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hit roduct ion 

The research conducted during this six month period can be divided into three areas. In all 

these three areas significant results were obtained. Specifically, 

1. (a) The theory behind the proposed joint source/channel coding approach was developed. 

This has provided insights into the design of robust source coders. 

(b) A variable rate design approach which provides substantial improvement over current 

joint sourcelchannel coder designs was obtained. 

2. (a) The Rice algorithm was evaluated and its advantages and shortcomings were examined 

in detail. 

(b) An alternative algorithm was obtained which outperforms the Rice algorithm both in 

terms of data compression and noisy channel performance. 

3. A high fidelity low rate image compression algorithm was developed which provides ahnost 

distortionless compression of high resolution images. 

.. 
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Section 1 

Design of Joint Source/Channel Coders 

1.1 Motivatios 

A block diagram of a typical communication system is shown below. 

Source { - H ~ ~ j i i Z Z J { E L Z - ~ { ~  
Decoder Decoder 

Figure 1.1: A typical cornmication system 

User 

The source coder removes redundancy from the input thus reducing the amount of information 

to be transmitted. Redundancy is reintroduced in a “controlled” manner by the channel coder. 

By “controlled” manner we mean the redundancy introduced is of a form which can be used by 

the channel decoder. The source coder is generally designed without taking the channel statistics 

into consideration. Similarly the channel coder is designed without consideration of the source 

statistics. This separation of source and channel coder design is justified by a result of Shannons. 

Shannon [l] has shown that when the rate of transmission R is less than the channel capacity C,’, 
there exists coding schemes which allow us to drive the probability of error arbitrarily close to 

zero. In this situation the link between the source encoder and decoder is essentially error free. As 

such, the source coder/decoder pair can be designed without any regard for the effect of noise on 

the decoding process. Also, if the source coder output contains no redundancy, it can he viewed 

as samples of an iid process. Thus the channel coder/decoder can be designed without taking into 

account the source coder output statistics. 

These separation arguiiients break down if, for whatever reason, either of the following happens. 
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1. The input to the source decoder is different from the output of the source encoder, i.e., the 

link between the source encoder/decoder is no longer error free. 

zi 

2. The output of the source coder contains redundancy. 

r 
Source Coder Yi sii &EA ri 6; 

(Joint Source - - Channel Receiver decoder 

Channel) Coder y;cA &€A 

If (1) occurs, the effect of channel error on the decoding process needs to be considered. In 

this situation the source encoder/decoder pair design should be such as to minimize the effect 

of channel errors. This situation has been studied by various researchers (21-(7). The situation 

(2) occurs under a variety of situations. Incorrect assumptions about the statistical parameter 

describing the sortrce, results in correlation in the source output (81. Non-stationarity of the source 

may also cause the appearance of redundancy. This redundancy can be used to correct errors in 

the channel (91-[12]. The source coders which mitigate the effect of channel errors are collectively 

known as joint source/channel coders. 

In this paper we present an approach to joint source/channel coder design. To facilitate the 

presentation some nomenclature is in order. First we redraw our block diagram. 

Note that the channel coder has been removed while the channel decoder has been replaced by 

a marked receiver. The purpose of the receiver is to use the redundancy a t  the ouput of the source 

coder to provide error protection. 

Let the source coder alphabet be denoted by A where 

The source coder output is denoted by y;, the channel output by y;, and the receiver output 

by I;. We go about designing the receiver in the following manner. Recall that in the classical 

formulation, the optimal receiver (in terms of maximizing the. probability of correct decision) is 

one which selects a& to maximize 

P [ Y i  = ak l i i ]  
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We extend this formulation to decoding sequences of received symbols rather than one synibol 

at  a time. To this end we define 

Y = (YO,Yl,Y2,...,YL) 

f = (30,i1,32,.. . ,3L) 

Furthermore, we assume that the first coder output symbol yo is known. This can be justified 

by assuming that the first output symbol represents the coder output when the source is quiescent. 

