NASA Technical Memorandum

NASA TM-86521

FY 1985 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner
Management Operations Office

November 1985

(NASA-TM-86521) FY 1985 SCIENTIFIC AND TECHNICAL REPORTS, ARTICLES, PAPERS AND PRESENTATIONS (NASA) 82 p CSCI 05B N88-13063

Unclas
G3/82 0110675

NASA
National Aeronautics and Space Administration
George C. Marshall Space Flight Center

MSFC - Form 3190 (Rev. May 1983)
This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 85. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.
FOREWORD

In accordance with the NASA Space Act of 1958 the MSFC has provided for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof.

Since July 1, 1960, when the George C. Marshall Space Flight Center was organized, the reporting of scientific and engineering information has been considered a prime responsibility of the Center. Our credo has been that “research and development work is valuable, but only if its results can be communicated and made understandable to others.”

The N number shown for the reports listed is assigned by the NASA Scientific and Technical Information Facility, Baltimore, Maryland, indicating that the material is unclassified and unlimited and is available for public use. These publications can be purchased from the National Technical Information Service, 5285 Port Royal Road, Springfield, Virginia 22161. The N number should be cited when ordering.
FY 1985 Scientific and Technical Reports, Articles, Papers, and Presentations

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>NASA Technical Memoranda</td>
<td>1</td>
</tr>
<tr>
<td>NASA Technical Papers</td>
<td>13</td>
</tr>
<tr>
<td>MSFC Conference Publications</td>
<td>18</td>
</tr>
<tr>
<td>NASA Contractor Reports</td>
<td>19</td>
</tr>
<tr>
<td>MSFC Papers Cleared for Presentation</td>
<td>50</td>
</tr>
</tbody>
</table>
TM-86470 November 1984

This document presents formal NASA technical reports, papers published in technical journals, and presentations by MSFC personnel in FY 84. It also includes papers of MSFC contractors.

After being announced in STAR, all of the NASA series reports may be obtained from the National Technical Information Service, 5285 Port Royal Road, Springfield, VA 22161.

The information in this report may be of value to the scientific and engineering community in determining what information has been published and what is available.

TM-86471 October 1984

Using a 3-component sinusoidal fit of \(R_{\text{MAX}} \) versus sunspot cycle number (where \(R_{\text{MAX}} \) is the smoothed sunspot number at cycle maximum) for cycles 8 through 20, considered to be the most reliably known cycles, values of \(R_{\text{MAX}} \) are projected for cycles 21 and 22.

TM-86472 October 1984

Signal-to-noise ratios for the Wide Field Camera and Planetary Camera of the Space Telescope have been calculated as a function of integration time. Models of the optical systems and CCD detector arrays were used with a 27th visual magnitude point source and a 25th visual magnitude per arc-second² extended source. A 23rd visual magnitude per arc-second² background was assumed. The models predicted signal-to-noise ratios of 10 within 4 hours for the point source centered on a single pixel. Signal-to-noise ratios approaching 10 are estimated for approximately 0.25 x 0.25 arc-second areas within the extended source after 10 hours integration.

TM-86473 October 1984
Results of the Technical Exchange Agreement Between NASA and DuPont on the Containerless Drop Tube Solidification of NiAl₃. Space Science Laboratory. N85-10087

The final results of the Drop Tube Solidification of NiAl₃ are presented. Problems associated with the utilization of a "dripper" furnace in the drop tube are discussed and the modification of experimental procedures required to achieve results are described. Sample microstructures of drop tube samples are compared with other samples. The dendrite arm spacings of drop tube samples are correlated with the rapid cooling rates.

TM-86474 October 1984

A ray-trace modeling of the star-tracker telescope for Gravity Probe has been used to predict the character of the output signal and its sensitivity to fabrication errors. In particular, the impact of the optical subsystem on the requirement of 1 milliarc-second signal linearity over a ±50 milliarc-second range has been examined. Photomultiplier and solid state detector options were considered. Recommendations are made.

TM-86475 September 1984

A star-tracker telescope, constructed entirely of fused silica elements optically contacted together, has been proposed to provide submilliarc-second pointing accuracy for Gravity Probe.
First this report provides a bibliography on optical contacting; the bonding of very flat, highly polished surfaces without the use of adhesives. Then results are presented from preliminary experiments on the strength of optical contacts including a tensile strength test in liquid helium. The report emphasizes the need for further study to verify an optical contacting method for the Gravity Probe star-tracker telescope.

TM-84676 November 1984

The Marshall Space Flight Center conducts research programs in space sciences, materials processing in space, and atmospheric sciences, as well as technology programs in such areas as propulsion, materials, processes, and space power. This Marshall Space Flight Center 1984 Annual Report on Research and Technology contains summaries of the more significant scientific and technical results obtained during FY-84.

TM-86477 August 1984

Trajectory and mission requirement data is presented for Earth-Mars opposition class and conjunction class round trip stopover mission opportunities available during the time period year 2000 to year 2045. The opposition class mission employs the gravitational field of Venus to accelerate the space vehicle on either the outbound or inbound leg. The gravitational field of Venus was used to reduce the propulsion requirement associated with the opposition class mission. Representative space vehicle systems are sized to compare the initial mass required in low Earth orbit of one mission opportunity with another mission opportunity. The interplanetary space vehicle is made up of the spacecraft and the space vehicle acceleration system. The space vehicle acceleration system consists of three propulsion stages. The first propulsion stage performs the Earth escape maneuver, the second stage brakes the spacecraft maneuver into the Mars elliptical orbit and effects the escape maneuver from the Mars elliptical orbit. The third propulsion stage brakes the mission module into an elliptical orbit at Earth return. The interplanetary space vehicle was assumed to be assembled in and depart from the Space Station circular orbit.

TM-86478 October 1984

Presented are selected thermospheric/exospheric global mean and extreme density values computed between 130 and 1100 km altitude. These values were generated from the MSFC/J70 reference orbital atmospheric model using different input conditions of solar flux and geomagnetic index, ranging from low to peak. Typical magnitudes of day-night density changes are presented, as an example, for use in space vehicle orbital analyses.

TM-86479 October 1984

Two electrochemical methods for the determination of hydrogen concentrations in metals are discussed and evaluated. The take-up of hydrogen at a pressure of 5,000 psi by Waspaloy metal was determined experimentally at 24°C. It was found that the metal becomes saturated with hydrogen after an exposure time of about 1 hr. For samples charged with hydrogen at high pressure, most of the hydrogen is contained in the interstitial solid solution of the metal. For electrolytically charged samples, most of the hydrogen is contained as surface and subsurface hydrides. Hydrogen elimination rates were
determined for these two cases, with the rate for electrolytically charged samples being greater by over a factor of two. Theoretical effects of high temperature and pressure on hydrogen take-up and elimination by bare and gold plated Waspaloy metal was considered. The breakthrough point for hydrogen at 5,000 psi, determined experimentally, lies between a gold thickness of 0.0127 mm (0.0005 in.) and 0.0254 mm (0.001 in.) at 24°C.

Electropolishing was found to greatly reduce the uptake of hydrogen at high pressure by Waspaloy metal at 24°C. Possible implications of the results obtained in this study, as they apply to the turbine disk of the Space Shuttle Main Engine, are discussed.

TM-86480 October 1984
An Evaluation of Grease Type Ball Bearing Lubricants Operating in Various Environments (Final Status Report No. 8). E. L. McMurtrey. Materials and Processes Laboratory. N85-11239

Because many future spacecraft or space stations will require mechanisms to operate for long periods of time in environments which are adverse to most bearing lubricants, a series of tests has been completed to evaluate 38 grease-type lubricants in R-4 size bearings in five different environments for a 1-year period. Four repetitions of each test were made to provide statistical samples. These tests were also used to select four lubricants for 5-year tests in selected environments with four repetitions of each test for statistical samples. In this completed program, 172 test sets have been completed. The three 5-year tests in (1) continuous operation and (2) start-stop operation, with both in vacuum at ambient temperatures, and (3) continuous vacuum operation at 93.3°C have been completed. In both the 1-year and 5-year tests, the best results in all environments have been obtained with a high viscosity index perfluoroalkylopolyether (PFPE) grease.

TM-86482 November 1984

A. C. Nunes, Jr., E. O. Bayless, Jr., and W. A. Wilson. Materials and Processes Laboratory N85-14115

This report describes progress in the implementation of the Variable Polarity Plasma Arc Welding (VPPAW) process at the External Tank (ET) assembly facility. Design allowable data has been developed for thicknesses up to 1.00 in. More than 24,000 in. of welding on liquid oxygen and liquid hydrogen cylinders has been made without an internal defect.

TM-86483 December 1984
Improving the Spacelab Mass Memory Unit Tape Layout with a Simulation Model. Steven R. Noneman. Systems Analysis and Integration Laboratory. N85-14571

A tape drive called the Mass Memory Unit (MMU) stores software used by Spacelab computers. MMU tape motion must be minimized during typical flight operations to avoid a loss of scientific data. A projection of the tape motion is needed for evaluation of candidate tape layouts. A computer simulation of the scheduled and unscheduled MMU tape accesses is developed for this purpose. This simulation permits evaluations of candidate tape layouts by tracking and summarizing tape movements. The factors that affect tape travel are investigated and a heuristic is developed to find a "good" tape layout. An improved tape layout for Spacelab I is selected after the evaluation of fourteen candidates. The simulation model will provide the ability to determine MMU layouts that substantially decrease the tape travel on future Spacelab flights.

TM-86484 October 1984

This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-41D launch time on August 30, 1984, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and
winds aloft are included. The sequence of pre-launch Jimsphere measured vertical wind profiles is given in this report. Also presented are wind and thermodynamic parameters representative of surface and aloft conditions in the SRB descent/impact ocean area. Final atmospheric tapes, which consist of wind and thermodynamic parameters versus altitude, for STS-41D vehicle ascent and SRB descent/impact have been constructed. The STS-41D ascent meteorological data tape has been constructed by Marshall Space Flight Center’s Atmospheric Sciences Division to provide an internally consistent data set for use in post flight performance assessments.

TM-86486 November 1984

This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-41G launch time on October 5, 1984, at Kennedy Space Center Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-41G vehicle ascent has been constructed. The STS-41G ascent atmospheric data tape has been constructed by Marshall Space Flight Center’s Atmospheric Sciences Division to provide an internally consistent data set for use in post flight performance assessments.

TM-86487 January 1985

The Monodisperse Latex Reactor experiment has flown five times on the space shuttle, with three more flights currently planned. The objective of this project is to manufacture, in the microgravity environment of space, large particle-size monodisperse polystyrene latexes in particle sizes larger and more uniform than can be manufactured on Earth. Historically it has been extremely difficult, if not impossible, to manufacture in quantity very high quality monodisperse latexes on Earth in particle sizes much above several micrometers in diameter due to buoyancy and sedimentation problems during the polymerization reaction. However the MLR project has succeeded in manufacturing in microgravity monodisperse latex particles as large as 30 micrometers in diameter with a standard deviation of 1.4 percent. It is expected that 100 micrometer particles will have been produced by the completion of the three remaining flights.

These tiny, highly uniform latex microspheres have become the “FIRST SPACE PRODUCT,” that is, the first material ever to be commercially marketed that was manufactured in space. The U.S. National Bureau of Standards has certified the first batch of “space latex,” which was transferred to NBS by NASA in July 1984, and they will begin marketing this material in mid-1985 as the U.S. national 10-micrometer Standard Reference Material.

TM-86488 December 1984

This study deals with the numerical implementation of a formulation for a class of interface problems in elastodynamics. This formulation combines the use of the finite element and boundary integral methods to represent the interior and the exterior regions, respectively. In particular, the response of a semicylindrical alluvial valley in a homogeneous halfspace to incident antiplane SH waves is considered to determine the accuracy and convergence of the numerical procedure. Numerical results are obtained for several combinations of the incidence angle, frequency of excitation and relative stiffness between the inclusion and the surrounding half-space. The results tend to confirm the theoretical estimates, that the convergence is of the order h^2 for the piecewise linear elements used. It is also observed that the accuracy decreases as the frequency of excitation increases or as the relative stiffness of the inclusion decreases.
In recent years, a new body of control theory has been developed for the design of control systems for Large Space Structures (LSS). The problems of testing this theory on LSS hardware are aggravated by the expense and risk of actual "in orbit" tests. Ground tests on large space structures can provide a proving ground for candidate control systems, but such tests require a unique facility for their execution. The current development of such a facility at the NASA Marshall Space Flight Center (MSFC) is the subject of this report.

An overview of the Large Space Structure (LSS) control system design problem is presented. The LSS is defined as a class of system and LSS modeling techniques are discussed. Included are discussions concerning model truncation, control system objectives, current control law design techniques, and particular problem areas.

This report describes the Large Space Structure Ground Test Facility under development at the NASA Marshall Space Flight Center in Huntsville, Alabama. It presents the status of the tests being performed and the present and proposed utilization of that facility by DOD. The Ground Test Facility was established initially to test experimentally the control system to be used on the Solar Array Flight Experiment. Further, the structural dynamics of the selected test article were to be investigated, including the fidelity of the associated mathematical model. It became apparent that many of the LSS objectives of NASA were similar to those of DARPA and the US Air Force. In particular, all three agencies are interested in a Government test facility that can accommodate large structures emulating actual space systems. The facility must permit the investigation of structural dynamics phenomena and be able to evaluate candidate attitude control and vibration suppression techniques.
NASA TECHNICAL MEMORANDUM

problems. It is especially useful for infants and other non-communicative children who cannot be screened by the more conventional methods such as the familiar “E” chart.

TM-86493 January 1985

This report presents an analysis of the Shuttle SRM thrust imbalance during the steady-state and tailoff portions of the boost phase of flight. The study includes results from flights STS-1 through STS-13. A statistical analysis of the observed thrust imbalance data is presented. A 3σ thrust imbalance history versus time has been generated from the observed data and is compared to the vehicle design requirements. The effect on Shuttle thrust imbalance from the use of replacement SRM segments is predicted. Comparisons of observed thrust imbalances with respect to predicted imbalances are presented for the two Space Shuttle flights which used replacement aft segments (STS-9 and STS-13).

TM-86494 February 1985

A series of copper-nickel alloys were fabricated, notched tensile specimens machined, for each alloy and the specimens tested in 34.5 MPa hydrogen and in air. A notched tensile ratio was determined for each alloy and the hydrogen environment embrittlement (HEE) determined for the alloys of 47.7 weight percent nickel to 73.5 weight percent nickel.

Stacking fault probability and stacking fault energies were determined for each alloy using the X-ray diffraction line shift and line profile technique.

Hydrogen environment embrittlement was determined to be influenced by stacking fault energies; however, the correlation is believed to be indirect and only partially responsible for the HEE behavior of these alloys.

TM-86495 November 1984

An overview for the definition of a ground test for the verification of Large Space Structure (LSS) control is given. The definition contains information on the description of the LSS ground verification experiment, the project management scheme, the design, development, fabrication and checkout of the subsystems, the systems engineering and integration, the hardware subsystems, the software, and a summary which includes future LSS ground test plans. Upon completion of these items, NASA/MSFC will have an LSS ground test facility which will provide sufficient data on dynamics and control verification of LSS so that LSS flight system operations can be reasonably ensured.

