A Reproduced Copy

OF

NMES /IS
(e Gt @Og/ /

Reproduced for NASA
by the
NASA Scientific and Technical Information Facility

FFNo 672 Aug 65



CSDL-AIPS-84-139

ADVANCED INFORMATION PROCESSING SYSTEM (AIPS)
PROOF-OF-CONCEPT SYSTEM
FUNCTIONAL DESIGN

I/0 NETWORK SYSTEM SERVICES

pImn A n qu?
E rlj 4453 PR

[poRve

LANGLIY RESTARG LM 1k
LIBRARY T1A3A
March 11th, 1985 L STON, VIRGINIA

F

e
42071_ 5f«<i2¢/uq14,_,///

ar, Head, I/0 Design Team
vd /

[/ /
Approve?f-/ 42771(b& //u(,//

Robert N. 0'Dohnell, Technical | Manager

ot ol M L

Philip G. Felleman, Prc ram Manager

Approved:
James E. Ker

The Charles Stark Draper Laboratory, Inc.
Cambridge, Massachusetts 02139

Distribution lTimited to U.S. Government agencies only (Test and Eval-

uatton, January 1985), Other requests for this document must be
referred to NASA/JSC.



ACKNOWLEDGEMENT

This report was prepared b} The Charles Stark Draper Laboratory, Inc.
under Contract NASS-16023 with the Lyndon B. Johnson Space Center of the
National Aeronautics & Space Administration.

The major contributors to the design were James E. Kernan, Alton A.
Knosp Jr., Gail A. Nagle, and Gary Schwartz. Alan I. Green served as
chief reviewer for technical correctness and consistency. Special
thanks to Paul Palasek for drawing the data flow diagrams.

Publication of this report does not constitute approval by the NASA/JSC

of the findings or conclusions contained herein. It is published for
the exchange and stimulation of ideas.

RECEDING PAGE BLANK NOT FLN™D




Secti

1.

Appen
A.
B.
c.

List

INDEX

on

Introduction and Overview e s o s e s o 8 o o

1.1 Introduction e e s s o o s s e o o o

1.2 Design Overview e e s e e e s e e
1.2.1 I/0 User Communication Services
1.2.2 I/0 Network Management o o e s .

Data Flow Diagrams e o o s s s e o s o o o @
2.1 I/0 User Communication Services . .

2.2 1/0 Network Manager e e e e e s e e

Process Descriptions e s s s s s s s e e e
3.1 I1/0 User Communication Services Processes
3.2 1/0 Network Manager Processes e e e e e
Data Dictionary c e e o o s s s s e s e s e
4.1 Introduction e v e e o 4 e e e o o o o s
4.2 Data . . . L] L] L] L] . . . . L] L] L] L] . . -

Process and Data Location e o o o e s o s o @

5.1 Process Location e o e e e e e e e e e
5.1.1 CP Processes « o s s o o e o o
5.1.2 IOP Processes e s s e e o e e o s e
5.1.3 I0S Processes e e s e s s e e s e .
'5.1.4 Node Processes « o e e . . « o .

5.2 Data Location e v e o e o e e e e e e
5.2.1 CP Memory e s e s e s e s e . .
5.2.2 1I0P Memory . . e e e s e s « o e .
5.2.3 1I0S Dual Port Hemory e e e e o o s
5.2.4 Shared Memory e e e e e e e s

dix

Data Flow Diagram Symbol Definitions « s o e

Process Description Format Explanation .« o s

Glossary of I/0 Terms . ¢ ¢ ¢ o« ¢ ¢ o & o o &

of References e o o 8 s s s e 8 s s e s s o

IRECZDING PAGE BLANK NOT FWLN 7O

. i
OB EABRRWN

Page

A-1



Figure

AIPS Proof of Concept I/0 System Services - Top Level
Context of I/0 System Services e e s e s e e e e e
I/0 System Services - 4. e e e e e e
I/0 User Communication Services e e e
I/0 User Communication Services - 4.1
I/0 Request Processing - 4.1.1 . e e
Chain Processing - 4.1.2 e e e e e
Queue Processing - 4.1.2.1 .
Chain Completion Processing - 4.
Chain Status Processing - 4.1.2.
I/0 Interface - 4.1.3 o« o .

Interface Initial Processing - 4.1.3.1 e e e e e
Interface Completion Processing - 4.1.3.2

GPC I/0 Network Manager Support -4.1.4
I/0 Network Manager - .
I/0 Network Manager - 4.2, ..
Control I/0 Network - 4.2.1 .
Control Network Definition - 4.2.
Initialize I/0 Network - 4.2.1.2 e e e e . . .
Maintain I/0 Network - 4.2.1.3 e e e e e e e e e .
Monitor I/0 Network = 4.2.2 . . ¢ v v v o o« o « o« &
Report I/0 Network Status - 4.2.3 e e e e e 4 e e
Request Initiation Processing e e e s e e e e e
‘End Of Chain Monitor . . . « « « « &
End Of Chain I/0 Error Processing .
Transaction/Bypass/Switch e v e s
Mixed Transaction Failures e o e s e
Count Reached Limit e e s s e e o o o s
Transaction Bypass . « e e e e e
Chain Interface (4.1.2. 3) e e e e e e
FTP - Functional Layout of Major Elements .
Frame Format . e e s e e e e e s e e e e
Output Packet Format e e e o s s s o s = s & o o o
Input Packet Format e s s s e o o e & o o e o o o
Chained Transactions e e e s e e e e s s e e e e .

(] }

e o e e o
e o o o

.

]
* o e o o

NNNNI}’NNNN

NNN—L—L-’A-&-&-&—L—L-&—L
PWONLL2ONOAUAEWNANLCOODOONOOLEWNLCOQOWONDUIEWN

- o o o
.

B )

.

.

.

.

NNNNNN'}?NNNNNN

nnnnmm(fwwwwww

CRENENPN Peiie i NOT PRMTD

vii

B
[

Q
[

| I N R S TR Y S R JUNE R J T AR R A R
L BOHEDBLWWWWNNNNN-S A L

(RN ]
W 1
OOONOOOWLAONUONONONW-LONOW-—+0010W —

wWww NOMDPODNMOMNDNDNODNONNONDODNONDNODNNDDNODNODNODNON

W W
[ ¢



P

1.1 Introduction

This report contains a description of the functional design of I/0 Ser-
vices for the AIPS Proof of Concept System.

The design methodology employed is based on the use of data flow analy-
sis techniques. The methodology is more fully described in references
(61, [7], and [9] .

Section ' 2. Data Flow Diagrams' contains the data flow diagrams, which
show the functional processes in I/0 Services and the data that flows
among them. The data flow diagrams are organized in a hierarchical man-
ner. I/0 Services is divided into two primary categories: providing
services to acquire or deliver data to and from devices such as sensors
and effectors, and maintaining the I/0 System in functioning order. The
former category is referred to as I/0 User Communication Services and
the latter as I/0 Network Management.

Section " 3. Process Descriptions' contains a description of every pro-
cess. The data flow diagrams, process reference numbers, and identifi-
ers illustrate the hierarchical relationship of the processes.

Section " 4. Data Dictionary" contains a complete list of the data
identified on the data flow diagrams and in the process descriptions. A
brief description is included with each entry.

Section " 5. Process and Data Location! specifies the physical location
of the processes and data. It also identifies whether the process is
performed by hardware or by software.

Appendix " A. Data Flow Diagram Symbol! Definitions" contains defi-
nitions of the symbols used on the data flow diagrams.

Appendix " B. Process Description Format Explanation' contains an
explanation of the format of the Process Descriptions.

Appendix " C. Glossary of I/0 Terms' contains a glossary of I/0 terms
used in the AIPS Proof of Concept System.

1-1




1.2 Design Overview

The overall design of I/0 Network Services separates the I1/0 Network
Manager from I/0 User Communication Services so as to support the system
level requirements regarding growth, change, and modularity. Specif-
ically, the Network Manager manages the 1/0 network itself (but not the
nonmanagers subscribers and their root interfaces). Each subscriber
GPC's I/0 User Communication Service manages its own root interfaces to
the network. And each User (Application) Function, in conjunction with
the I/0 User Communication Services, manages its use of the DIUs. This
functional separation allows the Network Manager to perform its func-
tions largely independently of the subscribers and without the need to
track the hardware or software configurations of the GPC subscribers and
the application functions.

The next two sections give a brief overview of the major design charac-
teristics of I/0 User Communication Services and I/0 Network Management.

124 /0 U c ication Servi

I/0 User Communication Services provides two general categories of ser-
vice. The first covers requests for the transmission and reception of
data between a GPC and an I/0 device external to the GPC. The second
category covers requests for utility services to modify certain charac-
teristics of the first category of service, Transaction selection,
bypass clear, and initialization are examples of this second category of
service.,

The system level performance requirements regarding I1/0 response time
and transport lag significantly influenced the design of I/0 User Commu-
nication Services.

Since it was desired to provide a user interface that is largely trans-
parent to the actual construction and current connectivity state of the
I/0 networks, it was necessary to provide a method of mapping a user
request for data service into the particulars of networks and DIUs. The
design approach was influenced by two significant factors:

e The I/0 networks are contention networks, i.e., each GPC sub-
scriber must win a contention before utilizing the network, and
the cost of the contention (in time) is not insignificant.

° Many applications require that the time relationship among the
reading and writing of data to various sensors and effectors
within the same user request be controlled.

These factors led to the design that permits reading and writing to mul-
tiple devices on the same network under the umbrella of a single con-
tention sequence: a chain.

It is possible that a user request will involve devices that are con-

nected to different 1/0 networks. In this case, it is not practical to

1-2



provide controlled time relationship across the networks because of the
difficulty of acquiring contention control of multiple networks; indeed,
any scheme to accomplish this would have to avoid a possible deadlock
situation. However, an application system designer can achieve the
effects of simultaneous access control over multiple networks by parti-
tioning a single network. This allows a user, for example, to simul-
taneously read redundant versions of a sensor by placing the redundant
versions in different partitions of the network.

Since most application functions execute the same I/0 transactions
repeatedly, the design utilizes the concept of predefined chains that
are for ‘the most part fixed in nature. A design that permitted only
totally rigid chains would, however, lead in some instances to the need
for a large number of chains, some being slight variations of each
other. To avoid this, the Transaction Selection feature is provided.
This service permits the user to specify which of the transactions with-
in a chain will be performed and which will not be performed. A
selection, once made, is effective for all occurrences of the chain
until a new selection is made.

To support the need for a general initialization feature at the initi-
ation of an application function, the Function Initialization feature is
provided. Its invocation restores all of an application function's data
transmission and reception requests to their initial state.

The consideration of I/0 communication errors and their causes influ-
enced the design in a number of ways.

A GPC, a DIU, or the network itself can be the source of an I/0 error.
The decision to functionally separate the I/0 Network Manager from 1/0
User Communication Services places the responsibility for the isolation
of network and babbling subscriber faults with the Network Manager and
the responsibility for isolating GPC interface and DIU faults with the
I/0 User Communication Services.

The approach used to isolate DIU faults is to successively omit errored
transactions from the chain until it no longer accesses the suspect DIU:
this action is referred to as transaction bypass. However, since net-
work errors can result in the same effects, it is necessary for the net-
work manager to inform each of the GPC subscribers on the network
following a repair operation so that any bypassed transactions can be
reinstated; this operation is called Bypass Clear . In general, when a
transaction within a chain is bypassed, the chain as a whole is short-
ened by the duration of that transaction. However, in the case of a par-
titioned network, an equivalent time pad is substituted for the bypassed
transaction so as to maintain the simultaneity of operations on the var-
ious parallel partitions.

To insure nonconflicting usage of a particular I/0 network by the same
or multiple users within the same GPC, the design approach is to perform
all requests of either the data or utility type serially and without
overlap. Thus, for example, a Transaction Selection request that is
entered for a particular chain while that chain is being performed for
some other request will not be executed until processing for the current

1-3



chain is completed. ‘However, the design places no restriction on the
simultaneous performance of operations on separate I/0 networks.

1.2.2 1/0 Network Management

An I/0 network is a reconfigurable, virtual bus which allows GPC sub-
scribers to access input/output devices or DIUs connected to the bus.
The reconfigurability feature is allowed by the 5-ported nodes which
join the various communications elements into a network [5]. These
nodes provide more than the minimum number of links required to form the
bus. Under control of the I/0 Network Manager, the spare links can be
brought into service in response to a network failure, thus restoring
I/0 service and increasing the reliability of the network. Furthermore,
on-line modifications of the network are permitted. These modifications
can range from the reinstallation of a repaired node to the addition of
new nodes and links.

A GPC subscriber to the network may be a Fault Tolerant Processor (FTP)
consisting of two or three synchronously operating, simpiex channels.
Each channel can have a connection to one and only one node of a partic-
ular network. This root node is connected to its channel by a root
link. Thus a triplex GPC may have up to three root links to a partic-
ular I/0 network. However, it may have two or only one root link. A
simplex GPC can have only one root link to a network. Regardless of
the level of redundancy of each GPC, the data on the network is simplex
data from a single source. The replication of congruent data for each
channel is handled by the FTP interchannel data exchange mechanism [4].

A Network Manager is a process operating within one of the GPC subscrib-
ers. The primary function of this process is to maintain the health of
the network by finding faulty components and reconfiguring the active
network to exclude them. To do this it uses a data base which reflects
the actual physical connections in the network and real time data which
it pariodically collects from the network nodes themselves.

Networks may serve the I/0 needs of several GPCs (a regional network) or
only one {(a local netwoerk). In the case where several GPC utilize a
network, only one of them (at any one time) will host the Network Manag-
er of that network. The choice of this host processor should reflect the
consideration that the greater the number of root links a GPC has to a
network, the greater its ability to maintain a connection to the net-
work .

If a network is dedicated to only one GPC, a unique network configura-
tion is possible, namely a partitioned network. Such a network may be
partitioned into as many subnetworks as the GPC owner of the network has
root links. These subnetworks are a set of redundant parallel virtual
buses, each conducting I/0 operations with redundant, parallel DIUs.
Within each subnetwork are a certain number of spare links which allow
failures to be repaired intrapartition. An advantageous feature of this
configuration is that while such a repair is taking place, other parti-

1-4



tions can operate normally allowing I/0 functions to continue uninter-
rupted. Nevertheless, the potential to merge two or more partitions is
available in the event that intrapartition repair becomes impossible.
For example, in the event of a root link failure, I/0 devices in the
temporarily isolated partition can be brought back on the bus by utiliz-
ing one of the spare links that connect two partitions of the network.
If critical information is at stake, such a:-departitioning could be used
to attempt recovery of even one isolated node.

While a GPC may have several root links to an unpartitioned network,
only one of these may be active at any one time. .Similarly, in a parti-
tioned network, each partition may have only one active root link to its
GPC. This is to prevent two channels from simultaneously utilizing the
bus and corrupting each other's signals. The manager of a network does
not in general control the root link connection of a GPC to a network.
This must clearly be the case when a GPC accesses a network but does not
manage it. In such a distributed system, the manager may not have suf-
ficient data to control the network interface to its nonhost GPCs.
Thus, the manager will configure each root node so that the port
attached to a root link is always active, i.e. capable of transmitting
and receiving data. The GPC root link selection process will then
choose which root node it will actively communicate through. The manag-
er process will control the configuration of its host GPC's interface
only when it is growing the network and when it is reconfiguring the
network in response to a network failure.

The manager of the network can isolate network faults and restore I/0
service in the face of several types of network faults. These include a
passively failed node or node port, a babbling node or subscriber, and a’
node which responds out of turn when other nodes are addressed. The
manager determines the identity of the faulty element and reconfigures
the network so as to isolate that element. The manager periodically
tests failed nodes and node ports to determine if the failure was tran-
sient in nature.

Finally, the manager of an I/0 network performs its functions such that

they are largely transparent to all applications using the network for
I1/0 service.

1-5



SECTION 2
. DATA FLOW DIAGRAMS

The top level organization of I/0 Services functions is depicted in Fig-
ure 2-1. As illustrated, the functions are divided into two categories:
I/0 User Communication Services processing and I/0 Network Manager proc-
essing. I/0 User Communication Services data flow diagrams are con-
tained in section "2.1 I/0 User Communication Services'" on page 2-7.
I/0 Network Manager data flow diagrams are in section "2.2 I/0 Network
Manager" on page 2-31.

AIPS POC
I/0 SYSTEM
SERVICES
I/0 USER I/0
COMMUNICATION NETWORK
SERVICES MANAGER

Figure 2-1. AIPS Proof of Concept I/0 System Services - Top Level

The context of the I/0 System Services data flow within the AIPS Proof

of Concept System is shown in Figure 2-2. The data flow between the
major categories of I/0 System Services is shown in Figure 2-3.

2-1



This page is intentionally blank.

2-2



APPLI\CATION
FONCTIONS

LOCAL

OPERATING SYSTEM

v
% J
’
Q
% &
\’)\ %A ”
\a s, 957 '
N <
y %, Y.
\/ 3 9
’\fo\ % <
¥
q
)z’s LOCAL
LocaL -z s, | SYSTEM
SERNICES
SERVICES
o
q”'&
%
% %
\4
X 5
S,
% S

SNSTEM
MANAGE R

DEVICE INTERFALE
ontt (o o)

o)

" TRIALD

il 3 M

T T
O s

Figure 2-2. Context of I/0 System Services

2-3




This page is intentionally blank.



TO _DATA- BASE

NeTworK
MANAGER.

ETWORK. - OCE/INTYION

Figure 2-3. I/0 System Services - 4.

2-5
ORECEDING PAGE BLANK NOT FILV™D



This page is intentionally blank.



2.1 I/0 User Communication Services

I/0 User Communication Services provides two general categories of ser-
vice. The first covers requests for the transmittal and retrieval of
data between a GPC and some I/0 device external to the GPC. The second
category covers requests for utility services to modify certain charac-
teristics of the first category of service. Transaction selection,
bypass clear, and initialization are examples of this second category of
service. All of these services are processed by I/0 Request Processing.
I/0 User Communication Services data flow diagrams are in Figure 2-5 on
page 2-11 through Figure 2-14 on page 2-29 . The hierarchical relation-
ship of these flow diagrams and processes is shown in Figure 2-4,

CRECEDING PAGE BLANK NOT FILMID

2-7



I/0 USER

COMMUNICATION
SERVICES
1/0 CHAIN 1/0 GPC I/0 Node
REQUEST PROCESSING  INTERFACE NETWORK (4.1.5)
PROCESSING (4.1.2) (4.1.3) MANAGER
(4.1.1) SUPPORT
| (4.1.4)
SEE
REQUEST REQUEST Part 2
INITIATION COMPLETION
PROCESSING PROCESSING
(4.1.1.1) (4.1.1.2)
QUEUE CHAIN CHAIN
PROCESSING COMPLETION INTERFACE
(4.1.2.1) PROCESSING (4.1.2.3)
(4.1.2.2)
SEQUENCER DATA/ CHAIN
(4.1.2.1.1) STATUS STATUS
CHAIN PROCESSING PROCESSING
INITIATION (4.1.2.2.1) (4.1.2.2.2)
(4.1.2.1.2)
ROOT
LINK
(4.1.2.1.3) END OF
BYPASS CHAIN
CLEAR I1/0 ERROR
(4.1.2.1.4) PROCESSING
TRANSACTION (4.1.2.2.2.2)
SELECTION
(4.1.2.1.5) END OF CHAIN
NETWORK MONITOR
PARTITION (4.1.2.2.2.1)

(4.1.2.1.6)

Figure 2-4. I/0 User Communication Services (Part 1 of 2): Data
Flow Diagram Processing Hierarchy

2-8



I/0 USER

COMMUNICATION
SERVICES
[ 1/0 '
INTERFACE
(4.1.3)
!
INTERFACE CONTENTION
INITIAL PROCESSING
PROCESSING (4.1.3.3)
(4.1.3.1)
| FRAME
TRANSMITTER
(4.1.3.4)

INTERFACE INTERFACE FRAME
CHAIN TRANSACTION RECEIVER
SETUP SETUP (4.1.3.5)

(4.1.3.1.1) (4.1.3.1.2)

INTERFACE
COMPLETION
PROCESSING
(4.1.3.2)
INTERFACE
_INTERFACE RESPONSE
CHAIN * FRAME
COMPLETION PROCESSING
(4.1.3.2.1) (4.1.3.2.2)
Figure 2-4. 1/0 User Communication Services (Part 2 of 2): Data

Flow Diagram Processing Hierarchy



This page is intentionally blank.



LOCAL - TO- STATUS

cHauN
PRECESSING
41.72

CHAINL QLELE

-QNY ~ viva ~ NivH>

Figure 2-5. I/0 User Communication Services

eSS

SSCRIBIR ~TO - ERROR . aPORT

GPC — SOBSCRIBER
10-ERROR — LOG

GPc xfo
NETWORK MANAGER

SUPPORT
4.1.4

—

CORRENT_ NETWERK. _
PARTITION - DeF/NITld\l

TRANSALTION =
COMPIGURATION —

CATA — BASE

OUTPUT. PACKET

INPOT - PACKET

END. OF . CRAIN.STATUS,

Ny
3

- 4.1



This page is intentionally blank.



_TO_UDATA _ BASE
o

\'
\4

7/ ?’
\
CHAIN = QUEVE :

REQWEST

IN]TIATION

REQUEST

CoMmPLE TionN
& PROCE SS/ING
55
<
R4 .
Gé?}r /Lf
A \
7 G
7 &
Qr <, [
Y o/ &
s & 3
g7
°?I
iy

1

PRECEDING PAGE BLANK NOT FiLM D

ke VIO

- SpAVLS

Figure 2-6. I/0 Request Processing - 4.1.1

2~13



This page is intentionally blank.



LocaL _To- STATUS CURRENT._NeTwWorK -

PARTITION - DEFINITION _ & PC . SUBSCRIBER
cHainl_ QUELE A 1O_ ERROR — LOG
A

IO~ DATA - BASE

&/ 5 \3
“\c 7 \n &
& y ”‘v ¥
d

cHaIn

QUVELVE SHay,,
. PROCESSING compLETION e
4.1.2.1 PROCESSING
41.2.2

SH
AIN CONDLET\QN_ST’TQs

 TRANSACTION _ CONFIGURAT IOA _

QUTPUT. PACKET INPUT _ PACKET

EMD. OF _ CHAIN = STATLS

INTERFACE
4.1.2.3

PRECEDING PAGE BLANY NOT FILWTD

Figure 2-7. Chain Processing - 4.1.2

2-15



This page is intentionally blank.



WAL - T STATLS

CHAIN . QUELE

TO . OATA . BASE

LTS DEE Nt TION

ZO . CHAINDEEINITION

SEQUERNCER

4.1.2.1.)

41.2.1.2

T,
Y
-
N
A § .
& &7 ; & <,
& v T 3. &
Y, E/ z N ,"q.v
; > T IA e N S,
- 2 t S e,
? % 2 "‘ 3
P? ] * 9, 3 %
5 . % & e
: ?‘ ) ?‘ ‘:' "/7.
! %\ & (‘
] 2. nsf
Fl 3 .
’ A
-
k3
AeTwork RooT 8Y PASS
PARTITION LK < CLEAR
4.1.2.l.b

41,203 4.1.2.1.4

INITIATION

CUTPUT. PALKET

TRANSAHCTION

SELECTIOA

&0, 2.0.8

h J

CVRRENT _ NET WORK. -
PART( Tion . DEFIAIITIOA

TRAMSACT IO = CONE IGURAT oM
DATA .. BASE

PRECEDING PAGE BLANX NOT FiLM D

Figure 2-8. Queue Processing - 4.1.2.14

2-17



This page is intentionally blank.

2-18



INPUT_ PACKET

TO. OATA _GASE

L’B - CHAIN . DEFINLTION

AN _ DATA -AND. STATUS

CH.

DATA/STATUS
PROCE SSING

4.1.2.2.1

O
- ‘)’* g
\ b3
\ b3
& ;
N\ -
0_» & g
2 z
4 g
2 2
. o .
Q(" n CURRENT . AlGETWORK,
% > % PARTIT ION . DEF/Al TIeA
74
END. 0F . CHAIN . STATUS “'e%) c
\
e
cHaN CHAIN< COMPLETION. STATUS
STATLS
PROCESSING
41.2.2.2
TRANSAST IO - COMFIGURATION GPC - SOUBSCRIBER — TO-
OATA . BASE ERROR, _ oG
SRECEDING PAGE BLANK QT Filwi:D
Figure 2-9. Chain Completion Processing - 4.1.2.2

2-18



This page is intentioﬁally blank.

2-20



CURRENT. NETWORK. ..
PARTITION . DEFIAITION

J

CHAUN - TIMEONT. vatug

€AD oF cHaN
MOALITOR
4.1.2.2.21
[
2
N
L)
END.OF. CHAIN_ STATUS 3 R
-
W
&
: &
2
A
<
&
v S5
q oot
?
4*"';

TO. OATA . BASE

LIMITS . DEF NI TION

END oF cHaunl SHAIN COMPLE Y,
R ‘37’4’.“:

TO . CHAIN . DEF INI Tiond
T/o ERROR.
PROCESS/AG SHay,,
) 2/b
A ) E’Vr,
\© 41.2.2.2.2 e
ps2E ]
N <
P
TRANSACTION . CONFIGORATION o GPG . SUBGLRIBER . IO~
DATA . BASE ERROR, ~ Ly
cnme oS PAY. e T s eatnO
alm Tk e S

Figure 2-10. Chain Status Processing - 4.1.2.2.2

2-21



This page is intentionally blank.