Thus the optiinum receiver will maximize 

P(YlJi1 = P(Y0, Y, , * * * 9 YLIfiO, - - - 9  3L] 

This can be rewritten as 

Assume that given y,,-~, yn is conditionally independent of yn-k k > 1. Then, noting that the 

last factor in (1.2) is unity, and assuming a memoryless channel 

Maximizing P[ylf] is the same as maximizing its log. Thus the optimum receiver maxinlizes 

If we call log P[y(f]  the path metric then log P[y;(y;-1, @i] is the branch metric. The design 

of a receiver which maxiinizes a path metric which is the sum of branch xnetrics is a well known 

problem in several different fields. In the field of communications this is simply the problem of 

design of decoders for convolutional codes. 

While the structure of the receiver is evident, we still have to obtain the values of P[y;/yi-l, 

Sayood and Borkenhagen [9] have obtained an expression for P[y;Jy;-l,@;] in terms of the source 

coder output transition probabilities P[y;lyi-l J and the channel transition probabilities P[@iJyiJ as 
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For implementation, the channel transition probabilities can be obtained by modeling the chan- 

nel as a DMC. The source coder output transition probabilities can be obtained froin training 

sequences. 

This particular approach toward using the redundancy in the source coder output is especially 

attractive as i t  leaves the door open to other joint source channel coding approaches. 

This approach was used by Sayood and Borkenhagen (9) in the differential encoding of images. 

The results were highly satisfying. 

1.2 Design 

The main error correcting power of this method arises due to the variations in the source coder 

output conditional probabilities. To see this more clearly let us examine the conditions under 

which an error is made. Referring to Figure 1.3, assume that the correct sequence of transmitted 

codewords was a,a,a,. An error occurs if the path a,aja, is selected over the path a,a,a,. This 

will happen if the path metric for a,aja, is greater than the path metric of a,a,a,. Assume 

$1 = an,$2 = a,. 

Figure 1.3: Alternate paths at the receiver 

Then an error occurs if the quantity 
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is greater than zero. Cancelling the indicated terms and rearranging terms we get 

Assuming the channel to be a binary symmetric channel and W = log, M, the length of the 

codewords 

where dij is the Hamming distance between a; and a j  and p is the channel crossover (bit error) 

probability. Then 

define 

Then an error occurs if 

let a = 7 then the above can be rewritten as 
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The left hand side is maximized when j = n(dnj = 0). In which case an error occurs if 

(log: +log* +log 
dno ' 9oj 

If we pick n such that d, = idnk{dkO} then the quantity on the right is the number of bit 

errors that can be corrected by this system in a span of 2W bits. Examining the RHS we see that 

this quantity is zero when the conditional probabilities (g1k) are all the same, i.e., the channel input 

is iid. This validates both the idea that when the source coder removes all redundancy it should 

not be considered for channel error correction, and the thesis proposed here that redundancy in 

the source coder butput can be used to correct channel errors. The type of redundancy necessary 

is also evident from the inequality. We wish to increase the variability of glk. To state this more 

formally our objective is to minimize H(ynlyn-l)/M where M is the size of the alphabet. The 

next step, of course, is to examine ways designing (joint) source (channel) coders which contain this 

type of redundancy. Before we look into that there is one more interesting observation that can 

be made. a is a decreasing function of p, thus l / loga is an increasing function of p. This means 

that for a given source (/channel) coder, an increase in the probability of error in the channel will 

increase the number of bit errors that can be corrected. Because the number of bit errors also 

increases, this results in a flattening out of the performance curpe. This behaviour was observed 

in [9]. 

I 
1.3 Example 

A more detailed version of the transmitter side is shown below. 

The data compression block consists of source coding algorithms which are not information 

preserving such as DPCM, Transform Coding, etc. The data compaction block consists of infor- 

ination preserving or noiseless coding algorithm such as Huffman coding or runlength coding. 

The inforination preserving coinpression algorithms are especially vulnerable to channel error as 
' %  
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Compression Compaction 

Figure 1.5: Proposed Joint Source/Channel Coder 

the error may cause timing and synchronization errors which may propogate for extremely long 

periods. To be able to correct errors by the technique presented previously, we need to increase 

the desired type of redundancy. To this end we modify our source coder as follows. 