TM-86496 December 1984

NASA Marshall Space Flight Center has developed a facility in which closed loop control of Large Space Structures (LSS) can be demonstrated and verified. The main objective of the facility is to verify LSS control system techniques so that on-orbit performance can be ensured. The facility consists of an LSS test article which is connected to a payload mounting system that provides control torque commands. It is attached to a base excitation system which will simulate disturbances most likely to occur for Orbiter and DOD payloads. A control computer will contain the calibration software, the reference system, the alignment procedures, the telemetry software, and the control algorithms. The total system will be suspended in such a fashion that the LSS test article has the characteristics common to all LSS.
The Space Physics Analysis Network or SPAN is emerging as a viable method for solving an immediate communication problem for the space scientist. SPAN provides low-rate communication capability with co-investigators and colleagues, and access to space science data bases and computational facilities. The SPAN utilizes up-to-date hardware and software for computer-to-computer communications allowing binary file transfer and remote log-on capability to over 25 nationwide space science computer systems. SPAN is not discipline or mission dependent with participation from scientists in such fields as magnetospheric, ionospheric, planetary, and solar physics.

This document provides basic information on the network and its use. It is anticipated that SPAN will grow rapidly over the next few years, not only from the standpoint of more network nodes, but as scientists become more proficient in the use of teliscience, more capability will be needed to satisfy the demands.

The Space Physics Analysis Network (SPAN) is a computer network connecting scientific institutions throughout the United States. This network provides an avenue for timely, correlative research between investigators, in a multidisciplinary approach to space physics studies. An objective in the development of SPAN is to make available direct and simplified procedures that scientists can use, without specialized training, to exchange information over the network. Information exchanges include raw and processes data, analysis programs, correspondence, documents, and graphic images. This handbook details procedures that can be used to exchange graphic images over SPAN.

The intent is to periodically update this handbook to reflect the constantly changing
facilities available on SPAN. The utilities described within reflect an earnest attempt to provide useful descriptions of working utilities that can be used to transfer graphic images across the network. Whether graphic images are representative of satellite observations or theoretical modeling and whether graphics images are of device dependent or independent type, the SPAN graphics display utilities handbook will be the users guide to graphic image exchange.

TM-86501 May 1985
N85-23273

Initial results have been completed on a mathematical/statistical analysis of inphase gusts and wind velocity moment forces over the first 150 m at the Kennedy Space Center, Florida. The wind velocity profile data used in the analysis were acquired at the KSC 150 m Ground Wind Tower. The results show that planetary boundary layer (PBL) winds can sustain near-peak speeds for periods up to 60 sec and longer. This is proven from calculating the auto-correlation functions of moment forces for several 10-min cases of wind profile data. Although this analysis is preliminary, the results prove that lower atmospheric planetary boundary layer winds do have a periodic variation for long periods of time. This flow characteristic is valuable as aerospace vehicle engineering and design criteria where wind loading must be determined. Such information is also important to the aviation and surface transportation engineers.

TM-86502 February 1985

This report describes the infrared array developed in the Space Science Laboratory at Marshall Space Flight Center with Center Director’s Discretionary Funds. The array, referred to as Big Mac (for Marshall Array Camera), was designed for ground-based astronomical observations in the wavelength range 5 to 35 μm. It contains 20 discrete gallium-doped germanium bolometer detectors at a temperature of 1.4K. Each bolometer is irradiated by a square field mirror constituting a single pixel of the array. The mirrors are arranged contiguously in four columns and five rows, thus defining the array configuration. Big Mac utilizes cold re-imaging optics and an up-looking dewar. The total Big Mac system also contains a telescope interface tube for mounting the dewar and a computer for data acquisition and processing. Initial astronomical observations at a major infrared observatory indicate that Big Mac performance is excellent, having achieved the design specifications and making this instrument an outstanding tool for astrophysics.

TM-86503 August 1985

The physics governing the applicability and limitations of gas tungsten arc (GTA), electron beam (EB), and laser beam (LB) welding are compared. An appendix on the selection of laser welding systems is included.

TM-86505 March 1985

The development of silicon carbide-silicon nitride fibers (SiC-Si₃N₄) by the pyrolysis of polycarbosilazane precursors that was carried out in this laboratory is reviewed. Precursor resin, which was prepared by heating tris(N-methylamino)methylsilane or tris(N-methylamino)phenylsilane to about 520°C, was drawn into fibers from the melt and then made unmeltable by humidity conditioning at 100°C and 95 percent relative humidity. The humidity treated
precursor fibers were pyrolyzed to ceramic fibers with good mechanical properties and electrical resistivity. For example, SiC-Si$_3$N$_4$ fibers derived from tris(n-methylamino)methylsilane had a tensile rupture modulus of 29 x 10^6 psi and electrical resistivity of 6.9 x 10^8 Ω-cm which is 10^{12} times greater than that obtained for graphite fibers.

This research was sponsored by the MSFC Center Director's Discretionary Fund Project [No. 82-13, "Preparation of New Continuous Silicon Carbide-Silicon Nitride (SiC-Si$_3$N$_4$) Fibers by the Controlled Pyrolysis of Organosilane Polymeric Precursors"].

TM-86506 April 1985
Systems Dynamics Laboratory. N85-27935

This is a closed form solution for the longitudinal oscillation of the Solar Array Flight Experiment (SAFE) blanket for all phases of deployment. The frequency response shows that the blanket frequency increases shortly before full deployment. That fact causes a coupling between the mast and the blanket frequency but, because of the relatively high speed of deployment, a buildup of resonance is unlikely.

TM-86507 March 1985

An Extended Range X-Ray Telescope (ERXRT) of high sensitivity and spatial resolution capable of functioning over a broad region of the X-ray/XUV portion of the spectrum has been designed and analyzed. This system has been configured around the glancing-incidence Wolter Type I X-ray mirror system which was flown on the Skylab Apollo Telescope Mount as ATM Experiment S-056. Enhanced sensitivity over a vastly broader spectral range can be realized by the utilization of a thinned, back-illuminated, buried-channel Charge Coupled Device (CCD) as the X-ray/XUV detector rather than photographic film. However, to maintain the high spatial resolution inherent in the X-ray optics when a CCD of 30 micron pixel size is used, it is necessary to increase the telescope plate scale. This can be accomplished by use of a glancing-incidence X-ray microscope to enlarge and re-focus the primary image onto the focal surface of the CCD.

In the ERXRT program, several glancing-incidence hyperboloid/ellipsoid X-ray microscope optical elements were designed and analyzed. An 8X microscope of 2-m focal length was selected as the optimum configuration to couple the S-056 X-ray mirrors to a 30-micron pixel RCA CCD X-ray/XUV detector. Detailed ray trace analysis studies have shown that this system has theoretical performance which should permit sub-arc second images to be achieved over the entire field of view of the detector. This research has shown that the ERXRT concept is theoretically feasible and that this system may be of great value for future high-resolution X-ray telescope/X-ray spectroscopy instruments. It has also provided valuable insights into other hybrid X-ray optical systems, such as are now being developed in the Wolter/LSM X-ray telescope program, which is also a Center Director's Discretionary Fund program.

TM-86508 April 1985

This report presents a summary of selected atmospheric conditions observed near Space Shuttle STS-51C launch time on January 24, 1985, at Kennedy Space Center, Florida. Values of ambient pressure, temperature, moisture, ground winds, visual observations (cloud), and winds aloft are included. The sequence of pre-launch Jimsphere measured vertical wind profiles is given in this report. The final atmospheric tape, which consists of wind and thermodynamic parameters versus altitude, for STS-51C vehicle ascent has been constructed. The STS-51C ascent atmospheric data tape has been constructed
by Marshall Space Flight Center's Atmospheric Sciences Division to provide an internally consistent data set for use in post flight performance assessments.

TM-86509 June 1985

The wake environment of the space shuttle is analyzed to determine whether it is feasible to perform ultra-high vacuum experiments in or near the payload bay with the shuttle oriented such that the payload bay faces the anti-velocity direction. Several mechanisms were considered by which molecules could approach the payload bay from this direction and their relative contributions to the wake environment are estimated. These mechanisms include ambient atmospheric molecules that have velocities in excess of the orbital velocity which can overtake the shuttle, ambient atmospheric molecules that are back-scattered by collisions with the shuttle-induced atmosphere, and self-scattering from the induced atmosphere.

These estimates are compared with the measurements made with the collimated mass spectrometer which was part of the Induced Environment Contamination Monitor flown on several of the early shuttle flights. Although the collimated mass spectrometer was not designed for this purpose and the instrument background for the species for which the collimator is effective is above the expected levels, upper limits can be established for these species in the wake environment which are consistent with the analysis. There was considerably more helium and argon observed in the wake direction that was predicted, however. Possible origins of these gases are discussed.

TM-86511 June 1985

The purpose of this report is to examine the Hubble Space Telescope pointing error produced by optical benches mounted on free ball joints. Spacecraft cable connections are assumed to produce translational and rotational damping and restoring forces which act through the optical bench center of mass. The nonlinear dynamics are modeled and then implemented using an existing computer program for simulating the vehicle dynamics and pointing control system algorithm. Results are presented for the test case which indicate acceptable performance.

TM-86512 June 1985
This report describes the design, analysis, fabrication, and test of a complex “bathtub fitting.” Graphite fibers (P75) in an epoxy matrix were utilized in manufacturing of 11 components representing four different design and layup concepts. Design allowables were developed for use in the final stress analysis. Strain gage measurements were taken throughout the static load test and correlation of test and analysis data were performed, yielding good understanding of the material behavior and instrumentation requirements for future applications.

A team was formed to perform the study; however, the work of the team was severely restricted by conflict with higher priority tasks. No manpower was available to evaluate alternate configurations. Thus, much of the synergetic effects of cohesive design modification was lost. Although very limited results were achieved, nothing was found to indicate that the method is not worth further investigation.

On April 5, 1983, an Inertial Upper Stage (IUS) spacecraft experienced loss of control during the burn of the second of two solid rocket motors. The anomaly investigation showed the cause to be a malfunction of the solid rocket motor. This paper presents a description of the IUS system, a failure analysis summary, an account of the thermal testing and computer modeling done at Marshall Space Flight Center, a comparison of analysis results with thermal data obtained from motor static tests, and describes some of the design enhancements incorporated to prevent recurrence of the anomaly.

A large amount of experimental and analytical effort has been directed toward understanding the plasma sheath growth and discharge phenomena which lead to high voltage solar array-space plasma interactions. An important question which has not been addressed is how the surface voltage gradient on such an array may affect these interactions. The results of this study indicate that under certain conditions, the voltage gradient should be taken into account when evaluating the effect on a solar array operating in a plasma environment.

A study was initiated to investigate the practicality of increasing rotor critical speeds by changes in manufacturing method. The technique would be to build a pump with an all-laser-welded shaft and case; such unit to be opened by laser cutting and rebuilt by rewelding the same surface. Use of a split casing, common in industry, would permit assembly of the rotor outside the case.
A floating-point arithmetic unit is described which is being used in the Ground Facility for Large Space Structures Control Verification (GF/LSSCV). The experiment uses two complete inertial measurement units and a set of three gimbal torquers in a closed loop to control the structural vibrations in a flexible test article (beam). A 6502 (8-bit) microprocessor controls four AMD 9511A floating-point arithmetic units to do all the computation in 20 milliseconds.

TM-86519 October 1985
The Role of Tethers on Space Station. Georg von Tiesenhausen, Editor. Program Development.

This report describes the results of research and development that addressed the usefulness of tether applications in space, particularly for space station. A well organized and structured effort of considerable magnitude involving NASA, industry and academia have defined the engineering and technological requirements of space tethers and their broad range of economic and operational benefits. This report consolidates the work directed by seven NASA Field Centers and is structured to cover the general and specific roles of tethers in space as they apply to NASA's planned space station. This is followed by a description of tether systems and operation. The report closes with a summary of NASA's plans for tether applications in space for years to come.
An algorithm was developed to simulate the expected signal-to-noise ratio as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth’s atmosphere for an extended, uniform astronomical source embedded in a uniform cosmic background. By choosing the appropriate input values, the expected extended source signal-to-noise ratios can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.

An algorithm was developed to simulate the expected signal-to-noise ratios as a function of observation time in the charge coupled device detector plane of an optical telescope located outside the Earth’s atmosphere for a signal star, and an optional secondary star, embedded in a uniform cosmic background. By choosing the appropriate input values, the expected point source signal-to-noise ratio can be computed for the Hubble Space Telescope using the Wide Field/Planetary Camera science instrument.

A statistical evaluation is used to compare vertical profiles of temperature and moisture derived from VAS with three different algorithms to that of corresponding rawinsonde measurements for a clear-cold environment. To account for time and space discrepancies between the data sets, rawinsonde data were adjusted to be representative of the satellite sounding times.

Both rawinsonde and satellite sounding data were objectively analyzed onto a mesoscale grid. These grid point values were compared at 50 mb pressure increments from the surface up to 100 mb. The data were analyzed for horizontal and vertical structure, representativeness of derived parameters, and significant departure (improvement) from the apriori (first guess) information.

Results indicate some rather strong temperature and moisture biases exist in the satellite soundings. Temperature biases of 1° to 4°C and dewpoint biases of 2° to 6°C generally occur in layers where strong inversions are present and vary with time as these atmospheric features evolve. The biases also change as a function retrieval scheme suggesting limitations and restrictions on the applications of the various techniques. Standard temperature deviations range from 1° to 2°C for each retrieval scheme with maximum values around 800 to 400 mb. Derived parameters (precipitable water and thickness) suffer from similar biases, though to a somewhat lesser extent. Gradients of basic and derived parameters are generally weaker but have good horizontal structure where magnitudes of the parameters are relatively strong. Integrated thermal (temperature) and moisture (precipitable water) parameters show mixed results. Although biases are small in the precipitable water values from the regression scheme, horizontal structure is poor.

An analysis of apriori and first guess information show similar biases when compared to the ground truth measurements. This information, however, seems to provide the majority of the vertical structural information present in the VAS retrievals.

A global cloud cover data set, derived from the USAF 3D NEPH Analysis Global Cloud Cover Data Base, has been developed for use in climate studies and for Earth viewing applications. This data set contains a single parameter – total sky cover – separated in time
Cloud cover amount is recorded for each grid point (of a square grid) by a single alphanumeric character representing each 5 percent increment of sky cover.

The data are arranged in both quarterly and monthly formats. A quarterly format computer tape usually contains 3 months of data for one hemisphere while each monthly format tape contains up to 5 years of 1 month for one hemisphere.

Although there are gaps in the data, notably all of 1976 for the Northern Hemisphere, the data base currently provides daily, 3-hr observed total sky cover for the Northern Hemisphere (NH) from 1972 through 1977 less 1976. For the Southern Hemisphere (SH), there are data at 6-hr intervals for 1976 through 1978 and at 3-hr intervals for 1979 and 1980. More years of data are being added in both hemispheres.

To validate the data base, the percent frequency of <0.3 and >0.8 cloud cover was compared with ground observed cloud amounts at several locations with generally good agreement.

Mean or other desired cloud amounts can be calculated for any time period and any size area from a single grid point to a hemisphere.

The data base is especially useful in evaluating the consequence of cloud cover on Earth viewing space missions. The temporal and spatial frequency of the data allow simulations that closely approximate any projected viewing mission. The greatest attribute is that no adjustments are required to account for cloud continuity.