2-22



¥

Z
&
TO_DATA. BASE & 3
£ &
X M, »
Q ’ OSTPUT_ PACKET Y,
%, g ¥
v, &
%, &/
q
2
S,
TRANSACTION L Y
CONFIGURATION —
VATA - BASE
L [ TINTERFACE FRAME
ITNVTIAL wDLC = PROGRAM TRANSMITTER
PROCESSING
Fr e 4.1.3.1 4
NETWORK. PARTITION A3 4.1.3.
DEFINITION SOTPUT PACKET. IDENTIFIER:
Eﬁ ’€w£
&

FRAME
RECEINER

CONTENT I

PROCESSING
4.1.3.3%
INTERFACE
( ComMmPLETION
: PROCESSING

END _OF. CRAIN _STATVS

INPOT_PAKET

Figure 2-11. I/0 Interface - 4.1.3

SRECEDING PAGE BLANK NOT FUWLMID 9-23



This page is intentionaily blank.

2-24



TRANSACTION - COMNF (GURATION -
DATA . BASE

CORRENMT. AlET\AIERK ~
PARTITION - DECINITION

TO.DATA .. BAasE

INTERFACE
CHAIN
SETUP

aind- INITIATION .

4.1.3.1.1

PArq

,

AUTPOT. PACKET

ENTERFACE _ T“‘Nﬁ'\‘irlw

v;_‘,?o-r_PbC.KET,_ IOENT, £ &r
INTERFACE

TRANSACT o
SETLP

FRAME . STAYyq

4.1.3.{.2

b D N ARG SR DT FRMID

Figure 2-12. Interface Initial Processing - 4.1.3.1

2-25



This page is intentionally blank.

2-26



STATUS
INTERFACE

craiN
COMPLETION

END-OF. CHAIN _ STATUS

4.1.3.2.1

STAruS

TRANSAL TiIoA

a‘ff_RFAcE

INTERFACE

RESPONSE ERAME
PROCESSING

44.3.2.2

PRECEDING PAGE BLANK NOT FiLMID

Figure 2-13. Interface Completion Processing - 4.1.3.2

2-27

INPOTL PACKE T

' RESPONSE _ "RAME - DA"A
=A




This page is intentionally blank.

2-28



&Pt . SOBKRIBER _TO. ERROR. - REPORT

GPC Ifo
AE'rvqcﬁLK
MANAGER
SVPPORT.
4.1.4

QPC - SUBKRIBER .
JO - ERROR. - LG

PRECEDING PAGE CLANK NOT FILMID |

Figure 2-14. GPC I/0 Network Manager Support - 4.1.4

2-28




This page is intentionally blank.

2-30



2.2 I/0 Network Manager

I/0 Network Manager processing is divided into three groups: Network
Control, Network Monitoring, and Network Status Reporting. The data
flow diagrams are in Figure 2-16 on page 2-35 through Figure 2-22 on
page 2-47 . The hierarchical relationship of these flow diagrams and
processes is illustrated in Figure 2-15 on page 2-32.

ALY
PRECEQING Felas 1440

2-31



1/0

NETWORK
MANAGER
CONTROL MONITOR REPORT
I/0 NETWORK I/0 NETWORK I/0 NETWORK
(4.2.1) (4.2.2) STATUS
(4.2.3)
SEE
Part 2
REPORT REPORT
CONTROL INITIALIZE TO GPC TO
NETWORK I/0 NETWORK SUBSCRIBERS SYSTEM
DEFINITION (4.2.1.2) (4.2.3.1) MANAGER
(4.2.1.1) (4.2.3.2)
| MAINTAIN
I/0 NETWORK
(4.2.1.3)
HANDLE SEND
NETWORK CURRENT
REDEFINITION PARTITION
EVENTS DATA REPAIR TEST
(4.2.1.1.1) (4.2.1.1.2) NETWORK NETWORK
FAULT COMPONENTS
(4.2.1.3.1) (4.2.1.3.2)
SELECT GROW COMPLETE
ROOT T0 PARTITION
LINK .ROOT GROWTH
(4.2.1.2.1) NODE (4.2.1.2.3)
(4.2.1.2.2)
Figure 2-15. I/0 Network Manager (Part 1 of 2): Data Flow Diagram

Processing Hierarchy

2-32



I/0

NETWORK

MANAGER

MONITOR

I/0 NETWORK

(4.2.2)
COLLECT COLLECT
NETWORK SUBSCRIBER
STATUS STATUS
(4.2.2.1) (4.2.2.2)

Figure 2-15. I/0 Network Manager (Part 2 of 2):
Processing Hierarchy

2-33

Data Flow Diagram



This page is intentionally blank.

2-34



T0.PDATA. BASE

3
(-
o=
o
éﬂﬁ
C.ONTR'ZN.. IO 6. NETWORK - MANAGER _ LOMMAND
NE T WORK
MANAQER . IO REQUEST_ ARAMETER.
4.2.1
MVANACER _T0. REDORST. OATA - AND_ STATUS
3 NETWORK, . STATUS
-
3
o
g
; CURREN T NETWORK
: DEFINITION
REPORT Tio
NETWORK

STATOVS

4.2.3

_ RECONFIQURAT tonl sspom-)
\l

MONITOR TJO
NETWORW

-«

4.2.2

@PC. SUESCRIBLR _ To. (RIOR . REPORT

2 .
LARGIREREE aPVe il

Figure 2-16. I/0 Network Manager - 4.2,

2-35



This page is intentionally blank.

2-36



CONTROL
I/o NETWORK
DEEINVTION

TO~ NETWORY . MANAGER . LOMMANT

42.0.1

NETWORK . STATUS

CORRGNT - NETWORK, .
o intTion

MANTAIN T/o
NETWORK

INTIALIZE IO
NETWORK

NETWORK _CORFIGURATICN

42.1.2

MANAGER | TO. REQEST.OATALAND. STATUS

=D

Bbeia
Figure 2-17. Control I/0 Network - 4.2.1

2-37



This page is intentionally blank.

2-38



CIRRENT . NETWORK ~DEF/NITION

SE'\iD To_DATA . BASE

CURRENT
PARTITION

REDEF/IAN|TION | Nerworx. DEFaiTion

NETWRK - STATOS

~nrzpgrong PAGE BLANK MOT FRAMD

Figure 2-18. Control Network Definition - 4.2.1.1

2-39



This page is intentionaily blank.

2-40



CURRENT. RO T _ Ling

GROW ToO

SELECT
ROOT RooT NOVE
LINK 4.2.1.2.2

4.2.4.2.1

CURREN T . NETWCRK. . PEFIN I Tieny

AETWORK.. STATVS

MANAGER.. TO - REDUEST - PARAMETE R

A

NETWORK .. GO EIGARITION,

COMPLETE
PARTITION
GROWTH
4.2.1.2.3

MANAGER. _ 10 . RELOEST_TATA . AnD. STATUS

Figure 2-19. Initialize I/0 Network - 4.2.1.2

2-41



This page is intentionally blank.

2-42



MANAGER - 10 - REQUEST. PARAMETER, >

CUORRENT. NETWORK .
PEF 1A\ TioAl

REPAIR
NeTwork
FAULT

TEST
NETwWoRK
COMPONENTS

NETWORK . STATUS

NETWORK - CoN FIGORATION

C MANAGER . TO — REQVEST. DATA . AND . STATUS

SRECEDING PAGE BLANK NOT FiLM:D

Figure 2-20. Maintain I/0 Network - 4.2.1.3

2-43



This page is intentionally blank.

2-44



CORRENT_ NCTRBORY _DEFIN 1ITIOA

CoLLECT
NETwWORK
STATULS

CoLLECT
SUBSCRIBER
STATUS

NETWORK. STATVS 4.2.2.2

NETWOORK . EANLT- (NDICATRR.
—

PRECEDING PAGE BLANK MOT Filo'™

Figure 2-21. Monitor I/0 Network - 4.2.2

2-45



This page is intentionally blank.

2-46



CORRENT_NETWORK _ DewiniTion

REPORT To
SYSTEM
MANAGE R_

RERRT T©
GPcC
SUBSCRIBERS

4.2.3.2 4.2.3.1

NETWCRK . STATOS

R NP
. ¥ 1St HPAR IS R
FOTEFS ANy PN S
SRR St 4

Figure 2-22. Report I/0 Network Status - 4.2.3

2-47

RECONFIGURATION - REPERYT
-




This page is intentionally blank.

2-48

—



SECTION 3
PROCESS DESCRIPTIONS :

This section contains a description of each process identified in the
data flow diagrams. The descriptions are in a standard format which is
described in appendix " B. Process Description Format Explanation."

3.1 I/0 User Communication Services Processes

Process Name: I/0 User Communication Services

Reference Number: 4.1

Identifier: I0_System_Services.-
I0_User_Communication_Services

Bui ld: 3--

Requirements Reference: POC System I/0 Services Functional Require-
ments, Chapter 3

Inputs:

GPC_Subscriber_Command .from System Manager (1.)
I0O_Request_Parameter from Application Functions
Response_Frame from DIUs

I0_Data_Base

Reconfiguration_Report from I/0 Network Manager (4.2)
Manager_IO_Request_Parameter from I/0 Network Manager
(4.2)

Outputs:

Local_IO_Status to Local System Services (3.)
I0_Request_Data_And_Status to Application Functions
Wait_Request to Local Operating System

Command_Frame to DIUs

GPC_Subscriber_IQ_Error_Report to I/0 Network Manager
(4.2)

Manager_IO_Request_Data_And_Status to I/0 Network Man-
ager (4.2)

e GPC_Subscriber_I0_Error_Log to System Manager (1.)

Notes: This process must exist at each processing site which
provides I/0 services to resident functions.

Description:



This process provides communication to DIUs and Nodes throughout the
system. It handles all requests for the foliowing communication ser-
vices:

e Communication with nodes and DIUs including automatic bypassing
of transactions which repeatedly cause errors,

e Transaction selection for specified transactions to be performed
within an 1/0 request,

° Clearing of the Bypass for all transactions on the network,

] Transaction selection for all transactions used by a particular
function,

e Updating a network partitioning definition, and

e Switching the root link(s) (I/0 Interface (4.1.3)) connecting an
I/0 network to a processing site.

The above services are implemented by the following subprocesses:

(1) 1/0 Request Processing

(2) Chain Processing

(3) I/0 Interface
(4) GPC I/0 Network Manager Support

I/0 Request Processing (4.1.1) handles all requests and coordinates
services affecting one or more networks.

Each instance of Chain Processing (4.1.2) implements services as they
apply to a particular I/0 network at a processing site. It also
coordinates the I/0 Interfaces (4.1.3) for that I/0 network.

One or more I/0 Interfaces (4.1.3) connect a processing site to an
I/0 network. This process implements the actual communication
between the processing site and the DIUs and/or nodes connected to
the I/0 network as specified by Chain Processing (4.1.2).

An instance of GPC I/0 Network Manager Support (4.1.4) independently

coordinates the reporting of GPC_Subscriber_IO_Error_Log information
to a particular I/0 Network Manager (4.2).

3-2



Process Name: I/0 Request Processing

Reference Number: 4.1.1

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
I0_Request_Processing

Bui ld: 3

Requirements Reference: 3

Inputs:
° I0_Data_Base.IO_Request_Definition
e GPC_Subscriber_Command from System Manager (1.)
. I0_Request_Parameter from Application Function
] Manager_I0_Request_Parameter from I/0 Network Manager
(4.2)
e Reconfiguration_Report from I/0 Network Manager (4.2)
) Chain_Queue from Chain Processing (4.1.2)
e Chain_Data_And_Status from:Chain Processing (4.1.2)
Outputs:
e Wait_Request to Local Operating System
] I0_Request_Data_And_Status to Application Functions
[ Manager_IO_Request_Data_And_Status to I/O Network Man-
ager (4.2)
e Chain_Queue to Chain Processing (4.1.2)
Notes: There is one instance of this process for each

instance of I/0 User Communication Services (4.1).
Description:

This process coordinates service requests from I/O Network Managers
{(4.2) and service requests from Application Functions that pertain to
one or more I1/0 networks. Each service request is transformed into
one or more elements on one or more Chain_Queue(s) to be processed by
instances of Chain Processing (4.1.2). Status and data resulting
from this processing are collected via Chain_Queue and
Chain_Data_And_Status.

The above processing is accomplished v%a two subprocesses:

(1) Request Initiation Processing

(2) Request Completion Processing

Request Initiation Processing (4.1.1.1) transforms service requests
that are input as I0_Request_Parameter, Manager_IO_Request_Parameter,

GPC_Subscriber_Command, or Reconfiguration_Report into elements on
the appropriate Chain_Queue(s) .



Request Completion Processing (4.1.1.2) collects data and status from
Chain_Queue and Chain_Data_And_Status inputs and transforms them into
I0_Request_Data_And_Status and Manager_IO_Request_Data_And_Status.



Process Name: Request Initiation Processing

Reference Number: 4.1.1.1

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
I0_Request_Processing.=-
Request_Initiation_Processing

Build: 3

Requirements Reference: PQC System I/0 Services Functional Require-
ments, section 2, Paragraph 2 and 3 and sec-
tions 3.1.4.1, 3.1.4.2, 3.1.4.4.1, 3.3

Inputs:
] I0_Data_Base.I0_Request_Definition
. I0_Request_Parameter from Application Functions
e GPC_Subscriber_Command from System Manager (1.)
° Manager_IO_Request_Parameter from I/0 Network Manager
(4.2)
e Reconfiguration_Report from 1/0 Network Manager (4.2)
° Chain_Queue from Request Completion Processing
(4.1.1.2) and Chain Processing (4.1.2)
Outputs:
° I0_Request_Data_And_Status to Application Functions
e Wait_Request to Local Operating System
° Chain_Queue to Chain Processing (4.1.2) and Request
Completion Processing (4.1.1.2)
° Manager_I0_Request_Data_And_Status to I/0 Network Man-
ager (4.2)
Notes: Processing by this process should not lock out proc-
essing by other processes (such as Sequencer
(4.1.2.1.1) and Request Completion Processing

(4.1.1.2)) due to accesses to Chain_Queue data. This
may be implemented by semaphores, a monitoring proc-
ess, or some other mechanism to control access to
Chain_Queue data.

Description:

This process transforms each request for service into elements on one
or more Chain_Queue(s). Services are then implemented as the ele-
ments from the Chain_Queue(s) are processed by their corresponding
Chain Processing (4.1.2) processes. Each Chain_Queue corresponds to
an instance of Chain Processing (4.1.2). Each instance of Chain Pro-
cessing corresponds to a specific I/0 network.

Communication with nodes and/or DIUs is requested via

I0O_Request_Parameter or Manager_I0_Request_Parameter. Either input
specifies the same information. A Service_ldentifier indicates the

3-5



request is an I0O_Service_Request. An IO_Request_ldentifier indicates
a specific IO_Request_Definition within the I0O_Data_Base. This defi-
nition directs how I0O_Request_Data from IO_Request_Parameter or
Manager_IO_Request_Parameter should be distributed between one or
more Transaction_Queue_Elements, hence, how the data should be dis-
tributed between the transactions performed on each I/0 network. The
definition also indicates the Chain_Queue in -which each element
should be inserted (one Chain_Queue per element). Each element is
inserted into its Chain_Queue according to the priority implied by
the input (Manager_IO_Request_Parameter having a higher priority than
I0_Request_Parameter) or according to the IO_Request_Priority explic-
itly specified by I0_Request_Parameter. The definition also speci-
fies whether a Wait_Request should be made for the process which made
the request or the chain completion indicators for the request should
be initialized to '"Not_Finished_Yet". (If the process is caused to
wait, it is released by Request Completion Processing (4.1.1.2) when
the request is completed.)

Transaction selection is also requested via I0Q_Request_Parameter or
Manager_I0O_Request_Parameter. A Service_ldentifier indicates the
request is a Transaction_Selection_Request. An IO_Request_Identifier
indicates a specific IO_Request_Definition within the I0_Data_Base.
Selection_Queue_Elements are constructed from the Chain_Identifiers,
Transaction_Identifiers, and Selection c¢omponents of the input and
inserted into Chain_Queues as directed by the IO_Request_Definition.
These elements are assumed to have a priority higher than the priori-
ty of their corresponding I0_Service_Request, i.e., Chain_Queue ele-
ments created for a Transaction_Selection_Request will always precede
elements created for a I0_Service_Request that has the same
Request_Identifier.

Clearing Bypass for all transactions on a network is requested via
the Reconfiguration_Report input. This will be implemented by mark-
ing a chain of transactions for clearing, the Bypass for each trans-
action to be cleared the next time the chain is executed. The
Network_Identifier specified by this input indicates the Chain_Queue
on which to place the Bypass_Clear_Queue_Element specified by the
input. This element specifies that all transactions on this network
should have their error counts and bypasses initialized to zero and
"No'', respectively.

Transaction selection for all transactions used by an Application
Function may be requested either via IQ_Request_Parameter or via
GPC_Subscriber_Command." IO_Request_Parameter specifies a

Service_ldentifier value of ‘"Application_Initialization_Request'.
Either input specifies a Function_Identifier specifying which func-
tion is to be initialized. Function_ldentifier indicates a group of
I0_Request_Definitions in I0_Data_Base. These definitions provide
the Selection_Defaults used to construct Selection_Queue_Elements for
each I/0 network accessed by the Application Function and to place
these elements on the correct Chain_Queues.

Updates to network partition definitions are requested via
Manager_IO_Request_Parameter., The Service_Identifier component spec-

3-6



ifies Partition_Update_Request. The Network_Identifier component
specifies which Chain_Queue should receive the
Network_Partition_Queue_Element which is constructed from the
Root_Link_Identifiers, Node_ldentifiers, and DIU_ldentifiers listed
in the remainder of the input that specify which Nodes and DIUs may
be accessed via which root links.

Root 1link switching is requested via Manager_I0_Request_Parameter.
The Service_Identifier component specifies Root_Link_Control_Request.
The Network_Identifier component specifies which Chain_Queue should
receive the Root_Link_Queue_Element, i.e., for which network the root
link should be switched. The queue element specifies whether or not
automatic root link switching should be inhibited and which root
links should be used according to the Inhibit and
Root_Link_Identifier components of the input.

3-7



Receive an .
I0_Request_
Parameter or a
Manager_IO_
Request_
Parameter or a
GPC_Subscriber_
Command or a
Reconfiguration_
Report

Obtain
I0O_Request_
Definition

For each chain \ Place
in I0_Request. >——>| Chain_Queue_Element on
Definition / designated Chain_Queue

according to Priority

If IO_Request_ \ Place source of
Definition >——>| input on Local 0.S.
specifies wait / wait queue

Figure 3-1. Request Initiation Processing



Process Name: Request Completion Processing
Reference Number: 4.,1.1.2
Identifier: I0_System_Services.-
I0_User_Communication_Services-
I0_Request_Processing.=-
: Request_Completion_Processing
Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, sections 3.1.4.1, 3.1.4.2, 3.1.4.4.4

Inputs: -
) I0O_Data_Base.IO_Request_Definition
] Chain_Data_And_Status from Chain Processing (4.1.2)
. Chain_Queue from Request Initiation Processing
{4.1.1.1) and Chain Processing (4.1.2)
Outputs:
® Wait_Request to Local Operating System
e IO_Request_Data_And_Status to Application Functions
. Manager_IO_Request_Data_And_Status to I/0 Network Man-
ager (4.2)
e Chain_Queue to Request Initiation Processing (4.1.1.1)
and Chain Processing (4.1.2)
Notes: Processing by this process should not lock out proc-
essing by other processes (such as Request Initiation
Processing (4.1.1.1) and Sequencer (4.1.2.1.1)) due to
accesses and references to Chain_Queue data. This may
be implemented by semaphores, a monitoring process, or
some other mechanism to control access to Chain_Queue
data.
Description:

This process completes processing of requests for communication to
Nodes (4.1.5) and DIUs by collecting data and status and releasing
processes that were placed on the local wait queue at the request of
Request Initiation Processing (4.1.1.1). It is initiated by a signal
from Chain Processing (4.1.2).

When Chain_Data_And_Status is received, the element at the top of the
corresponding Chain_Queue is examined. The Chain_Identifier is used
to identify the IO_Request_Definition that specified the element for
Request Initiation Processing (4.1.1.1).

If the IO_Request_Definition indicates that the original request was
a manager I/0 request for service:



Manager_IO_Request_Data_And_Status is updated to reflect the val-
ues of Chain_Data_And_Status,

Manager_IO_Request_Data_And_Status is updated to reflect the val-
ues of Root_Link_Status from the Chain_Queue element,

The element is removed from the Chain_Queue,

If the Network Manager (4.2) making the request was placed on the
local wait queue at the request of Request Initiation Processing
(4.1.1.1), this process issues a Wait_Request to the Local Oper-
ating System to remove the manager from the local wait queue.
Otherwise, the manager can determine that the I/0 request has
completed by examining the status value for the chain in
Manager_I0_Request_Data_And_Status.

If the ID_Request_Definition indicates that the original request was
from an Application-Function:

The element is removed from the Chain_Queue.

I0_Request_Data_And_Status is wupdated with the values of
Chain_Data_And_Status, as specified by the IO_Request_Definition.

If function was placed on the local wait queue at the request of
Request Initiation Processing :(4.1.1.1), the process determines
whether or not all chains for the 1/0 request have been proc-
essed. If they have, the process requests that the Application
Function be released from the local wait queue by issuing a
Wait_Request to lLocal Operating System. Otherwise, the request-
ing function can determine that the chain has completed by exam-
ining the status value for the chain in
I0_Request_Data_And_Status.



Process Name:

Chain Processing

Reference Number: 4.1.2

Identifier:

Build:

I0_System_Services.-
I0_User_Communication_Services-
Chain_Processing

3

Requirements Reference: (See subprocesses)

Inputs:
[ ]
®
[ ]
L ]
[ ]
®

Outputs:
[ ]
[
o
[
L J
®
o
[ ]

Notes:

Description:

I0_Data_Base.IO_Request_Definition.I0_Chain_DBefinition
Chain_Queue from I/0 Request Processing (4.1.1)
End_0Of_Chain_Status from I/0 Interface (4.1.3)
Input_Packet from I/0 Interface (4.1.3)
Transaction_Configuration_Data_Base from I/0 Interface
(4.1.3)

Current_Network_Partition_Definition from I/0 Interface
(4.1.3)

Local_IO_Status to Local System Services (3.)
Chain_Data_And_Status to I/0 Request Processing (4.1.1)
Chain_Queue to I/0 Request Processing (4.1.1)
Chain_Initiation_Command to I/0 Interface (4.1.3)
Current_Network_Partition_Definition to I/0 Interface
(4.1.3)

Output_Packet to I/0 Interface (4.1.3)
Transaction_Configuration_Data_Base to I/0 Interface
(4.1.3)

GPC_Subscriber_IO_Error_Log to GPC I/0 Network Manager
Support (4.1.4)

An instance of this process must exist at each proc-
essing site for each I/0 network that is accessible at
the processing site.

Queue Processing (4.1.2.1) must not interrupt Chain
Interface (4.1.2.3).

End Of Chain Monitor (4.1.2.2.2.1) may interrupt Queue
Processing (4.1.2.1).

This process sequentially processes the elements from the Chain_Queue
corresponding to its I/0 network. Each element initiates one of the
following services on the network:

° Communication with nodes or DIUs including automatic bypassing of
transactions which repeatedly cause errors,

3-11



e Selection of which transactions to perform within a chain of
transactions on the network,

e Clearing of Bypass for all transactions in selected chains on the
network, .

e Updating the network partitioning definition, and

e Switching the root link(s) (I/0 Interface (4.1.3)) connecting the
I/0 network to a processing site.

The above services are implemented by three subprocesses:
(1) Queue Processing

(2) Chain Completion Processing

(3) Chain Interface

"Queue Processing (4.1.2.1) initiates all requests for service on a
particular I/0 network. It implements selection of transactions,
clearing of Bypass for transactions, and updates to the
Current_Network_Partition_Definition., It initiates Chain Completion
Processing (4.1.2.2) and Chain Interface (4.1.2.3) to-implement com-
munication with nodes and DIUs, signaling I/0 Request Processing
(4.1.1) when the communication processing has been completed. It
coordinates processing between Chain Compietion Processing (4.1.2.2)
and Chain Interface (4.1.2.3) to implement the switching of root
links.

Chain Complietion Processing (4.1.2.2) monitors the I/0 Interfaces
(4.1.3) to complete the processing of a chain of transactions,
records errors that occurred during communications, and decides when
errors indicate that a root link should be switched.

Chain Interface (4.1.2.3) interfaces Queue Processing (4.1.2.1) with
I/0 Interface (4.1.3) to initiate chains of transactions on the net-
work and to switch root links.



Process Name: Queue Processing

Reference Number: 4.1.2.1

Identifier: I0_System_Services.-
I0_User_Communication_Services-
Chain_Processing.Queue_Processing

Build: 3

Requirements Reference: (See subprocesses)

Inputs:
. Chain_Queue
[ ] Current_Network_Partition_Definition
. I0_Data_Base.I0_Request_Definition.I0_Chain_Definition
° I0_Data_Base.Limits_Definition
° Chain_Complietion_Status from Chain Completion Process-
ing (4.1.2.2)
° Transaction_Configuration_Data_Base
Outputs:
. Chain_Queue
e Local_IO_Status to Local System Services (3.)
. Current_Network_Partition_Definition
[ ] Output_Packet
° Transaction_Confjguration_Data_Base to 1/0 Interface
(4.1.3) and Chain Completion Processing (4.1.2.2)
° Chain_Timeout_Value to Chain Completion Processing
(4.1.2.2)
e Activate_Chain to Chain Interface (4.1.2.3)
e Root_Link_Command to Chain Interface (4.1.2.3)
Notes: The Activate_Chain and Root_Link_Command data flows

must be nonobtrusive (asynchronous) to Chain Interface
(4.1.2.3). In other words, the implementation should

not interrupt this process.
Description:

This process implements the following services for a single I/0 net-
work:

. Selection of which transactions to perform within a chain of
transactions on the network,

° Clearing of Bypass for all transactions in selected chains on the
network, and

° Updating the network partition definition.

