F—

NASA Technical Memorandum 88236

Development of an Interface for an
Ultrareliable Fault-Tolerant Control
System and an Electronic Servo-
Control Unit | |

Charles Shaver and Michael Williamson

September 1986

{NASA-TH-88230b) DEVELOPYUNT OF AN IRIcREACE HNER=13357

FO&z aM UDLTFARFZLIABLE FAULT-TOLERALY C(wiihul

SYSTE¥ AND AN ELECTRONIC SEKVO~-CONTEOL UNLT :

(NaSA) 37 p Avail: NTIS EC AC3/MF A0l Urclas
CSCu 148 Gi/CS (112864

NASA

National Aeronautics and
Space Administration

NASA Technical Memorandum 88236

Development of an Interface for an
Ultrareliable Fault-Tolerant Control
System and an Electronic Servo-
Control Unit |

Charles Shaver, .
Michael Williamson, Ames Research Center, Moffett Field, California

September 1986

NASAN

National Aeronautics and
Space Administration

Ames Research Center '
Moffett Field, California 94035

SUMMARY

The NASA Ames Research Center sponsors a research program for the investigation
of Intelligent Flight Control Actuation Systems. The use of artificial intelligence
techniques in conjunction with algorithmic techniques for autonomous, decentralized
fault management of flight-control actuation systems will be explored under this
program. This paper documents the design, development, and operation of the inter-
face and emulator equipment used for laboratory investigations of this research
program. The interface, architecturally based on the Intel 8751 microcontroller, is
an interrupt-driven system designed to receive a digital message from an ultrarelia-
ble fault-tolerant control system (UFTCS). The interface links the UFTCS to an
electronic servo-control unit, which controls a set of hydraulic actuators. It was
necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal
sources for testing the equipment.

This paper discusses the conversion of the 8-byte message (characteristic
command for the four control axes of a helicopter) to the appropriate byte length.

INTRODUCTION

The NASA Ames Research Center sponsors a research program for the investigation
of intelligent flight-control-actuation systems. This paper documents the design,
development, and operation of the interface and emulator equipment used for labora-
tory investigations of the research program.

The interface was designed to receive a digital message from an ultrareliable
fault-tolerant control system (UFTCS), a quadruplex asynchronous microprocessor
system, and output data to an electronic servo-control unit (ESCU), an electronic
controller for a set of hydraulic actuators. Since the UFTCS was not available for
testing the interface, a UFTCS emulator was designed and built for testing pur-
poses. The interface can also transmit a feedback message from the ESCU to the
UFTCS upon request from the UFTCS. The digital message the interface receives and
transmits contains a minimum of 12 bytes and a maximum of 76 bytes. The main fea-
ture of the message is the 8 bytes that describe the command for the four control
axes of a helicopter.

The architecture of the interface is based on the Intel 8751 microcontroller
and is an interrupt-driven system. The 8751 controls the flow and distribution of
data for receiving messages from the UFTCS and transmitting messages to the UFTCS.
This paper describes in detail the flow of data from the UFTCS through the interface
to the ESCU (receiving messages) and the data flow from the ESCU through the

interface to the UFTCS (feedback message). The hardware for each case is dis-
cussed. The software is also described. The various operating modes and cali-
bration routines are described, as in the interrupt structure developed for the
Intel 8751. Finally, procedures for operating the interface and the emulator
together are listed.

The UFTCS emulator was built to give the interface a signal source because the
UFTCS was not available. The emulator is also a design based on the 8751. The
primary use of the emulator is to provide a digital message for the interface to
receive and process. The variable update rates of the emulator make it possible to
study the effect of update rate on quantization. Attempts to smooth the quantiza-
tion can be made in the interface during the time between updates because no inter-
rupts are occurring. The 8-bit architecture of the 8751 makes the smoothing algo-
rithms cumbersome because the data for the control axes from the UFTCS are trans-
mitted at 16 bits/sec. Because all mathematics and shifting routines are not sup-
ported by the instruction set of the 8-bit 8751, separate routines must be written
" to accomplish any calculations that must be performed to smooth the output of the
interface. The development of 16-bit microcontrollers will greatly simplify the
algorithms necessary to reduce quantization effects.

UFTS/ESCU INTERFACE DESCRIPTION

The interface developed links the UFTCS to an ESCU. The UFTCS is a quad-
redundant, flight-control-law processor that is based on an asynchronous architec-
ture (ref. 1) and designed for testing on the UH-1H helicopter. The ESCU controls
the series hydraulic actuators for stability augmentation. The interface is also a
quad-redundant system. A fully operational interface can receive four channels of
data from the UFTCS and transmit four sets of four command signals to the ESCU.
When feedback is requested, the interface can transmit the latest position of the
actuatcrs to the UFTCS. '

The interface receives digital messages from the UFTCS system. Messages are
sent from the UFTCS through differential signal lines or fiber optic cables. The
analog signal is sent to the ESCU using coaxial cables; each message is made up of
10 to 76 bytes of information. Figure 1 shows the message format for a message from
the UFTCS.

The first byte of data is the message byte count, which tells the interface how
many bytes of information will be transmitted. The message byte count is followed
by the subblock 1 byte count. Each message is divided into two subblocks. At this
time, subblock 2 is not used and has a count of zero.

The subblock 1 byte count is followed by the subblock 1 data which consist of
the aircraft commands and a block of data called "extra" data. The first eight
bytes of subblock 1 contain the aircraft commands that control the four flight axes
of the aircraft. Each command is made up of two bytes. The low byte is always
received before the high byte.

MESSAGE SUBBLOCK 1 ROLL ROLL PITCH PITCH
BYTE BYTE COMMAND COMMAND COMMAND COMMAND
COUNT COUNT LOW BYTE HIGH BYTE LOWBYTE HIGHBYTE
YAW YAW COLLECTIVE COLLECTIVE EXTRA SUBBLOCK 2
COMMAND COMMAND COMMAND COMMAND DATA BYTE
LOWBYTE HIGHBYTE LOWBYTE HIGH BYTE COUNT

CHECK ~

SUM

Figure 1.- Message from UFTCS format.

The extra data serve no purpose at this time. The subblock 2 byte count which
follows the extra data is given the number zero because no information has been
placed in subblock 2. The final byte sent is a checksum. The checksum can be
compared to that checksum formed by the interface as data were received, which
allows for message verification. However, no verification of the checksum check has
been included in this system, and no software has been designed to retransmit a bad

message.

. Another function of the interface is to send feedback data to the UFTCS. The
feedback variable is the latest position of the actuators in the aircraft. The
feedback data are sent only after a request for data from the UFTCS has been
received by the interface. When a request for data has been received, the interface
reads the voltages on the feedback lines and then sends the feedback data back to

the UFTCS in digital form.

INTERFACE HARDWARE: DATA FROM THE UFTCS

The interface is made up of five boards. One board is called the signal-
distribution board. This board receives the digital messages from UFTCS and dis-
tributes the messages to the remaining four boards, called the signal-processing
boards. The signal-distribution board can receive signals in optical or differen-
tial signal form. To date, only differential signals are sent to the interface.

The hardware required on the signal-distribution board to receive messages from
the UFTCS and transmit feedback requires the following equipment.

1. Four receivers to receive messages from the UFTCS
2. One receiver to receive a request for data from the UFTCS
3. One transmitter to transmit a sync pulse to the UFTCS at the start of a

‘feedback transmission

4. One tranémitter to transmit feedback messages

The above circuitry has an optical mode and a differential signal mode to accommo-
date optical or differential signals.

The four signal-processing boards all contain the circuitry to receive data
from the UFTCS. One of these four boards contains the extra circuitry needed to
handle the feedback function of the interface. Feedback to the UFTCS represents the
most recent position of the actuators. Figure 2 shows the flow of data from the
UFTCS through the interface to the ESCU.

The key components used on the signal-processing boards when receiving a mes-
sage from the UFTCS are listed below.

Intel 8751 microcontroller

Harris 6402A Universal Asynchronous Receiver Transmitter (UART)
Harris Programmable Peripheral Interface (PPI)
Digital-to-Analog Converters (DACs)

FEWN -

INTERFACE

SIGNAL
PROCESSING
BOARD

SIGNAL
PROCESSING
BOARD

UFTCS

:> ESCU

LVDT FEEDBACK

SIGNAL
PROCESSING
BOARD

LVDT FEEDBACK
SIGNAL

PROCESSING
BOARD

5 %

P

Figure 2.- Data flow from UFTCS to ESCU.

