
NASA Technical Memorandum 88236

Development of an Interface for an
Ultrareliable Fault-Tolerant Control
System and an Electronic Servo-
Control Unit
Charles Shaver and Michael Williamson

September 1986

;A li A-T'I-88236)	 VLOP1T OF .N iN LIZ kAC2.
F0i Ail UL TA. EARELI1dSL E FAuLT- TOLEAN: C. iL

SYSTEM AND AN ELECTRONIC SEhVO-CONT3L uNiT

(NASA)	 37 p Avail: NTIS IC AO3/tF AJ1
CSCi 14b G3/09

NASA
National Aeronautics and
Space Administration

Na R - 13367

Urc1as
t:'l 13364

NASA Technical Memorandum 88236

Development of an Interface for an
Ultrareliable Faultw7blerant Control
System and an Electronic Servo-
Control Unit
Charles Shaver,

Michael Williamson, Ames Research Center, Moffett Field, California

September 1986

NASA
National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035

SUMMARY

The NASA Ames Research Center sponsors a research program for the investigation

of Intelligent Flight Control Actuation Systems. The use of artificial intelligence

techniques in conjunction with algorithmic techniques for autonomous, decentralized

fault management of flight-control actuation systems will be explored under this

program. This paper documents the design, development, and operation of the inter-

face and emulator equipment used for laboratory investigations of this research

program. The interface, architecturally based on the Intel 8751 microcontroller, is

an interrupt-driven system designed to receive a digital message from an ultrarelia-

ble fault-tolerant control system (UFTCS). The interface links the UFTCS to an

electronic servo-control unit, which controls a set of hydraulic actuators. It was

necessary to build a UFTCS emulator (also based on the Intel 8751) to provide signal

sources for testing the equipment.

This paper discusses the conversion of the 8-byte message (characteristic

command for the four control axes of a helicopter) to the appropriate byte length.

INTRODUCTION

The NASA Ames Research Center sponsors a research program for the investigation

of intelligent flight-control-actuation systems. This paper documents the design,

development, and operation ofthe interface and emulator equipment used for labora-

tory investigations of the research program.

The interface was designed to receive a digital message from an ultrareliable

fault-tolerant control system (UFTCS), a quadruplex asynchronous microprocessor

system, and output data to an electronic servo-control unit (ESCU), an electronic

controller for a set of hydraulic actuators. Since the UFTCS was not available for

testing the interface, a UFTCS emulator was designed and built for testing pur-

poses. The interface can also transmit a feedback message from the ESCU to the

UFTCS upon request from the UFTCS. The digital message the interface receives and

transmits contains a minimum of 12 bytes and a maximum of 76 bytes. The main fea-

ture of the message is the 8 bytes that describe the command for the four control

axes of a helicopter.

The architecture of the interface is based on the Intel 8751 microcontroller

and is an interrupt-driven system. The 8751 controls the flow and distribution of

data for receiving messages from the UFTCS and transmitting messages to the UFTCS.

This paper describes in detail the flow of data from the UFTCS through the interface

to the ESCU (receiving messages) and the data flow from the ESCIJ through the

interface to the UFTCS (feedback message). The hardware for each case is dis-

cussed. The software is also described. The various operating modes and cali-

bration routines are described, as in the interrupt structure developed for the

Intel 8751. Finally, procedures for operating the interface and the emulator

together are listed.

The UFTCS emulator was built to give the interface a signal source because the

UFTCS was not available. The emulator is also a design based on the 8751. The

primary use of the emulator is to provide a digital message for the interface to

receive and process. The variable update rates of the emulator make it possible to

study the effect of update rate on quantization. Attempts to smooth the quantiza-

tion can be made in the interface during the time between updates because no inter-

rupts are occurring. The 8-bit architecture of the 8751 makes the smoothing algo-

rithms cumbersome because the data for the control axes from the UFTCS are trans-

mitted at 16 bits/sec. Because all mathematics and shifting routines are not sup-

ported by the instruction set of the 8-bit 8751, separate routines must be written

to accomplish any calculations that must be performed to smooth the output of the

interface. The development of 16-bit microcontrollers will greatly simplify the

algorithms necessary to reduce quantization effects.

UFTS/ESCU INTERFACE DESCRIPTION

The interface developed links the UFTCS to an ESCU. The TJFTCS is a quad-

redundant, flight-control-law processor that is based on an asynchronous architec-

ture (ref. 1) and designed for testing on the UH-1H helicopter. The ESCU controls

the series hydraulic actuators for stability augmentation. The interface is also a

quad-redundant system. A fully operational interface can receive four channels of

data from the UFTCS and transmit four sets of four command signals to the ESCU.

When feedback is requested, the interface can transmit the latest position of the

actuatcrs to the UFTCS.

The interface receives digital messages from the UFTCS system. Messages are

sent from the UFTCS through differential signal lines or fiber optic cables. The
analog signal is sent to the ESCU using coaxial cables; each message is made up of

10 to 76 bytes of information. Figure 1 shows the message format for a message from

the UFTCS.

The first byte of data is the message byte count, which tells the interface how

many bytes of information will be transmitted. The message byte count is followed

by the subblock 1 byte count. Each message is divided into two subblocks. At this

time, subblock 2 is not used and has a count of zero.

