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1. INTRODUCTION 

P 

The need for highly-reliable systems is increasing. Areas of application cover 
civilian aircraft, military systems, nuclear power plants, and spacecraft, to name a few. 
The very nature of these systems, their high reliability, makes them challenging to design 
and analyze. In particular, how does one go about demonstrating that a system that is 
designed to fail once in ten years does, in fact, meet this design goal? Highly-reliable 
systems are most often constructed from a collection of moderately reliable components that 
are used in a way that promotes fault tolerance and high reliability. This approach is not 
only economical, it provides for a graceful degradation into backup modes that is often 
necessary for safe operation of the system. 

Life testing to establish the reliability of a highly-reliable system is not practical. 
The time to failure is too long and the system costs are too high to permit the accumulation 
of a statistically significant sample. Instead, system reliability is predicted using a mixture 
of component testing and system modeling. The results of the component testing, failure 
rates and coverage, are used as inputs to the system model. This model predicts the system 
reliability by reflecting the interactions between the components. 

There are three candidate techniques for analytically predicting a fault-tolerant 
system's reliability. First, a simulation technique such as a Monte Carlo approach could be 
used [ 1,2]. The high reliability of the system necessitates a prohibitively large number of 
simulation runs to obtain a statistically significant solution. Second, a combinatorial 
technique such as a fault tree approach could be used [3,4]. These techniques are highly 
efficient computationally. However, they present three problems: there is no simple way to 
deal with the sequence dependencies inherent in fault- tolerant systems, combinations of 
events for all time must be depicted, and the fault tree is designed to predict only the 
probability of a single event. Additionally, the user must keep track of the exclusivity and 
independence of the events so that the proper equations for the "AND" and "OR' functions 
can be used. The third technique, Markov and semi-Markov models, predicts the system 
reliability by evolving the state probability as a differential equation'[3,5,6,7]. The full 
state vector is available so all possible system probabilities are found, permitting the 
prediction of various operating mode reliabilities. The differential nature of the model 
means that only events that occur over the time period dt need to be modeled; sequences of 
events are captured naturally. A key disadvantage of Markov techniques is that the state 
space can be prohibitively large for real-world systems. . 

The benefits of Markov and semi-Markov models (hereafter referred to as Markov 
models) indicate that they are the preferred technique for modeling fault-tolerant system 
reliability, The problem of large state spaces is dealt with using a variety of techniques. 
For example, a common method of state space reduction is behavioral decomposition [8]. 
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In general, there are two types of events occumng in a fault-tolerant system: the Occurrence 
of faults and the handling of the fault. Fault occurrence happens on a slow time scale. 
Fault handling, the detection of the fault and subsequent system reconfiguration, occurs on 
a fast time scale. If  these two time scales are sufficiently separated, it  is possible to model 
the faul t-hand1 ing behavior independently. The effectiveness, or coverage, of this fault- 
handling process is then used as a parameter in the fault-occurrence model. In this way, 
each potential component failure does not require a group of states to describe the 
intricacies of that fault-handling process. Instead, each component failure generates two 
states: component failed and the system successfully reconfigured, and component failed 
and the system did not successfully reconfigure. 

The analytical power and flexibility of Markov techniques has provided a basis for 
the creation of many computer based tools for the analysis of fault-tolerant systems. In this 
report we investigate some of the more commonly used tools: CARE 111, HARP, SURE, 
and MARK 1. This study is not meant to be exhaustive, only representative of the current 
generation. We have not considered all available tools; new ones are appearing daily. 
Further, we have not considered all potential applications of these tools. By using each 
tool to examine an identical real-world system that is under design, we hope to show that 
there are common areas that have not yet been addressed by these tools. Since the example 
system design is preliminary, coverage issues have not yet been addressed. The system is 
an integrated control system so it is composed of sensors, actuators, processors, and 
interfacing equipment. As such, the detailed behavior of these components is not reflected 
in this analysis. 

In general, these tools are still under development. Hence, new versions appear 
regularly. In this environment it is difficult to do justice to the latest and most sophisticated 
versions of each tool. Readers should note that this is only a snapshot of an evolving field. 
To be fair to each tool, we restricted our use of the tools to the features that are described in 
their respective user's guides. Although we could see potential ways of sidestepping some 
of the limitations indicated either explicitly or implicitly in the guides, it was decided that 
these techniques would not be available to the general user and so were not appropriate in 
this study. Situations where there are possible circumventions are noted. 

The goal of this paper is to identify the strengths and weaknesses of the current 
generation of reliability tools and to make recommendations for the next generation of 
reliability tools. By applying the tools to an example problem, an assessment of not only 
the tools, but also their utility in assisting in the entire process of obtaining a reliability 
prediction, will be explored. Section 2 discusses the selected tools from the current 
generation. The integrated control system used for the comparison study is described in 
Section 3. Results of using these tools on the example system are presented in Section 4. 
Section 5 proposes a potential direction for the next generation of reliability tools and 
discusses some related research done at CSDL. 
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Throughout this paper the term FMEA (failure modes and effects analysis) is used. 
In practice, there are many types of FMEA's. The most common type of FMEA is the 
single fault FMEA performed on each piece of the system. Often these pieces are down at 
the level of chips, switches, and even individual wires. While these FMEA's provide part 
of the input to the process of constructing the Markov model, other information is needed. 
For example, the consequences of reconfiguration and multiple faults must be considered in 
the Markov model of the system. Thus, the Markov model represents a system-level 
FMEA where each state is a specific system configuration with an associated impact on the 
system performance or operating mode. Note that the Markov model has as its inputs the 
component-level FMEA's which represent the impact of component-part faults on the 
performance of the component. Throughout this paper system-level FMEA's will be 
distinguished from component-level, single fault FMEA's. 

2. THE CURRENT GENERATION OFTOOLS 

In this section we examine some of the current generation of reliability analysis 
tools. The focus here is on the strengths and limitations inherent in the tools. Once again, 
we note the snapshot nature of the following descriptions. 

2.1 CAREIII 

CARE III (Computer Aided Reliability Evaluator) [9, 101 is a Markov-based 
reliability modeling package that exploits behavioral decomposition to reduce the state 
space. The fault-handling processes are modeled dynamically as a semi-Markov process. 
The output of the fault-handling models is merged into the fault-occurrence model through 
the introduction of an approximation. This approximation introduces a negligible error if 
the time constants of the fault-handling processes are much faster than those of the fault- 
Occurrence processes (four orders of magnitude are recommended in reference [9]). A 
measure of this e m r  is not given in the output. 