It also initiates the following services:
° Communication with nodes or DIUs, coordinating with Chain Inter-

face (4.1.2.3) and Chain Completion Processing (4.1.2.2) to

3-13



implement automatic retries and automatic switching of root links
via this service.

e Switching the root link(s) (I/0 Interface (4.1.3)) connecting the
I/0 network to a processing site.

The above is accomplished via six subprocesses:

(1) Sequencer

(2) Chain Initiation

(3) Root Link

(4) Bypass Clear

(5) Transaction Selection

(6) Network Partition

Sequencer (4.1.2.1.1) invokes the other subprocesses according to the

top element found in Chain_Queue. It also invokes Root 1link
(4.1.2.1.3) when requested by Chain Completion Processing (4.1.2.2)
for automatic root 1link switching and invokes Chain Initiation

(4.1.2.1.2) for automatic retry of communications to nodes or DIUs.

Chain Initiation (4.1.2.1.2) initiates communications to nodes or
DIUs and clears the Bypass for all transactions in chains that are
marked for bypass clearing . in ‘ the
Transaction_Configuration_Data_Base.

Root Link (4.1.2.1.3) chooses root links and initiates root link
switching.

Bypass Clear (4.1.2.1.4) marks chains of transactions for clearing of
their bypass states upon the next occurrence of the chain.

Transaction Selection (4.1.2.1.5) sets up the selection of trans-
actions to be performed in specified chains.

Network Partition (4.1.2.1.6) updates
Current_Network_Partition_Definition.

3-14



Process Name: Sequencer

Reference Number: 4.1.2.1.1

Identifier: I0_System_Services.-~
I0_User_Communication_Services.-
Chain_Processing.-
Queue_Processing.-
Sequencer

Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 2, paragraph 3 and section

3'1 '5

Inputs:
° Chain_Queue
° I0_Data_Base.l0_Request_Definition.IO_Chain_Definition
° I0_Data_Base.Limits_Definition
° Chain_Completion_Status from Chain Completion Process-
ing (4.1.2.2) -
e Root_Link_Status from Root Link (4.1.2.1.3)
Outputs:
. Chain_Queue
] Local_I0_Status
] Transaction_Queue_Element to Chain Initiation
(4.1.2.1.2)
e Root_Link_Queue_Element to Root Link (4.1.2.1.3)
e Bypass_Clear_Queue_Element to Bypass Clear (4.1.2.1.4)
° Selection_Queue_Element to Transaction Selection
(4.1.2.1.5)
° Network_Partition_Queue_Element to Network Partition
(4.1.2.1.86)
Notes: Processing by this process should not lock out proc-
essing by other processes (such as Request Initiation
Processing (4.1.1.1) and Request Completion Processing
(4.1.1.2)) due to accesses and references to
Chain_Queue data. This may be implemented by sema-
phores, a monitoring process, or some other mechanism
to control access to Chain_Queue data.
Description:

This process initiates the following services for its I/0 network:

° Communication with nodes or DIUs,

e Switching the root link(s) (I/0 Interface (4.1.3)) connecting the
I/0 network to a processing site,

. Clearing the Bypass for all! transactions in selected chains on
the network,



. Selection of which transactions to perform within a chain of
transactions on the network, and
e Updating the network partition definition.

No service is initiated until the previous service has completed.
When no service is in progress and the Chain_Queue is not empty, the
top element of the gueue is selected to determine which service to
initiate. The element also indicates the parameters to be used to
implement the service.

Communication to Nodes or DIUs is initiated by passing the
Chain_Queue element as a Transaction_Queue_Element to Chain Initi-
ation (4.1.2.1.2). The element is not removed from Chain_Queue by
this process. (It is removed by Request Completion Processing
4.1.1.2 after the service is completed.) Completion of the chain of
transactions is indicated by Chain_Completion_Status which has three
possible values (see also End of Chain I/0O Error Processing
(4.1.2.2.2.2)):

"Next_Chain" indicates that processing is completed. The process
sets the Chain_Complete data item in the Chain_Queue ele-
ment to “Chain_Complete'. If the communication request was
from a Network Manager (as indicated IQ_Chain_Definition
when indexed by the Chain_Identifier in the Chain_Queue
element), the Root_Link_Identifiers for the currently
active root links are added to the Chain_Queue element.
(This is why the element is not removed. It must remain on
the Chain_Queue for outputting data items to Request Com-
pletion Processing 4.1.1.2.) 1In any case, processing halts
until a new element appears at the top of the Chain_Queue
(See Request Completion Processing (4.1.1.2)).

"Switch_Root_Link_And_Next_Chain" indicates that, before completing
processing, the root link(s) should be switched. If the
communication request came from an I/0 Network Manager
4.2) (see Y“Next_Chain" above) and the
Manager_IO0_Request_Parameter {(Root_Link_Controi_Request)
indicates "Inhibit_Switching', the switch request is treat-
ed as if it were "Next_Chain'". Otherwise, the root link is
switched as described below and processing of the chain is
completed by assigning Root_Link_Identifiers and
Chain_Compete (see the description of "Next_Chain'", above).

There are three types of internal counters for root link
switching: one to count how many times a particular root
link is switched, one to count how many times all the root
links for a partition have been switched as a whole, and
one to count how may times a chain has been retried. The
retry counter is always initialized to zero when a new com-
munication is requested via a Chain_Queue element. Each
time a root link is to be switched, one or more counters
are incremented by one.



If the switch will cause a root link counter to exceed
Switching_Limit.Single_Link_Log_Limit (found in
Limits_Definition), this fact is logged with the current
time and Chain_Identifier, the counter is initialized to
zero. In this case, the root link will be switched. Proc-
essing continues as described in the next paragraph.

If the switch will cause a group counter to exceed
Switching_Limit.Rotation_Log_Limit (also found in
Limits_Definition), this fact is logged with the current
time and Chain_ldentifier, the counter is initialized to
zero. In this case, the root link will be switched. Proc-
essing continues as described in the next paragraph.

If there is another I/0 Interface (4.1.3) to use for the
given partition, the switch is initiated via
Root_Link_Queue_Element which indicates the partition of
the I/0 network which is to have its root link switched.
(The actual switch- does not occur if there is no alterna-
tive root link; there is no reason to switch from one root
link to itself.) After the root link is- switched, the new
Root_Link_ldentifier value indicated by Root_Link_Status is
stored.

"Switch_Root_Link_And_Repeat_Chain" indicates that the root 1link
should be switched and the same communication request
attempted again. (This status may be caused by the failure
of the I/0 Interface to win a contention.)

If the communication request came from a Network Manager
4.2) (see ""Next_Chain" above) and the
Manager_IO_Request_Parameter (Root_Link_Control_Request)
indicates "Inhibit_Switching”, the root 1link is not

. switched, the chain is not repeated, and the Chain_Queue
element is assigned values for Root_Link_Identifiers and
Chain_Complete (see 'Next_Chain', above).

Otherwise, the retry counter is incremented by one. If the
retry counter exceeds Switching_Limit.Retry_Limit (located
in Limits_Definition), the root link is not switched, the
chain is not repeated, and the Chain_Queue element is
assigned values for Root_Link_Identifiers and
Chain_Complete (see ''"Next_Chain', above).

Otherwise, processing to switch the I/0 Interface (4.1.3)
continues as described in '"Switch_Root_Link_And_Next_Chain"
above.

After the retry counter is incremented and the switch has
been performed (or skipped due to the lack of an alterna-
tive root 1link), the chain is repeated reissuing the
Transaction_Queue_Element. This causes a new value to be

returned for Chain_Completion_Status. '



Explicit root 1link switching is initiated by passing on a
Root_Link_Queue_Element. Additional processing includes storing the
Root_Link_Identifier indicated by Root_Link_Status and removing the
element from the Chain_Queue.

Marking of chains of transactions for bypass clearing is initiated by
passing on a Bypass_Clear_Queue_Element. Additional processing
includes removing the element from the Chain_Queue.

Selection of transactions to be performed within a chain is initiated
by passing on a Selection_Queue_Element. Additional processing
includes removing the element from the Chain_Queue.

Updating of the current network partition definition is initiated by
passing on a Network_Partition_Queue_Eliement. Additional processing
includes removing the element from the Chain_Queue.



Process Name: Chain Initiation

Reference Number: 4.1.2.1.2 )

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
Chain_Processing.~-
Queue_Processing.-
Chain_Initiation

Build: 3

Requirements Reference: POC System I/Q Services Functional Require-
ments, section 3.1.4.2 paragraph 1,. section
3.3.3

Inputs:

° I0_Data_Base.I0O_Request_Definition.I0_Chain_Definition
Transaction_Configuration_Data_Base
e Transaction_Queue_Element from Sequencer (4.1.2.1.1)

Outputs:
. Transaction_Configuration_Data_Base
. Output_Packet
° Chain_Timeout_Value to Chain Completion Processing
(4.1.2.2)
° Activate_Chain to Chain Interface {(4.1.2.3)

Notes: The Activate_Chain data flow must be nonobtrusive
(asynchronous) to Chain Interface (4.1.2.3). 1In other
words, the implementation should not interrupt this
process.

Description:

This process sets up the chain of transactions to be communicated on
the I/0 network. It initializes an Output_Packet for each trans-
action in the chain with data from Transaction_Queue_Element. The
number of transactions and packets and their identities are provided
by IO_Chain_Definition.

If the Transaction_Configuration_Data_Base indicates that the chain
is marked for bypass clearing (Bypass_Clear equals '"Clear"), this
process clears the Bypass (sets Bypass to "No') and 2zeros the
Transaction_Error_Counter for each transaction in the chain. Both
items are part of the Transaction_Configuration_Data_Base.

Finally, the ©process outputs the Chain_Timeout_Value (from
I0_Chain_Definition) to begin Chain Completion Processing (4.1.2.2).
Chain_Timeout_Value includes Chain_Identifier. This process also
outputs Chain_Identifier via Activate_Chain to begin the Chain Inter-
face (4.1.2.3) process.



Process Name: Root Link

Reference Number: 4.1.2.1.3

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
Chain_Processing.-
Queue_Processing.-

Root_Link
Build: 3
Requirements Reference: PQOC System I/0 Services Functional Require-

ments, section 4.1

Inputs:
e Root_Link_Queue_Element from Sequencer (4.1.2.1.1)
e Current_Network_Partition_Definition from I/0 Network
Manager (4.2)
Outputs:
o Root_Link_Command to Chain Interface (4.1.2.3)
e Root_Link_Status to Sequencer (4.1.2.1.1)

Notes: The Root_Link_Command data flow must be nonobtrusive
(asynchronous) to Chain Interface (4.1.2.3). In other
words, the implementation should not interrupt this
process.

Description:

This process computes how to switch root links, i.e., which I/0
Interface (4.1.3) to enable and which I/0 Interface to disable, and
implements the switch via Chain Interface (4.1.2.3). The computation
is based on the the Root_Link_Identifier (s) specified by
Root_Link_Queue_Element or a rotating choice of one of the alternate
root links specified by the Current_Network_Partition_Definition.
The Root_Link_Identifier(s) selected is communicated to Sequencer
(4.1.2.1.1) via Root_Link_Status.

3-20



Process Name: Bypass Clear

Reference Number: 4.1.2.1.4

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
Chain_Processing.-
Queue_Processing.-
Bypass_Clear

Build: 3

Requirements Reference: PQC System I/0 Services Functional Require=
ments, section 3.3.3

Inputs:

e Bypass_Clear_Queue_Element from Sequencer (4.1.2.1.1)
Outputs:

° Transaction_Configuration_Data_Base
Notes: None

Description:
This process marks the Bypass_Clear flag in

Transaction_Configuration_Data_Base for each chain indicated by
Chain_Ildentifier in Bypass_Clear_Queue_Element.

3-21



Process Name: Transaction Selection

Reference Number: 4.1.2.1.5

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
Chain_Processing.-
Queue_Processing.-
Transaction_Selection

Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 3.3.2

Inputs:

e Selection_Queue_Element from Sequehcer (4.1.2.1.1)
OQutputs:

° Transaction_Configuration_Data_Base
Notes: None

Description:

This process latches the Selection indicators in
Transaction_Configuration_Data_Base to 'Select'" or "Skip'" as speci-
fied for each transaction specified in Transaction_Queue_Element.

The operation of latching a transaction Selection indicator to
"Select" also causes the Bypass to be <cleared and the
Transaction_Error_Counter to be 2zeroed. Both of these items also are
in Transaction_Configuration_Data_Base.

3-22



Process Name: Network Partition

Reference Number: 4.1.2.1.6

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
Chain_Processing.-
Queue_Processing.-
Network_Partition

Build: 3
Requirements Reference: POC System I/0 Services Functional Require-
ments, section 4.2.1.2
Inputs:
Y Network_Partition_Queue_Element from Sequencer

(4.1.2.1.1)

Outputs:

° Current_Network_Partition_Definition to Root Link
(4.1.2.1.3) and I/0 Interface (4.1.3) and Chain Com-
pletion Processing (4.1.2.2)

Notes: None
Description:

This process updates the Current_Network_Partition_Definition.
Network_Partition_Queue_Element provides the list new assignments of
nodes and DIUs to I/0 Interfaces (4.1.3).

3-23



Process Name: Chain Completion Processing

Reference Number: 4.1.2.2

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
Chain_Processing.-
Chain_Complietion_Processing

Build: 3

Requirements Reference: (See subprocess descriptions below.)

Inputs:

Current_Network_Partition_Definition
End_Of_Chain_Status

Input_Packet
I0_Data_Base.I0_Request_Definition.I0_Chain_Definition
I0_Data_Base.Limits_Definition
Transaction_Configuration_Data_Base
Chain_Timeout_Value from Queue Processing (4.1.2.1)

Outputs:

GPC_Subscriber_I0_Error_Log
Transaction_Configuration_Data_Base
Chain_Data_And_Status to I/0 Request Processing (4.1.1)
Chain_Completion_Status to Queue Processing (4.1.2.1)

Notes: This process may be interrupted by either the Chain
Interface (4.1.2.3)  process or an internal timer
interrupt.

Description:

This process logs errors that occur during a communication service,
produces the data and status resulting from the service, and indi-
cates to Queue Processing (4.1.2.1) when errors indicate that a root
link should be switched and when a communication attempt has termi-
nated.

The above is accomplished via two subprocesses:

(1) Data/Status Processing

(2) Chain Status Processing '

Data/Status Processing (4.1.2.2.1) collects data and status for each
transaction to create Chain_Data_And_Status.

Chain Status Processing (4.1.2.2.2) records error information, com-
putes when to automatically bypass transactions, controls Data/Status
Processing (4.1.2.2.1), and notifies Queue Processing (4.1.2.1) of
the Chain_Completion_Status.

3-24



Process Name: Data/Status Processing

Reference Number: 4.1.2.2.1

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
Chain_Processing.-
Chain_Completion_Processing.=-
Data_Status_Processing

Build: 3

Requirements Reference: POC System I/0 Services Functional Require=
ments, section 3.2.2

Inputs:

Input_Packet

Transaction_Configuration_Data_Base
Current_Network_Partition_Definition
I0O_Data_Base.IO_Request_Definition.I0_Chain_Definition
Chain_ldentifier from Chain Status Processing
(4.1.2.2.2) '

Transaction_Status from Chain Status Processing
(4.1.2.2.2)

e Chain_Status from Chain Status Processing (4.1.2.2.2)

Outputs:
e Chain_Data_And_Status to I/0 Request Processing (4.1.1)
e Packet_Status to Chain Status Processing (4.1.2.2.2)
‘e Chain_Transaction_Status to End Of Chain I/0 Error Pro-
cessing (4.1.2.2.2.2)
Notes: None

Description:

This process collects data and status for each transaction of a chain
to create Chain_Data_And_Status. It is initiated by Chain Status
Processing (4.1.2.2.2).

Each Input_Packet is made source congruent before it is used. Source
congruency is performed based on the
Current_Network_Partition_Definition such that, for each transaction,
an Input_Packet is selected from the channel connected to the I/0
Interface (4.1.3) that actually performed, or attempted to perform,
the transaction. This process produces Packet_Status from
Input_Packet.

Frame_Protocol_Error_Indicator and Transaction_Timeout_Indicator are
copied directly from Input_Packet.Interface_Status.

3-25




Incorrect_Message_Length_Indicator is set if
Input_Packet.Frame_Length does not match the expected vaiue of
Frame_Length in I0_Data_Base for the transaction.

Address_Mismatch_Indicator is set if Input_Packet.Network_Address
does not match the expected value of Network_Address in IO_Data_Base
for the transaction.

For Response Frames from DIUs, Encoded_Address_Indicator is set if
the values of Input_Packet.Network_Address and the Encoded_Address
(found in Input_Packet.Data) do not correspond.

Finally, the Residual_Bit_Count_Indicator is set if
Input_Packet.Interface_Status.Residual_Bit_Count does not match the
expected value of Residual_Bit_Count in I0_Data_Base for the trans-
action.

A Transaction_Status is received for each Packet_Status. The data
from each Input_Packet is combined with the Bypass_Indicator and
Comfault_Indicator indicated by Transaction_Status and collected in
Chain_Data_And_Status.

This process uses Chain_Status plus error information about each
transaction in the <chain to form Chain_Transaction_Status.
Chain_Transaction_Status indicates whether any transactions were per-
formed; and if there were, whether there were no errors in the chain,
at least one error, or errors in all transaction in the chain.

3-26



Process Name: Chain Status Processing

Reference Number: 4.1.2.2.2

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
Chain_Processing.~
Chain_Completion_Processing.-
Chain_Status_Processing

Build: 3
Requirements Reference: PQC System I/0 Services Functional Require=
ments, section 3.1.4.4.2, 3.2.2, 5.1.1.1,
and 5.1.1.2
Inputs:
° Current_Network_Partition_Definition
® End_0Of_Chain_Status
] I0_Data_Base.I0_Request_Definition.I0_Chain_Definition
. I0_Data_Base.Limits_Definition
. Transaction_Configuration_Data_Base
e Chain_Timeout_Value from Queue Processing (4.1.2.1)
e Packet_Status from Data/Status Processing (4.1.2.2.1)
° Chain_Transaction_Status from Data/Status Processing
(4-1 02.201)
Outputs:
® GPC_Subscriber_IO_Error_Log
° Transaction_Configuration_Data_Base
e Chain_Completion_Status to Queue Processing (4.1.2.1)
) Chain_Identifier to Data/Status Processing (4.1.2.2.1)
. Transaction_Status to Data/Status Processing
(4.1.2.2.1)
Notes: None

Description:

This process controls Data/Status Processing (4.1.2.2.1), records
error information for a chain of transactions, computes when to auto-
matically bypass transactions, and notifies Queue Processing
(4.1.2.1) of the Chain_Completion_Status. '

The above is impiemented via two subprocesses:

(1) End of Chain Monitor

(2) End of Chain I/0 Error Processing

End of Chain Monitor (4.1.2.2.2.1) monitors End_Of_Chain_Status to

determine when a chain of transactions has been completed and assures
that this data is source congruent.

3-27



End of Chain I/O Error Processing (4.1.2.2.2.2) implements the
remainder of this process when prompted by End of Chain Monitor
(4.1.2.2.2.1) .

3-28



Process Name End Of Chain Monitor

Reference Number: 4.1.2.2.2.1

Identifier: I0_System_Services.-
I0_User_Communication_Services.
Chain_Processing.Chain_Completion_Processing.=-
Chain_Status_Processing.End_0Of_Chain_Monitor

Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 3.2.2

Inputs:
. Chain_Timeout_Value from Queue Processing (4.1.2.1)
e End_Of_Chain_Status from I/0 Interface (4.1.3)
] Current_Network_Partition_Definition
Outputs:
. Completion_Status to End Of Chain I/0 Error Processing
(4.1.2.2.2.2)
e Chain_Status to Data/Status Processing (4.1.2.2.1)
Notes: None
Description:

This process generates a value for Completion_Status based on the
reception of End_Of_Chain_Status and the state of an internal timer.
The timer is started upon the reception of Chain_Timeout_Value.

End_Of_Chain_Status is made congruent when it is received. If the
chain was executed on an I/0 network that currently has more than one
partition, the End_Of_Chain_Status values for each partition are used
to initialize Completion_Status. The congruent version of
End_Of_Chain_Status is output as Chain_Status. :

If Chain_Complete occurs while the internal timer is running, the
timer is turned off and Completion_Status is set to Chain_OK.

If Chain_Complete occurs when the internal timer is not running,
Complietion_Status is set to Unexpected_Chain_Compliete. (This indi-
cates the detection of a '"bus busy'" condition while this GPC was not
using the network.)

If the internal timer expires before Chain_Complete is received,
Completion_Status is set to Chain_Timeout.

In the case of a partitioned network, this process monitors all
active partitions for completion.

3-29



This process also gets Chain_ldentifier from Chain_Timeout_Value and
outputs Chain_Identifier in Completion_Status.

\

DO forever >

/.

Wait until Chain_
Timeout_Value
received OR
Chain_Complete
received

IF Chain_ \

Timeout_Value >
received /

Perform End
Of Chain I/0

WAIT UNTIL
timeout
expired OR
Chain_Complete
received

IF timeout \

expired >

/

Indicate
Chain_Timeout
for partition
not completed
in
Completion_
Status

Clear
pending
timeout

Error
Processing
(4.1.2.2.2.2)

Indicate
Unexpected_
Chain_Complete
in Completion_
Status

Indicate
Chain_OK in
Completion_
Status

Figure 3-2. End Of Chain Monitor

3-30




Process Name End Of Chain I/0 Error Processing

Reference Number: 4.1.2.2.2.2

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
Chain_Processing.~
Chain_Completion_Processing.=-
Chain_Status_Processing.
End_Of_Chain_IO_Error_Processing

Build: 3
Requirements Reference: POC System I/0 Services Functional Require-
ments, section 3.1.4.4.2, 3.2.2, 65.1.1.1,
and 5.1.1.2
Inputs:
° Completion_Status from End of Chain Monitor

(4.1.2.2.2.1)

Packet_Status from Data/Status Processing (4.1.2.2.1)
Transaction_Configuration_Data_Base
I0_Data_Base.Limits_Definition
I10_Data_Base.Il0_Request_Definition.I0_Chain_Befinition
Current_Network_Partition_Definition
Chain_Transaction_Status from Data/Status Processing
(4.1.2.2.1)

Outputs:

Transaction_Status to Data/Status Processing
(4.1.2.2.1)

Chain_ldentifier to Data/Status Processing (4.1.2.2.1)
Chain_Completion_Status to Queue Processing (4.1.2.1)
Update to Transaction_Configuration_Data_Base

Update to GPC_Subscriber_IO_Error_Log

Notes: None
Description:
This process is initiated by the reception of Completion_Status.

Based on the values of Completion_Status and
Chain_Transaction__Status, one of four cases is performed.

(1) When Completion_Status indicates an Unexpected_Chain_Complete,
case 1 is performed.

{2) When Completion_Status indicates Chain_Timeout or

Chain_Transaction_Status indicates No_Transactions_Performed,
case 2 is performed.

3-31



(3) When Completion_Status indicates Chain_0OK and
Chain_Transaction_Status indicates that at least one transaction
has an error, case 3 is performed.

(4) When Completion_Status indicates Chain_0OK and
Chain_Transaction_Status indicates that there were no errors
among all the performed transactions, case 4 is performed.

Based on Completion_Status and
Limits_Definition.Transaction_Error_Count_Limit, the process sets the
value of Chain_Completion_Status to one of the following:

"Switch_Root_Link_And_Repeat_Chain" -- This is the case in which
the GPC was unable to win a contention for the network for this
running of the chain. On the assumption that this indicates a
root link problem, the chain should be performed on another root
link. In the event that the reason the GPC could not gain access
to the network was a network-wide problem, such as a transmitter
being stuck at one, the assumption is that the Network Manager
will soon restore the network, and extra root link switches will
be benign.

"Switch_Root_Link_And_Next_Chain'' =-- This is the case in which
the GPC succeeded in winning a contention for the network, but
was unable to perform any transaction in the chain successfully.
A root link switch is performed in case the winning of the con-
tention was allowed by a failure, such as the GPC's receiver for
the active root link being stuck at zero. However, the chain is
not retried automatically because it is possible that one or more
of the errored transactions was an output that was actually per-
formed, but there was an error on the expected acknowledgment.
It might be dangerous to repeat the output, so the impetus for
doing so is left to the caller.

“"Next_Chain'" =-- This case comprises the situation in which no
errors were detected, and the situation in which some trans-
actions had errors and others were error free; that is, the situ-
ations in which at least one transaction was performed without
error. In these situations it is most unlikely. that a root link
switch would accompliish anything.

This process obtains a value of Chain_Identifier as part of
Compietion_Status to indicate the identity of the chain being proc-
essed. It also outputs Chain_ldentifier to Data/Status Processing
4.1.2.2.1).

Transaction_Status for each packet is set based on
Completion_Status.Chain_Status and Packet_Status. This includes set-
ting the Bypass_Indicator with the

Transaction_Configuration_Data_Base.Bypass value for the transaction.
Transaction_Configuration_Data_Base components for each transaction,

including Transaction_Error_Counter, Bypass, and
Error_Process_Inhibit, are modified according to their previous val-

3-32



ues, - Bypass_Enabled, Packet_Status, and
Transaction_Error_Counter_Limit. Bypass_Enabled is specified in
I0_Data_Base for each transaction; it indicates whether or not the
transaction was defined with the '"no transaction bypass' option.