The subblock 1 byte count is followed by the subblock 1 data which consist of

the aircraft commands and a block of data called "extra" data. The first eight

bytes of subblock 1 contain the aircraft commands that control the four flight axes

of the aircraft. Each command is made up of two bytes. The low byte is always

received before the high byte.

2

MESSAGE SUBBLOCK 1 ROLL ROLL PITCH PITCH
BYTE BYTE COMMAND COMMAND COMMAND COMMAND
COUNT COUNT LOW BYTE HIGH BYTE LOW BYTE HIGH BYTE

YAW YAW COLLECTIVE COLLECTIVE	 EXTRA SUBBLOCK 2
COMMAND COMMAND COMMAND COMMAND	 DATA BYTE
LOW BYTE HIGH BYTE LOW BYTE HIGH BYTE COUNT

CHECK
SUM

Figure 1.- Message from UFTCS format.

The extra data serve no purpose at this time. The subblock 2 byte count which

follows the extra data is given the number zero because no information has been

placed in subblock 2. The final byte sent is a checksum. The checksum can be

compared to that checksum formed by the interface as data were received, which

allows for message verification. However, no verification of the checksum check has

been included in this system, and no software has been designed to retransmit a bad

message.

Another function of the interface is to send feedback data to the UFTCS. The

feedback variable is the latest position of the actuators in the aircraft. The

feedback data are sent only after a request for data from the UFTCS has been

received by the interface. When a request for data has been received, the interface

reads the voltages on the feedback lines and then sends the feedback data back to

the UFTCS in digital form.

INTERFACE HARDWARE: DATA FROM THE UFTCS

The interface is made up of five boards. One board is called the signal-

distribution board. This board receives the digital messages from UFTCS and dis-

tributes the messages to the remaining four boards, called the signal-processing

boards. The signal-distribution board can receive signals in optical or differen-

tial signal form. To date, only differential signals are sent to the interface.

The hardware required on the signal-distribution board to receive messages from

the UFTCS and transmit feedback requires the following equipment.

1. Four receivers to receive messages from the UFTCS

2. One receiver to receive a request for data from the UFTCS

3.. One transmitter to transmit a sync pulse to the tJFTCS at the start of a
feedback transmission

3

LI. One transmitter to transmit feedback messages

The above circuitry has an optical mode and a differential signal mode to accommo-

date optical or differential signals.

The four signal-processing boards all contain the circuitry to receive data

from the UFTCS. One of these four boards contains the extra circuitry needed to

handle the feedback function of the interface. Feedback to the UFTCS represents the

most recent position of the actuators. Figure 2 shows the flow of data from the

UFTCS through the interface to the ESCU.

The key components used on the signal-processing boards when receiving a mes-

sage from the UFTCS are listed below.

1. Intel 8751 microcontroller

2. Harris 6 1402A Universal Asynchronous Receiver Transmitter WART)

3. Harris Programmable Peripheral Interface (PPI)

LI. Digital-to-Analog Converters (DACs)

INTERFACE

SIGNAL

PROCESSING

BOARD

SIGNAL

PROCESSING

BOARD

SIGNAL

PROCESSING I_i
BOARD

LVDT FEEDBACK I	 LVDT FEEDBACK
SIGNAL

PROCESSING

BOARD

Figure 2.- Data flow from UFTCS to ESCU.

4

Intel 8751

The Intel 8751 is an erasable programmable read only memory (EPROM) version of

the 8051 family of 8-bit microcontrollers. The crystal used to run the 8751 oper-

ates at a frequency of 10 MHz. The 8751 is an input/output (I/O) controller. The

main features of the 8751 listed below are explained in the paragraphs that follow.

1. Four 8-bit I/O ports

2. Two external interrupts

3. A serial I/O port

4. Two internal timers

Input-Output Ports- The four I/O ports are numbered 0-3. In addition to being

an I/O port, port 3, which contains the serial port and the external interrupts, can
be used as a special-functions register.

External Interrupts- The two external interrupts are used for signaling the

8751 that a message from the UFTCS has been received or that a request for data has

been sensed. The interface is capable of receiving and transmitting messages to and

from the UFTCS using a UART or the serial port of the 8751. If a UART is used, one

of the external interrupts is used to signal the-8751 that the message is in the

tJART and is ready for the 8751 to process. The second external interrupt is only

used on the signal-processing board that contains the feedback circuitry. This

interrupt is triggered when the UFTCS requests feedback data. Reception of an

external interrupt, or any interrupt, will cause the 8751 to jump to a software

routine written to service the interrupt that preempted the message being processed

by the 8751.

Serial Port- The serial port can also be used to receive and transmit informa-

tion to and from the UFTCS. The baud rate of the serial port is set by the soft-

ware, and for this application is 156K baud (156,000 bits/sec). The serial port

interrupt is internal to the 8751. This interrupt is set upon reception of a stop

bit when receiving data or transmission of a stop bit when transmitting data.

The serial port interrupt is triggered whether the 8751 is receiving or trans-

mitting data. Once the 8751 has jumped to the serial port interrupt routine, a

further check must be made to determine if the interrupt was caused by receiving

data or transmitting data. After determining the type of interrupt the interface

software then branches to the proper routine to service the interrupt.