The CARE III program calculates the probability of an event at the top of a 
combinatorial tree. The user defines the tree to give the probability of a certain operating 
mode or system failure. Components can be grouped into "stages" which permit the 
efficient description of n-of-m failure modes and these stages can be used as primitive 
events in the tree. If a system has a variety of operating modes, a tree must be input for 
each. This can be a quite subtle task when the modes are subsets of one another, such as 
when a system gracefully degrades through a series of modes. The inclusion of repairs in 
the model is not discussed in the user's manual. It is not clear if it is possible to model 
some repair scenarios through clever application of stage definitions. 

Variable failure rates are permitted, input f o m  exist for exponential and Weibull 
distributions for fault-occurrence and exponential and constant distributions for fault- 
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handling. In the general case, the program solves the system model with a constant-step 
integration algorithm. However, if there are no semi-Markov fault-handling models, a 
matrix doubling iilgorithm is used to integrate the model equations. There are limitations on 
the sizes of the time steps used for integration due to the assumption that the fault-handling 
and fault-occurrence time constants fall into a certain class. Integration errors are not 
provided in the output. 

2.2 HARP 

HARP (Hybrid Automated Reliability Predictor) [ll, 121, is similar to CARE 111 in 
that it uses behavioral decomposition to separate the modeling of fault-occurrence and fault- 
handling events. The unique feature of HARP is that it provides a wide range of 
frameworks to describe and solve the fault-handling models. These range from constant 
coverage models, through Markov models solved by integration, to stochastic-extended 
Petri nets which are solved by simulation. The output of the fault-handling models is 
merged into the fault-occurrence model through the use of a coverage parameter that is the 
output of the fault-handling model. This process introduces a negligible approximation if 
the time constants of the fault-handling processes are much faster than those of the fault- 
occurrence processes [ 13, 141. A measure of this error is not given in the output. 

The HARP program calculates the probability of the entire state vector as it evolves 
in time. Hence, the determination of various operating mode probabilities is possible by 
grouping states in the output vector. Repairs are easily included since the fault-occurrence 
model is in a Markov form. An option exists for inputting a fault tree description of the 
system which is then internally translated into a Markov model. 

In addition to accepting failure rates for exponential and Weibull distributions, 
HARP allows for the input of a range associated with each rate. The corresponding state 
probability bounds are given in the output. A variety of distributions are available for use 
in the fault-handling model. The system equations are solved with a variable-step Runge- 
Kutta algorithm which provides integration error estimates. 

2.3 SURE 

SURE (Semi-Markov Unreliability Range Evaluator) [ 151 solves semi-Markov 
models algebraically. Although the fault-occurrence and fault-handling processes are 
modeled together, the different time scales between the two permit the program to use a 
two-step process in solving the model. First, the Markov part (fault occurrence) is solved 
with a traditional technique such as numerical integration. Then, the semi-Markov part 
(fault handling) is included through an algebraic technique. SURE solves system models 
which have constant failure rates and the fault-handling processes are semi-Markov with a 
mean and standard deviation. 
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The algebraic solution technique [ 161 provides a unique approach to predicting the 
unreliability of semi-Markov systems. However, it can only give the probability of 
trapping states (hence the term 'unreliability'). If a system has a variety of operating 
modes, such as when a system gracefully degrades through a series of modes, it is not 
clear if a series of SURE models could predict the mode probabilities, Repairs are included 
in the model by "unfolding" the cyclical model n times so that it appears as a purely 
degrading system with trapping states. While this is not an efficient way to solve standard 
Markov models, the algebraic solution with unfolding is a very efficient technique for semi- 
Markov systems with repair. The error introduced by truncating the unfolding is not 
provided in the output. 

There are two techniques available for solving the Markov part of the system. The 
first uses the first non-zero term of the Taylor series expansion of the state probability. 
While this is an efficient way to approximate a state probability without solving for the 
entire state vector, it is only valid for times that are short compared with the time constants 
along the path to the state. The magnitude of this approximation is included in the solution 
bounds SURE provides. The alternative solution technique is a Pade expansion with 
rescaling [17]. Measures of the accuracy of this method are not provided in the output. 
Both of these techniques require constant failure rates. 

The algebraic part of the solution which incorporates the semi-Markov behavior 
appears as a modification of the pure-Markov part. It reflects the performance of the fault- 
handling processes. The approximation introduced in this part of the solution is included in 
the SURE output bounds. These bounds are closer together when there is a larger 
separation between the fault-handling and fault-occurrence time constants. 

2.4 MARK1 

MARK 1 (Markov Modeling Package) 118,191 is a general program for solving 
systems described by Markov models. MARK 1 provides a means of solving many 
Markov models simultaneously and combinatorially merging the results to obtain system 
reliability. In this way, the state space size is greatly reduced for systems that can be 
broken into pieces whose interactions can be represented in a combinatorial expression. 
Modeling of the fault-handling process is not performed in a separate model, as is done in 
CARE III and HARP, but is modeled together with the fault-occurrence processes. 

MARK 1 calculates the probability of the entire state vector as it evolves in time. 
Hence, the determination of various operating mode probabilities is possible by grouping 
states in the output vector. Repairs are easily included since the fault-occurrence model is 
in a Markov form. 

The system equations are solved with an algorithm that rescales the matrix at 
successive powers of 10, providing output in a logarithmic form. This rescaling prohibits 
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the use of time-varying failure rates. Measures of the numerical enors introduced in the 
integration are not provided in the output. 

2.5 Discussion 

While these tools have a variety of origins and original intents, there are some 
general statements that can be made concerning all of them. These tools provide the user 
with a means of numerically solving the differential equations that are represented by the 
Markov model. Further, they all provide for increased efficiency by incorporating some 
type of decomposition to reduce the state space. CARE I n  and HARP give the user 
assistance in formulating and inputting the fault-handling models, SURE provides a 
solution technique for a class of semi-Markov models, and MARK 1 pennits the 
simultaneous solution of a set of Markov models that are merged combinatorially. 

Besides these common features, the tools have common deficiencies in two areas. 
First, none of the tools provides complete error analysis. To show the undesirable nature 
of incomplete error analysis consider the situation where a user has obtained a solution for 
a particular problem. The tool does not inform the user of the accuracy of the solution and 
the user cannot draw conclusions without knowledge of the solution's integrity. If, for 
example, a comparison of the tool's results and the design goal show a difference of lo%, 
the user needs to know if the output has one digit of accuracy in solving this particular 
problem or if it has four digits of accuracy. The solution with one digit of accuracy is not 
sufficient to discern whether this design meets its goal yet the four digit output provides the 
resolution needed to make this decision. Hence, the user does not know how to interpret 
tool results or even whether the tool has provided a valid result for the user's problem 
unless an accounting of all of the solution errors are available. 