Intel 8751

The Intel 8751 is an erasable programmable read only memory (EPROM) version of
the 8051 family of 8-bit microcontrollers. The crystal used to run the 8751 oper-
ates at a frequency of 10 MHz. The 8751 is an input/output (I/0) controller. The
main features of the 8751 listed below are explained in the paragraphs that follow.

Four 8-bit I/0 ports
Two external interrupts
A serial I/0 port

Two internal timers

EW N =

Input-Output Ports- The four I/0 ports are numbered 0-3. In addition to being
an I1/0 port, port 3, which contains the serial port and the external interrupts, can
be used as a special-functions register.

External Interrupts- The two external interrupts are used for signaling the
8751 that a message from the UFTCS has been received or that a request for data has
been sensed. The interface is capable of receiving and transmitting messages to and
from the UFTCS using a UART or the serial port of the 8751. If a UART is used, one
of the external interrupts is used to signal the 8751 that the message is in the
UART and is ready for the 8751 to process. The second external interrupt is only
used on the signal-processing board that contains the feedback circuitry. This -
interrupt is triggered when the UFTCS requests feedback data. Reception of an
external interrupt, or any interrupt, will cause the 8751 to jump to a software
routine written to service the interrupt that preempted the message being processed
by the 8751.

Serial Port- The serial port can also be used to receive and transmit informa-
tion to and from the UFTCS. The baud rate of the serial port is set by the soft-
ware, and for this application is 156K baud (156,000 bits/sec). The serial port
interrupt is internal to the 8751. This interrupt is set upon reception of a stop
bit when receiving data or transmission of a stop bit when transmitting data.

The serial port interrupt is triggered whether the 8751 is receiving or trans-
mitting data. Once the 8751 has jumped to the serial port interrupt routine, a
further check must be made to determine if the interrupt was caused by receiving
data or transmitting data. After determining the type of interrupt the interface
software then branches to the proper routine to service the interrupt.

Timers- One of the internal timers is configured as a 16-bit timer and is used
in one of the testing routines of the 8751. The other timer is configured as an
8-bit timer and serves two purposes.

The first purpose of the 8-bit timer is to monitor while the 8751 is in run
mode by guarding against an undetected end of message from the UFTCS. The second
use for the timer is to test the DACs by cycling the DACs through their output range
in 1 min.

Universal Asynchronous Receiver/Transmitter

The UART is used on the signal-processing board to transfer data from the
signal-distribution board to the 8751. The UART receives data in serial form and
sends it to the 8751 in parallel form. When the UART has received data from the
signal-distribution board, it sends an interrupt pulse to the 8751 on one of the
external interrupts.

If the UART is transmitting a feedback message to the UFTCS, the 8751 will send
the data to the UART in parallel. The UART adds the start, stop, parity bits and
then transmits the data, in serial, to the signal-distribution board. The signal-
distribution board transmits the message, in serial, to the UFTCS.

The UART uses a crystal that operates at 15 MHz which sets the baud rate of the
UART at 156K baud. The UART and the serial port of the 8751 have the same baud
rate, which allows operation of the board using a UART or the serial port of the
8751. This option is selected by setting one of the dip switches located next to
the 8751.

Programmable Peripheral Interface

The PPI receives data from the 8751, then writes the data to the DACs. The PPI
has three 8-bit ports, called A, B, and C, that can be programmed to operate in
three different modes, which are numbered 0, 1, and 2. The PPI used to receive
messages from the UFTCS has been programmed to operate in mode 0 such that ports A
and B are output ports, while 4 bits of port C are output and U4 bits are input.

The low byte of each command word is sent using port A, while the high byte of
each command is sent using port B. A latch command is sent using port C. The
16-byte command words received from the UFTCS are written to the DACs.

Digital to Analog Converter

he DACs receive the 16-bit words and convert them to analog voltages. The
latch command is used to "lock" each word into the DAC, and no new words written to
the DACs will be converted unless the latch is removed before the word is written.
The DACs have an output range of -10 volts to +10 volts and use offset binmary to
represent a voltage. The format is shown as follows:

0000H = -10 volts
8000H = 0 volts
FFFFH = +10 volts

The voltages output by the DACs are the voltages that the ESCU receives.

Figure 3 and the following summary describe the data flow when the interface is
receiving a message from the UFTCS.

"SIGNAL PROCESSING BOARD

8751
—>>1SERIAL[
PORT
ONE CHANNEL
NPUT FP™ | 8751}~ PPI |—=! DAC | ESCU
3 UART ==

Figure 3.- Data flow through the interface to the ESCU.
The signal reception summary is listed below.

1. Data are received by the UART or serial port of the 8751 from optical
fibers or differential signal.

2. An interrupt is sent to the 8751 to service the data.

3. The data are received by the serial port of the 8751 or a UART one byte at
a time and sent to the PPI by the 8751.

4. The PPI sends 16-bit words to the DACs.
5. The DACs output analog voltages to the ESCU.

INTERFACE HARDWARE: DATA TO UFTCS

One of the four boards that receive data from the UFTCS contains the extra
circuitry to send actuator position feedback to the UFTCS. The key components for

the feedback circuitry are shown below and are explained in the order they are
listed.

Analog Multiplexer

Sample/Hold Amplifier

Analog to Digital Converter
Programmable Peripheral Interface

=W N -

Analog Multiplexer

The analog multiplexer (analog mux) chooses which channel of feedback will be
read. The 8751 signals the analog mux which channel of feedback to look at. The
mux reads the channel chosen, and the voltage passes through an operational ampli-
fier (op-amp). The voltage from the op-amp then goes to the sample and hold (S/H)
chip.

Sample and Hold

The S/H amplifier passes samples of the voltage from the analog mux to the
analog to digital converter (ADC). Upon receiving a hold pulse from the 8751, the
S/H amplifier will sample the voltage on its input pin and hold that voltage on its
output pin until the next hold pulse is received.

Analog to Digital Converter

The ADC converts the analog feedback signal to a digital representation of the
voltage. The hold pulse sent to the S/H chip is also used to trigger the convert
.pin of the ADC. The pulse used to trigger a conversion is passed through a flip-
flop network to delay the arrival of the convert pulse at the ADC. This ensures
that the voltage from the S/H chip arrives at the ADC before the conversion pulse.

The ADC oﬁtputs a 12-byte representation of the analog voltage. Since each
axis command is 16 bytes long, the last 4 bits of the voltage are set to zero. The
digital data are then passed to another PPI.

Programmable Peripheral Interface

The PPI used in the feedback circuitry is the same type used in the circuitry
to receive data from the UFTCS and is simply programmed to work in a different
mode. The feedback PPI configuration is listed as follows:

1. Port A--strobed input
2. Port B--basic input
3. Port C--handshaking/control lines

Ports A and C work together to receive parallel data from the ADC. When the
ADC has data to send, it sends a pulse to port C and after port C has received the
pulse, the digital data are received in ports A and B. When ports A and B have
received data, port A sends a pulse back to the ADC to acknowledge reception of the
data. Sending pulses back and forth between components or devices is called
handshaking.

Port B is receiving the second half of the message that port A receives. It is
not necessary for port B to send a pulse back to the ADC; therefore, port B works as
a basiec input port.

From the PPI the information passes to the 8751 microcontroller and the digital
feedback data are then sent to the UFTCS using the serial port or the UART. Another
form of handshaking occurs before the feedback is transmitted to the UFTCS when the
8751 sends out a sync pulse to the UFTCS which signals the UFTCS that a message is
about to be transmitted.

Figure 4 and the accompanying summary describe the transmission of feedback
data when the UFTCS has issued a request for data as follows:

1. A request for data is sent from the UFTCS.

2. The 8751 receives an interrupt and jumps to a software routine to service
the interrupt.
The analog mux reads a channel of feedback and sends it to the S/H chip.
The S/H chip waits for a hold pulse and then sends voltage to the ADC.
The ADC receives a convert pulse and outputs digital data to the PPI.
The PPI transfers data to the 8751.
A sync pulse is sent by the 8751.
Data are sent to the UFTCS using a UART or the serial port of the 8751.

OO0 EW
.