The objective of the block II is to generate an output sequence y,, such that H(y,Jy,-l)/M is 

minimum. A simple mapping which does that is as follows. Let the input to II be selected from 

the alphabet 

Then let the output alphabet be 

s = {so, 313 - - 9 aNZ-1) 

Note that while the input alphabet is of size N, the output alphabet is of size N 2 .  The 

input/output mapping is given as 

While we still have to show mathematically that this results in decreasing of H(y,(y,-l)/M, 

we can see the effect. If we look at  all.pairs (y, = 5;,yn-1 = ~ j )  we can see that certain pairs are 

disallowed because of the mapping. For example, the N 2  - N pairs of the form (yn = 50,  y,-1 = J j )  

where j # k N ( k  = 0, 1,. . ., N - 1) are disallowed by the mapping. Thus P [ y n  = SO(yn-1 = ~ j ]  = 0 

for j # kNk = O , 1 , .  . . , N - 1. For pairs that are allowed P(y,ly,-1] = P[+nltn-1, tn-2). All 

this together with the fact that M is now equal to N 2  instead of N means that we have in some 

sense achieved our objective. Another way of looking at  this is that because certain sequences 

are disallowed, errors which cause such sequences to be generated will be detected and perhaps 

corrected. 

While the mapping II does seem to increase OUT error correcting capability what does it cost 

in terms of additional rate? This is easy to answer if we assume that the data compaction scheme 

coding rate is equal to the entropy of its input. In the f i s t  case the rate is simply H ( z n ) .  In the 
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second case, as we are actually coding the pairs (zn, zn-l), the rate is H(zn, tn-1). We can write 

H(tn, tn-1) as 

Thus the additional cost for this error correcting capability is H(znlzn-l). To minimize the 

cost we have to minimize H(znlzn-l). This is very nice because H(ynlyn-l)/M seems to be a 

motonic function of H(znlzn-l). Thus we have identified an objective in the design of the data 

compression scheme: Minimize H(tnltn-1). 

This system was utilized with an image coding system. The data compression scheme was a 2 

bit DPCM system. The source was a 256 x 256 image. End of line resynchronization was assumed. 

Some preliminary results are shown in Figure 1.6. 

We can see from the figure that there is a substantial improvement in performance at low error 

rates. There is, however, some degradation at  higher error rates. The reason for this is that the 

decoding scheme described above has not completely been implemented. As soon as this is done, 

we expect a flattening out of the performance curve. 

1.4 Continuing Effort 

, In the next six months we plan to further refine our error correction scheme. This scheme will then 

be used in conjunction with the algorithms developed for coding of the g m n a  ray information 

(section 2). 
.- 
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Section 2 

_.. 

EfRcient Coding and Transmission of Gamma Ray Information f rom the Mars 

Orbi te r  

2.1 Problem Statement 

The output of a Gaxmna Ray detector is quantized using a 14 bit A/D. The number of each of the 

16,384 output levels occus in a 30 second interval is obtained. The contents of the 16,384 “bins” 

are transmitted using a transmission rate of 600 bits per second. This means that the contents of 

the bins have to be noiselessly encoded using 18,000 bits. 

2.2 The Rice Algorithm 

The proposed coding algorithm is actually a collection of highly efficient noiseless coding techniques 

developed by R. F. Rice at the Jet Propulsion Laboratories [l]. The various techniques are used 

adaptively depending on the changing characteristics of the data. Rice has shown that by adaptively 

selecting the technique best suited to the data, performance close to the entropy of the source can 

be obtained for memoryless sources. He shows this to be true for a wide range of entropies. For the 

range of entropies of interest the set of techniques called the Basic compressor is most appropriate. 

In the following paragraphs we give a brief description of these techniques. Much more detailed 

expositions can be found in (11-[4]. 

Before any of the techniques due to Rice can be invoked, the data has to be preprocessed 

to remove correlation. The preprocessed data has to be relabeled into the set of non-negative 

intergers. The correlation removal operation suggested by Rice [l] is a simple differencing step. 

Before detailing the techniques that comprise the Basic compressor some definitions are in 

order. 
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Fundamental Sequence: - The code operator fs(] is defined by 

i zeros - 
fJ( i ]  = 00.. .01 

Let t be a sequence of nonnegative integers 

Then the Fundamental Sequence corresponding to x ,  F S [ x ] ,  is given as 

F S [ x ]  = f + l ]  * fJ[4 * f J t g  * . . . * f J [ t J ]  

where * denotes concatenation. As an example take the sequence x = 1302, then F S [ x ]  = 

010011001. 