Secondly, these tools do not give any assistance with the problem of generating the 
fault-occurrence model. Before the tool can be used a pre-analysis is required to obtain the 
fault-occurrence model from the description of the system. It will be shown in the 
following sections that this process of manual model generation is an analysis bottleneck 
with many opportunities for error. Further, the model generation process is that of 
constructing a system-level failure modes and effects analysis (FMEA) from the 
component-level, single fault FMEA's. This means that the model is nontrivially derived 
from the system description including its architecture and operating rules. Thus, any 
changes in system description require that the model (the system-level FMEA) be 
completely regenerated, In summary, all of these tools require the user to have a 
knowledge of Markov models to be able to geiierate the fault-occurrence model and 
numerical analysis to have an understanding of all of the sources of error. It is these 
deficiencies we hope to focus on in the next generation of tools. 
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3. EXAMPLE PROBLEM 

To provide an environment to use these reliability analysis tools, a hydraulic 
actuator control system was selected as an example. As shown in Figure 1, the system is 
an integrated control system containing processors, actuators, and sensors. Actuation is 
accomplished by hydraulically moving the ram at the left-hand side of the figure. There are 
two electro-hydraulic channels and an emergency mechanical-hydraulic channel. Each 
electro-hydraulic channel can control the actuator in either an automatic mode using the 
channel's processor or in a manual mode using the manned control station. In both cases, 
electrical commands are passed to the channel's servo valve amplifier which generates the 
hydraulic control signal. The emergency mechanical-hydraulic channel is implemented 
through mechanical linkages to pilot valves which port hydraulic fluid to the ram. A series 
of transfer valves permits switching between the two electro-hydraulic channels and the 
mechanical-hydraulic channel. Appropriate feedback and indicator signals are available for 
each mode of control. External system data is available through two signal data converters 
which are cross-strapped to the two control processors. 

Hence, we are interested in modeling the probability of four system modes: 
automatic, manual, emergency, and null. Operating rules require that use of the automatic 
mode is permitted only if the manual mode on that channel is operational. In each case, the 
mode indicated is the highest mode obtainable in that state. For example, if one channel 
does not have its automatic or manual available yet the other channel has its automatic and 
manual available, then the system is in the automatic mode. Note that in this particular 
example the status of the emergency system is not considered since it is assumed that the 
system will be operating in the more desirable automatic mode. The null mode is the 
condition where the system cannot be operated. 

Using the architecture of Figure 1 with the above mode descriptions, the Markov 
model of Figure 2 was generated. The model is truncated at the third-failure level and the 
states at the second-failure level have been aggregated into four states associated with the 
four operating modes. Repair transitions are indicated; the transition rates from the second- 
failure level to the first contain an approximation that permits aggregation of states at the 
second-failure level. The model has 33 states. Constant failure and repair rates are 
assumed. It required four hours to build this model, Le., determine the transition rates 
indicated in Figure 2. An overview of the model construction process and a detailed 
discussion of the approximations used are contained in reference [22]. 

A few notes need to be made about the model of Figure 2. First, this example 
represents a real system in a stage of design where a feasibility analysis is being performed. 
It was of interest to the designers at this preliminary stage to predict the mode probabilities 
assuming that all component failures could be perfectly covered. Therefore, the Markov 
model does not have any transitions representing uncovered failures. Hence, this is a fault- 

7 



occurrence model. Second, the operating procedures used for this system do not involve 
specific reconfiguration rules. It was of interest to the designers to know what operating 
modes an available to choose from at a given moment in time. The above description of 
selecting the highest operating mode is a subset of interest. 

The d e l  in Figure 2 has been truncated at the third-failure level. This truncation 
is an approximation used to avoid the state space explosion problem associated with the 
higher failure levels. Instead of explicitly modeling all 29 failure levels, we take advantage 
of the fact that the states at most of these higher failure levels have vanishingly small 
probabilities. State 33 is used to bound the error introduced by this model truncation. For 
exampk, the pmbability of the null mode can be approximated by the null mode states at 
the fmt- and second-failure levels (states 28 and 32). Clearly, the sum of the probabilities 
of thew two stqtes provides a lower bound on the null mode probability since contributions 
from states at the third- and greater-failure levels have not been included. If we treat the 
state at the third-failure level (state 33) as being composed entirely of null mode 
contributions, it provides, when summed with states 28 and 32, an upper bound on the null 
male probability. This is an upper bound because all null mode contributions at the first- 
and Eecond-failute levels have been accounted for exactly, and all configurations at the 
third- and peatcr-failure levels are counted as being the null mode. Similar calculations can 
be done for the other operating modes where state 33 provides a measure of the truncation 
appmximation bound by accounting for all possible appearances of the given mode at the 
higher failure levels. Hence, state 33 is referred to as the truncation bound state. 

To pennit a comparison of the reliability tools, the following are assumed. The 
initial condition of the system is that there are no failures. Hence, at time = 0 the 
probability of state 1 in Figure 2 is 1. Since the CARE III user's guide does not indicate 
how to incorporate repairs in the stage descriptions, we will use the Markov model in 
Figure 2 without repairs for these evaluations. The model without repairs is used, in fact, 
for predicting the perfoxmance of the system during limited time periods during which no 
repairs arc possible. It is noted that the inclusion of repairs would not drastically alter the 
conclusions of this study. The simulation period is 100 hours. We wish to obtain the 
probability of operation in each of the four modes. 

4. APPLICATION OFTHE TOOLS 

In this section we apply each of the tools described in Section 2 to the example 
problem of Section 3. We constrain the inputs to the tools to be the Markov model and 
scenario description (mission time, operating modes, etc.) from Section 3. The ease of use 
of each tool and the accuracy of the results are of interest. The input time referred to in the 
descriptions is the time required to describe the transition matrix that corresponds to the 
Markov model in Figure 2 to the specific analysis tool. Due to the evolving nature of these 
programs, we attempt to focus on their current state with the goal of uncovering the 
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common m a s  that will need to be addressed in the next generation of tools. A table 
summarizing the model comparisons is provided in this section. 

4.1 CARE IKI 

CARE III was not totally evaluated since it required information additional to the 
Markov model of Section 3 to satisfy the stage descriptions. More than 5 hours were spent 
on this task, considerably more than the other tools, yet the input description was not 
complete. The sticking point is the use of stages to describe the operating modes. This is a 
combinatorial description which is not trivially obtained from the Markov model. In 
fairness to the CARE III program, it is noted that deriving a combinatorial description from 
a Markov model is not the standard approach to such problems. For systems which have 
many replicated elements operating in an n-of-m fashion, the stage description is 
straightforward and efficient. However, for integrated control systems with multiple 
operating modes, such as the integrated control system of Section 3, the stage descriptions 
do not permit efficient system descriptions. 