SIGNAL PROCESSING

BOARD
8751
S SAMPLE A/D SERIAL 9
S H» AND |~ CONVERTER [PP! [>] 8751 =] PORT [=
w HOLD OR =
: UART

Figure 4.- Data flow through the interface to the UFTCS.

a UAR

INTERFACE SOFTWARE

The software written for the 8751 was designed to work using the serial port or

T.

The type of board to be used is chosen by the settings of the dip switches

located next to the 8751.

selected

The dip switches are also used to select the different operating modes of the
board.
choosing the operating modes of the 8751. The type of board or operating mode is

The

1.
2.

The
possible’

EWN -

There are two switches for choosing the type of board and six switches for

by setting the switch in the off position.
operating modes listed below are selected with two switches.

UART or serial port of the 8751 microcontroller
Feedback circuitry or no feedback circuitry

two switches are combined with the 8751 in such a way as to yield four
board configurations. These are:

Feedback circuitry with UART

Feedback circuitry with serial port of the 8751

No feedback circuitry with UART

No feedback circuitry with serial port of the 8751

Dip switches 6 and 7 are used fbr selecting the operating mode; it is important to
have these switches set correctly for each board. The board-type selection chart
which shows the switch settings for each board-type selection is shown in table 1.

TABLE 1.- BOARD-TYPE SELECTION CHART

Switch number Set Not set
6 UART Serial port
7 Feedback circuitry | No feedback circuitry

There are seven operating modes for the interface, one of which is the run
mode, which is the mode used under normal operating conditions. The other six modes
are calibration and testing modes. The calibration and testing modes are listed
below.

1
2.
3.
4

Interboard loopback test

On-board loopback test (for boards with feedback circuitry only)
ADC calibration (for boards with feedback circuitry only)

DAC gain calibration

10

5. DAC offset calibration
6. DAC testing routine

The operating modes are chosen on a "first switch set" basis. If a test or
calibration is chosen for a board with feedback circuitry, switch 7 must be off for
that board. If the test is tried when switch 7 is on, the error light will light.
The 8751 looks for the first mode selection switch set and goes into that mode of
operation. All remaining switches are ignored. Table 2 shows the priority level
for each mode selection and aslo gives the switch associated with each mode. The
priorities are listed from the highest to the lowest.

TABLE 2.- OPERATING MODE PRIORITY

Switch set Operating mode
(highest to lowest priority)
g

Interboard loopback test
Run mode
ADC calibration
On-board loopback test
- DAC gain calibration

5 DAC offset calibration
None set DAC testing routine

EWNN - 0

Interboard Loopback Test

The interboard loopback test verifies that the receivers, transmitters, and
communication between the boards are all working. The transmitter is connected to
one of the four receivers used to receive data from the UFTCS. An analog signal is
input as feedback from the ESCU. A request for data signal must be input at the
"request for data" pin.

The test is started from the feedback service routine. Since the software was
written so that data must be received before it is transmitted, register 5 of regis-
ter bank 0 is set to 8. This makes the 8751 think it has received some data.

The 8751 will sample the analog signal, convert it to digital, and transmit it
over optical fibers or differential signal lines to another board. The board
receiving the data will convert the signal back to analog and output the signal on
the board that received the digital signal. The output should be a sampled version
of the analog feedback signal.

"

On-board Loopback Test

The on-board loopback test will sample the analog feedback signal input at the
ESCU feedback pins at approximately 50-msec intervals. An analog to digital con-
version will be done on the signal, and the 16-bit word will be written to all four
DACs simultaneously. The output of the DACs will again be a sampled representation
of the analog feedback signal.

ADC Calibration

The ADC calibration will cause the 8751 to send a hold pulse to the S/H chip
every 33 usec. The signal on the input to channel one of the analog mux will be
sampled by the S/H chip or amplifier. Thus, the input at channel one should be a
precision voltage source. '

Ad just the voltage source until it reads -9.9999 volts. Adjust the S/H chip
potentiometer until it reads -9.9999 volts. Adjust the ADC output until it reads
FFEH.

DAC Gain Calibration
The 8751 will write the value O000H to each DAC. Adjust each DAC gain poten-
tiometer until the DAC output reads -10.0000 volts.
DAC Offset Calibration
The 8751 will write the value 8000H to each DAC. Adjust each DAC offset poten-
tiometor until the DAC output reads 0.0000 volts.
DAC Testing
The DAC test will run the DACs through their output range of -10 volts to
+10 volts. Once +10 volts is reached, the DACs will run backward to -10 volts. The
run up to +10 volts and back down to -10 volts is one cycle. Timer 1 is used to
make a complete cycle last about 2 min. The test verifies that the DACs operate
correctly and continues until the the interface has been reset.
Interrupts
The software is designed to be compatible with an interrupt-driven system,
which means that the 8751 will do nothing until an interrupt has been sensed. When

an interrupt has been sensed, the 8751 will jump to an appropriate software routine
to service the interrupt.

12

The 8751 is designed so that priority levels can be established for the inter-
rupts. An interrupt can be assigned a high or low priority. A low-priority inter-
rupt can be interrupted by a high-priority interrupt, but a high-priority interrupt
cannot be interrupted.

Receiving data from the UFTCS is more important than sending feedback to the
UFTCS. For this reason, the UART and the receive pin of the serial port are '
assigned a higher priority. Timer 1 also carries higher priority since it monitors
the reception of data from UFTCS. ’

The type of interrupt scheme used depends on whether a UART or serial port is
being used. The interrupt schemes for each type of board are listed in table 3.

" TABLE 3.- INTERRUPT SCHEMES

Interrupts for UART

Interrupt Priority

®INT1 High
Timer 1 ' High
*INTO Low
" Timer O Low

Interrupts for serial port

Serial port High

Timer 1 High
®INTO Low
Timer O Low

Operation with a UART

There are four interrupts active when a UART is used to receive and transmit
data from the UFTCS. The interrupt, *INT1, is used to signal the 8751 that a mes-
sage has been received in the UART and is assigned a high priority so that no incom-
ing information will be lost. Timer 1 monitors incoming messages to guard against
an undetected end of message.

13

The interrupt, *INTO, is used only on boards with feedback circuitry and is
triggered when the UFTCS requests feedback data. This interrupt has a low priority
so that it can be interrupted if incoming data have just been received.

Timer O is used to test the DACs and therefore is not used when the interface
is in the run mode. The timer O interrupt is assigned a low priority since it is
the only interrupt active when in use.

Operation with the Serial Port of the 8751

There are also four interrupts active when the interface is used with the
serial port of the 8751. The only difference between the two configurations (serial
port or UART) is the interrupt used to signal the 8751 that incoming data have been
received. Since the serial port of the 8751 has a "built-in" interrupt, it is not
necessary to use *INT1 to signal that an incoming message has been received. This
built-in interrupt has high priority so that messages being received have higher
priority than feedback messages being transmitted to the UFTCS.

The serial port interrupt routine is designed so that a message being received
is serviced before a message being transmitted. The reason for this structure is
that the 8751 serial port interrupt is triggered whether the 8751 is receiving or
transmitting data. Therefore, a further test must be performed when entering the
serial port service routine to ensure that the 8751 enters the correct data-
processing routine--either for receiving or transmitting data.

Appendix A contains schematics of the signal-distribution board, the signal-
processing board, and the feedback circuitry present on one of the signal-processing
boards.

UFTCS EMULATOR

The UFTCS emulator simulates the digital message transmitted by the UFTCS
flight-control system. The UFTCS emulator sends messages to the UFTCS/ESCU inter-
face. The emulator is used to test and verify the software written for the inter-
face. It is also used to drive the interface for testing the hydraulic actuator.
The message sent by UFTCS has the format shown in figure 5.

The length of a message sent by the UFTCS varies from 10 to 76 bytes. The
variation in message length is a function of the number of bytes sent to the inter-
face as extra data. The extra data, if sent, have a length ranging from 1 to
66 bytes.

14

MESSAGE SUBBLOCK 1 ROLL ROLL PITCH
BYTE BYTE COMMAND COMMAND COMMAND
COUNT COUNT LOWBYTE HIGH BYTE LOWBYTE
PITCH YAW YAW COLLECTIVE COLLECTIVE
COMMAND COMMAND COMMAND COMMAND COMMAND
HIGHBYTE LOWBYTE HIGH BYTE LOWBYTE HIGH BYTE

EXTRA SUBBLOCK 2 CHECKSUM

DATA BYTE

COUNT

Figure 5.- Emulator message format.