Timers- One of the internal timers is configured as a 16-bit timer and is used

in one of the testing routines of the 8751. The other timer is configured as an

8-bit timer and serves two purposes.

The first purpose of the 8-bit timer is to monitor while the 8751 is in run

mode by guarding against an undetected end of message from the UFTCS. The second

use for the timer is to test the DACs by cycling the DACs through their output range

in 1 mm.

Universal Asynchronous Receiver/Transmitter

The UART is used on the signal-processing board to transfer data from the

signal-distribution board to the 8751. The UPLRT receives data in serial form and

sends it to the 8751 in parallel form. When the UART has received data from the

signal-distribution board, it sends an interrupt pulse to the 8751 on one of the

external interrupts.

If the UART is transmitting a feedback message to the UFTCS, the 8751 will send

the data to the UART in parallel. The UART adds the start, stop, parity bits and

then transmits the data, in serial, to the signal-distribution board. The signal-

distribution board transmits the message, in serial, to the UFTCS.

The UART uses a crystal that operates at 15 MHz which sets the baud rate of the

UART at 156K baud. The UART and the serial port of the 8751 have the same baud

rate, which allows operation of the board using a UART or the serial port of the

8751. This option is selected by setting one of the dip switches located next to

the 8751.

Programmable Peripheral Interface

The PPI receives data from the 8751, then writes the data to the DACs. The PPI

has three 8-bit ports, called A, B, and C, that can be programmed to operate in

three different modes, which are numbered 0, 1, and 2. The PPI used to receive

messages from theUFTCS has been programmed to operate in mode 0 such that ports A

and B are output ports, while 14 bits of port C are output and 14 bits are input.

The low byte of each command word is sent using port A, while the high byte of

each command is sent using port B. A latch command is sent using port C. The

16-byte command words received from the UFTCS are written to the DACs.

Digital to Analog Converter

The DACs receive the 16-bit words and convert them to analog voltages. The

latch command is used to "lock" each word into the DAC, and no new words written to

the DACs will be converted unless the latch is removed before the word is written.

The DACs have an output range of -10 volts to +10 volts and use offset binary to

represent a voltage. The format is shown as follows:

0000H = -10 volts

8000H 0 volts

FFFFH = +10 volts

The voltages output by the DACs are the voltages that the ESCU receives.

Figure 3 and the following summary describe the data flow when the interface is
receiving a message from the UFTCS.

6

*SIGNAL PROCESSING BOARD

Figure 3.- Data flow through the interface to the ESCU.

The signal reception summary is listed below.

1. Data are received by the UART or serial port of the 8751 from optical
fibers or differential signal.

2. An interrupt is sent to the 8751 to service the data.
3. The data are received by the serial port of the 8751 or a UART one byte at

a time and sent to the PPI by the 8751.
U. The PPI sends 16-bit words to the DACs.

5. The DACs output analog voltages to the ESCU.

INTERFACE HARDWARE: DATA TO UFTCS

One of the four boards that receive data from the UFTCS contains the extra

circuitry to send actuator position feedback to the UFTCS. The key components for

the feedback circuitry are shown below and are explained in the order they are

listed.

1. Analog Multiplexer

2. Sample/Hold Amplifier

3. Analog to Digital Converter

4 Programmable Peripheral Interface

7'

Analog Multiplexer

The analog multiplexer (analog mux) chooses which channel of feedback will be

read. The 8751 signals the analog mux which channel of feedback to look at. The

mux reads the channel chosen, and the voltage passes through an operational ampli-

fier (op-amp). The voltage from the op-amp then goes to the sample and hold (S/H)

chip.

Sample and Hold

The S/H amplifier passes samples of the voltage from the analog mux to the

analog to digital converter (ADC). Upon receiving a hold pulse from the 8751, the

S/H amplifier will sample the voltage on its input pin and hold that voltage on its

output pin until the next hold pulse is received.

Analog to Digital Converter

The ADC converts the analog feedback signal to a digital representation of the

voltage. The hold pulse sent to the S/H chip is also used to trigger the convert

pin of the ADC. The pulse used to trigger a conversion is passed through a flip-

flop network to delay the arrival of the convert pulse at the ADC. This ensures

that the voltage from the S/H chip arrives at the ADC before the conversion pulse.

The ADC outputs a 12-byte representation of the analog voltage. Since each

axis command is 16 bytes long, the last k bits of the voltage are set to zero. The

digital data are then passed to another PPI.

Programmable Peripheral Interface

The PPI used in the feedback circuitry is the same type used in the circuitry

to receive data from the UFTCS and is simply programmed to work in a different

mode. The feedback PPI configuration is listed as follows:

1. Port A--strobed input

2. Port B--basic input

3. Port C--handshaking/control lines

Ports A and C work together to receive parallel data from the ADC. When the

ADC has data to send, it sends a pulse to port C and after port C has received the

pulse, the digital data are received in ports A and B. When ports A and B have

received data, port A sends a pulse back to the ADC to acknowledge reception of the

data. Sending pulses back and forth between components or devices is called

handshaking.

8

Port B is receiving the second half of the message that port A receives. It is

not necessary for port B to send a pulse back to the ADC; therefore, port B works as

a basic input port.