4.2 HARP 

HARP is the largest of the programs evaluated, due primarily to the great variety of 
fault-handling model descriptions and the associated solution algorithms that are available. 
There are some restrictions on the input forms used to describe the transition matrix which 
made the input process somewhat difficult. It took 3 hours to input the Markov model. 
HARP provides a full state vector output. The accuracy of the results appears to be very 
good with 15 digits of accuracy reported for the numerical integration portion of the 
analysis (Table 1). It should be noted that obtaining 15 digits of precision for this 
calculation from a machine with approximately 16 significant digits is not a trivial task. An 
inspection of the integration code [20] shows that errors introduced by approximating the 
continuous derivative are carefully accounted for but errors due to machine roundoff seem 
to be dealt with in a cursory manner. We suspect that HARP may not be, in fact, obtaining 
15 digits in its result. However, for this case the solution accuracy is clearly better than 13 
digits which is sufficient for virtually any real system. The numerical integration pomon of 
the program showed itself to be very robust to a variety of tests we performed. 

4.3 SURE 

SURE provides straightforward formats for the specification of the Markov model. 
The time required for model input was 1 hour. Results were obtained for only the trapping 
states, hence the probabilities of the automatic, manual and emergency modes are not 
available (Table 1). The program generated the solution extremely quickly. The reason for 
this speed is two-fold. First, the full state vector is not calculated when the first-term 
solution is used, just the probability of the trapping states. Second, SURE has the ability 
to model semi-Markov systems but this part of the tool was not exercised. Therefore, 
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SURE only needed to calculate the probability of the paths for the Markov part of the 
model. Since the simulation period is short with respect to the system time constants 
(inverse of the failure rates), the solution using the first, non-zero term of the Taylor series 
expansion is acceptable as is shown by the bounds in Table 1, SURE first-term solution. 
The ability to use this approximation without having to use the full Pade expansion solution 
provides a substantial time savings. The run time using the Pade expansion is an order of 
magnitude greater than the first-term solution (see Table 1, Pade solution). Since there are 

. no fast transitions, no approximations, excepting integration and roundoff, are introduced 
in the solution. Therefore, bounds appear only for the solution where the first, non-zero 
tern of the series is used. We note that a front-end program for SURE called ASSIST [21] 
exists, but was not included in this evaluation. 

4.4 MARK1 

MARK 1 provides the user with a very efficient and straightforward scheme for 
inputting the description of the Markov model. In fact, MARK 1 required the least time for 
input: less than 1 hour. Additionally, this efficient input scheme extends to the user 
specifications for graphical and tabular output. Results were obtained for the entire state 
vector (Table 1). MARK 1 uses a default time step of 10-5 hours. The time constants of 
this example system only require a time step of 10-1 hours. Using this shorter time step 
gives a significantly shorter run time. While numerical error bounds are not provided, tests 
show that the results have an acceptable level of accuracy. It is noted that the algorithm 
used in MARK 1 lends itself to some potential error prediction algorithms; these are 
discussed in Section 5.3. 

4.5 Discussion 

Table 1 shows a comparison of the solutions for each mode and for state 33, which 
is used to bound the model truncation error. There are no discrepancies among the results. 
The number of significant digits is derived from the program output. HARP provides a 
measure of integration error showing that 15 digits of accuracy were retained. SURE, 
using the fmt, non-zero term of the Taylor series, shows bounds that indicate that the 
solution is known to 2 digits. SURE, when using the Pade expansion, and MARK 1 give 
no indication of error. It should be noted that, in general, none of the programs give a full 
accounting of the errors introduced in the analysis. 

Unfortunately, this example does not present a challenging numerical problem; note 
that even the first-term analysis yields 2 significant digits. Even so, serious questions 
remain. How does one interpret the results from the two programs that give no measure of 
error? Even though much computation time is spent reducing the errors, state 33, which 
provides a bound on the error introduced by model truncation, shows that the mode 
probabilities are modeled with 2 to 5 significant digits. Given this modeling accuracy, is 
there a need for 10 or more significant digits in the numerical portion of the solution? For 

10 



example, are the 15 digits HARP provides needed or do the 2 that SURE generates suffice? 
More specifically, can HARPS run time be improved if only 2 significant digits are 
required? Finally, how does the user know when model assumptions are being violated, 
such as the time constant separation required for behavioral decomposition, if no measure 
of the induced approximation is provided? 

The input times for the tools were less than 1 hour for MARK 1, 1 hour for SURE, 
and 3 hours for HARP. Often, input times are dependent on the user's familiarity with the 
tool. We do not feel this was the primary cause of the input time differences. The 
programmer for these experiments had a similar level of familiarity with these three tools. 
Rather, the input times seem to be related to the number of input lines required to describe 
the Markov model. It should be noted that the input times have a close correlation to the 
tool's generality. HARP has the most powerful fault-handling models, SURE is somewhat 
constrained due to its lack of behavioral decomposition, and MARK 1 does not permit 
semi-Markov or decomposed fault-handling model descriptions. Thus, this problem, 
which does not include explicit fault-handling descriptions, is most easily described with 
the tool which has the fewest special features for fault-handling. 

It may be viewed that this example is an anomaly since it does not exercise the 
powerful fault-handling model aspects of some of the tools. However, this example is 
typical of the type of modeling task required during the design of integrated control systems 
and highlights the common missing element in these tools. The manual construction of this 
fault-occurrence model (Section 3) required 4 hours. Input times ranged from less than 1 
hour to 3 hours and solution times were in the range of seconds. Hence, the major 
investment of time and money is currently in the generation of the fault-occurrence model 
from a system description, followed by the process of inputting that model into the tool. 

This is not to imply that these tools do not provide a real benefit in the analysis of 
fault-tolerant systems-their ability to aid the user in behavioral decomposition makes 
many previously intractable problems solvable. Rather, their lack of assistance in 
generating the fault-occurrence model, the task which currently comprises the major time 
investment in obtaining system reliability, makes this task the design and analysis 
bottleneck for the current generation of tools. Some of these tools have "user friendly'' 
interfaces available, such as SURE'S front end program ASSIST [21]. These programs 
may have the ability to reduce the model input times but they do not address the 4 hours of 
pre-analysis required to construct the model. In summary, significant gains in productivity 
can not be made from improving the program run times; instead we must address the time- 
consuming tasks of model construction and program input. 
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5. THE NEXT GENERATION OF TOOLS 

The process of performing a reliability evaluation may be divided into steps, as 
shown in Figure 3. Given a system description which includes the architecture, 
reconfiguration rules, and the operating mode requirements the fault-handling and fault- 
Occurrence models can be constructed. The outputs of the fault-handling models are 
incorporated as parameters in the fault-occurrence model. The input of system parameters 
and the modeling goal permits problem specific approximations to be introduced. Finally, 
an analysis program operates on the resulting system of equations to produce the reliability 
prediction. 