A three-dimensional, linear stability analysis of a baroclinic flow for Richardson number, R_i, of order unity is presented. The model considered is a thin horizontal, rotating fluid layer which is subjected to horizontal and vertical temperature gradients. The basic state is a Hadley cell which is a solution of the complete set of governing, nonlinear equations and contains both Ekman and thermal boundary layers adjacent to the rigid boundaries; it is given in a closed form. The stability analysis is also based on the complete set of equations; and perturbations possessing zonal, meridional, and vertical structures were considered. Numerical methods were developed for the stability problem which results in a stiff, eighth-order, ordinary differential eigenvalue problem. The objectives of this work were to extend the previous work on three-dimensional baroclinic instability for small R_i to a more realistic model involving the Prandtl number, a, and the Ekman number, E, and to finite growth rates and a wider range of the zonal wavenumber. The study covers ranges of $0 < R_i < 1.1$, $0.2 \leq a \leq 5.0$, and $E = 10^{-3}$. For the cases computed, it was found for $a \geq 1$ that conventional baroclinic instability dominates for $R_i > 0.8$ and symmetric baroclinic instability dominates for $R_i < 0.8$. However, for $a = 1$ in the range $0.3 \leq R_i \leq 0.8$, conventional baroclinic instability always dominates. Further, it was found for $a \leq 1$ that when symmetric instability dominates, the mode of maximum growth rate is not purely symmetric but has weak zonal structure. This means that the wave fronts are inclined at a small angle to the basic state flow. For these weak zonal modes it was also found that the critical Richardson number is increased by a small amount above its value for pure symmetric instability. Because these modes differ so slightly from the pure symmetric modes, it is unlikely that they represent a new mode of instability.

The limit series for the Euler-Mascheroni constants is represented as an integral. Using this new representation, we compute the first 200 values and assorted others up to 2000. The first 13 roots of γ_n, where n is a positive continuous variable, are also given.

The corrosion behavior for 2219-T87 aluminum coated with various primers, including those used for the External Tank and Solid Rocket Boosters of the Space Shuttle Transportation System, has been investigated using electrochemical techniques. Corrosion potential-time, polarization resistance-time, electrical resistance-time, and corrosion rate-time measurements were all investigated. It was found that electrical resistance-time and corrosion rate-time measurement were most useful for studying the corrosion behavior of painted aluminum. Electrical resistance-time determinations give useful information concerning the porosity of paint films, while corrosion rate-time curves give important information concerning overall corrosion rates and corrosion mechanisms. In general, the corrosion rate-time curves all exhibited at least one peak during the 30 day test period, which was attributed, according to the proposed mechanisms, to the onset of the hydrogen evolution reaction and the beginning of destruction of the protective properties of the paint film.

Adding Computationally Efficient Realism to Monte Carlo Turbulence Simulation. C. Warren Campbell. Systems Dynamics Laboratory.

Frequently in aerospace vehicle flight simulation, random turbulence is generated using the assumption that the craft is small compared to the length scales of turbulence. The turbulence is presumed to vary only along the flight path of the vehicle but not across the vehicle span. The addition of the realism of three-dimensionality is a worthy goal, but any such attempt will not gain acceptance in the simulator community unless it is computationally efficient. A concept for adding three-dimensional realism with a minimum of computational complexity is presented. The concept involves the use of close rational approximations to irrational spectra and cross-spectra so that systems of stable, explicit difference equations can be used to generate the turbulence.

The report presents a brief account of various turbulent models employed in the computation of turbulent flows, and evaluates the application of these models to internal flows by examining the predictions of various turbulence models in selected important flow configurations. The main conclusions of this analysis are: (a) The k-ε model is used in a majority of all the two-dimensional flow calculations reported in the literature. (b) Modified forms of the k-ε model improve the performance for flows with streamline curvature and heat transfer. (c) For flows with swirl, the k-ε model performs rather poorly; the algebraic stress model performs better in this case. (d) For flows with regions of secondary flow (noncircular duct flows), the algebraic stress model performs fairly well for fully developed flow. For developing flow, the algebraic stress model performance is not good; a Reynolds stress model should be used.

Two important factors in the numerical solution of the model equations, namely false diffusion and inlet boundary conditions, are discussed. The existence of countergradient transport and its implications in turbulence modeling are mentioned. Two examples of recirculating flow predictions obtained using PHOENICS code are discussed. Other approaches to turbulent flow computations, such as the vortex method, large eddy simulation (modeling of subgrid scale Reynolds stresses), and direct simulation, are briefly discussed. Finally, some recommendations for improving the model performance are made. The need for detailed experimental data in flows with strong curvature is emphasized.

Formulation/Cure Technology for Ultra-High Molecular Weight Silphenylene-Siloxane Polymers. N. H. Hundley and W. J.
Molecular weights above one million were achieved for methylvinylsilphenylene-siloxane terpolymers using a two-stage polymerization technique which was successfully scaled up to 200 grams. The resulting polymer was vulcanized by two different formulations and compared to an identically formulated commercial methylvinyl silicone on the basis of ultimate strength, Young’s modulus, percent elongation at failure, and tear strength.

Relative thermal/oxidative stabilities of the elastomers were assessed by gradient and isothermal thermogravimetric analyses performed in both air and nitrogen. The experimental elastomer exhibited enhanced thermal/oxidative stability and possessed equivalent or superior mechanical properties.

The effects of variations in prepolymer molecular weight on mechanical properties was also investigated.

Measurements of rotating equilibrium bubble shapes in the low-gravity environment of a free-falling aircraft are presented. Emphasis is placed on bubbles which intersect the container boundaries. These data are compared with theoretical profiles derived from Laplace’s formula and are in good agreement with the measurements. Two types of instability are explored. The first occurs when the baffle spacing is too large for the bubble to intersect both the top and bottom boundaries. The second occurs when the hydrostatic pressure beneath a displaced free surface does not compensate for pressure change due to capillary forces. The interface shape depends on the contact angle, the radius of intersection with container, and the parameter F, which is a measure of the relative importance of centrifugal force to surface tension. For isolated bubbles, F has a maximum value of 1/2. A further increase in F causes the bubble to break contact with the axis of rotation. For large values of F, the bubble becomes more cylindrical and the capillary rise occurs over a thinner layer so that the small radius of curvature can generate enough pressure drop to balance the increased hydrostatic contribution.

Newton’s method for finding the zeroes of a single real function is investigated in some detail. Convergence is generally checked using the Contraction Mapping Theorem which yields sufficient, but not necessary, conditions for convergence of the general single point iteration method. The resulting convergence intervals are frequently considerably smaller than actual convergence zones. For a specific single point iteration method, such as Newton’s method, better estimates of regions of convergence should be possible. A technique is described which, under certain conditions (frequently satisfied by well behaved functions), gives much larger zones where convergence is guaranteed.

In the past, distorted pyrotechnic shock time history data has been discarded completely or “cleaned up” by questionable means. Too often the “clean up” procedures introduced as much error into the data as previously existed. The purpose of this paper is to outline techniques for data recovery so that true signals are obtained and so that these recovery procedures will be completely reproducible by any scientist in any lab. Most ordnance shock data is distorted by baseline shifts or accelerometer resonances. The methodology of recovering true signals from these two types of distortion is discussed.

Procedure for Estimating Orbital Debris

This report presents a procedure for estimating the potential orbital debris risk to the world’s populace from payloads or spent stages left in orbit on future missions. This approach provides a consistent, but simple, procedure to assess the risk due to random reentry with an adequate accuracy level for making programmatic decisions on planned low Earth orbit missions.

TP-2508 May 1985

The use of high performance systems, which is the trend of future space systems, naturally leads to lower margins and a higher sensitivity to parameter variations and, therefore, more problems of dynamical physical systems. To circumvent dynamic problems of these systems, appropriate design, verification analysis, and tests must be planned and conducted. The basic design goal is to define the problem before it occurs. The primary approach for meeting this goal is a good understanding and reviewing of the problems experienced in the past in terms of the system under design.

This paper reviews many of the dynamic problems experienced in space systems design and operation, categorizes them as to causes, and envisions future program implications, developing recommendations for analysis and test approaches.

TP-2510 May 1985

Alternate remote sensing techniques that could utilize the slight losses of energy from the microwave beam which powers the NASA/MSFC Carbon Dioxide Observational Platform System (CO-OPS) to achieve the objectives of the U.S. Department of Energy (DOE) Carbon Dioxide Research Program’s regional observational data requirements, ODRs, are addressed heuristically.

The opportunity for regional remote sensing of the carbon dioxide and water vapor constituents in the atmosphere are discussed as a potential spin-off of the CO-OPS. The CO-OPS is envisioned as a high altitude (~25 km) observational platform system powered by microwave energy for regional observational use by the DOE in their Carbon Dioxide Research Program.

TP-2511 May 1985
Space Station Rotational Equations of Motion. Mario H. Rheinfurth and Stanley N. Carroll. Systems Dynamics Laboratory.

Dynamic equations of motion are developed which describe the rotational motion for a large space structure having rotating appendages. The presence of the appendages produce torque coupling terms which are dependent on the inertia properties of the appendages and the rotational rates for both the space structure and the appendages. These equations were formulated to incorporate into the Space Station Attitude Control and Stabilization Test Bed to accurately describe the influence rotating solar arrays and thermal radiators have on the dynamic behavior of the Space Station.
CP-2364
N85-20339

CP-2365
N85-20361

CP-2366
N85-21659

CP-2372
N85-26862

CP-2374
N85-29869

CP-2388
Meteorological and Environmental Inputs to Aviation Systems. Edited by Dennis W. Camp and Walter Frost. Systems Dynamics Laboratory.

CP-2391

CP-2402
CR-3843

CR-3898

CR-3901

CR-3905

CR-3923

CR-3928

CR-3929

CR-3945

CR-3946

CR-171152
Pinhole/Coronograph Pointing Control System Integration and Noise Reduction Analysis. NAS8-34529. The University of Alabama. N84-33773

CR-171153
Development of Robotics Facility Docking Test Hardware. NAS8-34656. Essex Corporation. N84-33433

CR-171154

CR-171155

CR-171156

CR-171157
Plasma and Magnetospheric Research. NAS8-33982. The University of Alabama in Huntsville. N84-34275

CR-171158

CR-171159
Orbital Transfer Vehicle Concept Definition and System Analysis Study, First Monthly
CR-171160 August 1984
Improved Structural/Fluid Dynamic Analysis Capability. NAS8-35772. Softcom Systems, Inc. X84-90412

CR-171161 July 1984
Improved Structural Fluid Dynamic Analysis Capability. NAS-35772. Softcom Systems, Inc. X84-90411

CR-171162 September 1984

CR-171163 July 1984

CR-171164 August 1984

CR-171165 August 1984

CR-171166 September 1984

CR-171167 June 1984
On Orbit Surfacing of Thermal Control Surfaces. NAS8-35342. General Electric Company. X84-90405

CR-171168 July 1985
On Orbit Surfacing of Thermal Control Surfaces. NAS8-35342. General Electric Company. X84-90406

CR-171169 August 1984

CR-171170 September 1984
Rotordynamic Analysis of the SSME Turbopumps Using Reduced Models. NAS8-34505. Texas A&M University. N85-10355

CR-171171 September 1984

CR-171172 July 1984
Space Shuttle Natural Environment Analysis. NAS-35975. Computer Sciences Corp. X84-90413

CR-171173 August 1984

CR-171174 September 1984

CR-171175 October 1984

CR-171176 December 1983
Research Study: Studies in Atmospheric Processes from Space Platforms. NAS8-33730. USRA. N84-10473

CR-171177 October 1984
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171178 October 1984
Processing and Display of Atmospheric Phenomena Data. NAS8-33818. Engineering Analysis, Inc. N85-10475

CR-171179 October 1984
PDSS/IMC CIS Users Guide. NAS8-33825. Intermetrics, Inc. N85-10682

CR-171180 October 1984

CR-171181 October 1980

CR-171182 August 1984
Modular Design Attitude Control System, Exhibit D. NAS8-33979. The Allied Bendix Corp. N85-10098

CR-171183 October 1984
Study of Proton and Neutron Activation of Metal Samples in Low Earth Orbit. NAS8-35180. Eastern Kentucky University. N85-10164

CR-171184 October 1984

CR-171185 September 1984

CR-171186 September 1984

CR-171187 September 1984

CR-171188 September 1984

CR-171189 September 1984

CR-171190 September 1984

CR-171191 September 1984

CR-171192 September 1984

CR-171193 September 1984

CR-171194 November 1984
Participation in the Definition, Conduct, and Analysis of Particle Accelerator Experiments for the First Spacelab Mission. NAS8-32488. Southwest Research Inst. N84-90789

CR-171195 December 1983

CR-171196 December 1983
CR-171197 December 1983
General Research Corp. N85-12077

CR-171198 October 1984
Orbital Transfer Vehicle Concept Definition and System Analysis Study. NAS8-36108.
Martin Marietta. N85-70365

CR-171199 November 1984

CR-171200 July 1984

CR-171201 July 1984
Large-Diameter Astromast Development, Phase II. NAS8-34547. Astro Research Corp. N85-12200

CR-171202 November 1984
Co-Investigator Tasks on SEPAC Experiment for the First Spacelab Mission and EOM-1. NAS8-32580. TRW Defense and Space Systems Group. X84-90464

CR-171203 October 1984

CR-171204 October 1984

CR-171205 September 1984

CR-171206 November 1985

CR-171207 July 1984

CR-171208 November 1984
Definition of Ground Test for Verification of Large Space Structure Control. NAS8-34700. Control Dynamics Company. N85-13838

CR-171209 May 1983
Definition of Technology Development Missions for Early Space Stations – Large Space Structures. NAS8-35043. Boeing Co. N85-12084

CR-171210 October 1984
Atomization and Mixing Study. NAS8-34504. Rockwell International. N85-70404

CR-171211 October 1984
Space Station On-Orbit Maintenance Operations Study. NAS8-35982. McDonnell Douglas Astronautics Co. X85-72379

CR-171212 September 1984
Space Station On-Orbit Maintenance Operations Study. NAS8-35982. McDonnell Douglas Astronautics Co. X84-90417

CR-171213 September 1984

CR-171214 May 1984
Solar-Terrestrial Environmental Poster. NAS8-34206. Essex Corp. X85-90015

CR-171215 July 1984
Solar-Terrestrial Environmental Poster. NAS8-34206. Essex Corp. X85-90016

CR-171216 August 1984
Solar-Terrestrial Environmental Poster. NAS8-34206. Essex Corp. X84-90418

CR-171217 September 1984
Solar-Terrestrial Environmental Poster. NAS8-34206. Essex Corp. X85-90017
NASA CONTRACTOR REPORTS
(Abbre艹vтs for these reports may be obtained from STAR)

CR-171218 September 1984
Research Study SEPAC Co-Investigator Support. NAS8-35350. Space Telecommunications and Radioscience Lab. X85-90027

CR-171219 November 1984

CR-171220 July 1984
Carbon Deposition Model for Oxygen-Hydrocarbon Combustion. NAS8-34715. Aerojet Techsystems Co. X85-10015

CR-171221 November 1984
STS Natural Environment Analysis. NAS8-35988. Computer Sciences Corp. N85-12079

CR-171222 July 1984

CR-171223 October 1984

CR-171224 October 1984

CR-171225 October 1984

CR-171226 October 1984

CR-171227 November 1984
Turbomachinery Incipient Failure Dynamic Detection Indicators and Analysis. NAS8-34683, Shaker Research Corp. X85-90102

CR-171228 November 1984
Definition of Technology Development Missions for Early Space Station Servicing, Volume I, Executive Summary, Phase 2 Final Report. NAS8-35042. Martin Marietta Aerospace. N85-12922

CR-171229 November 1984

CR-171230 March 1983

CR-171231 November 1984
Retardation Analytical Model to Extend Service Life. NAS8-35507. Rockwell International. X85-10027

CR-171232 June 1984
Research Study for Materials Properties Test Results Database. NAS8-35825. Science and Technology, Inc. X85-90042

CR-171233 November 1984

CR-171234 November 1984
STS Natural Environment Analysis. NAS8-35988. Computer Sciences Corp.