From the PPI the information passes to the 8751 microcontroller and the digital

feedback data are then sent to the UFTCS using the serial port or the UART. Another

form of handshaking occurs before the feedback is transmitted to the IJFTCS when the

8751 sends out a sync pulse to the UFTCS which signals the UFTCS that a message is

about to be transmitted.

Figure L and the accompanying summary describe the transmission of feedback

- data when the UFTCS has issued a request for data as follows:

1. A request for data is sent from the UFTCS.

2. The 8751 receives an interrupt and jumps to a software routine to service

the interrupt.

3. The analog mux reads a channel of feedback and sends it to the S/H chip.

4. The S/H chip waits for a hold pulse and then sends voltage to the ADC.

5. The ADC receives a convert pulse and outputs digital data to the PPI.

6. The PPI transfers data to the 8751.

7. A sync pulse is sent by the 8751.

8. Data are sent to the UFTCS using a UART or the serial port of the 8751.

SIGNAL PROCESSING

BOARD

Figure IL.- Data flow through the interface to the UFTCS.

9

INTERFACE SOFTWARE

The software written for the 8751 was designed to work using the serial port or
a UART. The type of board to be used is chosen by the settings of the dip switches

located next to the 8751.

The dip switches are also used to select the different operating modes of the

board. There are two switches for choosing the type of board and six switches for

choosing the operating modes of the 8751. The type of board or operating mode is
selected by setting the switch in the off position.

The operating modes listed below are selected with two switches.

1. UART or serial port of the 8751 microcontroller
2. Feedback circuitry or no feedback circuitry

The two switches are combined with the 8751 in such a way as to yield four
possible board configurations. These are:

1. Feedback circuitry with UART

2. Feedback circuitry with serial port of the 8751
3. No feedback circuitry with tJART

L. No feedback circuitry with serial port of the 8751

Dip switches 6 and 7 are used for selecting the operating mode; it . is important to

have these switches set correctly for each board. The board-type selection chart

which shows the switch settings for each. board-type selection is shown in table 1.

TABLE 1.- BOARD-TYPE SELECTION CHART

Switch number Set Not set

6
7

UART

Feedback circuitry

Serial port

No feedback circuitry

There are seven operating modes for the interface, one of which is the run

mode, which is the mode used under normal operating conditions. The other six modes

are calibration and testing modes. The calibration and testing modes are listed

below.

1. Interboard loopback test

2. On-board loopback test (for boards with feedback circuitry only)

3. ADC calibration (for boards with feedback circuitry only)

4. DAC gain calibration

10

5. DAC offset calibration
6. DAC testing routine

The operating modes are chosen on

calibration is chosen for a board with

that board. If the test is tried when
The 8751 looks for the first mode sele
operation. All remaining switches are

for each mode selection and aslo gives

priorities are listed from the highest

a "first switch set" basis. If a test or

feedback circuitry, switch 7 must be off for

switch 7 is on, the error light will light.

tion switch set and goes into that mode of

ignored. Table 2 shows the priority level

the switch associated with each mode. The

to the lowest.

TABLE 2.- OPERATING MODE PRIORITY

Switch set	 Operating mode

(highest to lowest priority)

8	 Interboard loopback test
1	 Run mode

2	 ADC calibration

3	 On-board loopback test

DAC gain calibration

5	 DAC offset calibration

None set DAC testing routine

Interboard Loopback Test

The interboard loopback test verifies that the receivers, transmitters, and

communication between the boards are all working. The transmitter is connected to

one of the four receivers used to receive data from the UFTCS. An analog signal is

input as feedback from the ESCU. A request for data signal must be input at the
"request for data" pin.

The test is started from the feedback service routine. Since the software was

written so that data must be received before it is transmitted, register 5 of regis-
ter bank 0 is set to 8. This makes the 8751 think it has received some data.

The 8751 will sample the analog signal, convert it to digital, and transmit it
over optical fibers or differential signal lines to another board. The board

receiving the data will convert the signal back to analog and output the signal on

the board that received the digital signal. The output should be a sampled version
of the analog feedback signal.

On-board Loopback Test

The on-board loopback test will sample the analog feedback signal input at the

ESCU feedback pins at approximately 50-msec intervals. An analog to digital con-
version will be done on the signal, and the 16-bit word will be written to all four

DACs simultaneously. The output of the DACs will again be a sampled representation

of the analog feedback signal.

ADC Calibration

The ADC calibration will cause the 8751 to send a hold pulse to the S/H chip

every 33 usec. The signal on the input to channel one of the analog rnux will be

sampled by the S/H chip or amplifier. Thus, the input at channel one should be a

precision voltage source.

Adjust the voltage source until it reads -9.9999 volts. Adjust the S/H chip

potentiometer until it reads -9.9999 volts. Adjust the ADC output until it reads

FFEH.

DAC Gain Calibration

The 8751 will write the value 0000H to each DC. Adjust each DAC gain poten-

tiometer until the DAC output reads -10.000 volts.

DAC Offset Calibration

The 8751 will write the value 8000H to each DAC. Adjust each DAC offset poten-

tiomEtr until the DAC output reads 0.0000 volts.