The current generation of reliability analysis tools has concentrated on means of 
improving the efficiency of the description and solution of the fault-handling processes and 
providing a set of solution algorithms for the full, system model. As was shown in the 
preceding sections, the current generation of tools has succeeded in improving user 
efficiency in these areas to the point that the problem of describing the fault-occurrence 
model is now the major analysis bottleneck 

For the next generation of reliability tools, we propose that techniques be developed 
to improve the efficiency of generating and inputting the fault-occurrence model. Further, 
the goal is to create an environment that permits a user to provide a top-down design 
description of the system from which a Markov reliability model is automatically 
constructed. In this way the user is relieved of the tedious and error-prone process of 
model construction and an independent validation of the system's operation is obtained. 
Additionally, the process of exploring variations of the system design is facilitated since the 
user need only change the system description; the tool automatically generates the new 
Markov model. 

An additional benefit of automating the tedious model construction process is the 
opportunity for reducing the specialized knowledge required of a user. While it will always 
be desirable for the user to have a knowledge of the fundamentals of reliability analysis, the 
tool will have the ability to automatically handle "advanced" concepts such as those 
involved in controlling the size of the state space while maintaining sufficient model 
integrity. Hence, the user need only be an expert in the system he is analyzing; the 
expertise in reliability analysis techniques is supplied by the analysis tool. In this vein, the 
next generation of tools should have more robust analysis abilities when compared to the 
current generation. Further, in keeping with the concept of reduced user expertise, the tool 
should have the ability to deliver a user-requested accuracy by selecting among its solution 
techniques and the free parameters of the analysis. 

These two areas of enhancement for the next generation reliability tool, improved 
analysis/error reporting techniques and automated fault-occurrence model construction, are 
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discussed in the following sections. Section 5.3 discusses some relevant research at 
CSDL. 

5.1 Accuracy vs. Efficiency 

In general, a solution of any accuracy can be obtained given enough time (money). 
However, the user has in mind certain acceptable ranges for these commodities. Usually, a 
certain minimum accuracy is required and, given that requirement, the cost of obtaining a 
solution can be determined. This determination is by no means trivial. However, it may be 
possible since we are dealing with a restricted class of problems and a limited set of 
algorithms . 

Solution errors arise from three sources: modeling approximations such as 
behavioral decomposition, algorithm approximations such as discretizing a continuous 
derivative, and roundoff errors due to finite machine precision. The primary goal of the 
improved evaluation ability of the next generation of reliability analysis tools is to relieve 
the user of all decisions in selecting model approximations, algorithms, and parameters. 
Instead, the user is queried for an acceptable error bound for the entire analysis and the tool 
automatically makes selections to obtain this accuracy with the minimum cost. On output, 
the user is informed of the accuracy of the solution so that proper interpretation is possible. 

For the next generation of reliability analysis tools, we propose to use a variety of 
algorithms to solve the Markov model. The tool should have the ability to automatically 
select the set of appropriate algorithms for the specific system being analyzed. 
Additionally, the tool should select from this set of algorithms the one that gives the 
appropriate level of accuracy using the minimum of resources (memory, cpu time, etc.). 
Any parameters associated with the algorithm, such as the time step or the number of terms 
in a truncated series required to give the user-selected accuracy, are determined 
automatically by the tool. Hence, the user is relieved of all numerical analysis expertise; the 
tool provides the appropriate knowledge. 

The point may be raised that tracking all errors as they propagate through the 
analysis is very resource consuming. While this is true to an extent, we believe that this 
extra burden is partially compensated by the increased efficiency of the algorithm and 
parameter selection. Further, an answer with total error bounds is substantially more 
valuable than an answer with no error bounds that was obtained in half the time. 

5.2 Fault-Occurrence Model 

Although the procedure for constructing the Markov reliability model is 
conceptually straightforward, the implementation is usually a formidable task due to the 
effort required to perform the system-level failure modes and effects analysis (FMEA) from 
the component-level, single fault FMEA and to cope with the state proliferation problem 

13 



associated with these models. As discussed above, the current generation of tools has dealt 
with this state space problem through behavioral decomposition. Although aid is provided 
in specifying the fault-handling processes, the user is currently responsible for providing 
the fault-occurrence model. 

Experience indicates that the formulation of a fault-occurrence model for a complex 
system requires considerable effort. Therefore, this step in reliability prediction presents a 
desigtdanalysis bottleneck which severely limits the number of candidate designs that can 
be examined in practical situations. It is also possible that significant failure modes may be 
omitted from the model formulation. ' This situation may arise from errors introduced by the 
analyst as a result of the iterative, and hence, tedious nature of the model formulation, or 
through the omission of a failure mode because it was not identified during the system-level 
MEA.  

In light of the above, we conclude that a 'missing-link' in reliability evaluation 
techniques and associated research efforts is a computer-aided engineering (CAE) tool 
which automatically constructs a Markov fault-occurrence model from a top-level system 
description. This CAE tool would reduce modeling errors and would serve both as a 
design and validation aid for a broad class of fault-tolerant systems. In order to extend its 
range of applicability, the CAE tool should exploit state-reduction techniques [22] which 
mitigate the state proliferation problem. Further, this tool must be integrated with the 
current tools in order to obtain a tool which generates a Markov reliability model capturing 
both the fault-occurrence and fault-handling processes. 

Hence, the next generation tool should be able to construct a Markov model for a 
system by automatically performing the underlying system-level Fh4EA when given 
component-level, single fault FMEA's and a system description. In this manner, every 
phase of the analysis/evaluation process will be computer aided. Consequently the level of 
effort associated with constructing these models for large, complex systems is mitigated. 
Furthermore, pre-analysis efforts are minimized or eliminated because the task of the 
designer is now one of describing the system and its operation, not analyzing it. Modeling 
errors will be reduced and the tool will serve both as a design and validation aid. These 
features will be enhanced by providing the CAE tool with the ability to explain the 
automated process associated with the system-level FMEA and model formulation. 

While the process of decomposing faul t-handling and fad t-occurrence behaviors 
reduces the state space, the fault-occurrence model's state space may still be too large for 
analysis. Additional techniques are needed to reduce the state space. For example. the 
integrated control system of Section 3 has 29 components. The total number of states in 
the Markov model is more than l@, assuming that the order of component failure does not 
impact system performance. The time required for manual construction of such a model is 
prohibitive. However, this approach to model construction is so straightforward that a 
simple algorithm may be written. In fact, with the addition of aggregating system loss 
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states, this is the model that HARP would construct if given a fault tree description of the 
system. The difliculty with this approach is that the cost of solving the system equations 
for a system with n state variables increases as n* or n3, depending on the algorithm used. 
Further, models with this many states do not lend themselves to intuitive insights. 