CR-171235 November 1984
STS Natural Environmental Analysis. NAS8-35988. Computer Sciences Corp. X85-90052

CR-171236 November 1984
STS Natural Environment Analysis. NAS8-35988. Computer Sciences Corp.

CR-171239 December 1984 Multishaker Modal Testing. NAS8-35338. University of Texas at Austin. X85-90025

CR-171240 August 1984 Multishaker Modal Testing. NAS8-35338. University of Texas at Austin. X85-90026

CR-171241 July 1984 Research Study: Warm/Cold Cloud Processes. NAS8-33882. USRA. N85-90058

CR-171242 December 1984 Duct Flow Nonuniformities Space Shuttle Main Engines Three (Duct Configuration). NAS8-35592. Lockheed Missiles and Space Corp. X85-90039

CR-171251 December 1984 Reporting Requirements for NAS8-35968 for the Months of May, June, July, August, September, and October 1984. NAS8-35968. OAO Corp. N85-90017

NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171257 October 1984
SSME Main Combustion and Nozzle Flow-field Analysis. NAS8-35510. Continuum, Inc. X85-90036

CR-171258 August 1984
Boundary Layer Simulator Improvements. NAS8-35976. Remtech, Inc. X85-90045

CR-171259 October 1984
Calculation of Flow About Posts and Powerheads. NAS8-35506. Continuum, Inc. X85-90029

CR-171260 October 1984

CR-171261 October 1984
Additional Drop Test Vehicle Loads and Aeroelastic Analysis. NAS8-35016. Boeing Military Airplane Co. X85-90065

CR-171262 October 1984
Monthly Progress Report for Contract NAS8-34206 During October Reporting Period. Essex Corp. X85-90064

CR-171263 June 1970

CR-171264 December 1969

CR-171265 April 1970

CR-171266 December 1984

CR-171267 March 1984
Production of Large-Particle Size Monodisperse Latexes. NAS8-32951. Lehigh University, Emulsion Polymers Institute. X85-10018

CR-171268 November 1984

CR-171269 December 1984
Atomization and Mixing Study. NAS8-34504. Rockwell International. N85-70826

CR-171270 October 1984

CR-171271 November 1984

CR-171272 December 1984

CR-171273 September 1984

CR-171274 November 1984
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171275 June 1984

CR-171276 October 1984

CR-171277 October 1984
Simulation of Solidification in a Bridgman Cell. NAS8-35331. Continuum, Inc. X85-90018

CR-171278 November 1984
The Investigation of Tethered Satellite System Dynamics. NAS8-36160. Smithsonian Institute. N85-15772

CR-171279 December 1984

CR-171280 December 1984

CR-171281 December 1984
Investigation of the HPFTP First Stage Impeller Crack. NAS8-34978. Lockheed Research & Development Division. N85-16208

CR-171282 December 1984
Bearing Tester Fit Analysis. NAS8-34978. Lockheed Research & Development Division. N85-16181

CR-171283 October 1984

CR-171284 September 1984
Float Zone Experiments in Space. H34328B. Iowa State University. N85-15766

CR-171285 December 1984

CR-171286 November 1984
Space Processing Workshop. NAS8-33542. The University of Alabama in Huntsville. N85-70779

CR-171287 December 1984

CR-171288 January 1985
PDSS/IMC CIS Users Guide. NAS8-33825. Intermetrics, Inc.

CR-171289 December 1984

CR-171290 December 1984

CR-171291 August 1984

CR-171292 September 1984

CR-171293 January 1985
Plasma and Magnetospheric Research. NAS8-33982. The University of Alabama in Huntsville. N85-17451

CR-171294. July 1984
NASA CONTRACTOR REPORTS
(abstracts for these reports may be obtained from star)

CR-171295 December 1984

CR-171296 November 1984
Additional Drop Test Vehicle Loads and Aeroelastic Analysis. NAS8-35016. Boeing Military Airplane Company. X85-90080

CR-171297 December 1984

CR-171298 November 1984
Commerce Lab: Mission Analysis Payload Integration Study. NAS8-36109, Wyle Laboratories. N85-15764

CR-171299 December 1984

CR-171300 January 1985

CR-171301 January 1985

CR-171302 March 1984

CR-171303 July 1984
Ion Implantation and Plating to Improve Surface Hardness and Wear Characteristics of Stainless Steel for Bearing Applications. NAS8-35048. Georgia Tech Research Inst. X85-72670

CR-171304 December 1984

CR-171305 August 1984
Procurement Management Information System (PROMIS) for Shuttle. NAS8-35928. OAO Corp. N85-90232

CR-171306 January 1985
Orbital Transfer Vehicle Concept Definition and System Analysis Study. NAS8-36108. Martin Marietta Corp. N85-71303

CR-171307 August 1984

CR-171308 September 1984

CR-171309 October 1984

CR-171310 December 1984
Orbital Transfer Vehicle Concept Definition and System Analysis Study. NAS8-36108. Martin Marietta Aerospace Corp. N85-71302

CR-171311 October 1984
Improved Internal Ballistic Analysis and Design Procedures for Solid Rocket Motors. NAS8-36147. Auburn University. X85-10170

CR-171312 1984
NASA CONTRACTOR REPORTS
(abstracts for these reports may be obtained from STAR)

CR-171313 December 1984
Analysis and Calculation of Macrosegregation in a Casting Ingot. NAS8-36039.
General Electric. N85-71319

CR-171314 December 1984

CR-171315 September 1984
Space Station Thermal Storage System Trades and Evaluation for the Period June 4 through September 30, 1984. NAS8-35626. LTV Aerospace and Defense Co. X85-73135

CR-171316 December 1984
Improved Internal Ballistic Analysis and Design Procedures for Solid Rocket Motors. NAS8-36147. Auburn University. X85-90236

CR-171317 January 1985

CR-171318 November 1984

CR-171319 December 1984
Simulation of Solidification in a Bridgman Cell. NAS8-35331. Continuum, Inc. X85-90240

CR-171320 September 1984

CR-171321 April 1984
Ion Implantation and Plating to Improve Surface Hardness and Wear Characteristics of Stainless Steel for Bearings Applications. NAS8-35048. Georgia Tech Research Inst.

CR-171322 January 1985
Improved Internal Ballistic Analysis and Design Procedures for Solid Rocket Motors. NAS8-36147. Auburn University. X85-90333

CR-171323 January 1985

CR-171324 December 1984

CR-171325 July 1984

CR-171326 January 1985

CR-171327 January 1985
Study of Space Shuttle Response to Ascent Wind Profile Perturbations for Period Nov. 30 to Dec. 29, 1984. NAS8-36163. Computer Sciences Corp. X85-90231

CR-171328 November 1984
Measurement of Damping of Graphic Epoxy Material. NAS8-36146. Auburn Univ. X85-90229

CR-171329 January 1985
Study of Proton and Neutron Activation of Metal Samples in Low Earth Orbit. NAS8-35180. Eastern Kentucky University. X85-90249
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171330 February 1985
X85-90159

CR-171331 January 1985
Payload Missions Integration Progress Report Data Requirement (DR) MA-03. NAS8-32712. Teledyne Brown Engineering.
N85-19009

CR-171332 March 1984

CR-171333 January 1985
Natural Environment Analysis. NAS8-35973. The University of Tennessee Space Institute.
N85-19010

CR-171334 October 1984
N85-90238

CR-171335 September 1984
Space Plasma Computer Analysis Scan Conference. NASA Order H-78103B. University of Alabama.
N85-90427

CR-171336 October 1984
Research Study: Warm/Cold Cloud Processes. NAS8-33882. USRA, Boulder, CO.
N85-90371

CR-171337 October 1984
Research Study: Cyclone Diagnostics. NAS8-34010. USRA, Boulder, CO.
N85-19567

CR-171338 No Date
N85-19566

CR-171339 December 1984
X85-90237

CR-171340 February 1985
Atomization and Mixing Study. NAS8-34504. Rockwell International.
X85-10237

CR-171341 February 1985
Co-Investigator Tasks on SEPAC Experiment for the First Spacelab Mission and EOM-1. NAS8-32580. TRW Defense and Space Systems Group.
X85-90250

CR-171342 February 1985
N85-90248

CR-171343 January 1985
Preliminary Analysis of Selected Gas Dynamic Problems. NAS8-35328. Continuum, Inc.
N85-19361

CR-171344 January 1985
Calculation of Flow About Posts and Powerhead Model. NAS8-35506. Continuum, Inc.
N85-19362

CR-171345 January 1985
N85-19323

CR-171346 December 1984
Thrust Chamber Performance Using Navier-Stokes Solution. NAS8-35987. Lockheed Research and Development Division.
N85-19019

CR-171347 February 1985
Computational Fluid Mechanics Utilizing the Variational Principle of Modeling Damping Seals. NAS8-35508. Continuum, Inc.

CR-171348 January 1985
X85-90334
CR-171349 October 1984

CR-171350 February 1985

CR-171351 February 1985

CR-171352 February 1985

CR-171353 January 1985

CR-171354 January 1985

CR-171355 December 1984

CR-171356 February 1985
Participation in the Definition, Conduct, and Analysis of Particle Accelerator Experiments for the First Spacelab Mission. NAS8-32488. Southwest Research Institute. N85-90286

CR-171357 May 1980

CR-171358 May 1982

CR-171359 January 1983

CR-171360 January 1985

CR-171361 January 1985

CR-171362 February 1985
Improved Internal Ballistic Analysis and Design Procedures for Solid Rocket Motors. NAS8-36147. Auburn University. X85-10171

CR-171363 January 1985

CR-171364 February 1985
Test Facilities for Helium 3 Refrigerator Research. NAS8-33384. The University of Alabama in Huntsville. X85-90273

CR-171365 February 1985

CR-171366 February 1985
Drop Tube Experiments. NAS8-35665. The University of Alabama in Huntsville. X85-90362
CR-171367 February 1985 Glass Fiber Pulling in Low Gravity. NAS8-35978. The University of Alabama in Huntsville. X85-90352

CR-171380 January 1985 Research Study: Cyclone Diagnostics. NAS8-34010. USRA. N85-90390

CR-171387 January 1985

CR-171388 January 1985

CR-171389 February 1985
Development of New Materials for Turbo-pump Bearings. NAS8-35341. SKF Technologies Services, Inc. X85-90369

CR-171390 March 1985
SSME Main Combustion Chamber and Nozzle Flowfield Analysis. NAS8-35510. Continuum Inc. N85-90361

CR-171391 March 1985

CR-171392 February 1985
Infrared Telescope. NAS8-32818. The University of Alabama in Huntsville. N85-26465

CR-171393 November 1984
On Orbit Servicing of Thermal Control Surfaces. NAS8-35342. General Electric Company. X85-10215

CR-171394 April 1985
SSME Main Combustion and Nozzle Flowfield Analysis. NAS8-35510. Continuum Inc. N85-90367

CR-171395 December 1984
Boundary Layer Simulator Improvement. NAS8-35976. Remtech, Inc.

CR-171396 March 1985

CR-171397 March 1985

CR-171398 March 1985

CR-171399 March 1985

CR-171400 March 1985
Orbital Transfer Vehicle Concept Definition and System Analysis Study, Vol. 5. NAS8-36108. Martin Marietta Corp. X85-10208

CR-171401 March 1985

CR-171402 March 1985

CR-171403 March 1985

CR-171404 March 1985

CR-171405 March 1985

CR-171406 February 1985
Superconducting Gyroscope Research. NAS8-29316. The University of Alabama in Huntsville. N85-25795
<table>
<thead>
<tr>
<th>Contract #:</th>
<th>Date</th>
<th>Title</th>
<th>Abstracts/Reports</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>- Martin Marietta Aerospace.</td>
<td>NAS8-34893, Boeing Aerospace Company. N85-22459</td>
</tr>
</tbody>
</table>
NASA CONTRACTOR REPORTS
(abstracts for these reports may be obtained from STAR)

CR-171425 March 1985
Nonlinear Rotordynamics Analysis. NAS8-35992. Auburn University. N85-22364

CR-171426 March 1985

CR-171427 March 1985

CR-171428 April 1985
Development of Acceptance Criteria for Batches of Silane Primer for External Tank Thermal Protection System Bonding Applications. NAS8-35818. N85-23998

CR-171429 February 1985

CR-171430 March 1985
X-Ray Analysis Algorithm. NAS8-35343. Wade and Associates, Inc. X85-10276

CR-171431 March 1985

CR-171432 April 1985
R&D Progress Report No. 1, Interchangeable End Effector Tools Utilized on the PFMA. NAS8-36307. SRS Technologies.

CR-171433 March 1985

CR-171434 April 1985
Atomization and Mixing Study. NAS8-34504. Rockwell International. X85-10270

CR-171435 April 1985
Simulation of Solidification in a Bridgman Cell. NAS8-35331. Continuum Inc. X85-90378

CR-171436 April 1985
Development of Acceptance Criteria for Batches of Silane Primer for External Tank Thermal Protection System Bonding Applications. NAS8-35818. N85-25523

CR-171437 March 1985
Duct Flow Nonuniformities Space Shuttle Main Engine Three Duct Configuration. NAS8-35592. Lockheed Missiles and Space Company. X85-90379

CR-171438 April 1985
Definition of Ground Test for Verification of Large Space Structure Control. NAS8-35835. Control Dynamics Company. N85-25377

CR-171439 December 1984
Augmented Flexible Body Dynamics Analysis Program. NAS8-34588. Honeywell, Inc. X85-90391

CR-171440 January 1985
Augmented Flexible Body Dynamics Analysis Program. NAS8-34588. Honeywell, Inc. X85-90330

CR-171441 February 1985
Augmented Flexible Body Dynamics Analysis Program. NAS8-34588. Honeywell, Inc. X85-90343

CR-171442 March 1985

CR-171443 April 1985
<table>
<thead>
<tr>
<th>CR-171444</th>
<th>April 1985</th>
<th>CR-171454</th>
<th>April 1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR-171445</td>
<td>April 1985</td>
<td>CR-171455</td>
<td>March 1985</td>
</tr>
<tr>
<td>CR-171446</td>
<td>November 1984</td>
<td>CR-171456</td>
<td>April 1985</td>
</tr>
<tr>
<td>CR-171447</td>
<td>April 1985</td>
<td>CR-171457</td>
<td>April 1985</td>
</tr>
<tr>
<td>CR-171448</td>
<td>April 1985</td>
<td>CR-171458</td>
<td>March 1985</td>
</tr>
<tr>
<td>CR-171449</td>
<td>April 1985</td>
<td>CR-171459</td>
<td>April 1985</td>
</tr>
<tr>
<td>Progress Report for the Month of March 1985 on Contract NAS8-35826. MTS Systems Corp.</td>
<td>April 1985</td>
<td>Dynamics and Energetics of the South Pacific Convergence Zone During FGGE SOP-1. NAS8-35187. Purdue University.</td>
<td>April 1985</td>
</tr>
<tr>
<td>CR-171450</td>
<td>April 1985</td>
<td>CR-171460</td>
<td>April 1985</td>
</tr>
<tr>
<td>CR-171451</td>
<td>April 1985</td>
<td>CR-171461</td>
<td>March 1985</td>
</tr>
<tr>
<td>CR-171452</td>
<td>April 1985</td>
<td>CR-171462</td>
<td>March 1985</td>
</tr>
<tr>
<td>CR-171453</td>
<td>April 1985</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171463 April 1985

CR-171464 May 1985
Progress Report for Month of April 1985 on Contract NAS8-36456. Remic Corp. X85-90491

CR-171465 May 1985
Participation in the Definition Conduct and Analysis of Particle Accelerator Experiments for the First Spacelab Mission. NAS8-32488. Southwest Research Inst.