DPLC Testing

The DAC test will run the DACs through their output range of -10-volts to

+10 volts. Once +10 volts is reached, the DACs will run backward to -10 volts. The

run up to +10 volts and back down to -10 volts is one cycle. Timer 1 is used to

make a complete cycle last about 2 mm. The test verifies that the DACs operate

correctly and continues until the the interface has been reset.

Interrupts

The software is designed to be compatible with an interrupt-driven system,

which means that the 8751 will do nothing until an interrupt has been sensed. When

an interrupt has been sensed, the 8751 will jump to an appropriate software routine

to service the interrupt.

The 8751 is designed so that priority levels can be established for the inter-

rupts. An interrupt can be assigned a high or low priority. A low-priority inter-

rupt can be interrupted by a high-priority interrupt, but a high-priority interrupt

cannot be interrupted.

Receiving data from the UFTCS is more important than sending feedback to the

IJFTCS. For this reason, the UART and the receive pin of the serial port are

assigned a higher priority. Timer 1 also carries higher priority since it monitors

the reception of data from tJFTCS.

The type of interrupt scheme used depends on whether a UART or serial port is

being used. The interrupt schemes for each type of board are listed in table 3.

TABLE 3.- INTERRUPT SCHEMES

Interrupts for UART

Interrupt Priority

*INT1 High

Timer 1 High
*INTO Low

Timer 0 Low

Interrupts for serial port

Serial port High

Timer 1 High

*INTO Low

Timer 0 Low

Operation with a UART

There are four interrupts active when a UART is used to receive and transmit

data from the UFTCS. The interrupt, *INT1, is used to signal the 8751 that a mes-

sage has been received in the UART and is assigned a high priority so that no incom-

ing information will be lost. Timer 1 monitors incoming messages to guard against

an undetected end of message.

13

The interrupt, *INTO, is used only on boards with feedback circuitry and is

triggered when the JFTCS requests feedback data. This interrupt has a low priority

so that it can be interrupted if incoming data have just been received.

Timer 0 is used to test the DACs and therefore is not used when the interface

is in the run mode. The timer 0 interrupt is assigned a low priority since it is

the only interrupt active when in use.

Operation with the Serial Port of the 8751

There are also four interrupts active when the-interface is used with the

serial port of the 8751. The only difference between the two configurations (serial
port or UART) is the interrupt used to signal the 8751 that incoming data have been
received. Since the serial port of the 8751 has a "built-in" interrupt, it is not
necessary to use *INT) to signal that an incoming message has been received. This

built-in interrupt has high priority so that messages being received have higher

priority than feedback messages being transmitted to the UFTCS.

being received

structure is

receiving or

entering the

t data-

The serial port interrupt routine is designed so that a message

is serviced before a message being transmitted. The reason for this

that the 8751 serial port interrupt is triggered whether the 8751 is
transmitting data. Therefore, a further test must be performed when

serial port service routine to ensure that the 8751 enters the corre
processing routine--either for receiving or transmitting data.

Appendix P. contains schematics of the signal-distribution board, the signal-

processing board, and the feedback circuitry present on one of the signal-processing

boards.

tJFTCS EMULATOR

The UFTCS emulator simulates the digital message transmitted by the tJFTCS

flight-control system. The UFTCS emulator sends messages to the UFTCS/ESCU inter-

face. The emulator is used to test and verify the software written for the inter-

face. It is also used to drive the interface for testing the hydraulic actuator.

The message sent by UFTCS has the format shown in figure 5.

The length of a message sent by the UFTCS varies from 10 to 76 bytes. The
variation in message length is . a function of the number of bytes sent to the inter-

face as extra data. The extra data, if sent, have a length ranging from 1 to

66 bytes.

14

MESSAGE SUBBLOCK 1 ROLL ROLL PITCH
BYTE BYTE COMMAND COMMAND COMMAND
COUNT COUNT LOW BYTE HIGH BYTE LOW BYTE

PITCH YAW YAW COLLECTIVE COLLECTIVE
COMMAND COMMAND COMMAND COMMAND COMMAND
HIGH BYTE LOW BYTE HIGH BYTE LOW BYTE HIGH BYTE

EXTRA	 SUBBLOCK2 CHECKSUM
DATA	 BYTE

COUNT

Figure 5.- Emulator message format.

The UFTCS emulator has three important features.

1. Calibration or run mode

2. Variable message update rates

3. Variable message lengths

The desired mode of operation is obtained by setting the dip switches located

on the emulator. A switch is set by pushing it toward the open position.

There are two dip switches, each equipped with four switches, on the board.

One dip switch contains the calibration and message update rate selection, while the

other dip switch contains the message length selection switches.

The calibration and update dip switch contains the switches to set the message

update rate and operating mode of the UFTCS emulator. The message update rate

selection switches operate on a "first switch set" structure. The software tests

each switch and chooses the update rate of whatever switch is set. All remaining
switches are then ignored.

Table L shows the switch settings for the calibration and update switch and the

message update rate switches listed in highest to lowest priority.

The message length dip switch sets the byte length of the UFTCS emulator.