Therefore, it is not enough for the fault-occurrence model construction to proceed 
blindly in its task. Means must be employed to reduce the state space size of the fault- 
occurrence model, itself. Clearly all 108 states are not equally likely to occur. For 
example, the state with 29 failures is extremely unlikely in this reliable system. This 
concept of focusing the model construction efforts on the states that are most likely, and 
therefore contribute the most significance to the solution, is at the heart of state space 
reduction techniques such as model truncation [22]. The process of model truncation, or 
using most other state-reduction techniques, introduces an approximation; a measure of that 
approximation must be provided in the output. 

The goal of automating the construction of the fault-occurrence model is to relieve 
the user of the need to possess all of the expertise required for this task. In this way the 
tool provides all of the relevant expertise to perform the reliability analysis, including 
techniques to mitigate the state proliferation problem. In addition to providing a reliability 
analysis tool to a larger audience, this automated approach relieves the user of the tedious 
and error prone process of model construction, permitting an efficient exploration of the 
design space. Hence, an independent validation of the design is generated: the user 
indicates how the system operates, the automated tool shows how well the system meets its 
operating requirements. 

5.3 Relevant Research 

During the past two years CSDL has been performing an Internal Research and 
Development project focused on demonstrating the feasibility of automated fault-occurrence 
model construction from a user's system description with appropriate state reduction [23, 
24,253. Additionally, issues of algorithm selection and error prediction have been 
addressed under this project. This section reports on some of the progress made in these 
areas. 

53.1 Error Prediction 

The ability to predict the emrs induced in the solution of a Markov model as a 
function of the algorithm parameters serves as a basis for the automatic selection of the 
solution algorithm and associated parameters. Each solution algorithm generates errors in a 
unique way. Hence, algorithm selection is not simply a function of the algorithm that is 
fastest; selection must be made based on the algorithm that is the fastest and provides the 
accuracy requested by the user. 
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Solution errors, other than modeling approximations which are discussed in Section 
5.3.2, result from two causes: roundoff errors due to finite machine precision and 
truncation errors due to approximations in the algorithm. An example of a truncation error 
is the integration error introduced by approximating a continuous differential equation with 
a discrete-time difference equation. Every solution algorithm presents different levels of 
difficulty in predicting its errors. 

For example, research at CSDL has shown that the solution algorithm used in 
MARK 1 lends itself to very simple error predictions [26]. MARK 1 solves the Markov 
model by taking powers of the transition matrix. This is a very fast and stable technique 
for solving time-invariant systems [ 171. 

The truncation error introduced through approximating the continuous differential 
depends directly on the fastest time constant and the discretization interval (time step) 
chosen. The fastest time constant is the inverse of the largest eigenvalue. For systems that 
only degrade, the eigenvalues can be found by inspection (they lie on the diagonal). For 
systems with repair, the largest eigenvalue can be approximated by a decomposition that 
decouples the (fast) repair processes from the (slow) fault-occurrence processes. Using a 
time step of At and a largest eigenvalue of h, (Ut)* provides a measure of the local 
integration error. Means exist for extending this to a global error [26]. 

The roundoff error introduced through finite machine precision can be propagated 
as follows. At time = 0, the relative error in the matrix elements are characterized by the 
machine precision. Squaring the matrix results in the elements characterized by relative 
errors of 2 times the machine precision. Obtaining the n* power of the matrix results in the 
elements having relative errors equal to n times the machine precision. An unusual 
property of this algorithm is that for large n the matrix errors become "well mixed", all 
approaching a common value. 

As an example of how the truncation and roundoff errors interact, we return to the 
integrated control system example. The IBM machine precision for double, floating point 
numbers is 10-16 (sixteen significant digits). The simulation time is 100 hours. MARK 1 
was first run with a default time step of 10-5 hours. Therefore 107 ame steps, or powers of 
the matrix, were needed. The roundoff error is (107) (10-16) = 10-9, or nine significant 
digits. The largest eigenvalue (no repairs) is on the order of lo4 hours-1. The global 
integration error is less than 10-16, or 16 significant digits. Hence, the total relative error is 
10-9. To improve the run time a time step of 10-1 hours was used. This results in a 
roundoff error of 10-13 and an integration error of lo-*, giving 8 significant digits. 

As shown in this example, there is a tradeoff between the two errors as the time 
step is varied. Larger time steps require fewer calculations to reach a given simulation time 
so the roundoff error is reduced. However, these larger steps are poorer approximations of 
the continuous differential so the integration error is increased. The relationship between 
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run time, error, arid time step can be written as a function and minima of interest found as a 
function of the time step. It is often more useful to choose a time step that delivers the 
user's requested accuracy. For example, if the user desired 3 significant digits in the 
solution of the integrated control system, a time step of 30 hours could be used. This 
would provide a substantial reduction in the run time when compared to the default time 
step. 

Not all algorithms may have tractable error predictions. However the ability to 
predict the error as a function of the analysis parameters permits both the automatic 
selection of those parameters and the assurance that the result will be useful. This ability to 
predict the usefulness of the result ahead of time may be of sufficient importance so as to 
require that all algorithms used in the tool have this property. In any case, all algorithms 
should provide measures of all of the induced errors so the user will know to what extent 
the assumptions of the analysis have been invalidated and what level of meaning to 
associate with the solution. 

5.32 Automated Fault-Occurrence Model Construction 

The key innovation suggested for the next generation of reliability analysis tools is 
the automatic generation of the fault-occurrence model from a user's system description. 
Research at CSDL in this area has resulted in the Computer Aided Markov Evaluation 
(CAME) program [24,25]. This program is written in LISP and resides on a Symbolics 
computer. The goals of this research are to demonstrate the feasibility and benefits of this 
mode of model construction. 

A block diagram of the CAME program is shown in Figure 4. The user interface 
provides a graphical means for the user to input the system description and application 
information. This input is stored in the system data base. Automatic Markov model 
construction is performed by the model builder using the description in the system data 
base and the rules for model building in the procedural knowledge base. The resulting 
model is stored in the model data base. The model builder also uses the information in the 
model data base in performing certain model reductions such as state aggregation. The 
explanation module p e d t s  the user to examine and challenge both the reasoning process 
underlying the system-level failure modes and effects analysis and the use of model- 
building procedures. 