CR-171466 April 1985

CR-171467 December 1981

CR-171468 April 1985

CR-171469 April 1985

CR-171470 October 1984

CR-171471 April 1985
Space Shuttle Propulsion Estimation Development Verification. NAS8-36152. Rogers Engineering and Associates. X85-75612

CR-171472 April 1985

CR-171473 June 1980

CR-171474 February 1979

CR-171475 March 1985
Preparation of Polystyrene Latex Particles in a Rotating Reactor. NAS8-36286. Lehigh University. N85-28108

CR-171476 May 1985
Interchangeable End Effector Tools Utilized on the PFMA. NAS8-36307. SRS Technologies.

CR-171477 March 1985

CR-171478 March 1985

CR-171479 March 1985

CR-171480 March 1985
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171481 March 1985

CR-171482 March 1985

CR-171483 March 1985

CR-171484 March 1985

CR-171485 March 1985

CR-171486 March 1985

CR-171487 April 1985

CR-171488 April 1985
Thermal and Structural Analysis of the MSFC Bearing Tester for LN2. NAS8-34978. Lockheed Missiles and Space Company. X85-10376

CR-171489 May 1985

CR-171490 May 1985

CR-171491 May 1985

CR-171492 May 1985
Payload Missions Integration Progress Report, Data Requirement MA-03. NAS8-32712. Teledyne Brown Engineering. N85-90617

CR-171493 May 1985

CR-171494 May 1985

CR-171495 May 1985

CR-171496 April 1985
Latest Flight Profile and Software Changes and Assess Their Effect on ET Heat Loads. NAS8-36196. Dynetics, Inc. X85-90490
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171497 May 1985

CR-171498 May 1985

CR-171499 May 1985
Fracture Analysis of Radial Scientific Instrument Module Registration Fittings of the Space Telescope. NAS8-36287. Auburn University. X85-90495

CR-171500 April 1981
Commercialization of the Power Factor Controller. NAS8-33465. Iveco, Inc. N85-28221

CR-171501 March 1985

CR-171502 May 1985

CR-171503 May 1985
Feasibility Study and Verified Design Concept for New Improved Hot Gas Facility. NAS8-36304. Lockheed Missiles and Space Company. X85-90492

CR-171504 May 1985
Drop Tube Tasks. NAS8-35665. The University of Alabama in Huntsville. X85-90536

CR-171505 May 1985
Fiber Pulling in Low Gravity. NAS8-35978. The University of Alabama in Huntsville. X85-90537

CR-171506 June 1985
Systems Analysis for the Huntsville Operation Support Center Distributed Computer System. NAS8-34906. Mississippi State University. N85-28642

CR-171507 May 1985

CR-171508 April 1985

CR-171509 June 1985
Investigation of Space Shuttle Main Engine Bearing for Cause of Failure Task 116. NAS8-36192. Battelle.

CR-171510 June 1985
Atomization and Mixing Study. NAS8-34504. Rockwell International. X85-10306

CR-171511 June 1985

CR-171512 November 1984
Space Station Automation Study – Satellite Servicing Volume I, Executive Summary. NAS8-35081. TRW Space and Technology Group. N85-29999

CR-171513 December 1984

CR-171514 November 1984

CR-171515 November 1984
Space Station Automation Study Volume II, Technical Report, Autonomous Systems and
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171516 April 1985

CR-171517 April 1985
Research Study: Cyclone Diagnostics. NAS8-34010. USRA. N85-90643

CR-171518 June 1985

CR-171519 May 1985

CR-171520 February 1985
Materials Processing in Low Gravity Program. NAS8-34530. The University of Alabama in Huntsville.

CR-171521 May 1985
Materials Processing in Low Gravity Program. NAS8-34530. The University of Alabama in Huntsville.

CR-171522 May 1985
Shuttle HPM Combustion Vorticity Instability. NAS8-35052. The University of Alabama in Huntsville. X85-90608

CR-171523 June 1985
Space Shuttle Propulsion Estimation Development Verification. NAS8-36152. Rogers Engineering and Associates. X85-75984

CR-171524 May 1985

CR-171525 June 1985

CR-171526 June 1985
Containerless Glass Fiber Pulling Apparatus and Furnace. NAS8-35874. Intersonics Incorporated. X85-10373

CR-171527 December 1984
MCT Crystal Growth. NAS8-34957. The University of Alabama in Huntsville. N85-90642

CR-171528 March 1985
MCT Crystal Growth. NAS8-34957. The University of Alabama in Huntsville. N85-90640

CR-171529 June 1985
MCT Crystal Growth. NAS8-34957. The University of Alabama in Huntsville. N85-90639

CR-171530 May 1985
B-52B/DTV (Drop Test Vehicle) Flight Test Results – Drop Test Missions. NAS8-35016. The Boeing Company. N85-29934

CR-171531 May 1985

CR-171532 December 1983
MCT Crystal Growth. NAS8-34956. The University of Alabama in Huntsville. N85-90641

CR-171533 June 1985
Advanced Recovery Systems for STS Applications. NAS8-36120. United Technologies United Space Boosters. X85-10341

CR-171534 June 1985
Turbine Blade-Tip Clearance Excitation Forces. NAS8-35018. Massachusetts Institute of Technology. N85-29963
CR-171535 June 1985

CR-171536 March 1985

CR-171537 June 1985

CR-171538 June 1985

CR-171539 July 1985

CR-171540 May 1985
Software Development to Support Sensor Control of Robot Arc Welding. NAS8-36460. Clemson University.

CR-171541 January 1985

CR-171542 June 1985
Progress Report Contract NAS8-33726. The University of Alabama In Huntsville.

CR-171543 July 1985

CR-171544 June 1984
The Steel Case SRB Reentry Thermal Environment Data Book. NAS8-33111. Remtech, Inc.

CR-171545 June 1985

CR-171546 October 1983

CR-171547 July 1985

CR-171548 April 1985
NASA/MSFC Large Stretch Press Study. NAS8-35969. Boeing. X85-10375

CR-171549 July 1985

CR-171550 May 1985

CR-171551 July 1985

CR-171552 June 1985
The Role of Gravity During the Solidification of Miscibility Gap Alloys. NAS8-36193. The University of Alabama.

CR-171553 July 1985
Plasma and Magnetospheric Research. NAS8-33982. The University of Alabama in Huntsville.

CR-171554 July 1985
Utilization of Satellite Cloud Information to Diagnose the Energy State and Transformations in Extratropical Cyclones. NAS8-34009. Purdue University.
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-171555 June 1985

CR-171556 June 1985
Software Development to Support Sensor Control of Robot Arc Welding. NAS8-36460. Clemson University.

CR-171557 June 1985

CR-171558 July 1985

CR-171559 July 1985

CR-171560 July 1985
Dynamics and Energetics of the South Pacific Convergence Zone During FGGE SOP-1. NAS8-35187. Purdue University.

CR-171561 August 1985
Effect of Microstructure on Weld HAZ Cracking of Inconel 718. NAS8-34962. University of Alabama in Birmingham. X85-10369

CR-171562 May 1985
Space Station ECLSS Integration Analysis. NAS8-36407. MDTSCO Huntsville Operations.

CR-171563 June 1985

CR-171564 July 1985

CR-171565 June 1985
Space Station Thermal Storage Refrigeration System Research and Development. NAS8-36401. Lockheed Missiles and Space Corp. X85-10361

CR-171566 June 1985
Space Station Body Mounted Radiator System. NAS8-36402. LTV Aerospace and Defense. X85-10362

CR-171567 June 1985

CR-171568 April 1985

CR-171569 August 1985
Diagnosis of Vertical Motions from VAS Retrievals During a Convective Outbreak. NAS8-35330. Saint Louis University. N85-30554

CR-171570 May 1985

CR-171571 June 1985

CR-171572 June 1985
CR-171573 June 1985

CR-171574 April 1985
Space Station Thermal Integration Study Thermal Storage and Cryogenic Propellant Depot Final Report. NAS8-35624. General Dynamics Convair Division.

CR-171575 June 1985

CR-171576 June 1985

CR-171577 March 1985
The Utilization of Satellite Data and Dynamics in Understanding and Predicting Global Weather Phenomena. NAS8-33794. The Pennsylvania State University.

CR-171578 May 1985
Orbital Transfer Vehicle Concept Definition and System Analysis Study. NAS8-36108. Martin Marietta Corp. N85-90486

CR-171579 June 1985
Orbital Transfer Vehicle Concept Definition and Systems Analysis Study. NAS8-36108. Martin Marietta Corp. X85-90501

CR-171580 July 1985
Orbital Transfer Vehicle Concept Definition and Systems Analysis Study. NAS8-36108. Martin Marietta Corp. X85-90494

CR-171581 September 1984
Diagnostics of Severe Convection and Sub-synoptic Scale Ageostrophic Circulations. NAS8-33222. University of Wisconsin-Madison. N85-32571

CR-171582 April 1985
U.S. and Foreign Alloy Cross-Reference Data Base, NAS8-36166. Fisk University. X85-90502

CR-171583 July 1985
The Imaging Spectrometric Observatory for Spacelab 1/EOM 1-2. NAS8-33992. Utah State University. X85-90565

CR-171584 July 1985

CR-171585 July 1985
Space Shuttle Propulsion Estimation Development Verification. NAS8-36152. Rogers Engineering and Associates. X85-10363

CR-171586 June 1985
Latest Flight Profile and Software Changes and Assess Their Effect on ET Heat Loads. NAS8-36196. Dynetics Inc. X85-10360

CR-171587 June 1984

CR-171588 July 1985
A Retarding Ion Mass Spectrometer for the Dynamics Explorer-1. NAS8-32831. The University of Texas at Dallas. N85-32303

CR-171589 May 1985

CR-171590 June 1985
Progress Report for the Month of May 1985 on Contract NAS8-35836. MTS Systems Corp. X85-90498

CR-171591 July 1985
Progress Report for the Month of June 1985 on Contract NAS8-35836. MTS Systems Corp. X85-90499
| CR-171595 | July 1985 | SSME Seal Test Program: Test Results for Hole-Pattern Damper Seals. NAS8-33716. Texas A&M University. N85-31059 |
CR-171611 July 1985
Analytical Investigation of the Dynamics of Tethered Constellations in Earth Orbit (Phase II). NAS8-36606. Smithsonian Institution.

CR-171612 June 1985
Augmented Flexible Body Dynamics Analysis Program. NAS8-34588. Honeywell, Inc.

CR-171613 July 1985

CR-171614 July 1985

CR-171615 July 1985

CR-171616 July 1985

CR-171617 July 1985

CR-171618 July 1985

CR-171619 July 1985

CR-171620 July 1985
Latest Flight Profile and Software Changes and Assess Their Effect on ET Heat Loads. NAS8-36196. Dynetics, Inc.

CR-178425 July 1985

CR-178426 July 1985

CR-178427 June 1985

CR-178428 July 1985

CR-178429 July 1985

CR-178430 July 1985
Adaptive Rigid Body Control for an Evolving Space Station. NAS8-36422. Ford Aerospace and Communications Corp.

CR-178431 July 1985

CR-178432 July 1985
CR-178433 June 1985

CR-178434 June 1985

CR-178435 July 1985

CR-178436 July 1985

CR-178437 June 1985

CR-178438 July 1985

CR-178439 June 1985

CR-178440 July 1985

CR-178441 July 1985

CR-178442 July 1985

CR-178443 July 1985
Space Station Structures Development. NAS8-36421. Rockwell International Space Station Division.

CR-178444 July 1985
Software Development to Support Sensor Control of Robot Arc Welding. NAS8-36460. Clemson University.

CR-178445 June 1985
Design Analysis and Fabrication of Composite Springs for the ST-SEE Isolation System. NAS8-35444. CTL Aerospace Inc.

CR-178446 June 1985
Design Analysis and Fabrication of Composite Springs for the ST-SEE Isolation System. NAS8-35444. CTL-Aerospace, Inc.

CR-178447 July 1985
Orbital Equipment Transfer Techniques, Progress Report for June. NAS8-36629. Essex Corp.

CR-178448 July 1985
Atmospheric Phenomena Data Processing and Display. NAS8-35979. Engineering Analysis, Inc.

CR-178450 July 1985
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-178451 June 1985

CR-178452 June 1985

CR-178453 June 1985

CR-178454 July 1985

CR-178455 July 1985
Retarding Ion Mass Spectrometer (RIMS) Quarterly Progress Report No. 67. NAS8-32831. The University of Texas at Dallas.

CR-178456 August 1985

CR-178457 August 1985

CR-178458 August 1985

CR-178459 July 1985
Space Station Data Management Network Components. NAS8-36411. Cybex Corp.

CR-178460 July 1985

CR-178461 May 1985

CR-178462 June 1985

CR-178463 June 1985

CR-178464 July 1985

CR-178465 July 1985

CR-178466 June 1985
Design Fabrication Testing and Delivery of a Manipulator Foot Restraint, Monthly Progress Report for May. NAS8-36366. Essex Corp.

CR-178467 July 1985

CR-178468 March 1985

CR-178469 August 1985
CR-178470 September 1985

CR-178471 June 1985

CR-178472 July 1985

CR-178473 July 1985

CR-178474 June 1985

CR-178475 August 1985

CR-178476 August 1985

CR-178477 August 1985

CR-178478 August 1985

CR-178479 June 1985

CR-178480 July 1985

CR-178481 July 1985

CR-178482 September 1985

CR-178483 June 1985
Research Pressure Instrumentation for NASA Space Shuttle Main Engine Modification No. 7. NAS8-34769. Honeywell, Inc.

CR-178484 August 1985
Confined Swirling Jet Predictions Using a Multiple-Scale Turbulence Model. NASW-3458. National Research Council in Association with Systems Dynamics Laboratory.

CR-178485 July 1985

CR-178486 June 1985

CR-178487 August 1985

CR-178488 July 1985

CR-178489 August 1985
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-178490 August 1985

CR-178491 August 1985

CR-178492 August 1985

CR-178493 August 1985

CR-178494 August 1985

CR-178495 January 1985

CR-178496 August 1985

CR-178497 August 1985
Materials Processing in Low Gravity Program, Quarterly Status Report. NAS8-34530. The University of Alabama in Huntsville.

CR-178498 August 1985
Fiber Pulling in Low Gravity. NAS8-35978. The University of Alabama in Huntsville.

CR-178499 July 1985
Plasma Source for Spacecraft Potential Control. The University of Alabama in Huntsville.

CR-178500 December 1984

CR-178501 September 1985

CR-178502 August 1985
Shuttle HPM Combustion Vorticity Instability, Quarterly Report. NAS8-35052. The University of Alabama in Huntsville.

CR-178503 July 1985

CR-178504 August 1985
Space Shuttle Main Engine Powerhead Structural Modeling, Stress and Fatigue Life Analysis Volume I Thermal and Structural Analysis of the MSFC Bearing Tested for LN2. NAS8-34978. Lockheed Missiles and Space Company, Inc.