These switches also work in a "first switch set" mode. The software polls the

switches from highest priority to lowest priority, and uses the message length

associated with the first switch set while the other switches are ignored. If no

switch is set, the message length for a "no switch set" is used. The message length

is varied by sending a different amount of extra data at the end of the message; the

extra data are the only part of a UFTCS message that is variable. Table 5 shows the

message lengths associated with each switch.

15

TABLE 4.- CALIBRATION AND UPDATE RATE

Calibration

Switch number Switch set Switch not set

1 ADC calibration Run mode

Message update rate selection

Switch number Message update rate, msec

2

3
14

None set

25

10

9.2

50

TABLE 5.- MESSAGE LENGTH

Switch number Message length, bytes

1 76

2 36

3 20

None set 10

EMULATOR HARDWARE

The UFTCS emulator consists of 13 chips. The major chips used in the emulator,

which are listed below, are discussed in this section.

1. SMP--11 S/H chips

2. Burr-Brown ADC

3. Harris 82C55 PPI

4. Intel 8751 microcontroller

16

To place the emulator in run mode, move switch 1 of the .calibration and update
switches away from the open position..

Sample and Hold

The S/H amplifier chip is used to take samples of the analog input signal by

tracking this signal until a hold pulse is received from the 8751. Once the hold

pulse is received, the voltage present on the input pin of the S/H chip is placed on

the output pin of the S/H chip. The voltage on the output pin of the S/H chip is

input to the ADC.

Analog to Digital Converter

The ADC receives a convert pulse shortly after the S/H chip places the voltage

on the line. The convert pulse must occur after the voltage appears at the input

pin of the ADC to allow for the voltage to become stable. After receiving the

convert pulse, the ADC outputs a digital representation of the input analog volt-

age. This particular ADC outputs a 12-bit representation of the voltage and is

called a 12-bit converter.

Programmable Peripheral Interface

The ADC does some handshaking with the PPI. When the ADC is finished convert-

ing, the status line of the converter is driven low. This high to low transition is

passed through an inverter (7 14LS0 14) and is input to the clock pin of a D flip-flop

(74LS714). The low to high transition that occurs on the flip-flop clock pin places

the Q output high and the NOT Q output low. The Q output is tied to an octal latch

(Intel 8282) and the NOT Q is tied to the PPI. The low pulse of the NOT Q signals

the PPI that data are being sent to the PPI, which sends back a high pulse to

respond that the data have been accepted. The high pulse from the PPI clears the

flip-flop and puts the Q output low and the NOT Q output high.

The octal latch is used to pass 8 bits to the PPI. The ADC outputs 12 bits,

but the PPI reads 16 bits. The high 14 bits of the output of the octal latch are the

least significant bits of the ADC output. The low four bits of the octal latch are

tied high. These bits are tied high because the 8751 will complement the output

before transmitting it to the interface. The output is low and will not add a

direct current (DC) offset to the ADC output. In addition to sending a handshake

signal to the ADC, the PPI also signals the 8751 that the data are ready to be

read. The PPI acts as a middle man between the 8751 and the ADC.

Another function of the PPI is to send the hold pulse, when directed by the

8751, to the S/H chip and the convert pulse to the ADC.

17

Intel 8751

The 8751, which is the core of the UFTCS emulator, forms the entire message and
transmits it through its serial port at a baud rate of 156K. The message byte count
and subblock 1 count are the first two bytes transmitted. Next, the 8751 directs
the PPI to signal the S/H chip and the ADC to sample the analog input and place a

digital representation of the input analog voltage on the line for the 8751 to read
from the PPI. This digital representation makes up the next 8 bytes of the mes-
sage. These 8 bytes represent the roll, pitch, yaw, and collective axes for the
aircraft. These 8 bytes are then transmitted out the serial port of the 8751.

Following the 8 bytes of command axes, the extra data are sent, the length of
which can be chosen by the user. The amount of extra data sent can be calculated

from the message length table and it is always 10 bytes less than the message

length.

Table 6 shows the correlation between message length and the amount of extra
data sent.

TABLE 6.- EXTRA DATA

Switch number Extra data, bytes Message length, bytes

1 66 76
2 26 36
3 10 20

None set 0 10

Once the 8751 has transmitted all the extra data, the subblock 2 count and a
checksum are transmitted. Transmitting the checksum signifies the end of a mes-

sage. The 8751 will delay an amount of time chosen by the user before starting the
transmission of the next message the time between messages is listed in table 4.

The emulator will continue to transmit messages as long as the emulator is in run

mode. Figure 6 summarizes the transmission of a message by the UFTCS emulator.

18

A/D PPI
CONVERTER

TA FLOW]

ANALOG
INPUT

SAMPLE

AND

UFTCS

TO

ESCU

INTERFACE

SERIAL
8751 PORT

EMULATOR

CONTROL LINES

MESSAGE
LENGTH

SWITCHES

CALIBRATION

AND

UPDATE RATE

SWITCHES

Figure 6.- Emulator message transmission.

OPERATIONAL PROCEDURES

UFTCS Emulator with UFTCS/ESCU Interface

To ensure proper synchronization between the UFTCS emulator and the interface,

the following steps must be taken when powering up or resetting the system.

1. If powering up, connect the power cable to the interface and to the emu-

lator. The ends of the power cable are clearly marked.