The rules that are at the heart of the CAME system are formalisms of the techniques 
and expertise used at CSDL in the construction of Markov models. For example, some of 
the rules relate directly to the process of state generation: given that the system is in a 
certain state, the following procedures are applied to create subsequent states. Another 
example of a rule is deciding when model truncation should occur and what types of state 
aggregation are appropriate for the given failure level. 
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To demonstrate some of the power inherent in automatic generation of reliability 
models, the integrated control system example was evaluated using the CAME program. 
Each input window has mouse-driven menus that permit the creation and labeling of 
objects, connections between objects, and associated parameters. 

Figure 5 shows a screen image of the frst user input window. The System 
Architecture Window contains not only information about the connections between the 
components, but also information about the components themselves. Note that this 
architecture diagram has a one-to-one correspondence to the system architecture in Figure 
1. Each circle represents a component and has a failure rate, coverage value, and repair rate 
associated with it. For this example the coverage values are equal to one so perfect 
coverage is modeled and the repair rates are set to zero so no repair transitions are created. 
These parameters, and others that permit grouping of components, are accessible from 
menus associated with each object. Notice that the arrow heads on the component 
connectors contain information to be used in the modeling process; information flows bi- 
directionally between processors (proc-a, pmc-b) and buses (bal, ba2, bbl, bb2) and 
flows mi-directionally between manual control synchros (sl, s2, pl, p2) and their 
associated servo valve amplifiers (sva-a, sva-b). 

The next user-input window (Figure 6) sets the performance levels, or operating 
modes, for the system. Starting from the left-hand side of the figure, perfonnance level 1 
for the system (control-system p-level: 1) requires that channel a meet the requirements for 
operating in both automatic and manual. Performance level 2 is similarly described for 
channel b. Performance levels 3 and 4 require that manual operation be achieved in channel 
a or channel b; respectively. The ability to operate in the emergency mode is required for 
meeting performance level 5. Note that the restriction that automatic operation is only 
permitted if the manual is operational on that channel is enforced by the definitions of 
performance levels 1 and 2. 

The blocks representing automatic or manual mode requirements for channel a, etc. 
are user-defined blocks. These are defined in the Further Specifications Window (Figure 
7). On the left-hand side of the figure, "emergency" is defined to require that 4 elements of 
the emergency class are unfailed. The class that an object belongs to is specified in the 
menu associated with the component in the System Architecture Window (Figure 5). 
Requirements for channel a to operate in the automatic mode (cha-automatic) are defined in 
the top half of the figure. Cha-automatic requires that eleven of the components in the class 
"claauto" must be operating, one of the two buses (bal or ba2) be unfailed, one of the two 
signal data converters (sdc-a or sdc-b) be unfailed, and one of the two manual synchros (pl 
or p2) be unfailed. Requirements for channel a operating in the manual mode are defined in 
the lower half of the figure. Similar definitions are included for automatic and manual 
operation of channel b. 

18 



Thcre arc wme points to notice in this description. The CAME program presumes 
the system will hc. openlting in  the highest performime level possible in each state (Le.: 
closest to level 1). The achievement of none of the specified performance levels is a system 
failure or system loss (called the null mode in this example). The introduction of classes to 
group components permits the natural description of an n-of-m criteria in the performance 
specification. The performance requirements reflect some design decisions. For example, 
the automatic mode cannot be used unless the manual mode is available on that channel. 

Finally, notice that the performance level diagrams are not success trees. Success 
trees (the inverse of fault trees) must be exhaustive. If the CAME program required the 
input of a success tree it would not serve any function since the success tree contains the 
system-level FMEA. Further, a success tree would limit the model formulation to static 
relationships among the components; this is undesirable since a fault-tolerant system's 
reconfiguration introduces dynamic dependencies between the components. Therefore, the 
CAME program requests a description of what capabilities are needed for system operation 
in the various modes. These capabilities are often expressed, particularly with integrated 
control sistems, as which inputs and outputs are needed. Notice that the performance level 
diagram does not contain all of the information needed to construct the Markov model; Le., 
to construct the system-level FMEA. Rather, it contains the minimum specification for 
each operating mode and it must be used in conjunction with the architecture and 
reconfiguration diagrams. As an example, note that in the performance diagram of Figure 6 
some information needed to construct the Markov model, such as the need for a functional 
path between sensors and processors, is obtained from the architecture diagram. The 
construction of the Markov model requires information form all three windows: 
architecture, performance, and further specifications. 

Other descriptions of the system are possible. If the user does not want to 
distinguish which channel the modes occur in, automatic could be defined as requiring 
either automatic and manual on the a channel or the b channel. The manual mode could be 
similarly defined. Also, abstract objects, representing the performance of channels, could 
be used to describe the system in a more concise form. 

These three windows (architecture, performance, and further specifications) 
constitute a complete system description. The user may now move to the Markov Modeler 
Window. Here menus exist for setting the truncation and aggregation rules to be applied. 
For this system we have selected to truncate the model at the second-failure level after the 
first system-loss state. The aggregation rules have been selected so all system-loss states at 
a common failure level will be aggregated and states with common performance at the next- 
to-last failure level will be aggregated. 

Selecting the 'construct model' command from the menu causes a system-level 
failure modes and effects analysis to be performed on the user-described system (Figures 
5-7) and generates the Markov reliability model in this window (Figure 8). The states are 

19 



organized into columns at each failure level. At the left is state '0,l': state 1 at the zero- 
failure level. This is the initial, no-failure state. Various transitions lead to states 
designated '1,x' at the first-failure level. All system-loss states at the first-failure level have 
been aggregated into state 'lo-sl-1'. Various failure events cause transitions from 
operational states at the fmt-failure level to states at the second-failure level. Following the 
user-set rules for aggregation, the states at the second-failure level have been aggregated 
into states at common performance levels, a state for performance levels 1 through 5 (p-1, 
p-2, ... p-5). and a system-loss state (lo-sl-2). As requested, the model has been truncated 
at the third-failure level, which is the second failure level after the first system loss. All 
states at the third-failure level have been aggregated into the state 'up-sl'. 

The truncation of the model at the third-failure level introduces an approximation. 
However, because of the way the CAME program performs this truncation, the model 
provides bounds on this approximation. By considering all states at the third-failure level 
to be system losses, we clearly have an upper limit on system-loss contributions from the 
third-, and subsequent-, failure levels. The sum of system-loss probabilities from the first- 
and second-failure levels (lo-sl-1 and lo-sl-2) provide a lower bound on the system-loss 
probability since they do not contain all possible system-loss configurations. The sum of 
these two system-loss states and the third-failure level state (up-sl) provide an upper bound 
on system-loss probability since all losses at the first two failure levels are captured exactly 
and the 'up-sl' state is an upper limit on all remaining system-loss probabilities. The 
difference between these two bounds for the system-loss probability, namely the 
probability of state 'up-sl', is a direct measure of the approximation introduced by the 
model truncation. 