GPC_Subscriber_IO_Error_Log is updated according to modifications

made to Transaction_Configuration_Data_Base and the values of
Chain_Completion_Status.

3-33



DO CASE on
error status
information

\
/

>

Case 1 [Update GPC_ .
Subscriber_
I0_Error_Log
DO FOR all \

Case 2 [transactions \ Set

that should >—me———— Transaction_
have been / Status
performed /
Indicate Switch_ Update GPC_
Root_Link_And_ Subscriber_
Repeat_Chain I0_Error_Log
Perform

Case 3 |[Transaction
Status/Bypass/

Switch
(Figure 3-4 )

Case 4 {DO FOR all \ Ciear Transaction_
transactions >—————— Status
performed / Clear Transaction_

Error_Counter
Clear Error_’
Process_
Indicate Inhibit
Next_Chain

Figure 3=3. End Of Chain I/0 Error Processing

3-34




DO FOR all \

IF error \

every

performed /

transaction /

occurred on \

transactions \ Set
on which >— Transaction_
error / Status
occurred /

IF Error_ \
IF single \ Process_ \ Increment
transaction > Inhibit not >—Transaction_
performed / set / Error_Counter
= / s

IF \

Transaction_\

Error_Count_ >
Limit /
reached /
e

Perform
Transaction
Bypass
(Figure 3-7 )

Indicate
Switch_Root_
Link_And_
Next_Chain

~.
P

Indicate Switch_
Root_Link_And_
Next_Chain

Perform

Mixed
Transaction
Failures
(Figure 3-5 )

Figure 3—4. Transaction/Bypass/Switch

3-35




IF Error_ \
DO FOR each\ Process_ \ Increment
transaction >——Inhibit >——Transaction_
with error / not set / Error_Counter
/
IF \
Transaction_ \ Perform Count
Error_Count_ > Reached Limit
Limit / (Figure 3-6 )
reached /
DO FOR each \ Clear Transaction_
transaction \ Status Update GPC_
performed >—-i Clear Transaction_ Subscriber_
without / Error_Counter I0_Error_Log
error / Clear Error_
‘ Process_
Inhibit

Figure 3-5. Mixed Transaction Failures

3-36



IF this is
eariiest
transaction
in chain to
reach limit
on this
running of
the chain

Perform

Transaction
Bypass
(Figure 3-7 )

Update GPC_

Error_Log

Subscriber_IO0_

Figure 3—6. Count Reached Limit

IF Bypass_ \
Enabled
/

Set

Bypass

Set Error_

Update GPC_
Subscriber_
IO_Error_Log

Process_
Inhibit_

Update GPC_
Subscriber_
I0_Error_Log

Figure 3-7. Transaction Bypass

3-37




Process Name: Chain Interface
Reference Number: 4.1.2.3
Identifier: I0_System_Services.-
. I0_User_Communication_Services.-
Chain_Processing.-
Chain_Interface

Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, Section 3.1.4.2

Inputs:

. Activate_Chain from Queue Processing (4.1.2.1)
* Root_Link_Command from Queue Processing (4.1.2.1)

Outputs:
e Chain_Initiation_Command to I/0 Interface (4.1.3)

Notes: The implementation of this process must not be inter-
rupted. The process monitors all inputs to detect
when they change. This process may control other pro-
cesses via interrupt signals

Description:

This process controls the access of Queue Processing (4.1.2.1) to I/0
Interface (4.1.3). :

It causes I/0 Interface {4.1.3) to perform a chain of transactions by
passing the Chain_Identifier, indicated by a new .value in
Activate_Chain, and the Root_Link_Identifiers, indicated by the last
value received for Root_Link_Command, as Chain_Initiation_Command.
The Root_Link_Identifiers indicate the active root link(s) for this
I/0 network.

3-38



Root_Link_ \
Command has
new value /

Activate_Chain \
indicates a new
Chain_lIdentifier /

D—D>

De—>>

Record
identifiers of
active

root links

Produce Chain_
Initiation_
Data

Figure 3-8. Chain Interface (4.1.2.3)

3-39




Process Name: I/0 Interface
Reference Number: 4.1.3

Identifier: I0_System_Services.-
I0O_User_Communication_Services.-
IO_Interface

Build: 3

Requirements Reference: POC System I/0 Services Functional Require=
ments, section 7

Inputs:
. I0O_Data_Base.I0_Request_Definition.I0O_Chain_Definition
] Chain_Initiation_Command from Chain Processing (4.1.2)
. Current_Network_Partition_Definition from Chain Proc-
essing (4.1.2)
] Output_Packet from Chain Processing (4.1.2)
. Transaction_Configuration_Data_Base from Chain Process-
ing (4.1.2) R
e Response_Frame from DIU and Node (4.1.5)
Outputs:
e End_0Of_Chain_Status to Chain Processing (4.1.2)
e Input_Packet to Chain Processing (4.1.2)
e (Command_frame to DIU and Node (4.1.5)
Notes: An instance of this process must exist for each I/0

network connected to a GPC.
Description:

This process implements the performance of a chain of transactions to
one or more DIUs or Nodes (4.1.5). The Chain_Identifier of the chain
to be performed is specified by Chain_Initiation_Command. This input
also specifies the root link processes that are to perform the chain.
Data to be sent to each individual Node (4.1.5) or DIU is specified
by an Output_Packet and communicated via Command_Frame. Data to be
received from each Node (4.1.5) or DIU is received as a
Response_Frame and stored as an Input_Packet. The completion status
of a chain of transactions is specified in End_Of_Chain_Status.
Other inputs are used by the various subprocesses to implement the
above service.

The subprocesses include:
(1) Interface Initial Processing
(2) Interface Completion Processing

(3) Contention Processing

3-40



(4) Frame Transmitter
(5) Frame Receiver

Interface Initial Processing (4.1.3.1) sets up the other subprocesses
and initiates the performance of a chain of transactions.

Interface Completion Processing (4.1.3.2) collects data and status
from the performance of each transaction and the chain as a whole to
produce the outputs End_Of_Chain_Status and Input_Packet.

Contention Processing (4.1.3.3) gains access to the I/0 network for
this process.

Frame Transmitter (4.1.3.4) transmits each Command_Frame.
Frame Receiver (4.1.3.5) receives each Response_Frame.

The last four subprocesses exist as a unit for each connection of a
GPC to an I/0 network and are known as root link processes. Each set
is identified by a Root_Link_Identifier. These processes are per-
formed in sequence as set up by Interface 1Initial Processing
(4.1.3.1).

For the general case of chain performance, Contention Processing
(4.1.3.3) (if used) is usually first. If completed successfully, it
is followed by Frame Transmitter (4.1.3.4) and Fframe Receiver
(4.1.3.5) (if needed) for each transaction. 1Interface Completion
Processing (4.1.3.2) is invoked in parallel with each Frame Receiver
(4.1.3.4) invocation and may be invoked after the other subprocesses
as well. It should be invoked at least once to produce
End_Of_Chain_Status tdé indicate the outcome of Contention Processing
(4.1.3.3).

3-41



Process Name: Interface Initial Processing

Reference Number: 4.1.3.1

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
I0_Interface.-
Interface_Initial_Processing

Build: 3
Requirements Reference: POC System I/0 Services Functional Require-
ments, section 7
Inputs:
. Current_Network_Partition_Definition
° I0_Data_Base.I0_Request_Definition.I0_Chain_Definition
. Output_Packet
o Transaction_Configuration_Data_Base
e Chain_Initiation_Command from Chain Processing (4.1.2)
Outputs:
. End_Of_Chain_Status_Identifier to Interface Compietion
Processing (4.1.3.2)
° Command_Frame_Status to Interface Completion Processing
(4.1.3.2)
e Contention_Data to Contention Processing (4.1.3.3)
° HDOLC_Program to Frame Transmitter (4.1.3.4)
e QOutput_Packet_Identifier to Frame Transmitter (4.1.3.4)
e Receiver_State to Frame Recejver (4.1.3.5)
Notes: None.

Description:

This process sets up the other I/0 Interface (4.1.3) subprocesses to
perform a chain of transactions to Nodes (4.1.5) or DIUs and initi- -
ates the performance of the chain.

The above is accomplished via the following subprocesses:

(1) Interface Chain Setup

(2) Interface Transaction Setup

Interface Chain Setup (4.1.3.1.1) sets up the root link processes for
the chain of transactions in general. It also decides whether or not
to set up the performance for each transaction in the chain.
Interface Transaction Setup (4.1.3.1.2) sets up the root link proc-
esses Frame Transmitter (4.1.3.4), Frame Receiver (4.1.3.5), and

Interface Completion Processing {(4.1.3.2) for each individual trans-
action, as directed by Interface Chain Setup (4.1.3.1.1).

3-42



Process Name: Interface Chain Setup

Reference Number: 4.1.3.1.1

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
I0_Interface.-
Interface_Initial_Processing.-
Interface_Chain_Setup

Build: 3

Requirements Reference: PQC System I/0Q Services functional Require-
ments, section 7

Inputs:

Current_Network_Partition_Definition
I0_Data_Base.IO_Request_Definition.I0O_Chain_Definition
Output_Packet

Transaction_Configuration_Data_Base
Chain_Initiation_Command from Chain Processing (4.1.2)

Outputs:

J Interface_Transaction_Data to Interface Transaction
Setup (4.1.3.1.2)

End_Of_Chain_Status_Identifier to Interface Completion
Processing (4.1.3.2)

Contention_Data to Contention Processing (4.1.3.3)
HDLC_Program to Frame Transmitter (4.1.3.4)
Receiver_State to Frame Receiver (4.1.3.5)

Notes: None
Description:

This process sets up the root link processes to perform the chain of
transactions, decides whether or not to set up each transaction in
the chain, and directs Interface Transaction Setup (4.1.3.1.2) appro-
priately. It then initiates the performance of the chain.

Contention_Data communicates the Contention_Priority to be used by
Contention Processing (4.1.3.3) and the Contention_Limit, the number
of times the contention should be attempted before it is considered
failed.

HDLC_Program sets up Frame Transmitter (4.1.3.4) to communicate
Command_Frames for Nodes (4.1.5) or Command_Frames for DIUs.

Receiver_State sets up Frame Receiver (4.1.3.5) to start or stop
accepting Response_Frames. It is set up to start receiving frames
before the first transaction is performed and to stop receiving
frames after the last transaction has been completed.

3-43



Interface_Transaction_Data provides the data to Interface Transaction
Setup (4.1.3.1.2) for each individual transaction. It communicates
the identity of the Qutput_Packet used to initiate the transaction,
the identity of the Input_Packet if a response frame is expected, the
identity of the root link(s) to be set up, and either a Timeout_Value
for determining when a transaction has failed due to the failure of a
Response_Frame or a Time_Pad for determining how long to delay proc-
essing within a root link. These data items are indicated for each
transaction by the I0_Chain_Definition specified by
Chain_Initiation_Command. The IO_Chain_Definition also identifies
each transaction within the chain.

The. decision concerning each transaction is determined as follows:

. Processing for a particular transaction in the appropriate root
link processes should be rearranged only if the conditions dic-
tating the arrangement have changed since the last time they were
examined. This rearrangement is performed by Interface Trans-
action Setup (4.1.3.1.2).

° Processing for this transaction in the appropriate root link pro-
cesses is arranged so that this transaction will be performed
when the chain is performed if and only if:

- The value of Bypass 1is 'No'" as indicated by the
Transaction_Configuration_Data_Base, )

- The value of Select is '"Yes" as indicated by the
Transaction_Configuration_Data_Base, and

= The Network_Address specified by the Output_ Packet for the
transaction is reachable from the root link. This is indi-

- cated ‘by indexing the Current_Network_Partition_Definition

with the Network_Address.

Otherwise, processing for this transaction in the appropriate
root link processes is arranged so that this transaction will not
be performed when the chain is performed.

e The processing for this transaction in the appropriate root link
processes is replaced by a delay if and only if:

— The network is partitioned into more than one partition,

- The value of Bypass is 'Yes" as indicated by the
Transaction_Configuration_Data_Base,

- The value of Select is '"Yes" as indicated by the
Transaction_Configuration_Data_Base, and

—= The Network_Address specified by the Output_Packet for the
transaction is reachable from the root link. This is indi-
cated by indexing the Current_Network_Partition_Definition
with the Network_Address.

If the transaction is to be performed, the pertinent transaction
data, i.e., Output_Packet_Identifier, and, if needed,
Input_Packet_Identifier and Timeout_Value, are included in
Interface_Transaction_Data.

3-44



If a transaction is to be replaced by a delay, only the Time_Pad
value is included in Interface_Transaction_Data.

If a transaction is not to be performed, no data need be transferred
via Interface_Transaction_Data.

After setup has been completed, the performance of the chain is ini-
tiated only in the root 1ink processes indicated by
Chain_Initiation_Command (i.e., only the root links which are active
for this particular 1I/0 network).

3-45



Process Name: Interface Transaction Setup

Reference Number: 4.1.3.1.2

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
I0_Interface.-
Interface_Initial_Processing.-
Interface_Transaction_Setup

Bui ld: 3

Requirements Reference: POC System I/0 Services Functional Require=
ments, section 7

Inputs:

° Interface_Transaction_Data from Interface Chain Setup
(4.1.3.1.1)

Outputs:
e Output_Packet_Identifier to Frame Transmitter (4.1.3.4)
° Command_Frame_Status to Interface Completion Processing
(4.1.3.2)
Notes: None
Descr.iption:

As directed by Interface Chain Setup (4.1.3.1.1), this process
arranges the processing for individual transactions in the appropri-
ate root link processes (i.e., Frame Transmitter (4.1.3.4), Frame
Receiver (4.1.3.5), and Interface Completion Processing (4.1.3.2)).
There are three processing options for a transaction:

. Perform the transaction when the chain is performed,

e Perform a delay (Time_Pad) instead of performing the transaction
when the chain is performed, and

e Skip the transaction when the chain is performed.

One option is chosen for a transaction based on the input from
Interface_Transaction_Data.

If Interface_Transaction_Data includes an Output_Packet_Identifier,
the processing for this transaction, in the root link processes spec-
ified by the Root_Link_Identifier(s) in the input, is set up so that
the transaction will be performed when the chain is performed. Spe-
cifically, the Qutput_Packet_Identifier is set up for the appropriate
Frame_Transmitters (4.1.3.4).

If the input includes a Timeout_Value and an Input_Packet_Identifier,
these items are set up, via Command_Frame_Status, for the appropriate

3-46



Interface Completion Processing (4.1.3.2) processes specified by the
Root_Link_Identifier(s) in the input.

If the input. includes a Time_Pad value, the processing for this tran-
saction, in the root 1ink processes specified by the
Root_Link_Identifier(s) in the input, is set up so that a delay will
occur instead of the transaction when the chain is performed.

If the input does not include values for Output_Packet_Identifier or
Time_Pad, the processing for this transaction, in the root link proc-
esses specified by the Root_Link_Identifier(s) in the input, is set
up so that the transaction is skipped when the chain is performed.

3-47



Process Name: Interface Completion Processing
Reference Number: 4.1.3.2

Identifier: I0_System_Services.-
I0_User_Communication_Services.=-
I0_Interface.-
Interface_Completion_Processing

Build: 3

Requirements Reference: POC System I/0 Services Functional Require-

ments, section 7

Inputs: .
e Command_frame_Status from Interface Initial Processing
(4.1.3.1)
[ End_Of_Chain_Status_Identifier from Interface Initial
Processing (4.1.3.1)
e Contention_Status from Contention Processing (4.1.3.3)
° Response_Frame_Data_And_Status from Frame Receiver
(4.1.3.5)
Outputs:
] End_Of_Chain_Status
° Input_Packet
Notes: This process, Frame Transmitter (4.1.3.4), Frame

Receiver (4.1.3.5), and Contention Processing
(4.1.3.3) form the root link processes. There is one
set of these processes for each connection between an
I/0 network and a GPC.

Description:

This process produces the End_Of_Chain_Status and Input_Packets for
the chain.performed via this root link. It consists of the subproc-
esses:

(1) Interface Chain Completion

(2) Interface Response Frame Processing

Interface Chain Completion (4.1.3.2.1) produces the
End_Of_Chain_Status for the chain performed via this root link.

Interface _Response Frame Processing (4.1.3.2.2) produces

Input_Packet(s), if appropriate, for the transactions performed via
this root link.

3-48



Process Name: Interface Chain Completion

Reference Number: 4.1.3.2.1

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
I0_Interface.-
Interface_Completion_Processing.-~
Interface_Chain_Completion

Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 7

Inputs:

'Y End_Of_Chain_Status_Identifier from Interface Initial
Processing (4.1.3.1)

e Contention_Status from Contention Processing (4.1.3.3)

® Interface_Transaction_Status from Interface Response
Frame Precessing (4.1.3.2.2)

Outputs:

) End_Of_Chain_Status to Chain Processing (4.1.2)

Notes: This process, Frame Transmitter (4.1.3.4), -Frame
Receiver (4.1.3.5), Contention Processing (4.1.3.3),
and Interface Response Frame Processing (4.1.3.2.2)
form the root link processes. There is one set of
these processes for each connection between an I/0
network and a GPC.

Description:

This process computes the End_Of_Chain_Status based on

Contention_Status and the Interface_Transaction_Status for each tran-
saction that was performed in the chain.

The Interface_Transaction_Status for the performed transactions are
used to compute the End_Of_Chain_Status values for
All_Transactions_Failed_Indicator and
At_Least_One_Transaction_Failed_Indicator.

Chain_Not_Processed_Indicator in End_Of_Chain_Status is used to indi-
cate whether or not any transactions in the chain were attempted.
This is based on whether or not Contention Processing (4.1.3.3) suc-
ceeded, as indicated by Contention_Status. If this indicates that
contention failed, it is assumed that no transactions were performed.

The Bus_Error indicator in Contention_Status is also used to set the
\Bus_Error indicator in End_Of_Chain_Status.

3-49



When'all processing is completed, the Chain_Complete indicator in
End_Of_Chain_Status is set to indicate that the chain of transactions
has been completed.

3-50



Process Name: Interface Response Frame Processing

Reference Number: 4.1.3.2.2

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
I0_Interface.-
Interface_Completion_Processing.-
Interface_Response_Frame_Processing

Build: 3

Requirements Reference: PQC System I/0 Services Functional Require-
ments, section 7

Inputs:

° Response_Fframe_Data_And_Status from Frame Receiver
(4.1.3.5)

° Command_Frame_Status from Interface Command Frame Proc-
essing (4.1.3.2.1)

Outputs:
] Input_Packet
. Interface_Transaction_Status to Interface Initial Proc-
essing (4.1.3.1)
Notes: This process, Fframe Transmitter (4.1.3.4), Frame

Receiver (4.1.3.5), Contention Processing (4.1.3.3),
and Interface Chain Completion (4.1.3.2.1) form the
root link processes. There is one set of these proc-
esses for each connection between an I/0 network and a
GPC.

Description:

This process creates Input_Packets for transactions expectjng
responses and controls the timing between frame transmissions through
the use of delays.

If Command_Frame_Status includes a Timeout_Value and an
Input_Packet_Identifier, this process produces an Input_Packet.

Otherwise, Command_frame_Status includes only a Time_Pad value. In
this case, processing is delayed for the length of time specified by
Time_Pad and no outputs are produced.

If an Input_Packet is to be produced, a timer is set. If the timer
runs out before Response_Frame_Data_And_Status is received,
Interface_Transaction_Status is set to indicate 'Failed" and the
Input_Packet indicated by Input_Packet_Identifier is updated to indi-
cate a Response_Frame timeout.

3-51



Otherwise, Response_Frame_Data_And_Status is transformed into
Input_Packet. If the status portion of this input indicates a legal
frame, then Interface_Transaction_Status is set to indicate '"Success-
ful".

3-582



Process Name: Contention Processing

Reference Number: 4.1.3.3

Identifier: I0_System_Services.-
I0_User_Communication.I0O_Interface.-
Contention_Processing

Bui ld: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 7

Inputs:

° Contention_Data from Interface Initial Processing
(4.1.3.1)

Outputs:
° Contention_Status to Interface Completion Processing
(4.1.3.2) '

Notes: ~ Instances of this process communicate via
Contention_Signals transmitted across the I/0 Network

This process, Frame Transmitter (4.1.3.4), Frame
Receiver (4.1.3.5), and Interface Completion Process-
ing (4.1.3.2) form the root link processes. There is
one set of these processes for each connection between
an I/0 network and a GPC.

Description:

This process contends for the I/0 network to provide exclusive use of
the network by the GPC. Contention is based on the
Contention_Priority specified by Contention_Data.

If the process has not won the contention for the network after
Contention_Data.Maximum_Attempts, it returns a Contention_Status
value of 'Failed". Otherwise, when it wins the contention, it
returns a Contention_Status value of '"Success'.

If the process detects the bus busy or stuck-on-high condition, this
information is indicated in Contention_Status.

3-53



Process Nameﬁ Frame Transmitter
Reference Number: 4.1.3.4

Identifier: I0O_System_Services.-
I0_User_Communication_Services.
I0_Interface.-
Frame_Transmitter

Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 7

Inputs:
. Output_Packet
° HDLC_Program from Interface Initial Processing
(4.1.3.1)
o Output-Packet_ldentifier from Interface Initial Proc-
essing (4.1.3.1)
Qutputs:
‘e Command_Frame to DIU and Node (4.1.5)
Notes: This process, Frame Receiver (4.1.3.5), Contention

Processing (4.1.3.3), and Interface Completion Proc-
essing (4.1.3.2) form the root link processes. There
is one set of these processes for each connection
petween an 1/0 network and a GPC.

Description:

This process creates a command frame based on Qutput_Packet and
HOLC_Program. '

HOLC_Program specifies how many residual bits should be appended to
the end of Command_Frame data. This programming remains in effect
until the process is reprogrammed by Interface Initial Processing
4.1.3.1).

Each Qutput_Packet received is converted into a Command_Frame to be
passed to a DIU or a Node (4.1.5) process, based on
Output_Packet.Address and the current HDLC programming. The trans-
formation is a copy of the Output_Packet with the generation of
Frame_Check_Sequence based on the bit string representing the
Qutput_Packet. Constant value opening and closing flags are also
added as part of the Command_Frame.

3-54



Process Name: Frame Receiver
Reference Number: 4.1.3.5

Identifier: I0_System_Services.-
I0_User_Communication_Services.
I0_Interface.-
Frame_Receiver

Build: 3

Requirements Reference: PQC System I/0 Services Functional Require-
ments, section 7

Inputs: _

. Receiver_State from Interface Initial Processing
(4.1.3.1)
e Response_Frame from DIU and Node (4.1.5)

Outputs:

° Response_Frame_Data_And_Status to Interface Completion
Processing (4.1.3.2)

Notes: This process, Frame Transmitter (4.1.3.4), Contention
Processing (4.1.3.3), and Interface Completion Proc-
essing (4.1.3.2) form the root link processes. There
is one set of these processes for each connection
between an I/0 network and a GPC.

Description:

This process creates Response_frame_Data_And_Status in response to
receiving a Response_Frame.

A Receiver_State value of '"On' indicates the process should transform
any Response_Fframe that it receives to
Response_Frame_Data_And_Status. A value of "Off" indicates that it
should ignore any Response_Frame received.

Response_Frame_Data_And_Status consists of a copy of
Response_Frame.Address, .Control, .Data, and .Frame_Check_Sequence,
and error indicators, byte count, and residual bits detected by the
process.

3-55



Process Name: GPC I/0 Network Manager Support

Reference Number: 4.1.4

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
GPC_IO_Network_Manager_Support

Build: Post 3

Requirements Reference: Proof of Concept System Functional Require-
ments. 1/0 Network System Services,
CSDL-AIPS-84-138,Section 5.0

Inputs:

GPC_Subscriber_I0_Error_Log
Outputs:

GPC_Subscriber_IO_Error_Report
Notes: None.

Description:

This process provides a subset of the GPC's I/0 error information to
the manager of a particular network.

3-56



Process Name: Node
Reference Number: 4.1.5

Identifier: I0_System_Services.-
I0_User_Communication_Services.-
Node
Build: NA
Requirements Reference: AIPS POC System Design Specification., Net-
work Node
Inputs:

e Command_frame from I/0 Interface (4.1.3)
Outputs:

e Response_frame to I/0 Interface (4.1.3)
Notes:

° Nodes will be implemented with hardware and micropro-
gram, not software

] A node may take up to 512 microseconds to begin to
reply, starting from the reception of the end of
Command_Frame :

' Sumcheck in Command_Frame is intended to protect
against erroneous data transformations that might occur
in portions of the GPC that are not redundant. The
sumcheck mechanism must allow the recipient to detect
any error caused by a single fault that occurred before
CRC was applied.

Description:

A Node performs the following functions:

. Detects activity and errors for each port

° Enables and disables ports for network connectivity

™ Produces Response_Frames that contain information about detected
activity and errors, and about the enable status of ports

. Accepts arbitrary inputs to a Message Buffer for future inclusion
in Response_Frames

Activity and error detection are performed by the Node continuously.
The detection of these conditions is latched in the Node's Status
Register until the Status Register is cleared via a Command_Frame.
The remaining functions are performed in response to Command_Frames.