The UFTCS emulator has three important features.

1. Calibration or run mode
2. Variable message update rates
3. Variable message lengths

The desired mode of operation is obtained‘by setting the dip switches located
on the emulator. A switch is set by pushing it toward the open position.

There are two dip switches, each equipped with four switches, on the board.
One dip switch contains the calibration and message update rate selection, while the
other dip switch contains the message length selection switches.

The calibration and update dip switch contains the switches to set the message
update rate and operating mode of the UFTCS emulator. The message update rate
selection switches operate on a "first switch set" structure. The software tests
each switch and chooses the update rate of whatever switch is set. All remaining
switches are then ignored.

Table 4 shows the switch settings for the calibration and update switch and the
message update rate switches listed in highest to lowest priority.

The message length dip switch sets the byte length of the UFTCS emulator.
These switches also work in a "first switch set" mode. The software polls the
switches from highest priority to lowest priority, and uses the message length
associated with the first switch set while the other switches are ignored. If no
switch is set, the message length for a "no switch set" is used. The message length
is varied by sending a different amount of extra data at the end of the message; the
extra data are the only part of a UFTCS message that is variable. Table 5 shows the
message lengths associated with each switch.

15

TABLE 4.- CALIBRATION AND UPDATE RATE

Calibration
Switch number Switch set Switch not set
1 ADC calibration Run mode

Message update rate selection

Switch number Message update rate, msec
2 : 25
3 10
| y 9.2
| None set . 50

TABLE 5.- MESSAGE LENGTH

Switch number | Message length, bytes

1 76
2 36
3 20
None set ‘ 10

EMULATOR HARDWARE

The UFTCS emulator consists of 13 chips. The major chips used in the emulator,
which are listed below, are discussed in this section. :

SMP--11 S/H chips
Burr-Brown ADC

Harris 82C55 PPI

Intel 8751 microcontroller

EWN -

16

To place the emulator in run mode, move switch 1 of the .calibration and update
switches away from the open position..

Sample and Hold

The S/H amplifier chip is used to take samples of the analog input signal by
tracking this signal until a hold pulse is received from the 8751. Once the hold
pulse is received, the voltage present on the input pin of the S/H chip is placed on
the output pin of the S/H chip. The voltage on the output pin of the S/H chip is
input to the ADC.

Analog to Digital Converter

The ADC receives a convert pulse shortly after the S/H chip places the voltage
on the line. The convert pulse must occur after the voltage appears at the input
pin of the ADC to allow for the voltage to become stable. After receiving the
convert pulse, the ADC outputs a digital representation of the input analog volt-
age. This particular ADC outputs a 12-bit representation of the voltage and is
called a 12-bit converter.

Programmable Peripheral Interface

The ADC does some handshaking with the PPI. When the ADC is finished convert-
ing, the status line of the converter is driven low. This high to low transition is
passed through an inverter (74LSOY) and is input to the clock pin of a D flip-flop
(TULSTU). The low to high transition that occurs on the flip-flop clock pin places
the Q output high and the NOT Q output low. The Q output is tied to an octal latch
(Intel 8282) and the NOT Q is tied to the PPI. The low pulse of the NOT Q signals
the PPI that data are being sent to the PPI, which sends back a high pulse to
respond that the data have been accepted. The high pulse from the PPI clears the
flip-flop and puts the Q output low and the NOT Q output high.

The octal latch is used to pass 8 bits to the PPI. The ADC outputs 12 bits,
but the PPI reads 16 bits. The high 4 bits of the output of the octal latch are the
least significant bits of the ADC output. The low four bits of the octal latch are
tied high. These bits are tied high because the 8751 will complement the output
before transmitting it to the interface. The output is low and will not add a
direct current (DC) offset to the ADC output. In addition to sending a handshake
signal to the ADC, the PPI also signals the 8751 that the data are ready to be
read. The PPI acts as a middle man between the 8751 and the ADC.

Another function of the PPI is to send the hold pulse, when directed by the
8751, to the S/H chip and the convert pulse to the ADC.

17

Intel 8751

The 8751, which is the core of the UFTCS emulator, forms the entire message and
transmits it through its serial port at a baud rate of 156K. The message byte count
and subblock 1 count are the first two bytes transmitted. Next, the 8751 directs
the PPI to signal the S/H chip and the ADC to sample the analog input and place a
digital representation of the input analog voltage on the line for the 8751 to read
from the PPI. This digital representation makes up the next 8 bytes of the mes-
sage. These 8 bytes represent the roll, pitech, yaw, and collective axes for the
aircraft. These 8 bytes are then transmitted out the serial port of the 8751.

Following the 8 bytes of command axes; the extra data are sent, the length of
which can be chosen by the user. The amount of extra data sent can be calculated
from the message length table and it is always 10 bytes less than the message
length.

Table 6 shows the correlation between message length and the amount of extra
data sent.

TABLE 6.- EXTRA DATA

Switch number | Extra data, bytes { Message length, bytes

1 ‘ 66 76
2 26 36
3 10 20
None set 0 ' 10

Once the 8751 has transmitted all the extra data, the subblock 2 count and a
checksum are transmitted. Transmitting the checksum signifies the end of a mes-
sage. The 8751 will delay an amount of time chosen by the user before starting the
transmission of the next message the time between messages is listed in table 4.
The emulator will continue to transmit messages as long as the emulator is in run
mode. Figure 6 summarizes the transmission of a message by the UFTCS emulator.

18

EMULATOR

CONTROL LINES

1 11

UETCS
SAMPLE
ANALOG A/D SERIAL T0
neut [T AND F(converTer[™ | PP ™1 8757 poRT ™ Escu
A | HOLD.| A A A INTERFACE
A

—DATA FLOW

MESSAGE mug:gnow
LENGTH UPDATE RATE
SWITCHES SWITCHES

Figure 6.- Emulator message transmission.

OPERATIONAL PROCEDURES

UFTCS Emulator with UFTCS/ESCU Interface

To ensure proper synchronization between the UFTCS emulator and the interface,
the following steps must be taken when powering up or resetting the system.

1. If powering up, connect the power cable to the interface and to the emu-
lator. The ends of the power cable are clearly marked.

2. First turn on the 5-volt supply, then the 15-volt supply.

3. Hold the reset switch of the emulator down and flick the reset switch of
the interface. Now release the switch of the emulator. This ensures that the

19

interface is ready to receive a message before the emulator starts sending a
message.

If the systems need resetting only, then only the third step needs to be
followed.

If the interface has been running with a request-for-data pulse, the function
generator supplying the request pulse must be turned off before the systems are
reset or an error will occur. (The red light on the interface board that handles
feedback will light up immediately after a reset is attempted.)

Analog to Digital Converter Calibration

To calibrate the ADC, switch 1 of the calibration and update switches must be
set. The following steps should then be followed:

1. Power up the emulator--5-volt supply first, 15-volt supply second.

2. Attach a precision voltage supply to the emulator analog input and set the
voltage to +9.999 volts. :

3. Attach a logic analyzer to the output pins of the emulator ADC (12 pins).

4. Flick the reset switch of the emulator and monitor the voltage out of the
S/H chip. Set this voltage to +9.999 volts, using the S/SH offset adjustment
potentiometer. ’ :

5. Adjust the output of the ADC to read OOOH using the gain adjust
potentiometer.

6. Reverse the polarity of the supply to read -9.999 volts and adjust the
output of the ADC to read FFEH using the ADC offset potentiometer.

To return to run mode, switch 1 of the calibration and update switches must be
set to the off position and the interface and the emulator reset as described in the
previous section.

Appendix B contains a schematic of the UFTCS emulator, as well as a listing of
the software written for the 8751 used in the emulator. ‘

CONCLUDING REMARKS

The UFTCS-to-ESCU interface was initially developed as a data interface between
the UFTCS (flight-control computer) and the ESCU (controller for the hydraulic
actuators).

20

The emulator was developed to provide a digital message to the interface, was
first used to verify its operation, and is now used as a signal source to the

interface.