Sequence Extension: Let y be any J sample sequence, then an extended sequence ye is formed 

by terminating y with enough eeros to make the resulting sequence a multiple of e. The e'" 

extension of y is simply the grouping of ye into e-tuples. Suppose y = 1101101 and e = 3, then 

ye = 110110100 and the third extension ye is ye = (110) * (110) * (100). 

Complementation: Given any binary sequence x ,  the sequence f = COMP [ X I  is simply the 

bitwise complement of x .  

Cocling a Sequence: Given a binary sequence x ,  the coded version of the sequence Cx is simply 

the Huffman coded eth extension of x. Thus if e is 3 then C x  is the sequence obtained by coding 

the 3-tuples of the 3'd extension using a Huffman code designed for an eight letter alphabet. 

With these definitions we can now proceed to define the four operators which make up the 

basic compressor. These are denoted by the symbols $0, $1, $2, $3. For a sequence of non negative 

integers 2, the four operators are defined as follows: 

1. $o[x] = Cm[x], i.e., $o[x] is the coded eth extension of the complement of the fundamental 

sequence corresponding to x. 

2. $ l [ x ]  = F S [ z ] ,  i.e., $1[2] is the fundamental sequence corresponding to 2. 

3. & [ X I  = C F S [ x ] ,  i.e., $ ~ [ x ]  is the coded eth extension of tlie fundamental sequence corre- 

sponding to x. 

4. t,bs[x] is simply the binary representative of x. 
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Some additional overhead must be tacked on to the $1 and $2 operators. The additional bits 

record the nuniher of zeros added during the extension process. This information is necessary at  

the decoder. While this is not mentioned in (1) we found it necessary in our simulations. 

The Basic compressor functions as follows: The input is partitioned into blocks. Rice suggests 

a block size of 16. We found this to be a good choice and have used it in our simulations. Each 

block is then coded using the “best” operator. The coded sequence is transmitted along with a two 

bit lable (ID) denoting the operator used. The decision as to which operator is to be used can be 

made in one of two ways. The first way is to actually code the block using the four operators then 

select the one whi& uses the fewest bitrs. The second way is a decision rule proposed by Rice. 

The decision rule fimctions as follows. Let x be a sequence of J non negative integers. The length 

of the fundamental sequence F is 
J 

F = J + C Z ! ;  
i=1 

Four functions yo,yl,y2,y3 corresponding to the four operators can be defined as 

yo = [F/31 + 2(F - J )  

Y l  = F  

7 2  = rF/31 + 2J 

y3 = constant 

The adaptive algorithm then selects the coding operator corresponding to the minimum y;. 

2.3 Simulation Result 

The Basic Compressor algorithm was simulated on a VAX 11/785. The data coded by the Basic 

Compressor was generated a t  the Goddard Space Flight Center by Ms. M. Mingarelli-Armbruster. 

Table 2.1 shows the coding rate for twenty intervals of thirty seconds each. 

The average bit rate required to transmit all twenty intervals is 718.6 bits per second. This is 

considerably higher than the original goal of 600 bits per second. However, if we conipare these 

results to the results in [l], we find that the two results are in reasonable close agreement. To do the 

comparison we have to obtain the entropy of the difference original and the nwnber of bits/sample 

used by the Rice algorithm. In the case of this simulation the entropy is .97 bits while the number 

of bits/sample is 1.3. Thus there is a difference of .33 bits. This is only slightly higher than the 

difference of .28 bits obtained by Rice in [l]. 
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Table 2.1: Rates for the Rice Algorithm (Target: 18000 bits) 

Interval # 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Total # of hits used 
21647 
21385 
21530 
21562 
21666 
21424 
21841 
21630 
21719 
21568 
21308 
21509 
21633 
21822 
21296 
21701 
21058 
21312 
21713 
21888 

Required rate (bps) 
721.6 
712.8 
717.7 
718.7 
722.2 
714.1 
728.0 
721.0 
723.9 
$18.9 
710.3 
716.9 
721.1 
727.4 
709.8 
723.4 
701.9 
710.4 
723.8 
729.6 

More disturbing than the fact of a higher than expected rate, however, is the behavior of the 

algorithm in the presence of channel noise. Table 2.2 are from a hundred different runs. It was 

assumed that the receiver was resynduonized every 30 seconds. 