3-57



On receipt of a Command_Frame addressed to the Node, the Node will

check it for validity. If Command_Frame is valid, the node will per-
form one of the following sequences, as specified by the content of
Command_Frame. Otherwise the Node will ignore the Command_Frame

except to indicate the error in the Node's Status Register. Note
that the Node produces a Response_Frame for every valid Command_Frame
addressed to it.

e Replace the contents of the Node's Port Enable Register with the
value included in Command_Frame and produce Response_Frame

] Update the Node's Message Buffer and produce Response_Frame
° Produce Response_Frame only
Each Command_Frame also controls the following:

e Whether the Response_frame is to contain the Node's Status Regis-
ter or Message Buffer

° Whether the Response_Frame is to be deliberately transmitted with
a protocol error :

° The number of residual bits to be included in Response_Frame

. The port or ports on which the consequent Response_Frame is to be
transmitted

e Whether the Node's Status Register is to be cleared after trans-
mission -

When Response_Frame contains the Node's Status Register, the activity

and error status transmitted is that before these indicators are

cleared (if requested), and the port configuration status transmitted

is that after being updated by Command_Frame (if requested).

The Command_Frame and Response_Frame formats are given in_AIPS POC

System Design Specification. Network Noda.

A Command_frame is honored by a Node if it meets the following crite-
ria.

. Node_Address is the address of the node
. Encoded_Node_Address is valid

e Protocol checks (CRC, invalid frame, and abort) indicate legal
protocol

e . The number of bytes received is valid
e The number of bits after the last information byte, but before

Frame_Check_Sequence, is valid (= 3)

3-58



. Sumcheck is valid

3-89




3.2 I/0 Network Manager Processes

Process Name: I0_Network_Manager

Reference Number: 4.2.

Identifier: I0_System_Services.I0 Network Manager
Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, sections 4.0 and 5.0

Inputs:
e IO_Network_Manager_Command from System Manager (1.)
° Network_Definition from I0_Data_Base
° Manager_IO_Request_Data_And_Status from I/0 User Commu-
nication Services (4.1)
. GPC_Subscriber_IO_Error_Report from I/0 User Communi-
cation Services (4.1) of all GPC Subscribers to Network
Outputs:
e IO_Network_Status_Report to System Manager (1.)
° Manager_IO_Request_Parameter to I/0 User Communication
Services (4.1)
e Reconfiguration_Report to I/0 User Communication Ser-
vices (4.1) of all GPC Subscribers to Network
Notes: None.
Description:
Using the Network_Definition, this process will grow a fault tolerant

network to allow GPC subscribers on the network to communicate seri-
ally with various I/0 devices connected to the network. A network
which provides I/0 service to several GPCs is a regional network.
Only one of these GPCs will run the IO Network Manager process for
the regional network. However, this process is also capable of man-
aging a local I/0 network, that is one dedicated to the exclusive use
of one GPC. Since such a network may be partitioned into several sub-
networks, this process will be able to manage a partitioned network.

The network is grown or initialized by enabling various full duplex
communication pathways through circuit switched nodes. Since not all
possible pathways are enabled, the network has a set of spare links
which allow it to be reconfigured in response to fault or damage
events, rendering it resistant to such failures as a broken link, a
transmitter or receiver stuck high or low, a babbling network ele-
ment, or an element which responds to messages addressed to other
elements.

3-60



The process periodically monitors the health of the I/0 network by
using the network to communicate with its nodes. This monitoring
does not alter the configuration of a node., Rather a simple status
read is requested of each node in the network. The node responds with
its current configuration and an indication of whether or not it
detected any errors since the last status read. I/0 User Communi-
cation Services returns this data and the errors it logged while
conducting the node transaction to the network manager in
Manager_IO_Request_Data_And_Status. The ability to conduct error
free transmissions of this type is evidence of a properly functioning
communication link. Errors of either type are evidence of the exist-
ence of faults in the network.

Another source of error information comes from the GPC subscribers to
the network who send GPC_Subscriber_IO_Error_Reports to this process.
This process uses the error information it collects while monitoring
the network and that sent by its GPC subscribers to identify the net-
work elements responsible for the errors. It then reconfigures the
network using spare links so as to isolate the failed component and
maintain an active communication link to all functioning elements in
the network.

Response to network failures is graduated in order to minimize the
disruption of network activity by the repair process. Passive faults
can be corrected most quickly while repair of a babbler may require
regrowth of the network.

Whenever a reconfiguration has been completed, this process writes a
Reconfiguration_Report to all GPC subscribers on the network. This
will enable them to reinstate bypassed transactions. In this way I/0
User Communication Services can resume I/0 activity with devices
which were temporarily out of service due to network problems.

This process communicates with nodes by sending them commands via I/0
User Communication Services (4.1) which is sent a
Manager_IO_Request_Parameter .I0_Service_Request for that purpose.
The data field of the command frame contains a Sumcheck which the

node uses in its error detection logic. This Sumcheck will be com-
puted by all subprocesses sending messages to nodes prior to issuing
a Manager_I0_Request_Parameter.I0_Service_Request.

When this process is configuring the network, either initially or in
response to a failure, it will control the root link configuration of
its host GPC. It will exercise this control by sending I/0 User Com-
munication Services a Manager_I0_Request_Parameter for that purpose.
Another Manager_IQ_Request_ Parameter will contain data regarding
the current state of network partitioning which I/0 User Communi-
cations Services needs to conduct I/0 on a partitioned network.

This process will periodically report the status of the network
nodes, either active or failed, to the global system manager so as to
provide data for system FDIR. It will respond to
IO_Network_Manager_Commands sent by the global system manager such as

3-61



a command to initialize the network as soon as the command is
received.

In order to insure that spare links can be confidently called into
service to reconfigure the network after a failure, a routine test of
these spare links will be conducted. This test will also attempt to
exercise links (i.e. ports) which have a failed status in
Network_Status. Thus a link marked failed due to a transient error
can have its status upgraded to null. Following the test, the network
is returned to its pretest configuration. Since this test performs a
contingency function only, it can be scheduled at a rate which is low
enough to minimally interfere with higher priority processes.

3-62



Process Name: Control I/0 Network
Reference Number: 4.2.1

Identifier: I0_System_Services.-
I0_Network_Manager.Control_IO_Network
Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 4.0

Inputs:
° Network_Definition from I0_Data_Base
e Manager_IO_Request_Data_And_Status from I/0 User Commu-
nication Services (4.1)
e I0_Network_Manager_Command from System Manager (1.)
. Network_Fault_Indicator from Monitor I/0 Network
(4.2.2)
'Y Network_Status
° Current_Network_Definition
Outputs:
] Manager_IO_Request_Parameter to I/0 User Communication
Services (4.1)
. Network_Initialization_Status to Network_Status
° Reconfiguration_s;atus to Network_Status
° Node_Status to Network_Status
° Current_Network_Definition
Notes: None

Description:

Using the Network Definition, this process will initialize or grow a
network in response to an Initialize_Network_Command from the System
Manager (1.). The growth of a network may also begin upon a system
reset if the network is local. This process will control its host
processor's root link configuration during this growth phase by send-
ing a Manager_IO_Request_Parameter.Root_Link_Control_Request to I/0
User Communication Services indicating the root link to be activated
on the next transaction to a node of this network. Nodes will be
sent commands to place their ports in a certain configuration by
means of a Manager_IO_Request_Parameter.IO_Service_Request. Receipt
of the configuration command will also cause the node to send back
its current status by means of Manager_IO_ Request_Data_And_Status.
The success or failure of the initialization process will be written
to Network_Status as the Network_Initialization_Status.

After initializing the network, the Control I/0 Network process is
only required to resume activity in response to a network failure as
indicated by the Network_Fault_Indicator from the Monitor 1/0 Network
process (4.2.2). Using the Manager_IO_Request_Data_And_Status from

3-63



the chain on which the monitor detected errors, it must identify the
location of the fault and reconfigure the network around the fault.
During this attempt to reconfigure the network, it may be necessary
to collect further information on the functioning of a particular
communication link by additional reads of node status. This is done
by sending the necessary Manager_IO_Request_Parameter to I/0 User
Communication Services. As with the initialization phase of this
process, Control I/0 Network will control the root link configuration
of its processor to the network it is controlling. If the reconfig-
uration process is performed, this information will be written to
Network_Status as Reconfiguration_Status. If any nodes are discov-
ered to be failed and hence isolated from the active network, the
failed status of these nodes is written to Network_Status in
Node_Status. Since Network_Status is used by Report I/0 Network Sta-
tus (4.2.3) on a periodic basis, it will be necessary for Control I/0
Network to lock Network_Status at the time it begins execution and
to unlock it when the process is completed. '

Finally, this process must respond to an indication that a partition
has failed by repartitioning the network. The new partitioning of
the network will be reported to I1/0 User Communication Services in a
Manager_IQ_Request_Parameter.Partition_Update_Request containing
Current_Partition_Data.

3-64



Process Name: Control Network Definition

Reference Number: 4.2.1.1

Identifier: I0_System_Services.-
I0O_Network_Manager.Control_I0_Network.-
Control_Network_Definition

Build: 3

Requirements Reference: POC System I/Q Services Functional Reguire-
ments, section 4.2.1.2

Inputs:

° Network_Definition from I0_Data_Base
I0O_Network_Manager_Command from System Manager (1.)
) Partition_Status from Network_Status

Outputs:
° Manager_IO_Request_Parameter to I/0 User Communication
Services (4.1) of host GPC
° Current_Network_Definition
° Node_Status to Network_Status
Notes: None

Description: .
This process will update the Current_Network_Definition whenever nec-
essary with a new definition read from the I0_Data_Base. After the
Initialize I/0 Network (4.2.1.2) process or the Maintain I/0 Network
(4.2.1.3) process has responded to this new definition, Control Net-
work Definition will send to I/0O User Communication Services of its
host GPC a Manager_I0_Request_Parameter.Partition_Update_Request
which reflects the current partitioning of the network in
Current_Partition_Data.

There are three events which cause this process to update
Current_Network_Definition: '

(1) Receipt of an Initialize_Network command from the System Manager
indicating that Current_Network_Definition must be initialized so
that a network may be grown.

(2) Receipt of a Modify_Network_Definition command from the System
Manager (1.). This command will be sent whenever a node is to be
added to or removed from an existing network, thus changing the
basic network definition. It will also be used to indicate that
a failed node has been repaired and should be reconnected to the
network.

3-65



(3) Partition_Status in Network_Status indicates a partition failure
has occurred.

There are two events which cause this process to send
Current_Partition_Data to I/0 User Communications Services of its
host GPC:

(1) Network_Initialization_Status indicates that a network has been
successfully grown.

(2) Reconfiguration_Status indicates a change in a network configura-
tion has been attempted.

In both cases it is important that the Current_Partition_Data be sent
to I1/0 User Communications Services before the
Reconfiguration_Report. In the case where Reconfiguration_Report
announces a network initialization has been completed, correct parti-
tion information must be present for I/0 activity to proceed. In the
case where a reconfiguration report announces an attempt to repair a
network, it causes transactions blocked by error indicators to be
resumed. It is important that these reinstated transactions be sent
through root links representing the current actual partitioning of
the network.

This process will block other processes from reading

Current_Network_Definition while it is obtaining a new value from
I0_Data_Base to prevent use of a partially updated version.

3-66



Process Name: Handle Network Redefinition Events

Reference Number: 4.2.1.1.1

Identifier: I0O_System_Services.-
IO_Network_Manager.Control_I0O_Network.-
Control_Network_Definition.~
Handle_Network_Redefinition_Events

Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 4.2.1.2

Inputs:
° Partition_Status from Network_Status
] Network_Definition from I0O_Data_Base
e IO_Network_Manager_Command from System Manager (1.)
Outputs:
° Send_Status to Network_Status
® Node_Status to Network_Status
° Current_Network_Definition
Notes: None
Description:

Upon reset (for a local network) or upon a Network_Initialization
command (for a regional network) from the System Manager (1.), this
process will lock the Current_Network_Definition. It will then ini-
tialize Current_Network_Definition from the I0_Data_Base. It will
then send Network_Status a list of all nodes in the current network
and mark their status null in Node_Status. It will indicate in
Send_Status that Current_Partition_Data has not been sent. Finally,
it will unlock Current_Network_Definition.

Upon receiving a Modify_Network_Definition command from the System
Manager, this process will lock the Current_Network _Definition. It
will then read a new definition from the I0_Data_Base and update
Network_Status by adding a new node and marking its status null or by
deleting a node as indicated by the command. It will indicate in
Send_Status that Current_Partition_Data has not been sent. Finally,
it will unlock Current_Network_Definition.

If Partition_Status indicates that a partition has failed, this proc-
ess will obtain a new Current_Network_Definition from the
I0_Data_Base for the particular partition failure shown. It is pos-
sible that no new definition will be issued. If a new definition is
called for, it will first lock Current_Network_Definition. Then it
will indicate in Send_Status that Current_Partition_Data has not been
sent. It will then read into Current_Network_Definition the new net-

3-67



work definition data.
Current_Network_Definition.

3-68

Finally,

it

will

unlock



Process Name: Send Current Partition Data

Reference Number: 4,2.1.1.2

Identifier: I0_System_Services.-
I0O_Network_Manager.Control_IO_Network.-
Control_Network_Definition.-
Send_Current_Partition_Data

Build: 3
Requirements Reference: POC System I/0 Services Functional Require-
ments, section 4,2.1.2
Inputs:
° Reconfiguration_Status from Network_Status
° Network_Initialization_Status from Network_Status
° Send_Status from Network_Status
° Current_Network_Definition

Outputs: . .

' Manager_IO_Request_Parameter to I/0O User Communication
Services(4.1) of host GPC
. Send_Status to Network_Status

Notes: None
Description:

When Reconfiguration_Status or Network_Initialization_Status indicate
that a change in the network has occurred, this process will deter-
mine the current partition state of the network from the
Current_Network_Definition and send this Current_Partition_Data to
I/0 User Communication Services of its host GPC as part of a
Manager_IO_Request_Parameter.Partition_Update_Request. It will then
mark Send_Status as sent.

3-69



Process Name: Initialize I/0 Network

Reference Number: 4.2.1.2

Identifier: I0_System_Services.=-
I0_Network_Manager.Control_IO_Network.-
Initialize_I0_Network

Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 4,2.1.1

Inputs:
. Current_Network_Definition from Control Network Defi-
nition (4.2.1.1)
e I0_Network_Manager_Command from System Manager (1.)
° Manager_IO_Request_Data_And_Status from I/0 User Commu-
nication Services (4.1)
° Regrow_Network_Request from Maintain I/0 Network
(4.2.1.3) . .
Outputs:
e Network_Configuration
. Node_Status to Network_Status
™ Network_Initialization_Status to Network_Status
° Manager_I0_Request_Parameter to I/0 User Communication
Services (4.1)
- Notess - “None
Description:

Using the Current_Network_Definition, this process is used to ini-
tialize or regrow an I/0 network. The algorithm used creates a max-
imally branching, minimum path from a single processor to each node
in the network.

If the network is regional, the process will initialize that network
upon receiving an Initialize_Network command from the System Manager
(1.). If the network is local, the initialization is started upon a
reset of the local GPC. However, the System Manager (1.) may also
command the initialization of a local network. Furthermore, to
reconfigure the network under worst case failure conditions, the
Maintain I/0 Network process (4.2.1.3) may find it necessary to
regrow the entire network. It will issue a Regrow_Network_Request
for this purpose. The Initialize Network process will be used to
accomplish that reconfiguration.

This process will be able to initialize or regrow a partitioned net-
work. However, each partition will be grown as an atomic unit rather
than in parallel with the other partitions in the network. Thus par-
tition #1 would be completely grown before the growth of partition #2

3-70



begins and so on. It must also be possible to regrow a single parti-
tion so that a failure in one partition can be repaired without dis-
rupting communications on unfailed partitions.

While this process is running, it will coordinate control of its host
GPC's root 1links to the network by sending the appropriate
Manager_IO_Request_Parameter .Root_Link_Control_Request to I/0 User
Communication Services(4.1). This will provide initial assurance of
a properly functioning root link to the network being managed. Fur-
thermore, during the growth of a network, it is important that errors
detected by I/0 User Communication Services do not trigger a root
link switch by that process. The growth algorithm is equipped to deal
with these errors as indicated in Manager_I0Q_Request_Data_And_Status.

To add a new node to the active tree of the network, this process
sends the node an appropriate Configuration_Command as a
Manager_10_Request_Parameter.I0_Service_Request. A properly func-
tioning node will respond with its status which is returned to this
process as Manager_IO_Request_Data_And_Status. If this transaction
is completed without errors, it indicates that this node is now part
of the active network. These transactions are conducted without con-
tention for two reasons. In the first place, nonmanager GPC subscrib-
ers are connected to the network by the manager only after its:
initial growth is complete. Hence, during that growth period, there
is no one on the network with whom the manager need contend. Second-
ly, during a network failure such as the presence of a babbling ele-
ment on the network, contention mechanics may not be operabie.
Reinitialization of the network under failure conditions of this type
is carried out to identify and isolate the babbler.

As -reach node is added to the network, the Network_Configuration is
updated with the current configuration of each node on a port by port
basis. Prior to beginning the initialization process, the status of
each node in Node_Status is marked Nuill. Where an attempt to connect
a node to the network is successful, the status of that node is
changed to Active. If a node is found to respond to addresses other
than its own, its status will be marked failed. Any nodes which
still have a Null status after the network growth is completed will
have their status changed to failed. Thus the failure of a single
port of a node does not cause the entire node to be considered
failed. Only after the growth process is complete will the identity
of these unreachable nodes be apparent.

This process will set Network_Initialization_Status in Network_Status
to its current state. During an initialization this state will be
"Initialization In Progress: Final Status Pending'. After an initial-
ization attempt is completed three possible states could be recorded.
These all begin with "Initialization Completed" followed by one of
these modifiers: "Final Status Fully Successful' (when all nodes are
active), "Final Status Partially Successful" (when at least one node
is active), and "Final Status Failed'" (when no nodes are active).

This process must coordinate the efforts of several subprocesses
involved in initializing a network. When Handle Network Redefinition

3-71



Events (4.2.1.1.1) unlocks the Current_Network_Definition, this proc-
ess will coordinate the growth of the network described therein with
the following loop:

For each partition in the network

Repeat
Select A Root Link (4.2.1.2.1)

Attempt to Grow to its Root Node (4.2.1.2.2)

Until (a data link is established with a root node)

or (no more root nodes remain to be tried)

If a data link is established with a root node
then Complete Growth of the Partition (4.2.1.2.3)
else indicate in Network_Status that the

partition is failed

3-72



Process Name: Select Root Link

Reference Number: 4.2.1.2.1°

Identifier: I0_System_Services.-
I0O_Network_Manager.Control _IO_Network.-
Initialize_IO_Network.Select_Root_Link

Build: ' 3

Requirements Reference: POC System I/0 Services functional Require-
ments, section 4.0

Inputs:

o Current_Network_Definition

Qutputs:
'y Current_Root_Link to Grow to Root Node (4.2.1.2.2)
. Manager_I0_Request_Parameter to I/0 User Communication
4.1)
Notes: None

Description:

This process is called as the first step in the growth of a network
partition. It obtains the next root link of the current partition,
that is the one being grown, from Current_Network_Definition. It
sends te 1I/0 User Communication Services (4.1) a
Manager_I0_Request_Parameter .Root_Link_Control_Request to obtain
activation of the selected root link and to disable the root 1link
switching capabilities of that process. Select Root Link then passes
the address of the activated root 1ink obtained from
Current_Network_Definition to Grow to Root Node (4.2.1.2.2) in
Current_Root_Link which will then begin its activity.

3-73



Process Name: Grow to Root Node

Reference Number: 4.2.1.2.2

Identifier: . I0_System_Services.-
I0_Network_Manager.Control_IO_Network.-
Initialize_IDO_Network.Grow_To_Root_Node

Build: 3

Requirements Reference: PQOC System I/0 Services Functional Reguire-
ments, section 4.0

Inputs:

e Current_Root_Link from Select Root Link (4.2.1.2.1)

° Manager_I0_Request_Data_And_Status from I/0 User Commu-
nication Services (4.1)

° Current_Network_Definition

Outputs:

Link_Status to Network_Status

Node_Status to Network_Status

Node_Configuration to Network_Configuration
Manager_IO_Request_Parameter to I/0 User Communication
Services (4.1)

Active_Root_Node to Complete Partition Growth
(4.2.1.2.3)

Notes: None
Description:

This process looks up the Current_Root_Link in the
Current_Network_Definition to obtain the address of the node it must
enable. It sets up the configuration command to be sent to this root
node. The configuration command will tell the node which of its five
ports to enable and which to disable. When growing to a root node
only the port attached to the root link is enabied. The other four
are disabled. The port number to be enabled is obtained from the
Current_Network_Definition. The process sends this configuration com-
mand as part of a Manager_IO_Request_Parameter.IO_Service_Request.
The process also specifies that this transaction is performed without
contention. ‘

When Manager_IO_Request_Data_and_Status is ready, the process will
resume. It will first check the error indicators therein to determine
whether or not the transaction was in fact sent and if any trans-
mission errors were detected during the transmission. If the trans-
action was conducted with no errors, the data will be checked to
verify that the node has implemented the correct configuration. If
no transmission errors were detected and the node configuration is
correct, the Node_Status of this node is marked Active and the con-
figuration of this node is recorded in Network_Configuration. To

3-74



accomplish the latter means that the Node_Configuration of this node
will show the enabled port marked Inboard and the other ports marked
Null. The Link_Status of the root link is also marked active. Since a
successful data 1link to a root node has been established,
Active_Root_Node can be assigned its address. Processing control can
now pass to the Complete Partition Growth process (4.2.1.2.3) to
which Active_Root_Node will be sent.

If error indicators are present in Manager_IO_Request_Data_And_Status
or if the port configuration data sent back from the node does not
match the configuration that was sent to it, the configuration com-
mand will be sent again. This is done to allow for the possibility
that the error indicators were set by transient faults in the network
and because failure to grow to a root node results in the failure of
the entire partition when there is only one root link to the parti-
. tion.

If the second try is successful, the data structures are updated and
processing continues as described above. If the second try fails,
then in Network_Configuration.Node_Configuration the status of the
port which could not be enabled is marked failed and the Link_Status
of this root link is marked failed. If another root link to that
partition exists, processing control passes to Select A Root Link
(4.2.1.2.1). However, if no root links remain to be tried,
Partition_Status of this partition in Network_Status is marked
failed. Root links which have a failed status are not permanently
failed, but instead will be routinely retried during spare link test-
ing. If they operate properly at that time, their status will be
upgraded to Null.

3-75



Process Name: Complete Partition Growth

Reference Number: 4,2.1.2.3

Identifier: I0_System_Services.-
I0O_Network_Manager.Control_I0_Network.-
Initialize_I0_Network.Complete_Partition_Growth

Build: 3

Requirements Reference: POC System I/0Q Services Functional Require-
ments, section 4.2.1.1

Inputs:
. Current_Network_Definition
° Manager_I0_Request_Data_And_Status from I/0 User Commu-
nication Services (4.1)
e Active_Root_Node from Grow To Root Node (4.2.1.2.2)
Outputs:
e Node_Configuration to Network_Configuration
® Link_Status to Network_Status
° Partition_Status to Network_Status
. Manager_IO_Request_Parameter to I/0 User Communication
Services (4.1)
Notes: None.
Description:

This process becomes active once Grow To Root Node (4.2.1.2.2)
receives a consistent response from a root node of the current parti-
tion and sends the Active_Root_Node to this process. The root node
address initializes a spawning node queue. The root node becomes the
first spawning node. The growth algorithm then enters a loop which
consults the tables in Current_Network_Definition to obtain the iden-
tities and addresses of the network elements adjacent to the node at
the top of the spawning node queue. This topmost node is called the
spawning node. As the ports of the spawning node are enabled, its
adjacent network elements are brought into the active tree. Config-
uration commands are sent to the nodes via
Manager_IO_Request_Parameter .I0_Service_Requests sent to I/0 User
Communication Services (4.1).

If the adjacent element is a GPC, the port of the spawning node fac-
ing that element is placed on a GPC subscriber list. If the adjacent
element is a DIU, the port of the spawning node is placed on a DIU
subscriber list. These ports will be enabled after the network growth
is complete.

If the adjacent element is a node, an attempt is made to create a

functional link to that node. If the attempt is successful, this node
is placed at the end of the spawning queue. Creating a functional

3-76



link requires that a port of the spawning node and a port of the
adjacent or target node be enabled; the spawning node is enabled
first. Enabling each port is accomplished by sending a
Manager_I0_Request_Parameter.I0_Service_Reguest with the correct con-
figuration of the node to I/0 User Communication Services (4.1) which
in turn sends the configuration command to the node. I/0 User Commu-
nication Services returns the response of the node to this command in
Manager_I0_Request_Data_And_Status. The absence of error indicators
on both transactions (to the spawning node and to the target node) is
evidence of a properly functioning link. As each port is processed,
Link_Status in Network_Status and Node_Configuration in
Network_Configuration are updated. The Link_Status of a link may be
active or failed. The Configuration_Status of a port may be inboard,
outboard, null or failed. ‘

If the adjacent element is a DIU, that port is enabled. If no errors
are reported in Manager_IO_Request_Data_And_Status from this trans-
action, the port remains enabled. However, if errors are reported,
indicating a babbling DIU, the port is returned to an inactive state.
The final status of the port is recorded in Configuration_Status.

When all ports of the current spawning node have been processed, the
spawning node is removed from the spawning queue and placed on the
active node list. The next node in the queue becomes the current
spawning node and the cycle repeats itself. When the spawning queue
is empty, the partition growth of the node network is completed. In
the case of a partitioned local network, the ports on the DIU sub-
scriber list remain to be enabled. 1In the case of a regional net-
work, the ports on both the DIU and GPL subscriber lists must be
enabled.