Because the interface has a microprocessor on board, the interface can and has
been used to investigate the application of microprocessors to the control of
flight-actuation systems. The interface has a limited capability to investigate
command smoothing and in-line monitoring models in real time. These algorithms can
be executed between message updates since the interface is interrupt-driven. There-
fore, these algorithms are only executed when the UFTCS interrupts a message
update. The variable update rates of the emulator allow investigations into the
effect of update rate upon quantization.

The interface does, however, have limitations as a research tool. Since the
8751 is an 8-bit microcontroller and the commands used are 16 bits, the computations
are cumbersome (such as requiring separate subroutines for all mathematical and
shifting routines). An interface designed to complement the newer 16-bit microcon-
trollers would simplify the computations significantly.

REFERENCES

1. Webster, L. D.; Slykhouse, R.>A.; Booth, L. A., Jr.; Carson, T. M.; Davis,
G. J.; and Howard, J. C.: Ultrareliable Fault Tolerant Control Systems.
. AIAA Paper 84-2650, 1984.

21

APPENDIX A

UFTCS/ESCU INTERFACE SCHEMATICS

SRECEDING PAGE BLANK NGT FilM:D

23

240113348

00305y =

n_c_l_ e O L
(1 1 _J Tl l—‘ .!l\lq"

(1IN MOVB(33d 10A HLIM)

Quvd 30viYILNt NOS3 OL SdAvH
ey v
MALNED HOWVREEY SEWY

e

Fre)

o

™
L

OF POOR QUALITY]

ORIGINAL PAG

oy
[0 _ |
C=} -

24

10 WA <

1902 178 v

'.! I"n!
00RO o=
-) 34 |RBAVTIN |
L s e e 35
| e vin e
ANJYID %OVE0334 005t s s
10AY 30V3¥3INI NOSI OL Sdnvy o ‘wy e L e
WALNED NONVISEN CBWY : ! ¢ ane
il Rl L) on 81N L w
- == == TR R
Y g
o[H
LT} ~ 8
{ H ___
Somvy ROV VAVO ¥ (MH y M W
LR)]

¢ &
b,
o P

..

Sewwvy 01 viv0

1) Wi

s ¥ ¥ ¥

wn
N

g
] and o
.o
) ol
i)¢ T} vivo ™V WU
VLVO WO 4 4§00
wog - ee

Qyv0o8 NOILNBIYLSIQ TYNIIS

= SUve Aleent ows
e o——
4 4_‘ .s.c.l_\
AuS? o T
20HOM W S AS+ Ao
ASH 4——yl viva ¥0)
b E—fum | snon o e
BT RD—H 1vy1eq W [TYYY
Tidwi WiLieo 105
NOUVIEIY SRV 0% L
- 01200 113003
— —— -l uu
]
Cimg—{
‘~ <
= J
n3iag
#01£3211%
Jerl
- Teems
I]
! T <)
. "-._EM Sonvy ROVS VivO
M 1 2 .
s age !
I [T ase
™Mo’ \— Gy [RJ 110}
E T-¢ ¢ " ¥ WU e R ————
vae g . o v-0¢
>obw o1 2003
= - A$s om—yi
o L VAV IE. L 1 ok — 5 Vpore)
E Y F N 1/1 Hivdiieo Ly
J s v-os§
ey 1 300 Samvy
A+ . nows
L] vivag
— A3+ &-——yf
3]
0 m y i | hlsihammeney | IV TP sy
13T [) i PO wueolpourwn—
vre * v-os
ASe [eees 7 3002
= Ao
7
om0 L 1 2> L Y awmynd
[eig— ~NJT Y wrdof pe o oy
vize st v-0s
as+ bt 20021

26

T
H

lal
)

TN
i
Al
i

/
F

ORIGINAL PZ

bt
»

OF PCOR QUAL:

APPENDIX B

UFTCS EMULATOR LISTING AND SCHEMATIC

27

R P T} E TR SRR S LY SR SR I 1] - U § S PRS- Sy SY A L Y PR IRV

o SRR AR 3 R 3 3 D 304 S8 330 5 3F 48 303 2 38 38 38 5P 36 30 b 38 30 38 38 38 30 36 3 38 35 30 30 38 38 33 35 48 38 3 40 S0 30 38 I 36 3F 3 334 46 35 38 32 SE 38 B 10 3 E S S SE I SE I F 10 3

This program will simulate the RAMPS flight control suys
will transmit the following message:

tem. The program

.

, F6 38 38 35 38 35 3 38 38 3% 38 3 3F 32 30 38 30 34 38 2638 31 36 34 30 30 35 30 00 3 W 363 S 38 3 5 330 36 I 3 38 36 5 0 3F 3 36 36 3 340 SH 0 38 T B3 SEIC
:® # Message # Subblock 1 # Roll # Roll #* Pitch # Pitch # Yaw % Yaw *
O # Byte # Count # Low # High -+ l.ow * High # Low & High =
P # Count * # Byte # Hute # Byte # Byte # Byte # Bytce #
, 3t e 7 36 3t 37 38 48 3E 323 3030 b 38 3E 5383 R 0 36 3 35 20 I 3 35 R 36 3 0 3 3 3 33 3 I 96 5 3836 3 38 3¢ b 35 3 0 4 IE S 4F 3 36 55 38 33236 3050 3R
i b

i # 8 35 363t 35 35 35 34 3648 SE 38 48 T 335 35 9635 30 38 36 35 35 38 31 5 34 3E 036 3635 3 3H20 303530 30303 30 0 3026 30 030 364040 36 48 35 4 30 20 3¢

S # Collective # Collective # Extra # Subblock 2 # Checksum #

P #* Low # High # Data % Count # #

.3 3 Bqte +* Bgte 3* % 3 #*

) 338 3534 31 35 38 36 343 35 330 4 538 S 30 35 3531 I 03 3F I 3E I 3040 3 338 31 IEIE 30 303 S22 3 3020 38 S0 30 B34 36 20 3035 R 035 3

P -

i # The Message Byte Count is set to 15 and the Subblock 1 Count is 13
i# The Roll, Pitch, Yaw, and Collective take up eight bytes of Subblock 1.
i# The Extra Data will use five bytes.

it Following the Extra Data is the Subblock 2 count. This has been set to
i% zervro. The Checksum has no use in the RAMPS system and has been cet to

-
-

FFH.

message. The serial port is initialized to operate as a
baud rate of 156k.

Ilms delay until the messasge is transmitted again.

¥ k% & % %k %k ¥

connected to the circuit.

7 bit UAKT

with

A message will be transmitted by the serial port followed by about a

The command axes will derive their inputs from a function generator

This program uses the serial port and timer O of the 8751 to transmit a

a

i
i
3
*
*
F
¥
3%

Mo oW oMo ox ok X o oo %k ok

i 3636 3E 3 30 38 38 3 3E 30 3 3 38 38 30 3 38 36 30 36 35 38 3P 3 38 4F 35 30 36 3 38 36 30 30 36 35 30 30 3 38 35 30 38 38 36 38 3 3 36 3 35 31 383 36 3 9H I8 3 38 38 3 $6 38 36 6 36 30 5 34 S0 T 3RS0 W35t

MAME RMPSIM

i EQUATES
PPIA EQU 0000H i ADDRESGS OF PPI PORT A
PPIG EQU 0100H ; ADDRESS OF PPI PORT B
CWR EQU 0300H
; DEFIME BITS
TX_BUSY BIT 3EH i TRANSMITTER AND TIMER O BUSY FLAG

OrRG 0000
" SJMP START

ORG QOOIirt

} TIMER O INTERRUPT SERVICE ROUTINE

TZERQ: CLR TCON. 4 i CLEAR BIT TO TURN OFF TIMER O
CLR TX_BUSY i CLEAR TIMER O BUSY FLAG
MOV THO, R2 i RELOAD TIMER O WITH SELECTED
Mgov TL.O. R1 i UPDATE RATE
RETI

ORG 00'iH
' SERIAL PORT INTERRUPT SERVICE ROUTINME
SRLPRT: CLR TI i CLEAR TRANSMIT IN
CLR TX_BUSY
RETI 28

TERRUPT FaLG
i CLEAR TRANSMITER NUSY FLAG

2

i ADDRESS OF PPI CONTROL WORD RECISTER

START:

_74BYTE:

_36BYTE:

_20BYTE:

G0GO:

LOADC:

Mov

" ACALL

MoV
JC
Mov
JC
mav
JC
MoV
JC
MoV
MoV
JMP
mav
MoV
JMP
Mov
MoV
JMP
MoV
Mov
MoV
Mov
Mav
JC
MoV
JC
Mov
JC
Mav
MoV
Mav
JMP
Mov
MoV
MOV
JMp
Mav
Mov
Mov
JMP
MoV
Mmov
Moy
SETB
JMP

LJMP

ORG 0040H

SP, #18H

INIT
C.P1.1
DOADC
C,P1.2
_25MS
C,P1.3
_10MS
C.P1.4
FAST

R2, #5DH
R1, #3CH
G0

R2, #0AEH
R1, #9DH
GO ~
R2, #0DFH
Ri, #73H
GO

R2, #0E2H
R1, #02aH
THO, R2
TLO, R1
c.P2.3
_7&BYTE
C.P2. 4
_36BYTE
C,P2.5
_20BYTE
R3, #0AH
R4, #08H
RS, #0O0H
GOGOo

R3, #4CH
R4, #46H
RS, #4214
G0GOo

R3, #24H
R4, #22H
RS, #1AH
G0GOo

R3, #14H
R4, #12H
RS, #0AH
IE. 7
XMIT_MSG

ADCCAL

S TYIONT L !
ORICIMEL,

DE PCOR

i INTIALIZE STACK POINTER, STARTS AT

i RO OF RECISTER BANK 3

iGO TO INITIALIZATION ROUTIHNE

i CHECK 1"OR ADC CALIDBRATION

i IF SET GO TO CALIDBRATE ADC

;s CHECK "OR SELECTED MESSACE UPNATIE RATE
i IF CHUSEN, USE 2a5SMS UPDATE RAIE

i CHECK FOR SELECTED MESSACE UPLATE RATE
i IF CHUSEN, USE 10MS UPDATI RATE

i CHECK FOR SELECTED MESSACE UPDATE RATE
i IF CHOSEN, USE FASTEST UPDATE RATE

i IF NO SWITCHES SELECTED, USE S0MS

i UPDATE RATE

+USE R1 AND R2 TO HOLD COUNT FOR
i SELECTED UPDATE RATE (25MS)

iUSE R1 AND R2 TO HOLD COUNT FOR
i SELECTED UPDATE RATE (10MS)

i USE R1 AND R2 TO HOLD COUNT FOR

i SELECTED UPDATE RATE (9. M%)

i LOAD TIMER O WITH SELECTED

i UPDATE RATE

i CHECK FOR NUMBER OF EXTRA BYTES TO

i SEND, THIS DETERMIMES MESSACE ILENGTH
i CHECK FOR NUMBER OF EXTRA BYTES TO

i SEND, THIS DETERMINES MESSAGE LEMGTH
i CHECK FOR NUMBER OF EXTRA BYTES TO

i SEND, THIS DETERMINES MESSACE LENGTH.
i IF NO SWITCHES SET, MESSAGE COUNT = 10
i SUBBLOCK 1 COUNT = 8 '

i EXTRA BYTES = 0

i IF SWITCH 1 SET, MESSAGE COUNT = 76
i SUBBLOCK 1 COUNT = 74
i EXTRA BYTES = &6

i IF NO SWITCHES SET, MESSAGE CHOUNT
i SUBBLOCK 1 COUNT = 34
i EXTRA BYTES = 26

36

i IF NO SWITCHES SET, MESSACE COUNT
i SUBBLOCK | COUNT = 18

i EXTRA BYTES = 10

i ENABLE INTERRUPTS

i IF NOT SET START TRANSMITTINMG

i RAMPS MESSAGE

i JUMP TO ADC CALIBRATION ROUTINE

]
n
O

-

AR
PEdFR?
. &

QUALITY

[N

29

. 3648 S 34 3F 303 36 34 34 20 38 35 35 4 28 3448 3 33 3F S 35 3F 3E 30 3 32 36 3 3E 31 38 3 353k 3 38 40 30 36 35 36 3 38 34 34 $h 30 S0 3F 3 3 30 b 38 3 34 48 3 b 3 30 36 B3 5 33 SR IE S IEHSE

% % % % % & k& ¥ %

THIS IS THE INITIALIZATION ROUTINE FOR THE RAMPS SIMULATOR. TH1IS

SECTION OF CODE WILL SET UP THE SERJAL PORT AND TIMER O ON THE 87541.
ROUTINE ALSO INITIALIZES THE HARRIS PERIPHERAL INTERFACE (PPI). THE 8
AND THE PPI ARE INITIALIZED AS SHUWN BELOW:

PPI

PORT A - BASIC INPUT

PORT B - STROBED INPUT

PORT C — HANDSHAKING AND CONTROL
8751

SERIAL PORT - 156K BAUD, ODD PARITY (2 BIT UART)
TIMER O - 13 BIT TIMER (MODE Q)

THE INTERRUPTS FOR THE SERIAL PORT AND TIMER O HAVE BOTH BEEN SET TO

i # HAVE HIGH PRIORITY.
iS4t 33848 3530 38 51 94 48 THAE H T T 26 32044 50035 36 4696 2 38 35 31 338 38 3135 T A1 I 3046 50 3038 SR 3R 40 2 4R SR T I SIS S 3SR UF R B RFRRRHTR

INIT:

THE
701

MOV. DPTR., #CUR i MOVE ADDRESS OF PPI CONTROL. REGISTER

i TO DATA POINTER

®ox | oM oo o oo ook XX

Mav A, #96H i PUT CONTROL WORD IN ACCUMULATOR

MOvX @DPTR, A i WRITE CONTROL WORD TO PPI

Mav A, #O5H i SET PC2 IN PPI TO ENABLE INTE B

Mavx @DPTR. A i WRITE TO PPI, SETS PC2

MoV A, #06H i SET PC3 IN PPI FOR A/D CONVERT PULSE
MavXx @DPTR., A i ENABLE

- MOV TMOD, #01H . i PLACE TIMER O IN MODE 1 (16 BIT TIMER)
Moy - SCON, #80H . i PLACE SERIAL PORT IN 9@ BIT UART MODE
Mov A, #O0H ' i CLEAR ACCUMULATOR TO INITIANLIZE RO
Mov RO, A i INITIALIZE RO TO ZERO

SETE IE. 4 i ENABLE SERIAL PORT INTERRUPT

SETB IE. 1 s ENABLE TIMER O INTERRUPT

SETB IP. 4 i SET SERIAL PORT TO HIGHER PRIORITY
SETH - IR 1 i SET TIMER O TO HIGHER PRIORITY

CLR TX_BUSY i SET TRANSMITTER FLAG TO NOT BUSY

CLR PSW. 4 i CLEAR PSW. 4 AND PSW. 3 TO SELECT

CLR PSW. 3 i REGISTER BANK O

RET i RETURN FROM SUBROUTINE

i%*#***%*4******#%***#%#*#*&*i****ﬁ****************#**ﬁ#****************%**#**

-

THIS IS THE MAIN BLOCK OF CODE FOR THE RAMPS SIMULATOR. THIS CODE

; # USES THE SERIAL PORT OF THE 8751 TO TRANSMIT A “RAMPS LIKE" MESSACE.

x % %

¥ % % ¥k ¥ % X ¥ ¥ X

; *

THE FORMAT OF THE MESSASGE 1S EXACTLY AS IT IS SPECIFIED IN THE BEGINN
OF THE PROGRAM. IN SUMMARY, THE MESSAGE FORMAT IS:

2383 3 36 55 3 3 6 35 36 35 3 3 3 35 30 36 38 38 5H 38 38 30 038 45 35 36 3 30 34 3530 38 30 35 38 3 30 000 3 SH 30 303 S I F I H AR AH
Message # Subblock 1 # Roll # Roll # Pitch # Pitch # Yaw # Yaw
Byte # Count # Low # High # Low # High # Low # High
Count # . # Byte # Byte # Byte # Byte s Byte # lyte ¥
3F3H4E 35 2448 3 35 25 35 35 3 91 5 30 30 35 24 35 35 34 35 36 4035 35 2638 34 36 36 T 3 36 1 38 38 3F 130 38 313 S IE 38 3 3040 30 3034 34 30 34 338 34 0 0303 IS