Table 2.2: Effect of Noise on the Rice Algorithm 
Probability of Error Mean Squared Error Mean Absolute Error Number of Errors 

1 0 - ~  437.8 15.8 15,689 
10-4 39.9 3.3 10,228 

4.1 .4 1,773 

The number of errors column shows how inany of the 16,394 values were received incorrectly. 

As can be seen from the talde at a probability of error of effectively all the received values 

are in error; a t  a probability of error of lo-' about two thirds of the received symbols are in error; 

and, even at  probability of error of lo-' more than 10% of the received syiiibols are in error. 

There are two main reasons for this lack of robustness of the system. Firstly, by its very nature, 

an adaptive system is vulnerable to noise, as an error at the receiver may cause it to inistake the 
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coding scheme used a t  the transmitter. Secondly the differencing operation necessary to create the 

uncorrelated sequence required by the Rice algorithm, also creates infinite memory at  the receiver. 

This means that once an error has occurred, it will propogate until resynchronization occurs. In 

these situations we have assumed that resynchronization occurs at  the end of each thirty second 

interval. If this is not true the effect of errors may be even more disastrous. 

Because of our concerns with the Rice algorithm under the current conditions we investigated 

the possiblity of developing an alternative algorithm. 

2.4 Possible Alternate Algorithm 

The first step in our alternative algorithm is also a difference, only it is a leaky differencer. The 

difference signal is obtained as 

3 d(n)  = z(n) - L,z(n - 1)J 

The leakage in the differencer causes error effects to die out in time. The difference signal 

is encoded using a sixteen symbol modified runlength code. These sixteen symbols can then be 

encoded using either a four bit fixed length code or a variable rate Huffman code. The results of 

using this algorithm to encode the same twenty intervals is shown in Table 2.3 where VR stands 

for variable rate code and FR stands for fixed rate code. 

If we use the fixed rate code, the bit rate required is 594 bits per second which is below our 

target rate. The use of the variable rate code would require a channel rate of 522 bits per second. 

As both the fixed and variable rate codes will meet the target rate and as the fixed rate code is 

both robust and simple to use, we elected to go with the fixed rate code. 
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Table 2.3: Coding Rates for Alternative Algorithm (Target: 18000 bits) 

1 17382 15733 
2 17528 15345 
3 17784 15520 
4 1 i840 15691 
5 18144 15883 
6 17504 15457 
7 18048 15882 
8 18096 15907 
9 18132 15843 
10 18096 15695 
11 17604 15438 
12 17728 15580 
13 17780 15581 
14 18016 15913 
15 17564 15361 
16 17956 15872 
17 17296 15139 
18 17688 15449 
19 18160 16033 
20 18292 16125 

Interval Number # of bits used(FR) # of bits used (VR) 

The effect of noise on this system is tabulated in Table 2.4. 

Table 2.4: Effect of Noise on the Alternative Algorithm 
Probability of Error Mean Squared Error Mean Absolute Error Number of Errors 

10-3 1.336 0.329 3161 
10-4 0.426 0.111 1384 
10-5 0.109 0.035 459 

Comparing table 2.4 to table 2.2, we see an improvement by an order of magnitude in the 

number of errors and several orders of magnitude in the mean squared error. Especially striking 

is the mean squared error at a probability of error of At this probability of error use of the 

Rice algorithm results in an error of 437.8 wllile the use of the alternative algorithm resu1t.s in an 

error of 1.3! 

Wlule this algorithm is still in its preliminary stages and requires considerable testing, we feel 

that these results make it attractive enough to pursue in further detail. 
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2.5 Continuing Effort 

We have spent the first six months of this project evaluating the Rice algorithm and developing a 

possible alternative algorithm. In the next six months we will develop error correction algorithm 

for both these algorithms, a t  which time we will be better able to evaluate both algorithms. We 

also plan to look a t  ways of combining the two algorithms for improved performance. 
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Section 3 

High Fidelity Low Rate Coding of Images 

Let F be an N x N image segment. F can be transform coded into a 2-dimensional representation 

C = T(F). 