The ports on the DIU subscriber list are enabled first. The correct
configuration command is sent to each node on this list one at a time
via a Manager_I0_Request_Parameter.l0_Service_Request. If no errors
are reported in Manager_IO_Request_Data_And_Status from this trans-
action, the port remains enabled. If an error is reported, the port
is returned to an inactive state. An error detected after enabling
this port could be due to two causes: a failed network element (such
as a a babbling DIU or a failure in the port adjacent to the DIU) or
a DIU responding to a previously issued command from a GPC. The pur-
pose of enabling the DIUs after the growth of the node network is
completed is to allow enough time to elapse to ensure that a DIU
would have completed any outstanding GPC commands. Thus any errors
detected after enabling the port adjacent to a DIU are indications of
a faulty network component. Node_Configuration and Link_Status are
updated following each configuration attempt.

The ports adjacent to GPC subscribers on the subscriber list are also
enabled one at a time. However, only the first of these nodes may be
sent a message without contention. 0Once the network manager gives
other GPCs access to the network, the manager must use the contention
rules which govern access to a multiuser network. The
Manager_I0_Request_Data_And_Status which is returned to this process
after enabling the root node port of a GPC is ignored. Since a GPC

3-77



which is facing a port which is not enabled will not detect any net-
work activity, it may be attempting to use the network at the time
the port is enabled. This could result in errors being detected in
the node's reply to its configuration command. To verify that the
GPC is in fact not babbling, however, the manager must ask for a sta-
tus read of that node with contention. If the transmission has
errors, that port is returned to a null status. This-phase of network
growth is complete when all the ports on the subscriber list have
been enabled and verified for proper functioning. Node_Configuration
and Link_Status are updated following each verification transaction.

This growth algorithm generates the shortest path from the source
processor to any node in the network. Furthermore, if a path exists
to any node in a network, this algorithm ensures that it will be
found and activated, even if the network is degraded by failures.

Two network failure modes are addressed and corrected by this algo-
rithm, thus making it a useful backup tool for network maintenance
when less drastic measures fail to isolate and remove a probiem. The
two failure modes are a babbling network element and a network node
which talks out of turn, i.e. responds when another network node
been addressed. The operation of the part of the algorithm which
deals with these failures is described below.

When the process enables a port of the spawning node adjacent to a
babbler, the babbler will interfere with the status report the spawn-
ing node sends following its reconfiguration. This will result in
the reconfiguration of this port to a null state, thus isolating the
babbler from the rest of the properly functioning network. The meth-
od works because the network links are full duplex and the reconfig-

yration command will reach the spawning node through the data line
not corrupted by the babbler. If the spawning node itself is babbling
from a spawning port, the target node will not respond to the cor-
rupted message. Thus the target node will not be connected to the
babbler.

After a new node appears to be successfully connected to the network,
each node in the network is commanded to report its status, whether
or not it is in the active tree. If an unconnected node (i.e. one
which is not on either the spawning queue or the active node list)
responds to this command, the most recently connected node is talking
out of turn to this address. This newly added node must be discon-
nected from the active tree by setting the correct spawning node port
to a null state. Furthermore, its status in Node_Status is marked
failed, since the address decoding function of a node is a central
function, independent of the port receiving the address. A previous-
ly connected node could also respond with errors. This means that
either this node has recently failed or the most recently added node
is talking out of turn. This last added node is then removed from the
network as described above. The node or nodes which had errors on
the previous test are again queried for status. If the error indica-
tors are gone, it confirms the talker out of turn hypothesis, and the
status of the removed node is set to failed. If not, it indicates
that a failure has occurred during the growth process. In the former

3-78



case, the growth process is continued. In the latter case, the growth
process must begin again from Select Root Link (4.2.1.2.1).

Once the network growth is completed, any nodes with a Null status
are set to a failed status.

3-79



Process Name: Maintain I/0 Network

Reference Number: 4.2.1.3

Identifier: I0_System_Services.-
I0_Network_Manager.Control_IO_Network.=-
Maintain_I0_Network

Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 4.2.1.4

Inputs:
e Manager_IO_Request_Data_And_Status from I/0 User Commu-
nication Services (4.1)
. Network_Fault_Indicator from Monitor I/0 Network
(4.2.2)
e Node_Configuration from Network_Configuration
° Current_Network_Definition
' Network_Status
Qutputs:
* Manager_I0_Request_Parameter to I/0 User Communication
Services (4.1)
° Node_Configuration to Network_Configuration
® Regrow_Network_Request to Initialize I/0 Network
(4.2.1.2)
° Node_Status to Network_Status
° Link_Status to Network_Status
e Partition_Status to Network_Status
Notes: For Build 3 the response to a detected network fault

will be to regrow the network.
Description:

This process has two related but nevertheless distinct functions.
Its primary purpose is to restore the network to a fully operational
state whenever the failure of some network component disrupts the
proper functioning of the network. This is an aperiodic process which
only becomes active in response to the detection of a fault in the
network.

A second function of this process is to verify that the various error
detection mechanisms in the nodes are operating properly. Further-

more , this second function must determine whether or not spare ports
which the first function requires for repairs are operating properly.
This process is periodic in nature. However, since it performs only
a contingency function, it can be scheduled to run at a rate which
does not interfere with the scheduling of higher priority processes.

3-80



Process Name: Repair Network Fault

Reference Number: 4.2.1.3.1

Identifier:s I0_System_Services.-
I0O_Network_Manager.Control_IO_Network.-
Maintain_I0O_Network.Repair_Network_Fault

Build: -3

Requirements Reference: PQOC System I/0 Services Functional Require-
ments, section 4.2.1.4

Inputs:
. Manager_IO_Requegf_Data_And_Status from I/0 User Commu-
nication Services (4.1)
. Network_Fault_Indicator from Monitor I/0 Network
4.2.2)
. Node_Configuration from Network_Configuration
° Network_Initialization_Status from Network_Status
° Current_Network_Definition
OQutputs:
. Manager_I0_Request_Parameter to I/0 User Communication
Services (4.1)
° Node_Configuration to Network_Configuration
™ Predecessor_List to Network_Configuration _
. Regrow_Network_Request to Initialize I/0 Network
(4.2.1.2)
° Node_Status to Network_Status
. Link_Status to Network_Status
. Partition_Status to Network_Status
Notes: For Build 3 the response to a detected network fault
will be to regrow the network.
Description:

Each time Network_Initialization_Status indicates a new network has
been grown, this process will compute a Predecessor_List for each
node in the network whose status in Node_Status is marked Active.
Predecessor_Lists are used in the identification of the source of a
network failure. The algorithm for computing the Predecessor_Lists
is as follows:-

For each node in the network
Include the Current Node on its own Predecessor_List
Repeat
Find the Inward Port of the Current Node
in Node_Configuration
Find the network element adjacent to this current node
through this Inward Port from
Current_Network_Definition

3-81



If this element is a node
then add this adjacent node to the Predecessor_List
The adjacent node becomes the Current Node
Until the adjacent network element is a GPC

Following the initialization of the Predecessor_Lists this process
again becomes active upon receiving a Network_Fault_Indicator from
Monitor I/0 Network (4.2.2). The action taken by this process will
depend upon the type of failure reported in the
Network_Fault_Indicator.

If a node is transmitting valid data through a port which should be
disabled, the node must be removed from the network. If this failed
node is not removed, each time the manager asks for status from the
node adjacent to this port, it would receive two valid commands to
report its status. Only one response is expected. Once the first
response is recejved, another node will be commanded to report its
status. The second response of the node may interfere with the reply
of the next node, making it appear that this next node has failed to
respond correctly to a command. Once the failed node has been removed
from the network, any nodes which had transmission errors reported
against them should again be queried for status to determine whether
or not the fault was due to the failure just corrected. Nodes now
functioning properly can have their Network_Ffault_Indicator cleared.

To remove a node from a network requires that nodes adjacent to its
Outboard ports have their Inboard ports configured to be Null. Once
this is accomplished, the node adjacent to its Inboard port shall
have its corresponding Outboard port disabled as well. Next the
Current_Network_Definition and the Network_Configuration are con-
sulted to determine through which spare port the new link to these
nodes will be made. Finally new links from the nodes adjacent to the
chosen spare ports are established. The communication with a node is
conducted by sending the appropriate
Manager_I0_Request_Parameter.IO_Service_Request. The verification
that the node has carried out the correct configuration command is
contained in the Manager_I0_Request_Data_And_Status returned after
each transaction with a node.

If the Network_Ffauit_Indicator shows that the contention mechanism
has failed (e.g. a babbler keeps the network in an active condition
for an excessive length of time preventing a contention from taking
place, or a data line is stuck high making it impossible for any GPC
to win a contention) the network will be regrown by sending to Ini-
tialize I/0 Network (4.2.1.2) a Regrow_Network_Request.

If the Network_Fault_Indicator shows that one node in a partition has
failed, an attempt will be made to reconnect that node to the network
through one of its spare ports.

If the Network_Fault_Indicator shows that a subset of nodes on a
partition has failed, the Predecessor_Lists of these nodes is com-
pared to identify the site of the failure. The last entries in these
lists should match until a failed node appears on each list. If they

3-82



do not match, it means that two or more faults have occurred. 1In
this case, the partition will be regrown. If the entries do match
however, the fault can be isolated by finding the first node from the
end of the list which itself has been reported as having failed. An
attempt to reconnect this node to the partition through one of its
spare ports will be made. Following the success of this reconfigura-
tion, the other failed nodes will be queried for status. If the
reconfiguration does not bring all the failed nodes back into ser-
vice, the partition is regrown.

Following a reconfiguration of a partition, the Predecessor_Lists are
recomputed. Also Partition_Status and Reconfiguration_Status in
Network_Status are updated to-reflect the current state of the net-
work or partition. Furthermore, following the reconfiguration of an
individual node, Node_Configuration in Network_Configuration and
Node_Status and Link_Status in Network_Status are also updated.

3-83



Process Name: Test Network Components

Reference Number: 4.2.1.3.2

Identifier: I0O_System_Services.-
I0O_Network_Manager.Control_I0_Network.-
Maintain_I0_Network.Test_Network_Components

Build: post 3

Requirements Reference: PQOC System I/0 Services Functional Require-
ments, section 4.2.1.4

Inputs:
. Manager_IO0_Request_Data_And_Status from I/Q User Commu-
nication Services (4.1)
e Node_Configuration from Network_Configuration
° Current_Network_Definition
° Network_Status
Outputs:
® Manager_IO_Request_Parameter to I1/0 User Communication
Services (4.1)
) Node_Status to Network_Status
. Link_Status to Network_Status

Notes: None
Description:

The function of this process is to verify that the various error
detection mechanisms in the nodes are operating properly. Further-
more , this process must determine whether or not spare ports which
are required for repairs are operating properly. This process is
periodi¢c in nature. However, since it performs only a contingency
function, it can be scheduled to run at a rate which does not inter-
fere with the scheduling of higher priority processes.

All null and failed links will be routinely tested. Null links are
tested to determine if they can be safely brought into service to
reconfigure around a failure. Failed links are tested to determine
whether or not the initial assignment of failed status was due to a
transient fault unrelated to the link itself. To accomplish this it
may be necessary to keep track of a link's performance over time.
Links which repeatedly change status probably have an intermittent
failure of some kind and should be dropped from the spare/failed
testing cycle. To test a link requires the identification of the

nodes on either end of the link. One of these nodes is designated the
spawning node and the other is designated the target node. The tar-
get node is first reconfigured so that all its ports are disabled.
The configuration of the spawning node is modified so that the port
adjacent to the target node is enabled while its other ports retain
their original pretest status. The target node is then reconfigured

3-84



to enable the port adjacent to the spawning node. If the status
returned to this process by the target node is error free, the link
is operating properly. In this case, Link_Status and Node_Status are
updated to show a null status for the link and ports involved. If
the link is not operating properly, its Link_Status and Node_Status
are declared failed. In either case the target node and the spawning
node are returned to their pretest configurations but this time the
spawning node is reconfigured first. The order in which target and
spawning nodes are reconfigured prevents the possible formation of
loops in the network.

Each of the error detection mechanisms in a node will be tested to
determine that they are operating properly. Since the network manage-
ment algorithms use this data to control the network, it is impor-
tant that the data be valid. For example, a node can be commanded to
transmit a frame from a given port which produces a CRC error in any
port receiving the frame. Thus the ability to detect CRC errors in
each port of a node can be verified by reading the status of the node
being tested to clear its error indicators, commanding a node adja-
cent to the one being tested to send out a frame with bad CRC and
then reading the status of the node being tested. If it has detected
the error, it has passed the test.

3-85



Process Name: Monitor I/0 Network
Reference Number: 4.2.2

Identifier: I0_System_Services.-
I0_Network_Manager .Monitor_I0_Network
Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 4.2.1.3

Inputs:
° Manager_I0_Request_Data_And_Status from I/0 User Commu-
nication Services (4.1)
° Network_Initialization_Status from Network_Status
° Node_Status from Network_Status
'Y Current_Network_Definition from Control I/0 Network
(4.2.1)
° GPC_Subscriber_IO_Error_Report from I/0 User Communi-
cation Services (4.1) of all GPC Subscribers to the
Network
Outputs:
. Manager_IO_Request_Parameter to I/0 User Communication
Services (4.1)
° Network_Fault_Indicator to Control I/0 Network (4.2.1)
Notes: For the POC system the frequency at which this process

runs is variable.
Description:

Monitor I/0 Network bhecomes active when Network_Initialization_Status
indicates an active network has been grown. This process gathers
information on the health of the network from two sources: the net-
work nodes and the GPC subscribers to the network. It uses this
information to determine if any faults have occurred in the network.
If any faults are detected, this information is passed on to the Con-
trol I/0 Network process (4.2.1) in the Network_Fault_Indicator.

3-86



Process Name: Collect Network Status

Reference Number: 4.2.2.1

Identifier: I0_System_Services.-
I0_Network_Manager.Monitor_I0O_Network.-
Collect_Network_Status

Build: 3

Requirements Reference: POC System I/0 Services Functional Require-
ments, section 4.2.1.3

Inputs:
. Manager_IO_Request_Data_And_Status from I/0 User Commu-~
nication Services (4.1)
° Network_Initialization_Status from Network_Status
° Node_Status from Network_Status
] Current_Network_Definition from Control I/0 Network
(4.2.1)
Qutputs:
] Manager_I0_Request_Parameter to I/0 User Communication
Services (4.1)
e Network_Fault_Indicator to Control I/0 Network (4.2.1)
'Notes= For the POC system the frequency at which this process
runs is variable.
Description:

This process becomes active when Network_Initialization_Status indi-
cates an active network has been grown. It will periodically command

each node listed in the Current_Network_Definition which
Network_Status does not declare failed to report its status by send-
ing to 1/0 User Communication Services 4.1.) a

Manager_IO_Request_Parameter .I0_Service_Request. These transactions
are to be conducted on the network with contention.

Collect Network Status is the fault detection mechanism of the net-
work manager. This detection mechanism operates in two stages.

When I/0 User Communication Services transmits messages on the net-
work to a node, it observes the success or failure of the communi-
cation and records those observations in the status field of
Manager_IO_Request_Data_And_Status. This constitutes the first stage
of fault detection and includes detection of the failure of a node to
transmit a response to a command in a reasonable amount of time, the
presence of transmission errors on the network during a response from
a node, and the incorrect number of words in a response. In addition
to detecting errors on transactions to individual nodes, in this
stage the overall performance of the network is monitored for fail-
ures which impede the proper functioning of the contention sequence.

3-87



These failures include a babbler which is flooding the bus with mean-
ingless signals and a data line which is holding the bus in a '"stuck
on one' condition. These errors are also reported to this process in
the status field of Manager_I0_Request_Data_And_Status.

The second stage of error detection involves the processing of the
information returned in the data field of
Manager_IO_Request_Data_And_Status. This represents the node's per-
ception of its current state. This data is processed to verify that
the port configuration reported by the node is correct, that no
activity is detected on a port not currently enabled, and that no
valid frames have been received on a port not currently enabled. The
detection of activity on a port which is not enabled is an indi-
cation that the node adjacent to that port is transmitting when it
should be disabled. It is either babbling or transmitting valid
data. The identification of which failure has occurred is made by
observing whether or not the signals are valid (Valid_Frame_ Received
is true). Furthermore, it may be possible to detect the existence of
a recurring transient failure in the network by recording the node's
detection of protocol errors on data flowing in the network for fur-
ther analysis.

If any errors are detected by this process, those errors will be

described in the Network_Fault_Indicator which is then sent to the
Maintain I/0 Network process (4.2.1.3).

3-88



Process Name: Collect Subscriber Status
Reference Number: 4.2.2.2

Identifier: I0_System_Services.-
I0_Network_Manager.Collect_Subscriber_Status
Build: post 3

Requirements Reference: PQC System I/0 Services Functional Require-
ments, section 4.2.1.3

Inputs:
° Network_Initialization_Status from Network_Status
° Node_Status from Network_Status
° Current_Network_Definition from Control I/0 Network
4.2.1)
e GPC_Subscriber_lO_Error_Report from I/0 User Communi-
cation Services (4.1) of all GPC Subscribers to the
Network
OQutputs:
e Network_Fault_Indicator to Control I/0 Network (4.2.1)
Notes: For the POC system the frequency at which this process
runs-is variable.
Description:

This process will receive the GPC_Subscriber_IO_Error_Report. Errors
reported here when no errors have manifested themselves in the peri-
odic node status reads are evidence of transient faults in the net-
work or of faults which the manager's use of the network does not
trigger. This information is passed on to the Maintain I/0 Network
process (4.2.1.3) in the Network_Fault_Indicator.

3-89



Process Name: Report I1/0 Network Status
Reference Number: 4.2.3

Identifier: I0_System_Services.-
IO_Network_Manager.Report_IO_Network_Status
Build: 3 (Partial Implementation - See Subprocesses)

Requirements Reference: POC System 1/0 Services Functional Require=
ments, section 5.2.3

Inputs:

Current_Network_Definition
I0_Network_Manager_Command from System Manager (1.)
Network_Initialization_Status from Network_Status
Node_Status from Network_Status

Outputs:

e I0_Network_Status_Report to System Manager (1.) ’
® Reconfiguration_Report to I/0 User Communication Ser-
vices (4.1) of all GPC Subscribers to Network

Notes: None
Description:

If Network_Status.Initialization_Status indicates an initialization
of the network or if Network_Status.Reconfiguration_Status indicates
a reconfiguration of the network, send a Reconfiguration_Report to
I/0 User Communication Services (4.1) of all GPC Subscribers to net-
work .

The I0_Network_Manager_Command is Send_Network_Status which will con-
tain a parameter, Report_Rate, which will indicate whether the
I0O_Network_Status_Report is to be sent only upon a command from the
System Manager (1.) or whether it will be sent periodically at a
certain frequency until stopped by another Send_Network_Status com-
mand.

3-90



|

Process Name: Report To GPC Subscribers

Reference Number: 4.2.3.1 )

Identifier: I0_System_Services.-
IO_Network_Manager .Report_IO_Network_Status.-
Report_To_GPC_Subscribers

Build: 3

Requirements Reference: PQOC System I/0 Services Functional Require-
ments, section 5.1.2.2

Inputs:
° Network_Identifier from Current_Network_Definition
° Send_Status from Network_Status
° GPC_Subscriber_List from Current_Network_Definition
° Network_Initialization_Status from Network_Status
) Reconfiguration_Status from Network_Status
Outputs:
° Reconfiguration_Report to I/0 User Communication Ser-
vices (4.1) of all GPC Subscribers to Network
Notes: None
Description:

This process will send a Reconfiguration_Report to the GPC Subscriber

-of ‘a network whenever a reconfiguration of the network takes place

and Send_Status indicates that Current_Partition_Data has been sent
to I/0 User Communications Services (4.1) of the host GPC. This
includes the first time a network is <configured or grown.
Initialization_Status in Network_Status records the initial growth of
a network. Reconfiguration_Status indicates that the network has been
reconfigured to repair some failure or for some other reason such as
a repartitioning of the network into subnetworks. These reports will
contain the identifier of the network which has been reconfigured as
indicated in Network_Identifier. The destination of these reports is
obtained from the GPC_Subscriber_List.

3-91



Process Name: Report To System Manager

Reference Number: 4,2.3.2

Identifier: I0_System_Services.-
I0_Network_Manager .Report_IO_Network_Status.-
Report_To_System_Manager

Build: post 3

Requirements Reference: PQOC System I1/0 Services Functional Require=
ments, section 5.2.3.2

Inputs:
e IO_Network_Manager_Command from System Manager (1.)
' Network_ldentifier from Current_Network_Definition
° Node_Status from Network_Status
° Network_Initialization_Status from Network_Status
Outputs:
. IO_Network_Status_heport to System Manager (1.)
Notes: None.

Description:

The I0O_Network_Manager_Command, Send_Network_Status, will contain a
parameter, Report_Rate, which indicates whether
I0O_Network_Status_Reports should be sent upon receipt of
Send_Network_Status only or instead should be sent periodically at
some frequency specified in Report_Rate.

The I0_Network_Status_Report generated by this process for the System

Manager (1.) will contain information on the current state of the
network as recorded in Network_Status. For example, if an attempt is
made to initialize a network, this process will send a message to the

System Manager (1.) based on the outcome of that attempt as logged in
Network_Status.Initialization_Status by the Initialize I/0 Network
process (4.2.1.2). Network_Status may be locked by Control I1/0 Net-
work (4.2.1). Thus Report to System Manager may have either to wait
for Network_Status to be unlocked before sending its report or to
send a report indicating that network status is pending.

Until the Initialize I/0 Network process has grown or failed to grow
a network, the status of all nodes in the network is null. After that
process has run, nodes will have either an active or failed status
logged in Network_Status.Node_Status by that process. Updates to
Node_Status will be made by the Maintain I/0 Network process
(4.2.1.3) as necessary. Each IO_Network_Status_Report will indicate
the current state of each node as logged in Node_Status. Finally,
the I0O_Network_Status_Report will include the address of the network
which is the subject of the report as indicated in the
Network_Identifier.

3-92



3-93



4.1 Introduction

This section contains a listing of every data item or data grouping
identified on the data flow diagrams. Each entry includes a description
of the data.

Note: Descriptions are made in the context of how the data item
is used in process descriptions from Chapter 3 and data
flow diagrams from Chapter 2.

The following conventions are used within data descriptions:

e Data items that are a composite of other data items are described
in one of three ways:

— A vertical list of data items, each preceded by a bullet,
that make up the composite or

— A list of data items connected by plus signs, e.g., Data +
Status, or

— An English description of the data item.

° Data items that are defined as a choice of one of a group of data
items are described in one of three ways:

- A vertical list, without bullets, of data items with a verti-
cal bar symbol after each of the items excluding the last
item,

-~ A list of data items connected by vertical bars, e.g., Data |
Data_Status | Status, or

— An English description of the data item, e.g., "The item may
" be Data, Data_Status, or Status'.

. Data items may be described as a choice of values. Values are
represented by text within double quotes. (The name of a value
may serve as its own description.)

° Data items that are defined as a collection of one or more data
items (iterations of a data items) may be designated by placing
the iterated data items in parenthesis, e.g., (Data_And_Status)
to represent one or more elements made of Data_And_Status, and

N



(Data | Status) to represent a collection of one or more ele-
ments, any of which may be either a Bata or a Status item.

e Where English description combined with the above syntactical
symbols, it is either:

— preceded by a double dash, "--", or
— separated from the rest of the definition by a blank line.

4.2 Data

Activate_Chain
Chain_Identifier

Active_Root_Node
Holds the address of the root node from which a network
partition will be grown. Its value is used to initialize
the spawning node queue.

Address_Mismatch_Indicator

""Mismatch"
| "Match"

Al1_Transactions_Failed_Indicator

"Al1_Failed"
- | "Some_Succeeded"

Application_Initialization_Request

® Service_Identifier
] Function_ldentifier

At_Least_One_Transaction_Failed_Indicator

“All_Succeeded"
| "Some_Failed"

Bus_gError
' This data item is an indication that the signal on the net-
work is stuck on high, that contention was aborted, or the
network is busy such that contention cannot occur.
Bypass

yag't
l uNoll

Bypass_Clear

4-2



“"Clear"
| "NO"Op"

Bypass_Clear_Queue_Element
(Chain_lIdentifier)

Bypass_Enabled

yagh
| nNo'!

Bypass_Indicator

"Executed"
| "Bypassed"

Chain_Complete

“"Chain_Complete"
| “"Not_Finished_Yet"

Chain_Complietion_Status

"Next_Chain"
| "Switch_Root_Link_And_Repeat_Chain'
| "Switch_Root_Link_And_Next_Chain"

This data item indicates whether I/0 errors encountered

while performing a chain imply that root link switching

should be performed or that the chain should be retried.
-~~~  The possible values are:

Next_Chain indicates that root link switching should
not be performed and the chain.should not be retried.

Switch_Root_Link_And_Repeat_Chain indicates that root
link switching should be performed (if there is an
alternative root link to switch to) and the chain
should be retried after the switch.

Switch_Root_Link_And_Next_Chain indicates that root
link switching should be performed (if there is an
alternative root link to switch to) but the chain
should not be retried after the switch.

Chain_Data_And_Status

° Chain_Identifier
. (Transaction_Identifier + Data + Comfault_Indicator +
Bypass_Indicator)
Chain_ldentifier

identifies a chain within an I/0 network



Chain_Initiation_Command

' Chain_Identifier
° (Root_Link_Identifier)

Chain_Initiation_Status

[ Contention_Status
] Chain_Identifier

Chain_Not_Processed_Indicator

"Processed"
| "Not_Processed"

Chain_Queue
(Chain_Queue_Element)

-~ This is a prioritized queue of Chain_Queue_Elements.
Chain_Queue_Element

Transaction_Queue_E lement

| Root_Link_Queue_Element

| Bypass_Clear_Queue_Element

| Selection_Queue_Element

| Network_Partition_Queue_Element

Chain_Status
This data item has content identical to
‘End_-0f_Chain_Status. -

Chain_Timeout_Value
This data item specifies how long an 1/0 chain is allowed
to continue before being considered in error. The period
being specified starts when the GPC performing the chain
wins the contention. There is a unique value for every
chain. This data item also indicates the Chain_Identifier
for the chain.