CR-178505 August 1985

CR-178506 August 1985
NASA CONTRACTOR REPORTS
(Abstracts for these reports may be obtained from STAR)

CR-178507 May 1985
Multishaker Modal Testing, Final Report. NAS8-35338. The University of Texas at Austin.

CR-178508 May 1985
Substructure Coupling in the Frequency Domain. NAS8-35338. The University of Texas at Austin.

CR-178509 May 1985
A Modal Parameter Extraction Procedure Applicable to Linear Time-Invariant Dynamic Systems. NAS8-35338. The University of Texas at Austin.

CR-178510 May 1984
A Substructure Coupling Procedure Applicable to General Linear Time-Invariant Dynamic Systems. NAS8-35338. The University of Texas at Austin.

CR-178511 August 1985

CR-178512 August 1985
Mechanical Properties of Various Alloys in Hydrogen. NAS8-36040. Pratt and Whitney Aircraft Corp.

CR-178513 August 1985
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

ALTER, W. S.
ANDREWS, J. B.
JOHNSTON, M. H.
CURRERI, P. A.
HAMILTON, W. D.

AN, C.-H.
(NRC) ES52

AN, C.-H.
(NRC) ES52

AN, C.-H.
(NRC) ES52

AN, C.-H.
(NRC, MSFC)
SUSS, S. T.
TANDBERG-HANSSEN, E.
STEINOLFSON, R. S.
(U. of California)

AN, C.-H.
(NRC) ES52
SUSS, S. T.
TANDBERG-HANSSEN, E.

ANDERSON, B. JEFFREY
KELLER, VERNON W.

ANDREWS, J. B.
ROBINSON, M.B.

ANDREWS, R. N.
SZOFRAN, F. R.
DORRIES, A. M.
HARRIS, R. P.
LEHOCZKY, S. L.
The Effect of Growth Rate on the Compositional Variations in Directionally Hg_{1-x}Cd_xSe Alloys. For presentation at the 115th TMS-AIME Annual Meeting, New Orleans, LA, March 2-6, 1986.

ANSPAUGH, B.
EDGE, T.
CRABB, R. European Space Agency

ANTAR, BASIL N.

ANTAR, BASIL N.
Penetrative Double Diffusive Convection. For presentation at the Symposium on Double Diffusive Motions, Albuquerque, New Mexico, June 24-26, 1985.

APPARAO, KRISHNA M. V.
ANTIA, H. M.
CHITRE, S. M.
Origin of the Be Star Phenomenon. For publication in Astronomy and Astrophysics, Meudon, France.

ARNOLD, JAMES E. ED43

ARNOLD, R. L. ES53
MOORE, T. E.
CAHILL, L. J., Jr.
Low Altitude Field Aligned Electrons. For publication in the Journal of Geophysical Research, Washington, D.C.

ATKINS, HARRY L. PS05

AUSTIN, ROBERT E. PS03
SCHULTZ, DAVID N. PD11

BARCILON, A. ED42
FITZJARRALD, D.
A Nonlinear Steady Model for Moist Hydrostatic Mountain Waves. For publication in the Journal of the Atmospheric Sciences.

BARLOW, G. H. ES73
Snyder, R. S., et al.
Continuous Flow Electrophoretic Separation of Proteins and Cells from Mammalian Tissues. For publication in Science, Washington, D.C.

BAYUZICK, R. J. ES72
HOFMEISTER, W. H.
EVANS, N. D.
ROBINSON, M.B.

BAYUZICK, ROBERT J. ES72
ROBINSON, MICHAEL B.

BAYUZICK, ROBERT ES72
ROBINSON, MICHAEL B.

BECHELTE, ROBERT T. EB11

BHAT, B. N. EH23

BHAT, B. N. EH23
GILMORE, H. L.

BIDDLE, A. P. ES53
REYNOLDS, J. M.

BIDDLE, A. P. ES53
MOORE, T. E.
CHAPPELL, C. R.
Occurrences of Ion Heat Fluxes in the Light Ion Polar Wind. For presentation at the
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

BIDDLE, A.P. ES53
MOORE, T. E.
CHAPPELL, C. R.

BILBRO, JAMES W. EB23

BOMBARA, E. L. EG21
DeMATOS, H. V. Union Carbide Corp.

BRANDON, LARRY B. PD12

BRYAN, THOMAS C. EB24
SCOTT, DONALD R.

BUGG, FRANK M. ED22

BURNETT, T. H. ES62
DAKE, S.
PARNELL, T. A. et al.

BURNETT, T. H. ES62
DAKE, S.
WATTS, J. W., et al.

BURNETT, T. H. ES62
GREGORY, J. C. UAH
PARNELL, T. A.
TAKAHASHI, Y., et al. NAS

BURNETT, T. H. ES62
DAKE, S.
PARNELL, T. A., et al.

BUTLER, JOHN M. PD24

CALVERT, JOHN A. EP36
The Design of a Keel Latch for Use on the Hubble Space Telescope. For presentation at the 20th Aerospace Mechanisms Symposium, Lewis Research Center, Cleveland, OH, May 7-9, 1986.

CAMP, DENNIS W. ED44
HUANG, KAO-HUAH
Comparative Analysis of Aircraft and Tower Data. For publication in the Journal of Climate and Applied Meteorology.
CAMPBELL, C. WARREN
WU, S. T.
BAI, DON
A Computational Study of Multiple Jet and Wall Interaction. For presentation at the Nineteenth Midwestern Mechanics Conference, Ohio State University, Columbus, OH, September 9-11, 1985.

CAMPBELL, C. WARREN
FICHTL, GEORGE H.

CAMPBELL, C. WARREN

CARRUTH, M. R.
YOUNG, L. E.

CHANG, KIJOON
FRAZIER, DONALD O.

CHAPPELL, C. R.
WAITE, J. H., et al.
The Theta Aurora. For publication in the Journal of Geophysical Research, Washington, D.C.

CHAPPELL, CHARLES R.
Spacelab Mission. For publication in The Encyclopedia of Physical Science and Technology, San Diego, CA.

CHAPPELL, C. R.
KNOTT, K. (ESA/ESTEC)

CHASSAY, ROGER P.
PRICE, JOHN M.

CHEN, C. P.
The Calculation of Confined Swirling Jets. For publication in Communication of Applied Numerical Methods.

CIKANEK, HARRY A., III
Space Shuttle Main Engine Failure Detection. For publication in the IEEE Control Systems Magazine, Palo Alto, CA.

CIKANEK, HARRY A., III

CLARKE, John T.
Observations of Planetary Aurora with the Hubble Space Telescope. For presentation and publication at the 5th Assembly of IAGA, Prague, Czechoslovakia, August 9-12, 1985.
CLARKE, J. T.
DURRANCE, S.
BARNES, A.
MIHALOV, J. D.
BELCHER, J.
Observations of the Auroral H Ly α Emission from Uranus Near the Time of Passage of a Large Solar Wind Disturbance. For publication in Geophysical Research Letters, Washington, D.C.

CLOUGH, DANIEL R.
Motivational Contracting for Space Programs. For presentation at the Twenty-Second Space Congress, Cocoa Beach, FL, April 23-26, 1985, and for publication in Motivational Contracting for Space Programs.

COMFORT, R. H.
CHAPPELL, C. R.

COMFORT, R. H.
WAITE, J. H., Jr.
CHAPPELL, C. R.

CONNERNEY, J. E. P.
WAITE, J. H., Jr.

COTHAN, ERNESTINE K.
SZOFRAN, F. R.
LEHOCZKY, S. L.
Phase Equilibrium Parameters for the Hg1-x CdX Te Alloy System. For presentation at the 115th TMS-AIME Annual Meeting, New Orleans, LA, March 2-6, 1986.

CRAFT, HARRY G., JR.

CRAVEN, P. D.
CHAPPELL, C. R.

CRAVEN, P. D.
OLSEN, R. C.
CHAPPELL, C. R.
KAKANI, L.
First Observations of Molecular Ions in the Earth’s Magnetosphere. For publication in the Journal of Geophysical Research, Washington, D.C.

CURREN, P. A.
FISK, M.
STEFANESCU, D. M.

CURREN, P. A.
KAKUKER, W. F.
JOHNSTON, M. H.
The Effects of Gravity Level During Directional Solidification of the Microstructure of Al-In-Sn Alloys. For presentation at the TMS-AIME Annual Meeting, New Orleans, LA, March 2-6, 1986.

DAILEY, CARROLL C.
CUMINGS, NESBITT P.
WINKLER, CARL E.
DERRICKSON, JAMES H. ES62
PARNELL, T. A.
WATTS, J. W.
GREGORY, J. C.
A Simultaneous Measurement of the Cosmic Ray Elements B to Fe in the Two Energy Intervals 0.5 to 2.0 GeV/N and 20 to 60 GeV/N. For presentation at the 19th International Cosmic Ray Conference, San Diego, CA, August 12, 1985.

DESSLER, A. J. ES01

DESSLER, A. J. ES01
Planetary Auroras. For presentation at the 62nd Meeting of the Alabama Academy of Science, Huntsville, AL, March 27-31, 1985.

DESSLER, A. J. ES01
Solar-Type Differential Rotation in the Magnetic Field of Jupiter. For presentation at the 1985 Spring American Geophysical Union Meeting, Baltimore, MD, May 26-31, 1985, and for publication in EOS.

DESSLER, A. J. ES01
HILL, T. W.
RUSSELL, C. T.
Solar-Terrestrial Relations as a Component of Space Plasma Physics. For publication in EOS, Washington, D.C.

DESSLER, A. J. ES01
Technology Transfer and the Vernov Radiation Belt. For publication in the editorial section of Science Magazine, New York, NY.

DESSLER, A. J. ES01
ENGEBRETSON, M. J. ES53
CAHILL, L. J., JR.
WAITE, J. H., JR.
GALLAGHER, D. L.
CHANDLER, M. O.
SUGIURA, M.
WEIMER, D.

EVANS, N. D. ES72
HOFMEISTER, W. H.
BAYUZICK, R. J.
ROBINSON, M. B.

Solidification of Nb-Ge Alloys in Long Drop Tubes. For publication in Metallurgical Transactions A, Pittsburgh, PA.

FELIX, A. RICHARD ED35
SSME Air Flow Facility. For presentation at the 63rd Meeting of the Supersonic Tunnel Association, Dallas, Texas, April 15-16, 1985.

FERNANDEZ, KENNETH R. EB44

FEUERBACHER, B. ES71
HAMACHER, H.
NAUMANN, R.

III.3 Containerless Processing Technology. For publication in Materials Science in Space, Germany.

FITZJARRALD, D. ED43
BILBRO, J.
BERANEK, R.

FITZJARRALD, D. E. ED41

FOUNTAIN, JAMES A. PS05
McKEOWN, DAN
COX, V.

FICHTL, GEORGE H. ED42
HILL, KELLY
VAUGHAN, OTHA H.

Spacelab Mission 3 — Broadening Horizons in Space Research. For presentation at the 22nd Space Congress, Space and Society — Progress and Promise, Cocoa Beach, FL, April 23-26, 1985.
FOUNTAIN, JAMES A. PA01

FOULIS, W. W. ES73

FOWLER, WILLIAM W. ROBERTS, GLYN O.

FOWLER, W. W. ROBERTS, G. O.
Fluid Dynamic Analysis of Protein Crystal Growth. For presentation at the conference on Protein Crystal Growth in Space, Huntsville, AL, May 6-9, 1985.

FRAZIER, D. O.
LOO, B. H.
The Infrared Spectrum of Solid Chlorotrifluoromethane. For publication in Spectrochimica ACTA, Elmsford, NY.

FRAZIER, DONALD O.
FACEMIRE, BARBARA R.
FANNING, URSULA S.

FRAZIER, D. O.
FACEMIRE, B. R.
FANNING, U. S.

GALLAGHER, D. L.
REINLEITNER, L. A.

GALLAGHER, D. L.

GALLAGHER, D. L.
MENIETTI, J.
BURCH, J.
PERSOON, A.
WAITE, J.
CHAPPELL, C.
Evidence of High Densities and Ion Outflows in the Polar Cap During the Recovery Phase. For publication in the Geophysical Research Letters, Ann Arbor, MI.

GARY, GILMER A.

GENTZ, STEVEN J.
BURKA, JAMES A.
MUNAFO, PAUL M.
GIUDICI, ROBERT J. PD14

GOMBOSI, T. I. ES53
CRAVENS, T. E.
NAGY, A. F.
WAITE, J. H., JR.

GREEN, J. L. ES53
MENIETTI, J. D.

GREEN, JAMES L. ES53
WAITE, J. HUNTER, JR.

GREEN, ROBERT J. PD14

GOMBOSI, T. I. ES53
CRAVENS, T. E.
NAGY, A. F.
WAITE, J. H., JR.

GOODMAN, STEVEN J. ED43
USRA Visiting Scientist

GREEN, JAMES L. ES53
THOMAS, DOUG
GALLAGHER, DENNIS

GREEN, J. L. ES53
BAKER, D. N. Los Alamos National Lab.
ZWICKL, R. D. Los Alamos National Lab.
DSUWG Meeting Report (Data System Users Working Group). For publication in EOS, Washington, D.C.

GUEST, STANLEY H. ED24

GREEN, JAMES L. ES53
MENIETTI, J. D.

GREGG, CECIL C. KA01
Space Station Program Overview. For presentation at the Technical and Business Exhibition/Symposium '85, Huntsville, AL, April 24, 1985.

HAGYARD, M. J. ES52
Preflare Magnetic and Velocity Fields. For publication in Solar Maximum Mission Workshop Monograph.
HAGYARD, M. J. ES52
WEST, E. A.
O'FARRELL, M.

Boeing

HAGYARD, M. J. ES52

The Relation of Sheared Magnetic Fields to the Occurrence of Flares. For publication in Artificial Satellites.

HAGYARD, M. J. ES52
TEUBER, D.
WEST, E. A.
TANDBERG-HANSSSEN, E.
HENZE, W., JR.

HATHAWAY, D. H. ES52
SOMERVILLE, R. C. J.

HATHAWAY, D. H. ES52
FOWLIS, W. W.

HATHAWAY, D. H. ES52
DESSLER, A. J.

HATHAWAY, DAVID H. ES52

Computer Animation of Three-Dimensional, Time-Dependent Thermal Convection. For presentation at the International Symposium on Computational Fluid Dynamics and for publication in the Proceedings, Tokyo, Japan, September 9-12, 1985.

HATHAWAY, DAVID H. ES52

HAUSSLER, JONATHAN B. KA11

HENDERSON, ARTHUR J. EH22

Project Explorer Unique Experiments. For presentation at the Get-Away-Special Experimenters Symposium, Greenbelt, MD, October 9-10, 1985.

HENDERSON, ARTHUR J. EH22

Project Explorer: Get Away Special No. 007. For presentation at the 57th Annual Conference of NTA, Houston, TX, July 23-24, 1985.

HENDERSON, ARTHUR J. EH22

Project Explorer: Get Away Special No. 007. For presentation and publication at the NTA 57th Annual Conference "Techno-Trends and You: A Universal Perspective," Houston, TX, July 24-26, 1985.

HILCHEY, JOHN D. PS02
ARNO, ROGER D. ARC

HILCHEY, JOHN D. PS02

HILDNER, ERNEST ES52
A Decade of Research in Coronal Mass Ejections. For presentation at the U.S. Japan Seminar on Heliomagnetosphere, Kyoto, Japan, November 5-9, 1984.