If the transform is linear, C can be represented as a double s u m  

N 

k, l=l  

Here the i and k subscripts represent x-transform coefficients in the image and transform spaces. 

Likewise, j and 1 represent y-transform coefficents. This 2-&mensional transform can be converted 

into a scalar transform by stacking the image and transforin matrices, 

m=l 

where F has been stacked into a vector f of size N2 x 1, T has been stacked into t a matrix of size 

N2 x N2, and C is a N2 x 1 vector of the transform coefficients. Eq. (3.1) is attained using the 

following stacking operation on the i, j, I t ,  I indices: 

m = N ( Z -  1) + I C  

p = N ( i  - 1) tj. 

The transforin vector c must be quantized if data compression is to be attained, 

where the ap are scaling factors to match the variance of the cp to that of the quantizer codebook. 

In general, a different codehook can be used for each of the N2 coefficients of the transform. 
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The coding method used here keeps only the 4 lowest frequency coefficients of the transform 

(i.e., DCT, Iiadamard) so there are only 4 tP elements. Thus, t is a 4 x NZ matrix. To map the 

non-zeroed elements of c into E the following quantizer mappings are needed: 

El = Ql(a1cl) dc coefficient 

22 = Q z ( a z c z )  

E3 = Q2(a3c3) 

E4 = QZ(a4c4) 

Figure 3.1: Only 4 transform coefficients are used for each image segment. 

The non-dc elements of i: are distributed in a similar fashion and can be quantized with the same 

quantizer. The dc coefficient is distributed differently than the other coefficients and requires a 

different quantizer to attain the best results. For the work done here Q1 is coded to 8 bits and Qz 
is coded to 5 bits. 

The image can be recovered from the 4 transform coefficients by solving (3.1), 

i. = ( tT t ) - ' t% 

If the rows o f t  are ortho-normal this reduces to = tT?. 

Let us define two distortion measures to rate the performance of the above 4 coefficient trans- 

form method: 

1) d l  = max(fi  - j iI  
I 

1 N2 2) dz = N1-l C i = l ( f i  - ii>' = ~ { ( f  - i>'(f - I > >  
Method 1) indicates the largest absolute error between the original and reconstructed images. 
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Method 2) is the common MSE measure where the signal-to-noise ratio is defined to be 

d i ( N 2  - 1) 
f T f  

S N R ( d B )  = 20 loglo 

and the peak signal-to-noise ratio is 

where w is a N2 x 1 vector whose elements are set to the white level 

8-bi t image. 

f the image, Le., 255 for an 

Notice that for method 1) lfi - i;l 5 dl for all pixels in f but it can be possible that d2 << dl 

if the transform coefficients represent the original image well except for a few pixels where the 

distortion can be large. This is true since d2 is a measure of average distortion over the entire 

image segment. So a good d2 value will cause one to think that the image is coded with a good 

match but, in fact, there may be areas of very large local distortion in the image. 

To overcome the shortcoining of the d2 distortion method, an image segment is coded and the 

dl distortion is measured, and then, depending whether or not dl is less than some distortion 

threshold, t ,  the segment may be subdivided into 4 ; x 1 segments, F;,i = 1,2,3,4, and each 

segment is again transform coded and checked against the distortion threshold. If a segment fails 

the threshold test it is again subdivided until the threshold level is meet or a minimum block size 

for an image segment is attained. 

Notice, that if the ininumum block size is 2 x 2, the 4 coefficients of the above method will 

code the image segment exactly, to within the quantization resolution of the coder. 

Method 

The method for image coding by threshold detection as decribed above is outlined below: 

1. Select an image segment F. 

2. Code F by F. 

3. If d l (F  - F) < t ,  F is an adequate representation of F. 

If d l ( F  - F) < t ,  divide F into 4 sub-segments Fi, i = 1,2,3,4, and go to 2) for each 

segment until dl < t or the nunimum block size is attained. If the minimum block size is 

attained code F; by Fi. 

x 
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Exmnp le 

Consider the coding of a 32 x 32 image segment. Let the inaximum coding block size he 

16 x 16 and the smallest block size be 4 x 4. Let the original image segment be coded with 8 bits 

per pixel. 