Moving the mouse onto states and transitions in the Markov Model Window 
permits the inspection of the properties of that state or transition. This is equivalent to 
inspecting the system-level FMEA. It is through an examination of the FMEA that the 
designer confirms the system operation and the Markov model is checked. For example, 
inspecting state '1,6' shows that this state is the result of a failure of the bus ba2 (see 
Figure 9). The system is operating at performance level 1. Lists of objects in use and the 
originating state and destination states are shown along with the associated failure events. 

The CAME program also has an input window that permits the user to describe the 
reconfiguration process involved in the redundancy management strategy. As with the 
other input windows, this one is mouse- and menu-driven. Although no specific 
reconfigurations were given in the example problem, Figure 10 shows some possibilities. 
The top row indicates that the processor in use (proc-in-use) is initially processor a (proc-a) 
and if the condition that the system cannot achieve performance level 1 is met, the system 
reconfigures to processor b. Similar reconfigurations are set for the bus pairs. The CAME 
program uses this information, which may be referred to in the performance requirements 
as "current proc-in-use", etc., in its generation and evaluation of the model states. An 
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important point t o  notice is that this description is not exhaustive; infomiation from the 
other input windows is used in conjunction with this input in the model construction. 

The manual construction of the fault-occurrence model for the integrated control 
system (Section 3) required 4 hours. Inputting this description into the various current 
generation tools required from 1 to 3 hours. Taking the best case, a total of 5 hours was 
required to analyze this system using the current generation tools. Inputting the graphical 
description to the CAME program took 2 hours, including the time required for the user to 
learn how to use the CAME program. The CAME program constructed the model in 3 
minutes. Hence, the next generation tool provided a time reduction of greater than a factor 
of 2. This measure of improvement in productivity does not reflect the reduction of 
required specialized knowledge to use the next generation tool. 

This example does not tell the whole story. First, the integrated control system 
example represents systems of moderate complexity. In our IR&D research, we performed 
a similar productivity comparison for an electronic, two-channel engine controller that had 
more than 40 components, imperfect coverage, and extensive reconfiguration rules. The 
process of manually constructing the model and inputting that description into a current 
generation tool required 80 hours. Graphically describing the system to the CAME 
program took 5 hours and the automatic model construction was performed in 40 minutes. 
Further, the CAME program found 15 errors in the manually constructed model. 

Second, once a system is described to the CAME program, design modifications 
are simple. These may range from changes in operating rules to changes in the system 
components or the system topology. Thus, the next generation tool provides an 
environment for exploring the entire design space. For example, implementing the specific 
reconfigurations of Figure 10 required 10 minutes with another 3 minutes for automatic 
model construction. Manually, the addition of specific reconfigurations, which introduce 
sequence dependencies requiring a complete reevaluation of the system-level M E A  and a 
reconstruction of the model, required another 5 hours. Further, repairs are included by 
simply indicating the repair rates for each component in the System Architecture Window. 
This addition was done in 10 minutes with 3 more needed for constructing the model. 
Comparing this result to that manually generated in Section 3 showed 2 errors in the 
manually constructed model. 

Comparing the CAME program's abilities to the goals stated for the next-generation 
tool, shows that i t  provides an independent means of validating both the system operation 
and the reliability model since it automatically generates the system-level FMEA for the 
system. Inspecting states allows the user to c o n f i i  the system operation and the validity 
of the model. The automation of the fault-occmnce model increases productivity and the 
ability to alter the system description permits exploration of the design space. The goal of 
having the tool contain all the Markov modeling expertise needed for reliability analysis has 
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not yet been achieved; the program asks Markov-type questions such as specifying 
truncation level, etc. 

Currently, the CAME program can generate Markov reliability models for systems 
with constant, non-state-dependent coverage parameters and manual repairs. Several 
model truncation rules are available which produce upper- and lower-bounds on the system 
reliability measures. Exact and/or approximate state aggregation to states at a common 
user-specified performance level is another model-constructing option. 

Hence, the CAME program can automatically perform the system-level FMEA 
based on the component-level FMEAs and a top-level system description. This capability 
has been tested on the following systems: an abstraction of an Advanced Information 
Processing System (AIPS) architecture, a hydraulic actuation system, an electronic jet 
engine controller, and a submarine control system. 

6. CONCLUSIONS 

The process of performing a reliability evaluation may be divided into steps. The 
fault-handling and fault-occurrence models can be constructed, given a system description 
which includes the architecture, reconfiguration rules, and operating mode requirements. 
The outputs of the fault-handling models are incorporated as parameters in the fault- 
occurrence model. The input of system parameters and the modeling goal permits problem 
specific approximations to be introduced. Finally, an analysis program operates on the 
resulting system of equations to produce the reliability prediction. 

The current generation of reliability analysis tools has concentrated on means of 
improving the efficiency of the description and solution of the fault-handling processes and 
providing a solution algorithm for the full system model. The tools have succeeded in 
improving user efficiency in these areas to the point that the problem of describing the fault- 
occurrence model is now the major analysis bottleneck. 

For the next generation of reliability tools, we have proposed that techniques be 
developed to improve the efficiency of the fault-occurrence model generation and input. 
Further, the goal is to provide an environment that permits a user to provide component- 
level FMEA's and a top-down design description of the system from which a Markov 
reliability model is automatically constructed. In this way the user is relieved of the tedious 
and error-prone process of model construction. Since the model is constructed 
automatically from the system description, the design space can be efficiently explored by 
simply altering the system description; each new model is constructed automatically. 
Finally, an independent validation of the system's operation is obtained by comparing the 
automatically constructed system-level FMEA with the designed system operation. 

. 
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An additional benefit of automating the model construction process is the 
opportunity for reducing the specialized knowledge required of a user. While it will always 
be desimble for the user to have a knowledge of the fundamentals of reliability analysis, the 
ICNI will have the ability to automatically handle "advanced" concepts such as those 
involved in controlling the size of the state space while maintaining sufficient model 
integrity. Hence, the user need only be an expert in the system he is analyzing; the 
expertise in reliability analysis techniques is supplied by the analysis tool. In this vein, the 
next generation of tools should have more robust analysis abilities when compared to the 
current generation. Further, in keeping with the concept of reduced user expertise, the tool 
should have the ability to deliver a user-requested accuracy by selecting among its solution 
techniques and the free parameters of the analysis. 

IR&D research at CSDL has shown the feasibility of achieving these goals. Much 
work is left to do in further automating the fault-occurrence model generating ability and 
integrating it with the best features of the current generation tools. 
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