HILDNER, ERNEST ES52

HILL, CHARLES K. ED44

HILL, CHARLES K. ED44

HILL, T. W. ES01

HINMAN, ELAINE M. EB24

HOCKMAN, R. EH14

HOFMEISTER, W. H. ES72
EVANS, N. D.
BAYUZICK, R. J.
ROBINSON, M. B.
Microstructures of Niobium-Germanium Alloys Processed in Inert Gas in the 100 Meter Drop Tube. For publication in Metallurgical Transactions, Pittsburgh, PA.

HOOVER, RICHARD B. ES52
CHAO, S. H.
SHEALY, D. L.

HOOVER, RICHARD B. ES52

HOOVER, R. B. ES01
HOYLE, FRED
WICKRAMASINGHE, N.C.
HOOVER, MIRIAM J.
AL-MUFTI, S.
Diatoms on Earth, Comets, Europa, and in Interstellar Space. For publication in Earth, Moon, and Planets, Manchester, England.

HORANYI, M. ES53
CRAVENS, T. E.
WAITE, J. H., JR.
Energetic Heavy Ion Precipitation Into the

HORWITZ, J. L. ES53
MOORE, T. E.

HORWITZ, J. L. ES53
MOORE, T. E.

HORWITZ, J. L. ES53
WAITE, J. H., JR.
MOORE, T. E.

HORWITZ, J. L. ES53
LOCKWOOD, M.
WAITE, J. H., JR.
MOORE, T. E.
CHAPPELL, C. R.
CHANDLER, M. O.

HORWITZ, J. L. ES53
LOCKWOOD, M.
The Cleft Ion Fountain: A Two-Dimensional Kinetic Model. For publication in the Journal of Geophysical Research, Washington, D.C.

HORWITZ, J. ES53
LOCKWOOD, M.
MOORE, T.
WAITE, J.
CHANDLER, M.

HORWITZ, J. L. ES53
MENTEER, S.
TURNLEY, J.
BURCH, J. L.
WINNINGHAM, J. D.
CHAPPELL, C. R.
CRAVEN, J. D.
FRANK, L. A.
SLATER, D. W.

HUBER, WILLIAM G. PF14
FINNELL, WOOLSEY, III

HUMPHRIES, W. R. EP45
HAMNER, R.
STALLCUP, R.
COTTON, J.

HUNG, R. J. ED41
TSAO, D. Y.
SMITH, R. E.
ISHIMOTO, M. ES55
TORR, MARSHA R.
RICHARDS, P. G.
TORR, D. G.
The Roll of Energetic O+ Precipitation in a Mid-Latitude Aurora. For publication in the Journal of Geophysical Research, Washington, D.C.

JOHNSON, G. PD34
STEINCAMP, J.
SCOTT, M.

JOHNSTON, M. H. EH22
HAMILTON, W. D.
CURRERI, P. A.
PARR, R. A.

JONES, CLYDE S., III EH42
Application of Robotic Welding for Fabrication of the Space Shuttle Main Engine. For presentation at the Conference on R&D Productivity, University of Houston-Johnson Space Flight Center, Houston, TX, September 9-11, 1985.

JONES, CLYDE S., III EH42

KAUFMANN, R. L. ES53
ARNOLDY, R. L.
MOORE, T. E.
KINTNER, P. M.
CAHILL, L. J., JR.
WALKER, D. N.

KAUKLER, WILLIAM ES73
FRAZIER, DONALD

KAUKLER, WILLIAM F. ES73
FRAZIER, DONALD O.
A New Solid-Liquid Interface Morphology in Transparent Miscibility Gap-Type Systems. For publication in Science, Washington, D.C.

KELLER, VERNON W. ED44

KELLER, VERNON W. ED44

KELLER, VERNON W. ED44

KENT, G. S., et al. ED43
KLUMPAR, D. M. ES53
Burch, J. L
Gurnett, D. A.
Sugiura, M.
Waite, J. H.
The Latitudinal Structure of Ion Inverted-V’s. For presentation at the Fall Meeting of the American Geophysical Union, San Francisco, CA, December 3-7, 1984.

Kroes, R. L. ES72
Reiss, D. A.
Lal, R. B.

Lal, R. B. ES72
Aggarwal, M. D.
Batra, A. K.
Kroes, R. L.
Growth of Triglycine Sulfate Crystals Aboard Spacelab-3 Mission. For presentation at the Alabama Academy of Science Meeting at University of Alabama In Huntsville, March 27-31, 1985.

Lee, Y. G. ES73
Frazier, D. O.
Loo, B. H.

Lehoczyk, S. L. ES72

Lehoczyk, S. L. ES72

Lehoczyk, S. L. ES72
Szofran, F. R.
Planned Directional Solidification Crystal Growth of Hg_{1-x}Cd_{x}Te In Space. For presentation at the 115th TMS-AIME Annual Meeting, New Orleans, LA, March 2-6, 1986.

Leslie, Fred ED42

Lockwood, M. ES53
Chandler, M. O.
Hirowitz, J. L.
Waite, J. H., Jr.
Moore, T. E.
Chappell, C. R.
The Cleft Ion Fountain. For publication in the Journal of Geophysical Research, Washington, D.C.

Lockwood, M. ES53
Moore, T. E.
Waite, J. H.
Chappell, C. R.
Hirowitz, J. L.
Helenium, R. A.

Loo, B. H. ES73
Lee, Y. G.
Frazier, D. O.

Loo, B. H. ES73
Lee, Y. G.
Frazier, D. O.
LOO, B. H. ES73
LEE, Y. G.
FRAZIER, D. O.

LOO, B. H. ES73
LEE, Y. G.
FRAZIER, D. O.

McCAY, T. DWAYNE EP26
DEXTER, CAROL E.

McCOY, KENNETH E. EP44
HESTER, J.

McCOY, KENNETH E. EP44
VANIMAN, J. L.
IUS/SRM-2 Nozzle Thermal Assessment. For presentation at the JANNAF Rocket Nozzle Technology Subcommittee, MSFC, Huntsville, AL, December 4-6, 1984.

MEEGAN, C. A. ES62
FISHMAN, G. J.
WILSON, R. B.

MENDE, S. B. ES63
SWENSON, G. R.
CLIFTON, K. S.
GAUSE, R.
LEGER, L.
GARRIOTT, O. K.
Lockheed

Space Vehicle Glow Measurements on STS 41-D. For publication in the Journal of Spacecraft and Rockets, Gainesville, VA.

MEYER, PAUL J. ED43

MILLER, JOHN Q. EP25

MILLER, TIMOTHY L. ED42
ANTAR, BASIL N.
Three-Dimensional Baroclinic Instability at Small Richardson Number. For presentation at the Fifth Conference on Atmospheric and Oceanic Waves and Stability, New Orleans, LA, March 4-7, 1985.

MILLER, TIMOTHY L. ED42
FOWLIS, WILLIAM W.
Laboratory Experiments in a Baroclinic Annulus with Heating and Cooling on the Horizontal Boundaries. For publication in the Geophysical and Astrophysical Fluid Dynamics.

MILLER, T. L. ED42
ANTAR, B. N.
On Viscous Non-Geostrophic Baroclinic Instability. For publication in the Journal of the Atmospheric Sciences, Boston, MA.

MILLER, TERESA Y. ES73
WILLIAMS, GEORGE O.
SNYDER, ROBERT S.
Effect of Conductivity and Concentration on the Sample Stream in the Transverse Axis of a Continuous Flow Electrophoresis. For publication in Electrophoresis (Journal).
MITCHELL, ROYCE E. TA81

MOORE, RONALD L. ES52

MOORE, RONALD L. ES52
RABIN, DOUGLAS UAH/MSFC
Sunspot Oscillations and the Short-Period Cutoff for Global P-Mode Oscillations. For presentation at the 165th Meeting of the American Astronomical Society, Tucson, AZ, January 14-16, 1985, and for publication in the Bulletin AAS.

MOORE, RONALD ES52

MOORE, RONALD L. ES52
RABIN, DOUGLAS M.
Sunspots. For publication in the Annual Review of Astronomy and Astrophysics.

MOORE, R. L.
HORWITZ, J. L.
GREEN, J. L.
Implications of Solar Flare Dynamics for Reconnection in Magnetospheric Substorms. For publication in Planetary and Space Science, Ireland.

MOORE, T. E.
WAITE, J. H., JR.
LOCKWOOD, M.

MOORE, T. E.
LOCKWOOD, M.
CHANDLER, M. O.
WAITE, J. H., JR.
PETERSON, W. K.
PERSOON, A.
SUGIURA, M.
Upwelling O+ Ion Source Characteristics. For publication in the Journal of Geophysical Research, Washington, D.C.

MOORE, T. E.
WAITE, J. H., JR.
LOCKWOOD, M.
CHAPPELL, C. R.

MOORE, T. E.
BIDDLE, A. P.
WAITE, J. H., JR.
KILLEEN, T. L.

MOORE, T. E.
CHANDLER, M.
CHAPPELL, C. R.
HORWITZ, J.
WAITE, J. H., JR.
LOCKWOOD, M.

MORGAN, S. H.
SILBERMAN, E.
KROES, R. L.
REISS, D.
Raman Determination of the Composition of Concentrated Aqueous Solutions of Triglycine Sulfate. For publication in Applied Spectroscopy, Sweden.
MORRIS, DANIEL J. ES62
Low-Energy Gamma-Ray Scattering in the Atmosphere and in Spacecraft. For publication in Nuclear Instruments and Methods in Physics Research, Section A, Amsterdam, Holland.

NALLASAMY, M. ED42

NAUMANN, ROBERT J. ES71
Space Station – The Base for Tomorrow’s Electronic Industry. For presentation at Space Station: Gateway to Space Manufacturing and Services, Orlando, FL, November 7-8, 1985.

NAUMANN, R. J. ES71
SNYDER, R. S.
BUGG, C. E.
DeLUCAS, L. J.
SUDDATH, F. L.

NAUMANN, R. J. ES71
CARIGNAN, G. R.
MILLER, E. R.
Space Shuttle Molecular Scattering and Wake Vacuum Measurements. For publication in the Journal of Vacuum Science and Technology, Research Triangle Park, NC.

NAUMANN, R. J. ES71
CARIGNAN, G. R.
MILLER, E. R.

NAUMANN, R. J. ES71
CARIGNAN, G. R.
MILLER, E. R.

NAUMANN, ROBERT J. ES71

NERNEY, STEVEN SFF
SUSS, S. T. ES52
Modelling the Effects of Latitudinal Gradients in the Solar Wind in the Outer Solar System. For publication in the Astrophysical Journal, Chicago, IL.

NERNEY, STEVEN (U.S. Naval Postgraduate School)
SUSS, S. T. ES52

NESMAN, TOMAS E. ED24
REED, DARREN K.

NEVINS, C. D. EP11
Improving Productivity and Quality Through Computer Aided Design. For presentation at the NASA Second Annual Contractor Conference (Hardware), Huntsville, AL, June 12-13, 1985.

OLSEN, R. C. ES53
CHAPPELL, C. R.
GURNETT, D. A.
OLSEN, R. C.
CHAPPELL, C. R.
MENIETTI, J. D.
BURCH, J. L.

OMENYI, S. N.
SNYDER, R. S.
TIPPS, R.
ABSOLOM, D. R.
vAN OSS, C. J.

OMENYI, S. N.
SNYDER, R. S.
vAN OSS, C. J.

OWEN, JAMES W.

OWEN, ROBERT B.
KROES, R. L.
Holography on the Spacelab 3 Mission. For publication in Optics News, USA.

OWEN, R. B.
KROES, R. L.

PARKER, KAREN
HICKEY, JOHN
KARITANI, SHOGO
DICKERSON, MIKE
KELLER, DAVE
MACLEAN, LAURA
WILSON, GREGORY

PARNELL, T. A.
WATTS, JOHN W.
Radiation Background for the Space Station. For presentation at the Workshop on Cosmic Ray and X-Ray Experiments for the Space Station Evaluation, Baton Rouge, LA, October 17, 1984.

PARNELL, THOMAS A.

PARR, RICHARD A.
DAVIS, JACK H.
JOHNSTON, MARY H.
OH, TAE K.
MCCLURE, JOHN C.

PATTY, S. R.
HAGYARD, M. J.
<table>
<thead>
<tr>
<th>Author(s)</th>
<th>Event/Conference</th>
<th>Date</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>DANIELS, J. G.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDBETTER, F. E., III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLEMONS, J. M.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PENN, B. G.</td>
<td>Effects of Seawater and Deionized Water at 0 to 80°C on the Flexural Properties of a Glass/Epoxy Composite. For publication in the Composite Technology Review.</td>
<td>ES73</td>
<td></td>
</tr>
<tr>
<td>DANIELS, J. G.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LEDBETTER, F. E., III</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SEMMEL, M. L.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GOLDBERG, B. G.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WHITE, W. T.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CLEMONS, J. M.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PETERS, PALMER N.</td>
<td>Effects on Optical Systems Due to Exposure in Low Earth Orbits. For presentation at the Aerospace Optics Workshop, Huntsville, AL. October 28-30, 1985.</td>
<td>ES63</td>
<td></td>
</tr>
<tr>
<td>GREGORY, JOHN</td>
<td>Measurement of Reaction Rates and Activation Energies for 5 eV Oxygen Atoms with Graphite and Other Solid Surfaces. For presentation at the AIAA 23rd Aerospace Sciences Meeting, Reno, NV, January 14-17, 1984.</td>
<td>UAH</td>
<td></td>
</tr>
<tr>
<td>TOOMRE, J.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEBBIE, K. B.</td>
<td></td>
<td>(U. Colorado)</td>
<td></td>
</tr>
<tr>
<td>NOVEMBER, L. J.</td>
<td>Reverification of Techroll Seal Used in the IUS Nozzle. For presentation at the JANNAF Rocket Nozzle Technology Subcommittee (RNTS), Huntsville, AL, December 4-6, 1984.</td>
<td>EP46</td>
<td></td>
</tr>
<tr>
<td>POWELL, LUTHER E.</td>
<td>Commonality Analysis for the NASA Space Station Common Modules. For presentation at the Thirty-Sixth IAF Congress, Stockholm, Sweden, October 7-12, 1985.</td>
<td>KA01</td>
<td></td>
</tr>
<tr>
<td>BEAM, EVERETTE E.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>POWELL, LUTHER E.</td>
<td>The NASA MSFC Space Station Work Package. For presentation at the South-eastern Section of the American Physical Society, University of Georgia, Athens, Georgia, December 2-4, 1985.</td>
<td>KA01</td>
<td></td>
</tr>
<tr>
<td>McCOWN, JAMES W.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HAGER, ROBERT W.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RABIN, DOUGLAS M.</td>
<td>A Case for Submergence of Magnetic Flux in a Solar Active Region. For presentation at the Ron Giovanelli Commemorative Colloquium, Tucson, AZ, January 17-18, 1985.</td>
<td>ES52</td>
<td></td>
</tr>
<tr>
<td>REASONER, D. L.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
REINLEITNER, L. A. ES53
GALLAGHER, D. L.
GREEN, J. L.
Test Particle Simulations of Wave-Particle Interactions in the Earth's Magnetosphere. For presentation at the International School of Space Simulations, Kauai, Hawaii, February 4-15, 1985.