325 45 35 95 3 36 35 35 36 38 35 38 3 35 36 30 36 3 3 35 36 35 30 3 320 3 4136 76 31 3030 30 3035 30 20 3 303 30 3 HE IR AR ISR S S
Collective # Collective # Extra # Subblock 2 # Checksum
Low # High # Data # Count #* *
%* Byte # Byte 3* * #* #
25 3% 35 35 3 26 3 36 3 55 36 35 35 35 36 36 34 36 3% 35 35 3 35 3631 38 38 35 35 38 34 31 336 3 3538 35 38 3F 35 36 3k 35 38 36 5 3 36 3 3E S 436 3 3E

30

ING

b A

e

o % W k%

;****#****%**%*%****%***%***************4****#****%********#*%*é**%%***#*%****

YMIT_MSG: Mov A, R3 i FORM MESSAGE BYTE COUMT IN ACCUMUILATOR
ACALL PARITY i SET UP PARITY BIT - USE 0D PARITY
SETB TX_BUSY i SET TRANSMITTER BUSY FLAC TO BUSY
MoV SBUF, A i START TRANSMITTING MESSACE BYTE COUNT
TXMTL: JNB TI,BUSY1 i WAIT FOR TRANSMITTER TO FIMISH
BUSY1: .JB TX_BUSY, TXMT] . TRANSMITTING MESSACE
: . MOV A, R4 ; FORM SUBBLOCK 1 COUNT IN ACCUMULATOR
ACALL PARITY i SET UP PARITY BIT - USE ODD PARITY
SETB TX_BUSY i SET TRANSMITTER BUSY FLAC TO BUSY
MoV SBUF., A ;i START TRANSMITTING SUBBLOCK 1 COUNT
TXMT2: JNB TI, BUSY2 i WAIT FOR TRANSMITIER TO FINIGH
BUSY2: JB TX_BUSY, TXMT2 ; TRANSMITTING MESSAGE
-t 22222 X2 2222 202022222 2-XL-L-2- 2 2L L2 L 2 L2212 2T T X-R-T-T-T-F-E-FT-2-F-F-2-F-F-F F-P-F-F-P-2-2-F-F-F-F-T-R-FIF-F- 5.3
P THE A_TO_D ROUTINE USES A SAMPLE/HOLD WITH AN ANALOG TO DIGITAL %
i % CONVERTER TO TRANSMIT THE 8 BYTES FOR NEEDED FOR THE FOUR COMMAND AXES. #
i # EACH COMMAND AXIS IS MADE UP OF TWO BYTES. THE LOW BYTE ALWAYS PRECEDES #
i # THE HIGH BYTE. #*
P # THE ROUTINE BELOW IS LOOPED THROUGH EIGHT TIMES USING RO IN RECISTER #*
;i» ZERO AS THE COUNTER FOR THE LODOP. ¥
i 3030 30 30 3P 3 3b 53 30 33 36 3 3F 3F 3 5 24 3 40 38 SF 30 36 3¢ 3 3 31 3 3 35 3F 35 35 35 38 35 3 3F 35 38 36 3 35 4T 35 38 30 3F 3P 35 34 35 35 35 38 3 3B 3 3F 3 3F 35 3 35 34 3 3 3F 3 3P 3 3 b3t
A_TO_D: INC RO i INCREMENT LOOP COUNTER
MOV DPTR, #CWR i LOAD ADDRESS OF CONTROL WORD RECGISTER
i INTO THE DATA POIMTER
MOV A, #07H i SET PC3 OF PPI TO START A/D
MOVX @DPTR, A i CONVERSION
MOV A, #06H i RESET PC3 OF PPI TO REMOVE CONVERSION
MOVX @DPTR., A ; COMMAND
MoV DPTR: #PPIA i LOAD ADDRESS OF PPI PORT A INTO THE
. i DATA POINTER
JNB P1.0, ¢ i WAIT FOR A/D CONVERSION TO FINISH
MOVX A, @DPTR i READ LOW BYTE OF COMMAND FROM PPI
ACALL PARITY i SET UP PARITY BIT - USE 0ODD PARITY
SETB TX_BUSY i SET TRANSMITTER BUSY FLAGC TO BUSY
_ mMov SBUF, A i START TRANSMITTING LOW BYTE OF COMMAND
TXMT3: JNB TI,BUSY2 i WAIT FOR TRANSMITTER TO FINISH
BUSY3: JB TX_BUSY, TXMT3 TRANSMITTING MESSACE
MOV DPTR, #PPIB i LOAD ADDRESS OF PPI PORT B INTO THE
i DATA POINTER
MOVX A, @GDPTR i READ HIGH BYTE OF COMMAND FROM PPI
ACALL PARITY i SET UP PARITY BIT - USE ODI PARITY
SETB TX_BUSY i SET TRANSMITTER BUSY FLAG TO BUSY
MOV SBUF, A i TRANSMIT HIGH BYTE OF COMMAND
TXMT4: JNB TI, BUSY4 i WAIT FOR TRAMSMITTER TO FINISH
3USY4: JB TX_BUSY, TXMT4 ; TRANSMITTING MESSACGE
- CJUNE RO, #04H, A_TO_D : IF RO IS NOT 8, THEN ALL TI{E COMMAND
i BYTES HAVE MOT BEEN TRANSMITTED
; CONTINUE UNTIL DONIZ
MOV A, #O0H i CLEAR ACCUMUILATOR TO RESET RO
MOV RO, A i RESET RO FOR NEXT LQOP

31

) 33 SR AE AR T 28 3848 3 4 48 S 2 48 520 3F S 3HSHSHIE I I AE 30 33 200 SR 4R EIE I IE 31 38 S 418 58 3530 T4 SH ISR AL SE I I SR H A H SRR
R THIS ROUITNE WILL TRANSMIT THE EXTRA DATA USED IN THE RAMPS SIMULATED *

;i ¥ MESSAGE.

i+ VALUE OF THE LOOP COUNTER (RO).
§2E 38383848 30 40 30 H 2544 35 35 35 51 35 36 S 24 36 41 36 48 33148 3135 35 38 38 3 T 436 T3 E 538 30 30 13 I0 5 5136 3026 5383333 S0 30 T30 303030 3030 He b 303430

EXDATA:

TXMTS:
BUSYS:

WOBYTES:

TXMTé6:
BUSYé&:

TXMT7:
BUSY7:

MOV
JZ
MOV
MOV
INC
MoV
ACALL
SETB
MOV
JNB
JB
DEC
MOV

JNZ
MoV
Mav

ACALL
SETE
MOV
JNB
JB
MoV
ACALL
SETB
MoV
JNB
JB

A: RS
NOBYTES
A RS
R&, A

RO

A: RO
PARITY
TX_BUSY
SBUF, A
TI, BUSYS
TX_BUSY, TXMTS
R&

A/ R

EXDATA
A, #00H
RO, A

PARITY
TX_BUSY
SBUF, A
TI..BUSY&
TX_BUSY, TXMT6
A, #OFFH
PARITY
TX_BUSY
SBUF, A

TI, BUSY7

- TX_BUSY, TXMT7

RO OF REGISTER BANK O IS USED AS A COUNTER IN THIS LOOQP. FIVE *
i # BYTES OF DATA ARE TRANSMITTED AS EXTRA DATA.