If the 32 x 32 segment is coded with four 16 x 16 blocks the coding rate for each such block is 

8 + 5 + 5 + 5  - - .090 bits/pixel 
1fj2 

Let the threshold level for the dl distortion measure be t = 5 .  This means that if the coded 

16 x 16 blocks have a dl level < t the maximum distortion a t  any given pixel in 2 bits (4 gray 

scale levels). For'the example at hand let the dl levels for the four 16 x 16 blocks be as shown in 

Figure 3.2. 

Figure 3.2: Image segment F coded in 16 x 16 blocks. 

In this case, Fz, F S ,  and F4 all meet the dl distortion threshold so they are adequately coded 

but, F1 does not meet the distortion threshold, so it niust be divided into four 8 x 8 segments and 

coded again. Figure 3.3 represents the dl distortion profile of subsegment F1. 
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Figure 3.3: Subsegment F1 coded in 8 x 8 blocks. 

In this case, segments 1 and 3 meet the distortion threshold and are adequately coded but, 

segments 2 and 4 must be divided into 4 x 4 blocks and recoded. Before doing this, let us calculate 

the coding rate for the original image up to this point into the process. The remaining 1G x 16 

block that has been divided into four 8 x 8 blocks require 23 bits for each block. So the nunilier 

of coding bits for the entire 32 x 32 image segment is 

3(28) + 4(23) = 161 bits 

and if the smallest block size was 8 x 8 then the coding rate for this total 32 x 32 iinage is 

161/322 = .157 bits/pixel. 

Since the Ininiinuiii block size is 4 x 4 and two of the 8 x 8 blocks do not meet the dl distortion 

threshold, the segment F must be divided for coding as shown in Figure 3.4. 
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Figure 3.4: The final segmenting of segment F1 

Now all of the blocks of the original image meet the dl distortion threshold except for two 4 x 4 

blocks whose dl levels are 8 and 6. (If the 4 x 4 blocks could be divided into 2 x 2 blocks then 

this situation could be improved, but, for this example, the 4 x 4 blocks are the smallest segments 

to be coded.) The final number of bits to code the original 32 x 32 image segment is 

3(23) for 3 - 16 x 16 blocks; 

2(23) for 2 - 8 x 8 blocks; 

8(23) for 8 - 4 x 4 blocks; for 

for a total of 299 bits. So the coding rate is 299/322 = .292 bits/pixel for a data compression ratio 

of 

8/ .292 = 27.4. 

When the receiver gets these 299 bits of coefficient data it must know how to apply the coefficients 

to reconstruct the subsegments of the 32 x 32 image segment correctly. To do this, a small amount 

of side information must be transmitted. 

Let four bits of side inforniation be transmitted for each image segment that can be subdivided. 

These bits will be set to 1 if the corresponding subseginent is to be divided. The bit is set to 0 if is 

not to be divided. Since only segment 1 of the 32 x 32 image is to be divided, the four hits of side 

information are coded 1000. Since this 16 x 16 segment has two 8 x 8 subsegments to be divided 

again, namely blocks 2 and 4, the four bits of side information for this subsegment are 0101. Thus, 
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the full string of side information is 1000,0101, for a total coding bit rate of 

-- 299 ’ - .300 bits/pixel 
322 

and a final data compression ratio of 26.7. 

When the receiver has the side information string it will know that the three 0’s of the first 

block say that the corresponding 16 x 16 segments are to be coded as single blocks. The first bit 

is a 1 so the receiver will need to look at the second side block to see how to subdivide its 16 x 16 

block. In the sid‘eblock the two 0’s say that blocks 2 and 3 will be coded as 8 x 8 segments and 

blocks 1 and 4 innst be divided into 4 x 4 blocks. So the 8 bits of side information tell the receiver 

how it must subdivide the original 32 x 32 iniage segment as shown in Figure 3.5. 

Figure 3.5: The subdivided 32 x 32 image segment with dl distortions and required side inforxna- 

tion. 
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