REISS, D. A. ES72
KROES, R. L.
ANDERSON, E. E.
University of Alabama in Huntsville Study of the Growth of Triglycine Sulfate from Aqueous Solution. For presentation at the March Meeting of the American Physical Society, Baltimore, MD, March 25-29, 1985, and for publication in Bulletin APS.

ReVELLE, DOUGLAS O. ED44
USRA Visiting Scientist

ReVELLE, DOUGLAS O. ED44
USRA Visiting Scientist

RICHMOND, R. J. EP01
JONES, L. W.

RIEHL, W. A. EH31

ROBERTS, F. E. ES62

ROBERTSON, FRANKLIN R. ED43

ROBERTSON, FRANKLIN R. ED43
IR Precipitation Estimates in the South Pacific During FGGE SOP-1. For presentation at the 16th Conference on Hurricanes and Tropical Meteorology, Houston, TX, May 14-17, 1985.

ROBINSON, M. B. ES72
ANDREWS, J. B.

RODRIGUEZ, PEDRO I. EP15

ROTHERMEL, JEFFRY ED42
USRA Visiting Scientist
JONES, WILLIAM D.
Ground-Based Measurements of Atmospheric Backscatter and Absorption Using Coherent CO₂ Lidar. For publication in Applied Optics, Newton Highlands, MA.

SAMIR, U. ES53
COMFORT, R. H.
CHAPPELL, C. R.
STONE, N. H.

SAMIR, U. ES53
WRIGHT, K. H., JR.
STONE, N. H.
Ion Acceleration: a Phenomenon Characteristic of the "Expansion of Plasma Into a
Vacuum.” For publication in the American Geophysical Union Monograph, Washington, D.C.

SAMIR, U. ES53
STONE, N. H.
WRIGHT, K. H., JR.
On Plasma Disturbances Caused by the Motion of the Space Shuttle and Small Satellites – A Comparison of In Situ Observations. For publication in the Journal of Geophysical Research, Washington, D.C.

SAMIR, U. ES53
COMFORT, R. H.
STONE, N. H.
CHAPPELL, C. R.
Thermal Ions in the Wake of the DE-1 Satellite. For presentation at the Fall American Geophysical Union Meeting, San Francisco, CA, December 3-7, 1984.

SCHOCK, RICHARD W. ED24

SCHOCK, R. W. ED24
REED, D. K.
NESMAN, T. E.
MSFC Data Analysis of the SAFE/DAE Experiment. For presentation at the Large Space Antenna Systems Technology Conference, LaRC/Hampton, VA, December 4-6, 1984.

SCHRAMM, HARRY F. SA55
How Bar Codes are Used in Manufacturing the Space Shuttle Propulsion System. For presentation at the APICS 28th Annual International Conference, Toronto, Canada, October 22-25, 1985.

SCHRAMM, Harry F. SA55
Automated Data Entry for Improved Multi-Level Productivity. For presentation at the Research and Development Conference, Johnson Space Center, TX, September 10-11, 1985.

SCHUERER, PAUL H. EH41

SCHWINGHAMER, R. J. EH01

SCHWINGHAMER, R. J. EH01
Variable Polarity Plasma Arc Welding Process Brings Radical Improvement to Aerospace Aluminum Welding. For publication in the AIAA Publication Aerospace America.

SHELTON, BILLY W. PD24
MARSHALL, WILLIAM R. PA01
Advanced Launch Vehicles. For presentation at the 1984 Society of Automotive Engineers Aerospace Congress and Exposition, Long Beach, CA, October 15-18, 1984.

SHELTON, BILLY W. PD24
SPEARS, LUTHER T. PS01
Shuttle Derived Launch Vehicles. For presentation at the Twenty-Second Space Congress, Canaveral Council of Technical Societies, Cocoa Beach, FL, April 23-26, 1985.

SMALLEY, LARRY L. ES65

SMALLEY, LARRY L. ES65
SMALLEY, LARRY L. ES65

SMELSER, JERRY W. SA51

SMITH, R. E. ED41
HUNG, R. J.
LIU, J. M.
Infrared Remote Sensing of Convective Clouds and Amount of Rainfall Over the Tibet Plateau Area. For publication in Annales Geophysicae, Zurich, Switzerland.

SNODDY, WILLIAM C. PA01
Facilitating the Commercial Use of Low Gravity. For presentation at the 36th International Astronautical Congress, Stockholm, Sweden, October 7-12, 1985.

SNYDER, R. S. ES73
RHODES, P. H.
MILLER, T. Y.
MICALE, F. J.
MANN, R. V.
SEAMAN, G. V. F.
Polystyrene Latex Separations by Continuous Flow Electrophoresis on the Space Shuttle. For publication in Separation Science and Technology, USA.

SNYDER, ROBERT S. ES73

SPANYER, KAREN L. ED14

SPANYER, KAREN L. ED14

SPENCER, ROY W. USRA Visiting Scientist

SPRINGER, J. M. ES72
SILBERMAN, E.
KROES, R. L.
Reliability of Electrical Measurements in Ferroelectric Crystals. For presentation at the Southeastern Section of the American Physical Society, Memphis, TN, October 25-26, 1984, and for publication in the Bulletin of the American Physical Society.

STEFANESCU, D. M. ES72
CURRERI, P. A.
FISKE, M.

STINSON, MELANIE B. EP42

STINSON, MELANIE B. EP42
The Stress Analysis of the Keel Latch for Use on the Hubble Space Telescope. For presentation at the 20th Aerospace Mechanisms Symposium, Lewis Research Center, Cleveland, OH, May 7-9, 1986.
STONE, N. H. ES53
WRIGHT, K. H.
HWANG, K. S.
SAMIR, U.
MURPHY, G. B.
SHAWHAN, S. D.

STONE, N. ES53
LEWTER, B.
CHISHOLM, W.
WRIGHT, K.

STONE, R. L. EL23

SU, CHING-HUA ES72
SZOFRAN, F. R.
LEHOCZKY, S. L.
Solidification of HgCdTe. For presentation at the 115th TMS-AIME Annual Meeting, New Orleans, LA, March 2-6, 1986.

SU, CHING-HUA ES72
SZOFRAN, F. R.
LEHOCZKY, S. L.
Solidification of HgCdTe. For presentation at the 115th TMS-AIME Annual Meeting, New Orleans, LA, March 2-6, 1986.

SU, CHING-HUA ES72
SZOFRAN, F. R.
LEHOCZKY, S. L.
Solidification of HgCdTe. For presentation at the 115th TMS-AIME Annual Meeting, New Orleans, LA, March 2-6, 1986.

SU, CHING-HUA ES72
SZOFRAN, F. R.
LEHOCZKY, S. L.
Solidification of HgCdTe. For presentation at the 115th TMS-AIME Annual Meeting, New Orleans, LA, March 2-6, 1986.

SU, CHING-HUA ES72
SZOFRAN, F. R.
LEHOCZKY, S. L.
Solidification of HgCdTe. For presentation at the 115th TMS-AIME Annual Meeting, New Orleans, LA, March 2-6, 1986.

SU, CHING-HUA ES72
SZOFRAN, F. R.
LEHOCZKY, S. L.
Solidification of HgCdTe. For presentation at the 115th TMS-AIME Annual Meeting, New Orleans, LA, March 2-6, 1986.

SU, CHING-HUA ES72
SZOFRAN, F. R.
LEHOCZKY, S. L.
Solidification of HgCdTe. For presentation at the 115th TMS-AIME Annual Meeting, New Orleans, LA, March 2-6, 1986.
Takahashi, Y. (NAS) ES62

Takahashi, Y. (NAS) ES62

Anomalous Cosmic Ray Interaction Events for Investigations in the SSC and Space Station. For publication in the Proceedings of the Workshop on Cosmic Rays and High-Energy Gamma-Ray Experiments for the Space Station Era, USA.

Takahashi, Y. ES62

Ebly, P. B.

Parnell, T. A.

Gregory, J. C.

Hayashi, T.

Use of Direct Electron Pair Method. For publication in the Proceedings, Workshop on Cosmic Ray and High Energy Gamma-Ray Experiments for the Space Station Era, Baton Rouge, LA.

Telesco, C. M. ES63

Decher, R.

Gatley, Ian

Thom, Robert L. EH14

The Rolling Contact Fatigue Behavior of Chromium Ion Plated Substrates. For presentation at the Applications of Ion Plating and Implantation of Materials Conference in Atlanta, GA, June 3-5, 1985.

Thomas, Douglas T. EB32

Torr, D. G. Utah State University

Torr, M. R. ES55

Richards, P. G. Utah State University

Heating Efficiencies in the Terrestrial Thermosphere. For presentation at the International Association for Geomagnetism and Aeronomy (IAGA), Prague, Czechoslovakia, August 5-17, 1985.

Torr, D. G. Utah State University

Torr, M. R. ES55

Khoylool, A. Utah State University

Richards, P. G. Utah State University

N$_2$+ Vibrational Emission in the Dayglow. For presentation at the International Association for Geomagnetism and Aeronomy (IAGA), Prague, Czechoslovakia, August 5-17, 1985.

Torr, Marsha R. ES55

Welsh, Barry Y.

Torr, Douglas G.

The O$_2$ Atmospheric Dayglow in the Thermosphere. For publication in Journal of Geophysical Research.
MSFC PAPERS CLEARED FOR PRESENTATION
(Available only from authors. Dates are presentation dates.)

TORR, MARSHA R. ES55
TORR, D. G. Utah State University
The VUV-VIS Thermospheric Dayglow from Spacelab I. For presentation at the International Association for Geomagnetism and Aeronomy (IAGA), Prague, Czechoslovakia, August 5-17, 1985.

URBAN, EUGENE W. ES63

VAN ALSTINE, J. M. (USRA) ES73
CHIU, B.
BROOKS, D. E.
Amphiphathic Surface Properties of Human Platelet Discocytes and Echinocytes Analyzed by Cell Partition in Aqueous Polymer Two-Phase Systems. For publication in Thrombosis and Haemostasis, Stuttgart, West Germany.

VAN ALSTINE, J. M. (USRA) ES73
SORENSON, P.
WEBBER, T. J., et al.

VAN ALSTINE, J. M. ES73
McELHANEY, R.
BROOKS, D. E.
Effect of Membrane Lipid Alteration on the Partitioning of Acholeplasma Laidlawii B Cells in Two-Polymer, Aqueous-Phase Systems. For publication in Biochimica Biophysica Acta, Amsterdam, Holland.

VAN ALSTINE, J. M. ES73
TRUST, T. J.
BROOKS, D. E.

VAN ALSTINE, J. M. (USRA) ES73
SHARP, K. A.
BROOKS, D. E.
Critical Micelle Concentration Dependence on Head Group Size in Polyoxyethylene Nonionic Surfactants. For publication in Colloid and Surfaces, Potsdam, NY.

VAN ALSTINE, J. M. ES73
HARRIS, J. M. Univ. of Alabama
SNYDER, R. S. ES73
CURRERI, P. A. ES73
BAMBERGER, S. Oregon Health Science Univ.
Brooks, D. E. Univ. of British Columbia
Separation of Aqueous Two Phase Polymer Systems in Microgravity. For publication in the Conference Proceedings — 5th European Symposium Material Sciences Under Microgravity, Munich, West Germany.

VAN ALSTINE, J. A. ES73
HARRIS, M.
KARR, L.
SNYDER, R. S.

VAUGHAN, OTHA H., JR. ED43

VERDERAIME, V. S. ED01

VERDERAIME, V. S. ED01

VINZ, FRANK EB44
KAWAMURA, K. Vanderbilt University

VINZ, FRANK L. EB44

VON PRAGENAU, GEORGE L. ED14
Spline Friction Whirl Stabilization With Damping Seals. For presentation at the Fourth Workshop Rotordynamics Instability Problems in High Performance Turbo-machinery, Texas A&M University, College Station, TX, June 2-4, 1986.

VON PRAGENAU, GEORGE L. ED14
Damping Seals in Rotordynamics - A Fluid Mechanical Problem. For presentation at the UAH Mechanical Engineering Seminar, Huntsville, AL, May 3, 1985.

VON TIESENHAUSEN, GEORG PS01
The Role of Tethers on Space Station. For presentation at the Second Biennial Workshop Applications of Tethers in Space, Venice, Italy, October 15-17, 1985.

VON TIESENHAUSEN, GEORG PS01

WAITE, J. H. ES53
LOCKWOOD, M.
MOORE, T. E.
CHANDLER, M. O.
CHAPPELL, C. R.

WAITE, J. H.
DECREAU, P. M. E.
CARPENTER, D.
CHAPPELL, C. R.
COMFORT, R. H.
GREEN, J.
GURNETT, D. A.
OLSEN, R. C.

WALES, WILLIAM E. KA11
Space Station Advanced Technical Program. For presentation at the Technical and Business Exhibition/Symposium '85, Huntsville, AL, April 24, 1985.

WEEKS, DAVID J. EB12

WEISSKOPF, MARTIN C. ES65

WEISSKOPF, M. C. ES62
ELSNER, R. F.
APPARAO, M. V.
DARBRO, W. A., et al.
X-Ray Observations of GX1+4 With the Monitor Proportional Counter Aboard the Einstein Observatory. For publication in the Astrophysical Journal (Letters), Chicago, IL.

WEISSKOPF, M. C. ES62
SUTHERLAND, P. G.
ELSNER, R. F.
RAMSEY, B. D.

WEISSKOPF, M. C. ES62
SUTHERLAND, P. G.
ELSNER, R. F.
RAMSEY, B. D.

WHITAKER, A. F. EH11
LITTLE, S. A.
FROMHOLD, A. T., JR.
DANESHVAR, K.

WHITAKER, ANN F. EH11

WHITAKER, ANN F. EH11

WILLIAMS, A. C. ES65
WEISSKOPF, M. C.
ELSNER, R. F.
DARBRO, W.
SUTHERLAND, P. G.

WILLIAMS, ALTON C. ES62

WILLIAMS, J. R. JA64
MOOKHERJI, T. K.

WILSON, ROBERT B. ES52
RABIN, DOUGLAS NRC
MOORE, RONALD L.

WILSON, W. B. ES62
FISHMAN, G. J.
MEEGAN, C. A.

WILSON, WILLIAM A. EH42
BABCOCK, STEVE Rocketdyne
Robotic Welding on SSME. For presentation at the Robot 9 Conference, Dearborn, MI, June 3-8, 1985.

WRIGHT, K. H., JR. ES53
PARKS, D. E.
KATZ, I.
STONE, N. H.
SAMIR, U.
WRIGHT, K. H., JR. ES53
STONE, N. H.
SAMIR, U.

WU, M. K. ES72
ASHBURN, J. R.
CURRERI, P. A.
KAUKLER, W. F.

WU, S. T. ES62
CHANG, H. M. UAH
HAGYARD, M. J. ES62

WYMAN, CHARLES L., et al. EE01

XENOFOS, DANNY KA31
Space Station Manufacturing Technology Laboratory. For presentation at the Technical and Business Exhibition/Symposium, Huntsville, AL, April 23-25, 1985.

YARBROUGH, LEONARD S. PS05
APPROVAL

FY 1985 SCIENTIFIC AND TECHNICAL REPORTS,
ARTICLES, PAPERS, AND PRESENTATIONS

Compiled by Joyce E. Turner

The information in this report has been reviewed for technical content. Review of any information concerning Department of Defense or Atomic Energy Commission programs has been made by the MSFC Security Classification Officer. This report, in its entirety, has been determined to be unclassified.

C. D. BEAN
Director, Administrative Operations Office