2. First turn on the 5-volt supply, then the 15-volt supply.

3. Hold the reset switch of the emulator down and flick the reset switch of

the interface. Now release the switch of the emulator. This ensures that the

19

interface is ready to receive a message before the emulator starts sending a

message.

If the systems need resetting only, then only the third step needs to be

followed.

If the interface has been running with a request-for-data pulse, the function

generator supplying the request pulse must be turned off before the systems are

reset or an error will occur. (The red light on the interface board that handles

feedback will light up immediately after a reset is attempted.)

Analog to Digital Converter Calibration

To calibrate the ADC, switch 1 of the calibration and update switches must be

set. The following steps should then be followed:

1. Power up the emulator--5-volt supply first, 15-volt supply second.

2. Attach a precision voltage supply to the emulator analog input and set the

voltage to +9.999 volts.

3. Attach a logic analyzer to the output pins of the emulator ADC (12 pins).

4. Flick the reset switch of the emulator and monitor the voltage out of the

S/H chip. Set this voltage to +9.999 volts, using the S/SH offset adjustment

potentiometer.

5. Adjust the output of the ADC to read 000H using the gain adjust

potentiometer.

6. Reverse the polarity of the supply to read -9.999 volts and adjust the

output of the ADC to read FFEH using the ADC offset potentiometer.

To return to run mode, switch 1 of the calibration and update switches must be

set to the off position and the interface and the emulator reset as described in the

previous section.

Appendix B contains a schematic of the UFTCS emulator, as well as a listing of

the software written for the 8751 used in the emulator.

CONCLUDING REMARKS

The UFTCS-to-ESCU interface was initially developed as a data interface between

the UFTCS (flight-control computer) and the ESCU (controller for the hydraulic

actuators).

20

The emulator was developed to provide a digital message to the interface, was

first used to verify its operation, and is now used as a signal source to the

interface.

Because the interface has a microprocessor on board, the interface can and has

been used to investigate the application of microprocessors to the control of

flight-actuation systems. The interface has a limited capability to investigate

command smoothing and in-line monitoring models in real time. These algorithms can

be executed between message updates since the interface is interrupt-driven. There-

fore, these algorithms are only executed when the UFTLS interrupts a message

update. The variable update rates of the emulator allow investigations into the

effect of update rate upon quantization.

The interface does, however, have limitations as a research tool. Since the

8751 is an 8-bit microcontroller and the commands used are 16 bits, the computations

are cumbersome (such as requiring separate subroutines for all mathematical and

shifting routines). An interface designed to complement the newer 16-bit microcon-

trollers would simplify the computations significantly.

REFERENCES

1. Webster, L. D.; Slykhouse, R. A.; Booth, L. A., Jr.; Carson, T. M.; Davis,

G. J.; and Howard, J. C.: Ultrareliable Fault Tolerant Control Systems.

AIAA Paper 84_2650, 1984.

21

APPENDIX A

tJFTCS/ESCU INTERFACE SCHEMATICS

ECSDiNG PAGE EU

23

a .

Cc

V2

E:

••K.	 I	 I 	.
iOHidUIflUui

M hUilDH üI hi iHflUUUfl 	 mnnu A

IIII .	 I !IIII	 IIIIIuI;

I ILJ 'I -
ax 9

0 _______
&

id

ff 1jAj.
3

ft

21$	
ORIGINAL PAGE 13
OF POOR QUALfl

Oi:::::L.:,
25	

QU2.Li7r

cr co
i,i

+
ThL

14
tt

•	 k-Il'	 Hi.

st I !T;i T jjj	 -4 W,
IT

I	 !ih
\/	 (

S S

26	
ORIGINAL
OF POOR QUAL"S

APPENDIX B

(JFTCS EMULATOR LISTING AND SCHEMATIC

27

L...L1 • ii'.,	 -' tilt	 I IL.	 'it	 L.l'I¼._,

.* This	 program will	 simulate	 the RAMPS flight control	 system.	 The program

.4* will	 transmit	 the following message:

* ** 	 *
* Message * Subblock 	 1 * Roll * Roll * Pitch * Pitc.h * Yaw	 Yaw

4* * Byte	 * Count	 * Low	 High * Low	 It High	 * Low	 * High *	 *
* Count	 *	 * Byte *Byte * Utjte	 * byte	 * Byte	 E	 131t	 *	 k

• * ********************************.******************************,.****

* ***	 *
4* * Collective * Collective * Extra * Subblock 	 2 * Checksum *	 fl•

;* * Low	 * High	 * Data	 * Count	 *	 *
.4* * Byte	 * Byte	 *	 *	 *	 *
j* ***	 *

*
The Message Byte Count 	 is	 set to	 15 and	 the Subblock	 1	 Count	 is	 13.	 *

The Roll,	 Pitch,	 Yaw.	 and Collective	 take up	 eight bytes	 of Subblock	 1.	 *
* The Extra Data will use five bytes.
* Following	 the Extra Data	 is	 the Subblock 2 count.	 This has been set to *
* zero.	 The Checksum has no use 	 in the RAMPS system and has been set to	 *
* FFH.	 3:-

This program uses the serial 	 port and timer 0 of the 5751 	 to transmit a *
message.	 The	 serial	 port	 is	 initialized	 to operate as a 9 bit UA1T with 	 a	 r-

;* baud	 rate	 of	 156k.
* A message will	 be transmitted	 by	 the serial	 port followed	 by	 about .a

lm-3	 delay	 until	 the messasge	 is	 transmitted	 again.
* The command axes will derive their	 inputs from a function generator

connected	 to	 the	 circuit.