THE DATA WILL BE THE CURRENT =
2

i SEE IF THE EXTRA BYTE COUNT IS
i ZERO AND JUMP AROUND IF IT IS
i USE R6 AS THE LOOP COUNTER

iRO ACTS AS EXTRA DATA BYTE

i PREPARE TO TRANSMIT EXTRA DATA

i SET UP PARITY BIT - USE ODD PARITY
i SET TRANSMITTER BUSY FLAG TO BUSY

i START TRANSMITTING EXTRA DATA

iWAIT FOR TRANSMITTER TO FINISH

i TRANSMITTING MESSAGE

; DECREMENT THE LOOP COUNTER

i IF ACCUMULATOR IS NOT ZERO THEN ALL
i EXTRA DATA HAS NOT BEEN TRAMSMITTED
i CONTINUE UNTIL DONE

i CLEAR ACCUMULATOR TO RESET RO

i RESET RO AND TRANSMIT AS

i SUBBLOCK 2 COUNT

;i SET UP PARITY BIT - USE 0DD PARITY
i SET TRANSMITTER BUSY FLAG TO BUSY

i START TRANSMITTING SUBBLOCK 2 COUNT
; WAIT FOR TRANSMITTER TO FINISH

i TRANSMITTING MESSAGE . .

i LOAD ACCUMULATOR WITH DUMMY CHECKSUM
i SET UP PARITY BIT - USE ODD PARITY
i SET TRANSMITTER BUSY FLAG TO BUSY

i START TRANSMITTING DUMMY CHECKSUM

i WAIT FOR TRANSMITTER TO FINISH

i TRANSMITTING MESSACE

i SE AR 333 A4 36463 35S 56 38 3 336 35 3 36 3 3 36 3048 34 35 S0 334 36 3038 3830 4 IH 3383836 55 334 S 23S 3H 3 SR HANY
#* THE FOLOWING CODE LOADS TIMER O WITH A VALUE THAT WILL MAKE IT TIME OQUT =

+ IS TRANSMITTED.
G4 34836 364045 S0 30 3 5 2040 1 4 3 362 35 96 34 36 30 3040 3 3530 303838 38 38 3 36 36 96 T 20 35 338 38 35 38 335 20 36 98 30 30 31 090 F I IE 530303 IR H M AR

+# IN A LITTLE QVER 1MS.

AFTER THE TIMER TIMES OUT,

THE NEXT MESSACE IS 3+
#

SETB TX_BUSY i SET TIMER BUSY FLAGC TO BUSY

SETB TCON. 4 i START TIMER O
TMRL1: JNB TCON. 5, TBUSY!1 iWAIT FOR TIMER TQ TIME OUT BEFORE
TBUSY1: JB TX_BUSY, TMR1 i TRAMSMITTING THE NEXT MESSACE

LJmpP XMIT_MSG i JUMP TO START THE NEXT MESSAGE
i1 3 3 3 JE 26 30 3F 36 35 645 6 36 34 36048 36 35 3H 30 3E T 3H 030 336 6 33 30 04 38 38 38 31 06 338 34 30 36 3030 05 3 I IR AR AA N A
i THE FOLLOWING SHORT ROUTINE ADDS THE PARITY BIT TO THE MESSAGE. THE *
;% PARITY BIT IS THE 9TH BIT TRANSMITTED AND IS PLACED IN THE SERIAL PORT *

CONTROL REGISTER — BIT 3 (SCON. 3).
R P L T T e Y e I T N S S TR TR L T s 2 2 S S s b

PARITY:

MoV
CPL
Mav
RET

C.P
Cc
SCON. 3, C

0DD PARITY IS USED. *

i MOVE PARITY BIT TO CARRY FLAG

i COMPLEMENT CARRY FOR 0DD PARITY
i PLACE IN SCON.3 AS 9TH BIT

i RETURN FROM SUBROUTINE

32

;***&**********%****%**%**#*****#*%#*%****#***********************%ﬁ%*&***%*%**

~

ok ko ok 4 ok ok o w.ok &

A)

%

% % % ok %k

%

1

ANALOG TO DIGITAL CONVERTER / SAMPLE AND HOLD CALIBRATION

THIS ROUTINE REQUIRES A PRECISION VOLTAGE SUPPLY BE CONNECTED TO THE
OP-AMP INPUT OF THE RAMPS SIMULATOR.
THE PROCEDURE IS AS FOLLOWS:

OFFSET ADJUSTMENT

1.

n

PO

o

2.

ASSERT SWITCH 1 OF DIPSWITCHES, RESET SIMULATOR AND ALLOW TO WARM
UP 10 MINUTES BEFORE ATTEMRTING A CALIBRATION.

CONNECT THE PRECISION VOLTACE SOURCE TO THE OPAMP INPUT O THE
SIMULATOR ’

SET THE PRECISION VOLTAGE SOURCE TQ -9. 999V

ADJUST THE SAMPLE/HOLD POTENTIOMETER UNTIL THE SAMPLE/HOLD OUTPUT
QUTPUT READS -%. 999V

ADJUUST THE ADC OFFSET POTENTIOMETER UNTIL THE ADC QUTPUT READS
FFEM

B) GAIN ADJUSTMENT
1.

SWITCH THE POLARITY OF THE PRECISION VOLTAGE SOURCE SO THAT THE
QUTPUT OF THE SOURCE IS NOW +9. 999V

ADJUST THE ADC GAIN POTENTIOMETER UNTIL THE ADC QUTPUT READS
00GI+

Towox

*

*

LS I IR I B B BB N IR T

0

}*****#***%**********

i

ADCCAL:

END

CLR IE. 7 i DISABLE INTERRUPTS: THEY AREN‘T NEEDED
MOV DPTR, #CWR i LOAD ADDRESS OF PPI CONTROL WORD

i REGISTER INTO THE DATA POINTER
Mav . A, #O7H i MOVE WORD TO SET PC3 INTO ACCUMULATOR
MOovX @DPTR, A iWRITE TO PPI, SENDS CONVERT PULSE
MoV A, #06H iPUT & IN ACCUMULATOR TO TURN OFF
MOVX @DPTR, A ; CONVERT PULSE (RESET PC3)
JNB P1.0, % i WAIT FOR CONVERSION TO GET DOME -
MOV DPTR, #PPIB i LOAD ADDRESS OF FPI PORT B INTO THE

_ i DATA POINTER

MOVX A, @DPTR i PERFORM DUMMY READ TO CLEAR IDF

iPIN ON THE PFI
SJMP ADCCAL i CONTINUE SAMPLING AND HOLDING UNTIL

i SYSTEM IS RESET

33

ovo T _
et T | oL T io-oace wisos
“* Jo 3 ol v08 M0 1500
s (01 L fioe Rt
Aste O e e
T
= z
-
n 4 o
E-NT "0
o v Mt o
o U 0%
a ves e
o ota . -
12| W
M ov
. I 2
T ¥ 0sfer— 4 ”
5 S0dter - i
T v o
Tive €0 hgr— <0 g ww.
2 L0 Ll g 20 & C
o 104 x .
7 T b <
1 ¥irie] o Nw WU
LT Y1 1m_ u Tu.‘ .
X
QO
age
o
x|
L bt scly
w|'00 oly
U had Lo 4
€00 n.‘.w.. swoly
voo - wole
00 saly
%00 P e
wo o oy
osm
3)
"
s
"N

34

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TM 88236

4. Title and Subtitle 5. Report Date

DEVELOPMENT OF AN INTERFACE FOR AN ULTRARELIABLE September 1986
FAULT-TOLERANT CONTROL SYSTEM AND AN ELECTRONIC 6. Performing Organization Code
SERVO-CONTROL UNIT

7. Author(s) 8. Performing Organization Report No.
Charles Shaver and Michael Williamson A-86196

10. Work Unit No.

9. Performing Organization Name and Address

Ames Research Center 1. Contract or Grant No.

Moffett Field, CA 94035

13. Type of Report and Period Covered

12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration 14, Sponsoring Agency Code
Washington, DC 20546 . 505-34-01

15. Suppiementary Notes
Point of contact: Charles Shaver, Ames Research Center, MS 210-5,
Moffett Field, CA 94035. (415)694-5941 or FTS 464-5941

16. Abstract

The NASA Ames Research Center sponsors a research program for the inves-
tigation of Intelligent Flight Control Actuation Systems. The use of arti-
ficial intelligence techniques in conjunction with algorithmic techniques
for autonomous, decentralized fault management of flight-control actuation

_systems will be explored.-under this program. This paper documents the
design, development, and operation of the interface and emulator equipment
for laboratory investigations of this research program. The interface,
architecturally based on the Intel 8751 microcontroller, is an interrupt-
driven system designed to receive a digital message from an ultrareliable
fault-tolerant control system (UFTCS). The interface links the UFTCS to an
electronic servo-control unit, which controls a set of hydraulic actuators.
It was necessary to build a UFTCS emulator (also based on the Intel 8751) to
provide signal sources for testing the equipment.

This paper discusses the conversion of the 8-byte message (characteris-
tic command for the four control axes of a helicopter) to the appropriate
byte length.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Interface Unlimited
Fault-tolerant control system

Actuators, Microcontroller

Redundancy Subject category - 09
19. Security Qlassif. {of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price’
Unclassified Unclassified 37 AO03

*For sale by the National Technical Information Service, Springfield, Virginia 22161

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37