Chain_Transaction_Status
This data item is a summary of errors in all transactions
of the chain being processed. The following values are
possible:

"No_Transaction_Performed"

| "No_Errors_In_Chain'

| "At_Least_One_Error_In_Chain"

| “"Errors_In_All_Transactions"
Comfault_Indicator

IlOKll

| “"Faulted"

4-4



This data item indicates to the process that requested the
transaction whether or not the data received due to the
transaction is suspect, i.e., that an error occurred during
the transaction or that the transaction was not performed.

Command_Frame
This data item specifies the operation or operations to be
performed by a node or DIU, and the output data, if any,
appropriate to those operations.

Figure C-2 on page C-4 shows the format of the packet por-
tion (the portion between the Opening Flag and Closing
Flag) of a Command_Frame.

Command_Frame_Status

Timeout_Value & Input_Packet_Identifier
| Time_Pad

Complietion_Status ‘
Indicates the Chain_ldentifier for the completed chain and
whether the determination of completion was based on its
actually finishing, or on the detection of a timeout. The
following values are possible.

° Chain_OK means that the chain in progress finished
before the chain timeout limit was reached.

° Chain_Timeout indicates that the chain in progress was
am o e still in progress when the chain timeout limit was
reached.

° Unexpected_Chain_Compiete means that an end of chain
condition was detected at a time when no chain was in
progress on the network in question. This indicates
the detection of a ''bus busy' condition.

Contention_Data

e Contention_Priority
e Maximum_Attempts

Contention_Priority
-- symbol representing the relative level of priority with
which to contend for the bus

Contention_Status

. "Contention_Won" | "Contention_failed"
° Bus_Error

Current_Network_Definition

4-5



The version of Network_Definition currently being imple-
mented.

Current_Network_Partition_Definition
(Partition_Identifier + (DIU_Address | Node_Address) )

Current_Partition_Data
Data reflecting the current partitioning of a network by
the network manager in  accordance with the
Current_Network_Definition. This data includes the number
of partitions in a I/0 network. It also includes the
nodes, DIUs, and root links for each partition.

Current_Root_Link
The identifier of the active root link to a partition which
is about to be grown.

Data
-- an array of one or more bits

DIU_Address
Network_Address -- for a DIU

Encoded_Address_Indicator

"Match"
| "Mismatch"

End_Of_Chain_Status

‘Chain_Complete

Chain_Not_Processed_Indicator
All_Transactions_failed_Indicator
At_Least_One_Transaction_Failed_Indicator
More_Than_0One_Transaction_Performed_Indicator
Bus_Error

o & 6 0 00
»

Indicates whether the chain in progress has completed, and
if so whether I/0 errors were detected during chain exe-
cution.

(1) Chain_Complete indicates whether the chain in progress
has completed.

-(2) Error_Status indicates whether 1I/0 errors prevented the
GPC from winning a poll; whether there were I/0 errors
detected on all transactions in the chain, or on at
least one transaction but not all; or whether response
frames were expected from more than one DIU or node.

End_Of_Chain_Status_Identifier
This data item identifies an End_Of_Chain_Status data item.

Error_Process_Inhibit



Nyeg'
| llNoll

Frame_Check_Sequence
-- data computed by the interface to detect bit errors

within a frame

Frame_Length .
- The combined length of the Network_Address,

HDLC_Controi_Byte, and Data fields produced by a
Response_Frame for an Input_Packet

Frame_Protocol_Error_Indicator

llYesll
' IINO”

Function_ldentifier
This data item uniquely identifies an application function.

GPC_Subscriber_Command
(Function_Identifier)

GPC_Subscriber_IO_Error_Log
This is a file that stores the history of I/0 errors
detected by local GPCs. Each log entry includes the type
and time of the error.

GPC_Subscriber_JO_Error_Report
This is information from a GPC subscriber to the I/0 Net-
- -work Manager concerning the I/0 errors the subscriber has
experienced since the last such report.

GPC_Subscriber_List
The complete list of identifiers of GPC subscribers to an
I/0 network.

HDLC_Control_Byte .
-- byte of information for HDLC control (not used)

HOLC_Program

"DIU_Communication"
| "Node_Communication'

Incorrect_Message_Length_Indicator

IIYesII
I "NO“

Inhibit_Switching_Indicator
"Inhibit_Switching"

| "Allow_Switching"

4-7



Initialize_Network
A command sent to the manager of a network by the System
Manager (1.) requesting that a network be initialized or
grown. It also contains an identifier of this network
which selects the data describing this network in
Network_Definition.

Input_Packet

Interface_Status
Frame_Length
Network_Address
HDLC_Control_Byte
Data
Frame_Check_Sequence

Input_Packet_Identifier
Packet_Identifier -- for an Input_Packet

Input_Packet_Length
This data item specifies the length of an Input_Packet

Interface_Chain_Timeout_Value
This data item specifies the maximum period of time --
after a contention has been won and before a chain has com-
pleted -- before the chain is declared failed.

Interface_Status

° Transaction_Timeout_Indicator
- e - Frame_Protocol_Error_Indicator
' Residual_Bit_Count

Interface_Transaction_Data

° Timeout_Value
o Qutput_Packet_Identifier
] Input_Packet_Identifier

Interface_Transaction_Status

"Successful'
| "Failed"

I0_Chain_Definition

Network_Identifier
Chain_Identifier
Chain_Timeout_Value
Contention_Data
End_Of_Chain_Status_Identifier
HDLC_Program

Request_Type
(Transaction_Definition)

4-8



I0_Data_Base

° (I0_Request_Definition)
) (Limits_Definition)
'y (Network_Definition)

This data item contains definitions for:

° I/0 requests, including chain definitions and trans-
action definitions

° limits, including limits for swntchlng as well as tran-
saction error limits, and

. I/0 networks, including nodes, links, and how they are
connected.

Some components may be referenced individually or as a
group. For example, I0_Chain_Definitions may be grouped
according to usage by Application Function or according to
the I/0 network for which they are defined.

I0_Network_Command

GPC_Subscriber_Command
| I0_Network_Manager_Command

IO_Network_Manager_Command
A command from the System Manager (1.) to the process which
will manage an I/0 network. It may be one of the following:

Initialize_Network or
Modify_Network_Definition or
Send_Network_Status

JO_Network_Status_Report
This data is sent to the System Manager (1.) to indicate
the status (active or failed) of each node in an I/0 net-
work. The status may also include current partition infor-
mation.

IO_Request_Data
Data -~ any number of bytes up to the maximum for a frame

I0_Request_Data_And_Status

° (Chain_Complete)
° (Data + Comfault_Indicator + Bypass_Indicator)

I0_Request_Definition
® I0_Request_Identifier

. Request_Type
. (I0_Chain_Definition)

4-9



I0_Request_Identifier
This data item uniquely identifies a specific I/0 Request.

I0_Request_Parameter

I0_Service_Request
| Transaction_Selection_Request
| Application_Initialization_Request

IO_Request_Priority This value specifies the relative order in which
Chain_Queue_Elements should be inserted into a Chain_Queue.

I0_Service_Request

e Service_ldentifier
° I0O_Request_Identifier
J (Data)

Limits_Definition
(Network_Identifier + Switching_Limit +
(Transaction_Identifier + Transaction_Error_Counter_Limit))

Link_Status .
A table which has an entry for each link in the network.

The status of a link may be one of the following:

"pctive! =-- the link connects two enabled ports and is
transmitting data on the network.

“Null" -- the link is a spare part connecting two null
ports and is not transmitting data on the network
"Fajled" -- the link connects two ports, at least one
of which has failed.

Local_IO_Status
(Time + Reason_For_Logging
+ Partition_Identifier
-~ and one of the following

Root_Link_Status
| Root_Link_Status + Chain_Identifier

Manager_I0_Command

Manager_I0_Request_Parameter
| Reconfiguration_Report

Manager_I0_Data

Manager_I0_Request_Data_And_Status
| GPC_Subscriber_IO_Error_Report

Manager_IO_Request_Data_And_Status

) End_Of_Chain_Status

4-10



) (Data + Comfault_Indicator + Bypass_Indicator)
. Root_Link_Status

Three types of status are returned to the manager:
End_Of_Chain_Status (status of the chain as a whole), the
status of each transaction, and root link status (which

root link was active for the chain). The Data is the
information contained in the response frame of each trans-
action.

Manager_I0_Request_Parameter

I0_Service_Request -- a configuration command or a node
status read command

| Transaction_Selection_Request

| Root_Link_Control_Request

| Partition_Update_Request

Maximum_Attempts
-- number representing the maximum number of contention
attempts to be made before declaring the contention failed

Modify_Network_Definition
The System Manager (1.) sends this command to an I/0 Net-
work Manager whenever the Network Definition is to be modi-
fied. The following changes can be made:

Node_Addition -~ adds a node to the network
Node_Deletion -- removes a node from the network
Node_Repair -~ indicates a failed node has been
-~ -repaired
In each case all changes to Network_Definition must be
fully specified. For example, addition of a new node will
require data to be entered in the link list, the node list
on a port by port basis, the GPC list, etc.

More_Than_One_Transaction_Performed_Indicator

"One
| "Many"

Network_Address
-- symbol representing an address on the I/0 network

Network_Configuration
Information reflecting the enabled connections in the net-
work.

. Node_Configuration
. Predecessor_List

Network_Definition

These are the tables which define the physical composition
of the network. The information will include a node list,

4-11



a link list, and a GPC list. Furthermore, if the table
applies to a local I/0 network, it will also include infor-
mation needed for network partitioning. The node list will
define and identify for each port of that node, what its
neighbor is (adjacent node and its identifier, DIU and its
identifier, or GPC and its identifier). The link list will
define for each link which two network elements it con-
nects; one of the elements must be a node. The GPC list
will define which link and node are connected to each GPC
that is a network subscriber. The network partitioning
information will include the number of partitions, the
nodes in each partition, and the root links for each parti-
tion. Several versions of this partition data will be
stored. The first version will assume no failed elements.
Additional wversions will provide similar information for
repartitions of the network. Some alternate versions will
be used to support repartitioning in response to network
failures; others will support test objectives. A single
I/0 network may have multiple alternate definitions.

- Network_Fault_Indicator

A list of all nodes which have errors reported in the sta-
tus field of their Manager_IO_Request_Data_and_Status after
a periodic status collection and all nodes which processing
of the data collected from the nodes and GPC subscribers
reveals to be failed.

Network_ldentifijer
-~ symbol identifying a particular I/0 network

Network_Initialization_Status
The current state of the network with respect to the activ-
ity of the Initialize Network process. The values of this
data item are:

“"Null" -- the Initialize Network process has not yet
run

"Initialization in progress: Status pending" =- the
process is currently attempting to grow a network
"Initialization Completed: Final Status Fully Success-
ful' -- the process has connected all nodes in the net-
work to the active tree

“Initialization Completed: Final Status Partially Suc-
cessful' At least one node is in the active tree
"Initialization Completed: Final Status Failed" -- the
process has not been able to connect any nodes in a
network

Network_Partition_Queue_Element
Current_Partition_Data

Network_Status

A data structure which which contains current information
about the state of wvarious network elements and various

4-12



subsets of those elements, including the network itself.
This information is distributed among the following fields:

Link_Status
Network_Initialization_Statu
Node_Status :
Partition_Status
Reconfiguration_Status
Send_Status

Node_Address
Network_Address -- for a Node (4.1.5)

Node_Configuration .
A table which describes the configuration of each node in
the network on a port by port basis. Each port may have
the following status:

"Inboard! -- active and used as a spawning port when
growing the network

"Qutboard'' -- active and used as a target port when
growing the network

“Null'" =-- npot currently enabled but believed to be
functional and useful as a spare port

“"Failed" =-- not currently enabled but believed to be
not functional and not useful as a spare port

Node_Status
The overall status of a node as well as its status on a
port by port basis. If a node or port has a failed status,
= =-- --.-the diagnosed reason for the failure will be recorded. The
" status of a node or a port may be one of the following:

"Active' -- functioning normally in the network
"Null" =-- not actively connected to network but not
having been diagnosed as failed
“"Failed" -- attempts to utilize the node or port result
in errors being detected in the network.

Some reasons for declaring a node or a port failed are:

Passive failure
Babbling element
Talking out of turn
Transmitter stuck on

OQutput_Packet
™ Network_Address
° HDLC_Control_Byte
° Data -- up to 128 bytes

Output_Packet_Identifier
Packet_Identifier -- for an Output_Packet



Output_Packet_Length
This data item specifies the length of an Output_Packet

Packet_Identifier
This data item uniquely identifies an OQutput_Packet or an
Input_Packet.

Packet_Status

Frame_Protocol_Error_Indicator
Transaction_Timeout_Indicator
Incorrect_Message_Length_Indicator
Address_Mismatch_Indicator
Encoded_Address_Indicator
Residual_Bit_Count_Indicator

Partition_Identifier
-- symbol identifying a partition of a network. A network
may be divided into one, two, or three partitions.

Partition_Status . :
The current state of a partition of a network. Each parti-
tion in a network has its own status. The value of this
status may be:

"Active" -- all nodes on the partition are functioning
properly .
iFajled" -- at least one node in a partition is failed

Partition_Update_Request

L Service_Identifier
] Network_Identifier
e Current_Partition_Data

Predecessor_List

' The ordered list of nodes through which a given node is
connected to the host GPC of the I/0 Network Manager. The
first node on the list is the owner of the list itself.
The last node is the node closest to the GPC hosting the
I/0 Network Manager process. Each node in the active tree
has its own predecessor set and also appears as a member of
that set.

Reason_For_Logging
"Root_Link_Switch"
| “Al1_Root_Links_On_Partition_Faulted"
| "Root_Link_Rotation_Limit_Reached"
Receiver_State
Ilonll

| noff"

4-14



Reconfiguration_Report
This report indicates that the I/0 Network Manager has con-
ducted a reconfiguration operation. It contains an identi-
fier of the network on which the operation has been
performed. The manager sends such a report to the I/0 User
Communication Services of every GPC subscriber on the I/0
network it is managing.

Reconfiguration_Status
The state of the network with respect to the Maintain I/0
Network process. The status may be one of the following:

"Reconfiguration in progress: Outcome pending"
"Reconfiguration completed: Network Modified"
"Reconfiguration completed: No change in network"

Regrow_Network_Request
A request by the Maintain I/0O Network process to reinitial-~
ize a network because a failure mode has been diagnosed
which can onily be repaired by completely regrowing the net-

work.
Report_Rate
A value indicating the frequency at which the

IO_Network_Status_Report is to be sent to the System Manag-
er (1.). If the value is '"0", then these reports are sent
upon receipt of a Send_Network_Status command only.

Request_Type

"Manager"
| "IO_Request"

Residual_Bit_Count
This data item is the count of the number of residual bits
(between 0 and 7) received from a Response_Fframe.

Residual_Bit_Count_Indicator

"Mateh"
| "Mismatch"

Response_Frame
This data item is a node or DIU's reply to a command frame.
Not all command frames evoke a response frame, but all
response frames are triggered by a command frame.
Figure C-3 on page C-5 shows the format of the packet por-
tion (the portion between the Opening Flag and Closing
Flag) of a Response_Frame.

Response_Frame_Data

° Network_Address -- same value used for the
Command_Fframe preceding the Response_Frame



. HDLC_Control_Byte
. BData
. Frame_Check_Sequence

Response_Frame_Data_And_Status

' Response_Frame_Status
™ Response_Frame_Data

Response_Frame_Status

' Frame_Protocol_Error_Indicator
. frame_Length
. Residual_Bit_Count

Retry_Limit
This data item indicates the number of times a the root
links, as a group, should be switched during the attempted
execution of one chain of transactions before the chain is
declared failed.

Root_Link_Activation

Ilonll
| “off"

Root_L ink_Command
(Root_Link_Identifier + Root_Link_Activation)

Root_Link_Control_Request

Service_ldentifier
Network_ldentifier
Inhibit_Switching_Indicator
Root_Link_Identifier

Root_Link_Failure

"Good"!
| "Bad"

Root_Link_Identifier
-- symbol identifying one of the I/0 Interface (4.1.3) pro-
cesses that connect the rest of I/0 User Communication Ser-
vices (4.1) to an I/0 network.

Root_Link_Queue_Element
(Partition_Identifier)

Root_Link_Status

Root_Link_Command
| (Root_Link_Identifier + Root_Link_Failure)




Rotation_Log_Limit
This data item indicates the number of times the root
links, as a group, should be switched before logging the
event.

Selection

"Select"
] "Skip"

Selection_Default
Selection

This data item is a default value for Selection for a tran-
saction. It is found in I0_Data_Base.~
I0_Request_Definition.I0_Chain_Definition.Transaction_Definition.

Selection_Queue_Element
(Chain_ldentifier + (Transaction_ldentifier + Selection))

Send_Network_Status
A command from the System Manager (1.) to an I/0 Network
Manager requesting a report on the state of the network. It
will contain the parameter Report_Rate to control the fre-
guency of generation of these reports.

Send_Status
Indicates whether or not Current_Partition_Data has been
sent to I/0 User Communication Services (4.1). Its value
may be one of the following:

"Sent'
"Not Sent"

Service_Identifier

"I0_Service_Request"

| "Transaction_Selection_Request"

| "Root_Link_Control_Request"

| "Partition_Update_Request"

| "Application_Initialization_Request'

Single_Link_Log_Limit
This data item indicates the number of times a root 1link
may be switched before the switching is logged as a special
event.

Switching_Limit
. Single_Link_Log_Limit

e Rotation_Log_Limit
) Retry_Limit



~-- System time as recorded by the local processing site.

Time_Pad

Timeout_Value =-- for use when a transaction is bypassed
within a partitioned I/0 network.

Timeout_Value

This data item specifies the time period which may elapse
before a Response_Frame is considered failed.

Transaction_Configuration_Data_Base
((Transaction_ldentifier <+ Bypass <+ Bypass_Enabled <+
Error_Process_Inhibit + Transaction_Error_Counter +
Selection) | ‘
(Chain_Identifier + Bypass_Clear)

This data item contains the following information for each
transaction.

(1)

(2)

3)

(4)

(5)

Bypass indicates whether the transaction has been

' bypassed.

Bypass_Enabled indicates whether bypassing or error
process inhibiting is to be performed in the event that
the transaction's error counter reaches the limit.

Error_Process_Inhibit indicates whether the trans-
action's error counter has reached the limit and that
minimal I/0 error processing should be performed in
lieu of bypassing.

Transaction_Error_Counter indicates the number of con-
secutive occurrences of the transaction on which an I/0
error was detected, up to the point where transaction
bypass or error process inhibit is performed.

Selection indicates whether the transaction has been
selected to be performed or skipped in this chain.

Transaction_Definition

Transaction_ldentifier
Qutput_Packet_Length

" Output_Packet_lIdentifier

Timeout_Value

Time_Pad
Input_Packet_Length
Input_Packet_Identifier
Selection_Default

Transaction_Error_Counter
This data item is an integer count ranging from 2zero to
Transaction_Error_Counter_Limit



Transaction_Error_Counter_Limit
-- the number of consecutive occurrences of a transaction
with a communications error that it takes to trigger
bypassing or error process inhibiting

Transaction_Identifier
This data item identifies a transaction within a chain

Transaction_Queue_E lement

Chain_Complete
Chain_ldentifier
I0O_Request_Priority
Root_Link_Status
(I0_Request_Data)

Transaction_Selection_Request
° Service_lIdentifier
. I0_Request_Identifier
. (Chain_Identifier + (Transaction_Identifier))

Transaction_Status

. Comfault_Indicator
] Bypass_Indicator

Transaction_Timeout_Indicator

llYesll
| ""No'!

Wait_Enqueue
-- indication to Local 0.S. to enqueue a process on the
local wait queue

Wait_Request

Wait_Enqueue
| wWait_Request_Dequeue

Wait_Request_Dequeue

-=- indication to Local 0.S. to release a process from the
local wait queue

4-19



SECTION 5
PROCESS AND DATA LOCATION
The process and data locations specified herein are based on the FTP

design as described in [4]. These major FTP elements are shown in Fig-

ure 5-1. This is a greatly simplified depiction of the FTP; only one
replication of the redundancy is shown.

5-1



SHARED
BUS

INTERCHANNEL
COMMUNICATION

SHARED
MEMORY

cP
cpP
RAM
IoP
I0pP
RAM
Network G
I0S G DPM G
Root Link
Network R
IOS R DPM R
Root Link
Network L
IoS L DPM L
Root Link

Figure 5-1. FTP - Functional Layout of Major Elements

5.1 Process Location

This section identifies the physical
processes in each branch of the hierarchy as described in section

location of the the lowest level



" 3, Process Descriptions' on page 3-1. The physical location can be
within an FTP: a CP, IOP, or I0S; or external to an FTP: a node.

Those processes that are located in the I0OS or node are considered hard-
ware (firmware) processes whereas those located in the CP or IOP are
considered software.

Most of the processing is located in either the CP or the I0OS. The rea-
sons for the partitioning are:

(1) It is desired to have the IOP capable of a short reaction time,
both to chain activation commands from the CP and chain com-
pletion commands from the IOS. The intention is to provide a
fast I/0 response and a small transport lag. Since neither of
these two signals is an interrupt to the IOP, the IOP must be
monitoring for their occurrence frequently. And obviously, the
less other processing the IOP is concerned with, the better its
response to these two signals will be.

(2) The IOP will have additional processing assigned related to IC
services and FDIR. Since these processes are expected to be more
demanding than the 1/0 processing, it seems appropriate to place
modest demands on the IOP for I/0. :

(3) It is desired to keep the IOP software independent of the func-
tions assigned to the GPC in order to avoid the necessity of
reconfiguring the IQOP software during function migration.

This partitioning is an initial set; as experience is gained, it may
prove possible to achieve sufficient I/0 performance with additional
-~ processing -allocated to the IOP.

5.,1.+ CP Processes

Request Initiation Processing (4.1.1.1)
Request Completion Processing (4.1.1.2)
Sequencer (4.1.2.1.1)

Chain Initiation (4.1.2.1.2)

Root Link (4.1.2.1.3)

Bypass Clear (4.1.2.1.4)

Transaction Selection (4.1.2.1.5)

Network Partition (4.1.2.1.6)

Data/Status Processing (4.1.2.2.1)

End Of Chain I/0 Error Processing (4.1.2.2.2.2)
GPC I/0 Network Manager Support (4.1.4)

Handle Network Redefinition Events (4.2.1.1.1)
Send Current Partition Data (4.2.1.1.2)

Select Root Link (4.2.1.2.1)

Grow To Root Node (4.2.1.2.2)

Complete Partition Growth (4.2.1.2.3)

Repair Network Fault (4.2.1.3.1)

Test Network Components (4.2.1.3.2)

Collect Network Status (4.2.2.1)

5-3



e Collect Subscriber Status (4.2.2.2)
e Report To GPC Subscribers (4.2.3.1)
e Report To System Manager (4.2.3.2)

5.1.2 IOP Processes
e End Of Chain Monitor (4.1.2.2.2.1)
e Chain Interface (4.1.2.3)
e Interface Chain Setup (4.1.3.1.1)
o  Interface Transaction Setup (4.1.3.1.2)

5.1.3 10S Processes

Interface Chain Completion (4.1.3.2.1)
Interface Response Frame Processing (4.1.3.2.2)
Contention Processing (4.1.3.3)

Frame Transmitter (4.1.3.4)

Frame Receiver (4.1.3.5)

S.1.4 Node Processes
e Node (4.1.5)

‘5.2 Data Location

This section identifies the physical location of each data item listed
as the input or output of a process. The location can be one or more of
the following FTP elements: I0S dual port memory (DPM), CP memory (CP
RAM) , IOP memory (IOP RAM), or Shared Memory.

The following physical data locations correspond to the process
locations detailed in "5.1 Process location." Should the processes be
relocated, the data locations must be changed accordingly.

9.2.1 CP Memory
The following are data items that exist in congruent form only.

Active_Root_Node
Bypass_Clear_Queue_Element
Chain_Completion_Status
Chain_Data_And_Status
Chain_Identifier
Chain_Queue
Chain_Transaction_Status
Current_Network_Definition
Current_Root_Link

5-4



GPC_Subscriber_Command
GPC_Subscriber_I0_Error_lLog
GPC_Subscriber_IO_Error_Report
GPC_Subscriber_List
I0_Data_Base
I0_Network_Command
IO_Network_Manager_Command
I0O_Network_Status_Report
I0_Request_Data_And_Status
IO_Request_Definition
I0O_Request_Parameter
Limits_Definition

Link_Status

Local_I0_Status
Manager_IO_Request_Data_And_Status
Manager_IO_Request_Parameter
Network_Configuration
Network_Definition
Network_Fault_Indicator
Network_Identifier
Network_Initialization_Status
Network_Partition_Queue_Element
Network_Status
Node_Configuration
Node_Status

Packet_Status
Partition_Status
Predecessor_List.
Reconfiguration_Report
Reconfiguration_Status
Regrow_Network_Request
Root_Link_Queue_Element
Root_Link_Status
Selection_Queue_Element
Send_Status
Transaction_Queue_Element
Transaction_Status
Wait_Request

8.,2.2 I0P Memory

The following are data items that exist in congruent form only.

