely mathematical artifact introduced by the transformation of the governing
equation from differential to integral form. The fact that the problem gets
progressively worse with increasing frequency should perhaps suggest to us that
we may be attacking it from the wrong direction., That is, for the regime of
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interest here we may not need the full-blown BIE artillery, if only we

are clever enough to somehow take advantage of the short wavelengths.

Such a high frequency approximation has been used successfully in
studying radiation from solid bodies, e.g., Ref. 23 and 24. In the high
frequency limit the waves behave asymptotically like plane waves. This
together with the condition of no flow through the wall leads to a simple
algebraic relation between the acoustic pressure and the velocity normal to the
surface, which in effect can serve as a boundary condition replacing the

integral equation.

Such an approximation was briefly considered here, until it was
realized that this simple relation would not apply in our case because the
surface is not solid. For a solid radiator in this limit, the normal to the
surface is also normal to the acoustic wave fronts; but in the present problem
there is no reason for this to be so, as waves can pass through the interface at
any angle. This added degree of freedom destroys the simple algebraic relation.
However, it may be that with enough thought a more general relation could be
worked out. The possibility of such an approach at high frequencies is very
attractive, as it not only removes any ill-conditioning, but obviates

altogether the need to invert an integral equation.

In summary, the lack of success in the present investigation should
not be taken as evidence that the basic approach is unworkable. A hybrid scheme
matching an inner nonlinear flow-to an outer linearized field still appears
ideally suited to predicting the aerodynamic and acoustic fields of advanced
turboprops. It is hoped that the comments offered here will help to further

progress toward that goal.
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J, K, L

JMAX, KMAX,
LMAX

NOMENCLATURE
speed of sound

dimensionless Fourier coefficients of pressure distribution over
Sp, SBy Sc; defined by Eq. (3-5)

dimensionless Fourier coefficients of pressure distribution in
transformed variables; related to the above by Eq. (3-17)

dimensionless Fourier coefficients of the normal pressure gradient
over Sy, Sp, Sg; defined by Eq. (3-3)

dimensionless Fourier coefficients of the normal pressure gradient

in transformed variables; related to the above by Eq. (3-16)
number of blades
propeller diameter

total energy per unit volume normalized by P, 3 defined in Eq.
(2=4)

flux vectors in the<5 y 1 C directions, respectively; defined in
Eq. (2-6)

Green's function defined in Eq. (3-12)
vector of undifferentiated source terms defined by Eq. (2-8)

Jacobian of the generalized coordinate transformation defined by
Eq. (2"5)

integer grid indices in the d ' N C directions

maximum values of the above.
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ol

Rs

Sa, SBy S¢

©

dimensionless wavenumber of mth harmonic, normalized by D"
free-stream Mach number

Fourier series (harmonic) index

local outward normal to the interface surface S in Fig. 2
dimensionless static pressure normalized by p,,

dimensionless static pressure in transformed variables; related to
p by Eq. (3-10b)

vector of dependent variables in finite difference solution, Eq.
(2-3)

dimensionless radius of'supface Sp, normalized by D

upstream, sidewall, and downstream faces, respectively, of
cylindrical interface S, Fig. 2

dimensionless time normalized by D \)Y/aw

dimensionless velocity components in the Z, ‘V‘,¢ directions>

normalized by qm/ﬂdl'

dimensionless contravariant velocity combonents in the Cf ' N ,C
directions normalized by CQD/VJ” ; defined by Eq. (2-=T7)

dimensionless cylindrical blade-fixed coordinates normalized by D

dimensionless cylindrical coordinates translating with the
propeller, but not rotating; related to the above by Eq. (3-6)

dimensionless cylindrical coordinates used in transformation to no

mean flow; related to the above by Eq. (3-10a)
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Zu’ Z4
ﬁ
7
d

€
7,6

p .
N

dimensionless axial coordinates of Sy and Sg, Fig. 2

relaxation factor used in updating the boundary conditions on S,
Eq. (3-18)

NEFTN
specific heat ratio

Dirac delta function

convergence criterion, Eq. (3-19)

generalized boundary-conforming coordinates, Eq. (2-1)
dimensionless density normalized by /ﬁ;

dimensionless angular velocity of the propeller, normalized by

am/(Dw/?) ,

Superscripts

used to indicate Fourier coefficient of the normal pressure

gradient, e.g. Ag

time index in Eq. (3j18)

indicates the transpose of a vector, e.g. Eq. (é-3)
Subscripts

pertaining to the mth harmonic of Blade-Passage Frequency

pertaining to the inner flow solution

pertaining to the outer flow solution

denotes a source point on S in Eq. (3-13)

evaluated at upstream infinity
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