° Chain_Initiation_Command
° Interface_Transaction_Data
5,2,3 J0S Dual Port Memory

The following are data items that exist in congruent form only.
data items originate in the CP or IOP, where they are congruent.

These
Howev-

er, the actual usage of one of these items may be by a single channel,
and congruency is not relevant.



Contention_Data
HDLC_Program
Output_Packet
Receiver_State

The following are data items that exist in simplex form only, either in
I0S dual port memory or in hardware associated with the IOS.

Command_Frame
Contention_Status
End_Of_Chain_Status
Input_Packet
Interface_Transaction_Status
Response_Frame
Response_Frame_Data_And_Status

The following are data items that can exist in either simplex or congru-
ent form depending on whether or not the I/0 network associated with the
related I0S has multiple partitions.

° Command_Frame_Status
e End_Of_Chain_Status_Identifier
° Output_Packet_ldentifier

5.2.4 Shared Memory

The following data items must be located in a memory that is accessible
by both the CP and the IQP. This can either be a physically distinct
shared memory or I0OS DPMs. The data is congruent.

Activate_Chain

Chain_Status

Chain_Timeout_Value
Completion_Status
Current_Network_Partition_Definition
I0O_Chain_Definition
Root_Link_Command
Transaction_Configuration_Data_Base

5-6



APPENDIX A

DATA FLOW DIAGRAM SYMBOL DEFINITIONS

This appendix contains a definition of the symbols used on the data flow
diagrams. These symbols are adapted from [10].

This is the process symbol, a circle. It identifies a transformation
of input data into output data. The Process Name and Reference Num-

ber (see appendix ' B. Process Description Format Explanation')
appear inside the circle.

Process Name
n.m.i

This is the data originator/terminator symbol, a rectangle. It
represents a boundary of the system being described. The name of the
boundary element appears inside the rectangle.

External
Element

This symbol, two paraliel lines, represents a file or data store. The
symbol indicates the possibility of a delay when accessing its con-
tents. The name of the store or file appears between the two lines.
By convention, both lines are drawn only for the first time the store
is identified within a hierarchy; thereafter only one line is drawn.

File_Name

A-1



This is the data flow symbol, a directed arrow. The name of the data
is written through or next to the line.

Data_Name

This is the two-way data flow symbol, a double ended arrow. The data
flows are separate and should be considered as independent. The two
names of the data are written through or next to the line. The prox-
imity of the data name to the arrow end indicates the flow direction
of that data.

Data_Name1

Data_Name2

This is the data flow divergence symbol, branching arrows. This sym-
bol indicates the distribution of data with no processing or trans-
formation taking place. The data may be distributed in total or
component data flows can be extracted from the main flow. In the
latter case, the names of both the component data and the total data
must be indicated.

Data_Namet '
\
\ Data_Name3

/
Data_Name2 /

This is the data flow convergence symbol, merging arrows. This symbol
indicates the merging of data with no processing or transformation
taking place. The names of both the component data and the total
collection of data must be indicated.

Data_Name1

/
Data_Name3 /

\

\ Data_Name2-

A-2



APPENDIX B
PROCESS DESCRIPTION FORMAT EXPLANATION

This appendix explains the format of the process descriptions in section
" 3. Process Descriptions."

Process Name: This is the name of the process exactly as it
appears on the data flow diagram. Each word of
the name is capitalized. The words are
optionally separated by blanks or underscores.

Reference Number: This is the number of the process exactly at it
appears on the data flow diagram.

Identifier: This the Process Name with underscores, fully
qualified using the 'dot' notation. This is
referred to as the Process ID.

Bui ld: This is the software build in which the process
is initially required. For this version of this
document entries of either 3 or post 3 are per-
missible.

Requirements Reference: This entry or entries identifies the
paragraph (s) of the appropriate requirements
documents [1], [2] , and [3].

Inputs:. This list identifies all data inputs to the process by
exactly the same names that appear on the data flow dia-
grams. Every word is capitalized and words are separated
by underscores. The source of the input is identified.
The source can be either a file or a process. .

Outputs: This 1list identifies all data outputs to the process by
exactly the same names that appear on the data flow dia-
grams. Every word is capitalized and words are separated
by underscores. The destination of the output is identi-
fied. The destination can be either a file or a process.

Notes: Any special design requirements are entered here. A
specific processing rate is an example of a special
requirement.

Description:

The description of the processing can be in any combination of

several forms: plain english, pseudocode, structured flow diagrams,

or a Program Design Language (POL). 1In addition, the following con-
ventions are followed:

(1) Figure titles are in the same form as the Process Name.

B-1



(2)

(3)

(4)

References to Process Names or IDs use either the fully qualified
Process ID, or 'Process Name (Reference Number)'.

References to Data Identifiers use the fully qualified names
where necessary to avoid ambiguity; otherwise the simple name is
used. For references within flow charts, the simple name is used
and text .is included in the-Description to correlate the simple
name to the fully qualified name.

Every input and output item must be referred to in the
Description.

B-2



I/0 Service Request
Either an request for DIU I/0, a request for Node I/0 with
contention, or a request for Node I/0 without contention.

Node Request Without Contention
A special request for I/0 service on exactly one network
from the manager of that network consisting of one chained
transaction. The individual transactions in the chain
involve only nodes; they cannot involve DIUs.

Node Request With Contention
A request for I/0 service on exactly one network from the
manager of that network consisting of one chained trans-
action. The individual transactions in the chain involve
only nodes; they cannot involve DIUs.

DIU I/0 Service Request
A request for I/0 service from any user consisting of one
or more chained transactions on one or more I/0 networks.
The individual transactions in the chains involve only
DIUs; they cannot involve nodes.

Chained Transaction
A series of one or more transactions on exactly one I/0
network.

Transaction
A term that refers to any of the following forms of trans-
actions: input, output, and output/input.

Input Transaction
This type of transaction consists of a command frame fol-
lowed by a response frame. The predominant information flow
is from a node or DIU to a GPC.

Output Transaction
This type of transaction consists of a command frame only.
The information flow is from a GPC to a node or DIU.

Output/Input Transaction
This type of transaction consists of a command frame fol-
lowed by a response frame. There is significant information
flow both from the GPC in the command frame and from the
DIU or node in the response frame.

C-1



Output Transaction with Acknowledgment
This is an output/input transaction in which the data in
N the response frame contains only the status of the DIU or
node.

Frame
A single transmission of data, i.e., a contiguous stream of
bits from the opening to the closing flags inclusive.

Command Frame
A frame transmitted by a GPC on an I/0 network resulting in
the transmission of an output packet.

Response Frame
A frame transmitted by a node or a DIU on an I/0 network in
response to a received command frame, resulting in the
receipt of an input packet by a GPC.

Input Packet o
The collected information resulting from a response frame.

Output Packet
The total information transmitted by a command frame.

Contention Sequence
The modified Laning Poll that is performed on a network in
order to permit the GPC to perform a chained transaction.

Laning Poll
A contention resolution scheme based on relative priority.

DIV
A Device Interface Unit that interfaces the network to sen-
sors, effectors, and other I/0 devices.

Subscriber
A GPC or a DIU connected to a network.

Link
A full duplex, serial transmission path.
Net Link
A link connecting two nodes.
Root Link ‘
A link connecting a GPC to a node.
DIU Link

A link connecting a DIU to a node.



Node

I/0 Network

A unit of equipment. that steers transmissions between
nodes or between nodes and subscribers

A fault-tolerant, reconfigurable connection between sub-
scribers. The network is made up a number of S5-ported cir-
cuit switched nodes. The nodes are interconnected via net
links. Subscribers are connected to the network via root
links (GPCs) and DIU links.

0111111 0 Opening Flag 1 byte
|
Address Control 2 bytes
|
Data ...... Data 1 to 128 bytes
|
FCS* FCS 2 bytes
|
01111110 Closing Flag 1 byte

* FCS is Frame Check Sequence

Figure C-1. Frame Format

c-3



Address Control 2 bytes

Data* Data¥** ceves Data 1 to 128 bytes

3 to 130 bytes

* For an output packet addressed to a DIU, the one's complement of the
DIU address will be contained in the first byte of the data field.

%% For an output packet addressed to a DIU, the subcontrol information
followed by its one's complement will begin in the second byte of the
data field. The exact number of bytes of subcontrol information is DIU
specific.

Figure C-2. Qutput Packet Format



Interface
Status

Last Address

Received
I
Address Control
I
Datax Data
FCSl FCS

Data

1 byte

2 bytes

2 bytes

1 to 128 bytes

2 bytes

8 to 135 bytes

% For an input packet from a DIU, the first byte of the data field
will contain the one's complement of the DIU address.

Figure C-3. Input Packet Format



CMD 1 RSP 1 CMD 2 RSP 2 e CMD n RSP n
A Chain of Output/Input Transactions
CMD 1 CMD 2 CMD 3 CMD 4 ceeas CMD n RSP n

A Chain with Both Output and Output/Input Transactions

CMD 1

CMD 2

CMD 3

CMD n

A Chain of Output Transactions

CMD 1

RSP 1

A Chain with Only One Output/Input Transaction

CcMp 1

A Chain with Only One Qutput Transaction

Figure C-4. Chained Transactions

c-6




10.

LIST OF REFERENCES

Malcolm W. Johnston, James E. Kernan, Jaynarayan H. Lala, and James

G. Allen, AIPS System Requirements (Revision 1),, CSDL Report No.
€SDL-C-5738, August 30, 1983.

CSDL Report No. CSDL-C-5709, (Revision 1), October 1984.

Requirements, CSDL-AIPS-84-138, December 6, 1984.

J. McKenna Jr, et al, Advanced Information Processing System (AIPS)

P £ of C Syst Desi 5 fi . Fault Tol P _
sor, CSDL-AIPS-84-161.

J. McKenna Jr, et al, Advanced Information Processing System (AIPS)

p ¢ e ¢ S Desi S i . N k_ Node,
CSDL-AIPS-84-162.

Eliezer Gai, et al, AIPS Methodology Report, CSDL-C-5699, May 1884,
pages 2-1 through 2-8.

Larry D. Brock J. Barton DeWolf, Proposed Requirements Methodology
for Integrated Avionics Systems, CSDL-R-1656, July 28, 1983.

Asok Ray, Richard Harper, Jaynarayan H. Lala, Damage-Tolerant Multi=-

CSDL-R-1690, February, 1984,

Norman L. Kerth, '"Software Tools Automate Structured Analysis",
Electronics Week, August 20, 1984, Pages 69-72.

Brian Dickinson, Developing Structured Systems, Yourdon Press, 1880.



Activate_Chain 2-15, 2-17, 3-13, 3-19, 3-38, 4-2, 5-6
Active_Root_Node 2-41, 3-74, 3-76, 4-2, 5-4
Address_Mismatch_Indicator 4-2, 4-14
‘Al1_Transactions_Failed_Indicator 4-2, 4-6
Application_Initialization_Request 4-2, 4-10
At_Least_One_Transaction_Failed_Indicator 4-2, 4-6

Bus_Error 4-2, 4-86

Bypass 4-2, 4-18

Bypass_Clear 4-2, 4-18

Bypass_Clear_Queue_Element 2-17, 3-15, 3-21, 4-3, 4-4, 5-4
Bypass_Enabled 4-3, 4-18

Bypass_Indicator 4-3, 4-9, 4-11, 4-19

Chain_Complete 4-3, 4-6, 4-9, 4-19

Chain_Completion_Status 2-15, 2-17, 2-19, 2-21, 3-13, 3-15, 3-24,

- 3-27, 3-31, 4-3, 5-4

Chain_Data_And_Status 2-11, 2-13, 2-15, 2-19, 3-3, 3-9, 3-11,
3-24, 3-25, 4-3, 5-4

Chain_Identifier 2-19, 2-21, 3-25, 3-27, 3-31, 4-2, 4-3, 4-4, 4-8,
4-10, 4-17, 4-18, 4-19, 5-4

Chain_Initiation_Command 2-14, 2-15, 2-23, 2-25, 2-27, 3-11, 3-38,
3-40, 3-42, 3-43, 4-4, 5-5

Chain_Initiation_Status 4-4

Chain_Not_Processed_Indicator 4-4, 4-6

Chain_Queue 2-11, 2-13, 2-15, 2-17, 3-3, 3-5, 3-9, 3-11, 3-13,
3-15, 4-4, 5-4

Chain_Queue_Etlement 4-4

Chain_Status 2-19, 2-21, 3-25, 3-29, 4-4, 5-6
Chain_Timeout_Value 2-15, 2-17, 2-189, 2-21, 3-13, 3-19, 3-24,
3-27, 3-29, 4-4, 4-8, 5-6

Chain_Transaction_Status 2-19, 2-21, 3-25, 3-27, 3-31, 4-4, 5-4
Comfault_Indicator 4-3, 4-4, 4-9, 4-11, 4-19

Command_Fframe 2-3, 2-5, 2-11, 2-23, 3-1, 3-40, 3-54, 3-57, 4-5,
5-6

Command_frame_Status 2-23, 2-25, 2-27, 3-42, 3-46, 3-48, 3-51,
4‘5’ 5'6

Completion_Status 2-21, 3-29, 3-31, 4-5, 5-6

Contention_Data 2-23, 2-25, 3-42, 3-43, 3-53, 4-5, 4-8, 5-6
Contention_Priority 4-5

Xi

PRECEDING PAGE BLANK NOT FiLVM<D



Contention_Status 2-23, 3-48, 3-49, 3-53, 4-4, 4-5, 5-6
Current_Network_Definition 2-35, 2-37, 2-39, 2-41, 2-43, 2-45,
2-47, 3-63, 3-65, 3-67, 3-69, 3-70, 3-73, 3-74, 3-76, 3-80, 3-81,
3-84, 3-86, 3-87, 3-89, 3-90, 3-91, 3-92, 4-5, 5-4
Current_Network_Partition_Definition 2-11, 2-15, 2-17, 2-19, 2-21,
2-23, 2-25, 3-11, 3-13, 3-20, 3-23, 3-24, 3-25, 3-27, 3-29, 3-31,
3-40, 3-42, 3-43, 4-6, 5-6

Current_Partition_Data 4-6, 4-12, 4-14

Current_Root_Link 2-41, 3-73, 3-74, 4-6, 5-4

pata 4-3, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11, 4-13, 4-16
DIU_Address 4-6

Encoded_Address_Indicator 4-6, 4-14

End_0Of_Chain_Status 2-11, 2-15, 2-19, 2-21, 2-23, 2-27, 3-11,
3-24, 3-27, 3-29, 3-40, 3-48, 3-49, 4-4, 4-6, 4-10, 5-6
End_Of_Chain_Status_JIdentifier 2-23, 2-25, 2-27, 3~-42, 3-43, 3-48,
3-49, 4-6, 4-8, 5-6

Error_Process_Inhibit 4-6, 4-18

Frame_Check_Sequence 4-7, 4-8, 4-16

Frame_Length 4-7, 4-8, 4-16
Frame_Protocoli_Error_Indicator 4-7, 4-8, 4-14, 4-16
Function_Identifier 4-2, 4-7

GPC_Subscriber_Command 2-5, 2-11, 2-13, 3-1, 3-3, 3-5, 4-7, 4-9,
5-5

GPC_Subscriber_IO_Error_Log 2-3, 2-5, 2-11, 2-15, 2-19, 2-21,
2-29, 3-1, 3-11, 3-24, 3-27, 3-3t, 3-56, 4-7, 5-5
GPC_Subscriber_IO_Error_Report 2-5, 2-11, 2-29, 2-35, 2-45, 3-1,
3-56, 3-60, 3-86, 3-89, 4-7, 4-10, 5-5

GPC_Subscriber_List 3-91, 4-7, 5-5

xii



HDLC_Control_Byte 4-7, 4-8, 4-13, 4-16
HDLC_Program 2-23, 2-25, 3-42, 3-43, 3-54, 4-7, 4-8, 5-6

Incorrect_Message_Length_Indicator 4-7, 4-14
Inhibit_Switching_Indicator 4-7, 4-16

Initialize_Network 4-7, 4-9

Input_Packet 2-11, 2-15, 2-19, 2-23, 2-27, 3-11, 3-24, 3-25, 3-40,
3-48, 3-51, 4-7, 4-8, 5-6

Input_Packet_ldentifier 4-5, 4-8, 4-18

Input_Packet_Length 4-8, 4-18

Interface_Chain_Timeout_Value 4-8

Interface_Status 4-8

Interface_Transaction_Data 2-25, 3-43, 3-46, 4-8, 5-5
Interface_Transaction_Status 2-27, 3-48, 3-51, 4-8, 5-6
I0_Chain_Definition 2-114, 2-13, 2-15, 2-17, 2-19, 2-21, 2-23,
2-25, 3-11, 3-13, 3-15, 3-19, 3-24, 3-25, 3-27, 3-31, 3-40, 3-42,
3-43, 4-8, 4-9, 5-6

I0_Data_Base 2-3, 2-5, 2-14, 2-13, 2-15, 2-17, 2-19, 2-21, 2-23,
2-25, 2-35, 2-39, 3-1, 3-3, 3-5, 3-9, 3-11, 3-13, 3-15, 3-19,
3-24, 3-25, 3-27, 3-31, 3-40, 3-42, 3-43, 3-60, 3-63, 3-65, 3-67,
3-90, 4-8, 5-5

IO_Network_Command 2-3, 2-5, 4-9, 5-5

I0_Network_Manager_Command 2-5, 2-35, 2-37, 2-39, 2-47, 3-60,
3-63, 3-65, 3-67, 3-70, 3-90, 3-92, 4-9, 5-5
I0_Network_Status_Report 2-3, 2-5, 2-35, 2-47, 3-60, 3-90, 3-92,
4-9, 5-5

I0_Request_Data 4-9, 4-19

IO_Request_Data_And_Status 2-3, 2-5, 2-11, 2-13, 3-1, 3-3, 3-5,
3-9, 4-9, 5-5

I0_Request_pDefinition 2-11, 2-13, 3-3, 3-5, 3-9, 3-11, 3-13, 3-15,
3-19, 3-24, 3-25, 3-27, 3-31, 3-40, 3-42, 3-43, 4-9, 5-5
I0_Request_Identifier 4-9, 4-10, 4-19

I0_Request_Parameter 2-3, 2-5, 2-t1, 2-13, 3-1, 3-3, 3-5, 4-10,
5-5

I0_Request_Priority 4-10, 4-19

I0_Service_Request 4-10, 4-11

Limits_Definition 2-15, 2-17, 2-19, 2-21, 3-13, 3-15, 3-24, 3-27,
3-31, 4-9, 4-10, 5-5
Link_Status 3-74, 3-76,. 3-80, 3-81, 3-84, 4-10, 4-13, 5-5

xiii



Local_IO_Status 2-3, 2-5, 2-11, 2-15, 2-17, 3-1, 3-11, 3-13, 3-15,
4-10, 5-5

Manager_IO_Command 4-10

Manager_IO_Data 4-10

Manager_l0_Request_Data_And_Status 2-5, 2-11, 2-13, 2-35, 2-37,
2-41, 2-43, 2-45, 3-1, 3-3, 3-5, 3-9, 3-60, 3-63, 3-70, 3-74,
3-76, 3-80, 3-81, 3-84, 3-86, 3-87, 4-10, 4-12, 5-5
Manager_IO0O_Request_Parameter 2-5, 2-11, 2-13, 2-35, 2-37, 2-39,
2-41, 2-43, 2-45, 3-1, 3-3, 3-5, 3-60, 3-63, 3-65, 3-69, 3-70,
3-73, 3-74, 3-76, 3-80, 3-81, 3-84, 3-86, 3-87, 4-10, 4-11, 5-5
Maximum_Attempts 4-5, 4-11

Modify_Network_Definition 4-8, 4-11
More_Than_One_Transaction_Performed_Indicator 4-6, 4-11

Network_Address 4-6, 4-7, 4-8, 4-11, 4-13, 4-15
Network_Configuration 2-37, 2-41, 2-43, 3-70, 3-74, 3-76, 3-80,
3-81, 3-84, 4-11, 5-5

Network_Definition 2-5, 2-35, 2-37, 2-39, 3-60, 3-683, 3-65, 3-67,
4-9, 4-11, 5-5

Network_Fault_Indicator 2-35, 2-37, 2-43, 2-45, 3-63, 3-80, 3-81,
3-86, 3-87, 3-89, 4-12, 5-5

Network_Identifier 3-91, 3-92, 4-8, 4-10, 4-12, 4-14, 4-16, 5-5
Network_Initialization_Status 3-63, 3-69, 3-70, 3-81, 3-86, 3-87,
3-89, 3-90, 3-91, 3-92, 4-12, 4-13, 5-5
Network_Partition_Queue_Element 2-17, 3-15, 3-23, 4-4, 4-12, 5-5
Network_Status 2-35, 2-37, 2-39, 2-41, 2-43, 2-45, 2-47, 3-63,
3-65, 3-67, 3-6%, 3-70, 3-74, 3-76, 3-80, 3-81, 3-84, 3-86, 3-87,
3-89, 3-90, 3-91, 3-92, 4-12, 5-5

Node_Addition 4-11

Node_Address 4-6, 4-13 .
Node_Configuration 3-74, 3-76, 3-80, 3-81, 3-84, 4-11, 4-13, 5-5
Node_Deletion 4-11

Node_Repair 4-11

Node_Status 3-63, 3-65, 3-67, 3-70, 3-74, 3-80, 3-81, 3-84, 3-86,
3-87, 3-89, 3-90, 3-92, 4-13, 5-5



Output_Packet 2-1t1, 2-15, 2-17, 2-23, 2-25, 3-11, 3-13, 3-19,
3-40, 3-42, 3-43, 3-54, 4-13, 4-14, 5-6

Output_Packet_Identifier 2-23, 2-25, 3-42, 3-46, 3-54, 4-8, 4-13,
4'1 89 5'6

Output_Packet_Length 4-14, 4-18

Packet_Identifier 4-8, 4-13, 4-14

Packet_Status 2-19, 2-21, 3-25, 3-27, 3-31, 4-14, 5-5
Partition_ldentifier 4-6, 4-10, 4-14, 4-16

Partition_Status 3-65, 3-67, 3-76, 3-80, 3-81, 4-13, 4-14, 5-5
Partition_Update_Request 4-11, 4-14

Predecessor_List 3-81, 4-11, 4-14, 5-5

Reason_for_Logging 4-10, 4-14

Receiver_State 2-23, 2-25, 3-42, 3-43, 3-55, 4-14, 5-6
Reconfiguration_Report 2-5, 2-11, 2-13, 2-35, 2-47, 3-1, 3-3, 3-5,
-3-60, 3-90, 3-91, 4-10, 4-14, 5-5

Reconfiguration_Status 3-63, 3-69, 3-91, 4-13, 4-15, 5-5
Regrow_Network_Request 2-37, 2-43, 3-70, 3-80, 3-81, 4-15, 5-5
Report_Rate 4-15, 4-17

Request_Type 4-8, 4-9, 4-15.

Residual_Bit_Count 4-8, 4-15, 4-16

Residual_Bit_Count_Indicator 4-14, 4-15

Response_Frame 2-3, 2-5, 2-11, 2-23, 3-1, 3-40, 3-55, 3-57, 4-7,
4-15, 4-18, 5-6

Response_Frame_Data 4-15, 4-16

Response_Frame_Data_And_Status 2-23, 2-27, 3-48, 3-51, 3-55, 4-16,
5-6

Response_Frame_Status 4-16

Retry_Limit 4-16, 4-17

Root_Link_Activation 4-16

Root_Link_Command 2-15, 2-17, 3-13, 3-20, 3-38, 4-16, 5-6

Root_Link_Control_Request 4-11, 4-16

Root_Link_Failure 4-16

Root_Link_Identifier 4-4, 4-16

Root_Link_Queue_Element 2-17, 3-15, 3-20, 4-4, 4-16, 5-5
Root_Link_Status 2-17, 3-15, 3-20, 4-10, 4-11, 4-16, 4-19, 5-5
Rotation_Log_Limit 4-17

Xv



Selection 4-17, 4-18

Selection_Default 4-17, 4-18

Selection_Queue_Element 2-17, 3-15, 3-22, 4-4, 4-17, 5-5
Send_Network_Status 4-9, 4-17 ) .
Send_Status 3-67, 3-69, 3-91, 4-13, 4-17, 5-5
Service_Identifier 4-2, 4-10, 4-14, 4-16, 4-17, 4-19
Single_Link_Log_Limit 4-17

Switching_Limit 4-10, 4-17

Time 4-10, 4-17

Time_Pad 4-5, 4-18

Timeout_Value 4-5, 4-8, 4-18

Transaction_Configuration_Data_Base 2-11, 2-15, 2-17, 2-18, 2-21,
2-23, 2-25, 3-11, 3-13, 3-19, 3-21, 3-22, 3-24, 3-25, 3-27, 3-31,
3-40, 3-42, 3-43, 4-18, 5-6

Transaction_Definition 4-8, 4-18

Transaction_Error_Counter 4-18

Transaction_Error_Counter_Limit 4-10, 4-189

Transaction_Identifier 4-3, 4-10, 4-17, 4-18, 4-19

Transaction_Queue_Element 2-17, 3-15, 3-18, 4-4, 4-19, 5-5

Transaction_Selection_Request 4-10, 4-11, 4-19

Transaction_Status 2-19, 2-21, 3-25, 3-27, 3-31, 4-19, 5-5

Transaction_Timeout_Indicator 4-8, 4-14, 4-19

Wait_Enqueue 4-19
Wait_Request 2-3, 2-5, 2-11, 2-13, 3-1, 3-3, 3-5, 3-9, 4-19, 5-5
Wait_Request_Dequeue 4-19

Xvi