NAME RMPSIM

EGUiVI ES
PPIA EGU 0000H	 ;ADDRESS OF PPI PORT A
PPIB EGU 0100H	 ;ADDRESS OF PPI PORT 3
CWR EGU 0300H	 ,ADDRESS OF PPI CONTROL WORD RECISTER

DEFINF BITS
TX BUSY BIT 3EH	 iTRANSMITTER AND TIMER 0 BUSY FLt\(

ORG 000C)H
SJMP START

01W 00014H

TIMER 0 INTERRUP1 SERVICE ROUTINE
TZERO: CLR TCDN. 4	 ; CLEAR BIT TO TURN OFF TINE 	 0

CLR TX BUSY	 ;CLEAR TIMER 0 BUSY FLAG
MOV THO,R2	 RELOAD TIMER 0 WITH SELECTED
MOV TL.0.R1	 .UPDATE RATE
REII

ORG 00''H

SERIAL PORT INTERRUPT SERViCE ROUTINE
RLPRT: CLR TI	 ;CLEAR rRANSNIT INIERRUPT FAIG

CLR TX BUSY	 ;CLEAR TRANSMJTER BUSY FLAG
RETI 28

AC ALL
MOV
ic
MDV
'JC
MDV
'JC
MDV
ic
MO')
MDV
JMP
MDV
MDV
JMP
MDV
MDV
UMP
MDV
MDV
MDV
MDV
MDV
'JC
MOV
,JC
MDV
'JC
MDV
MDV
MDV
JMP
MDV
tlOV
MOV
SJMP
MOV
MDV
MDV
JMP
MDV
MDV
MOV
SETB
JMP

LJMP

INIT
C. P1. 1
DDADC
C, P1.2

25MS

C, P1.3

1 DM5

C1 P1. 4
FAST
R2, #5DH
Ri, #3CH
GO
R2, #OAEH
Ri, *9011
Go
R2, *ODFH
Ri, *73H
GO
R2, *OE2H
Ri, *O2AH
THO, R2
TLO, R
C, P2. 3
_76B YTE
C, P2. 4
_36BYTE
C1 P2. 5
_20B YTE
R3, ftOAH
R4. #OBH
R5, #OOH
GOCO
R3. *4CH
R4, #4AH
R5, #4211
GOGO
R3, #24H
R41 #22H
R5, #LAH
GOOD
R3, #14H
R4, #12H
R5, #OAH
IE. 7
XMITMSG

ADCCAL

START

_25MS

_1OMS

FAST:

00:

_74BYTE

_3613 YTE

_20!3 YTE

GOOD:

DIJADC:

ORG OO'OH
MOV	 SP,*IOH 1INTIALIZE STACK POINTER, STARTS AT

;RO OF REGISTER BANK 3
CO TO INITIALIZATION ROUTINE
;CHECK FOR ADC CALIBRATION
IF SET CO TO CALIBRATE AD(:
CHECK FOR SELECTED MESSAGE UPDATE RATE
IF CHOSEN, USE 25MS UPDATE RAIE
CHECK FOR SELECTED MESSAGE UPOATE RATE
IF CHOSEN, USE IOMS UPDATE RATE
CHECK FOR SELECTED MESSAGE UPDATE RATE
IF CHOSEN, USE FASTEST UPDATE RAE
IF NO SWITCHES SELECTED, USE DONS
UPDATE RATE

USE Ri AND R2 TO HOLD COUNT FOR
;SELECTED UPDATE RATE (25MS)

;USE Ri AND R2 TO HOLD COUNT FOR
,SELECTED UPDATE RATE (10MS)

;USE Ri AND R2 TO HOLD COUNT FOR
;SELECTED UPDATE RATE (9. M)
LOAD TIMER 0 WITH SELECTED
UPDATE RATE
;CHECK FOR NUMBER OF EXTRA BYTES TO
SEND, THIS DETERMINES MESSAGE LENGTH
;CHECK FOR NUMBER OF EXTRA BYTES 10
;SEND, THIS DETERMINES MESSAGE LENGTH
;CHECK FOR NUMBER OF EXTRA BYTES TO
SEND, THIS DETERMINES MESSAGE LENGTH..
IF NO SWITCHES SET, MESSAGE COUNT	 10

;SUBBLOCK 1 COUNT	 S
EXTRA BYTES = 0

IF SWITCH 1 SET, MESSAGE COUNT
;SUBBLOCR 1 COUNT = 74
;EXTRA BYTES = 66

$ IF NO SWITCHES SET, MESSAGE COUNT = 36
SUBBLOCK 1 COUNT = 34
;EXTRA BYTES	 26

IF NO SWITCHES SET, MESSAGE COUNT = 20
;SUBBLOCK 1 COUNT = 18
;EXTRA BYTES	 10
ENABLE INTERRUPTS
IF NOT SET START TRANSMITTING
RAMPS MESSAGE
;JUMP TO ADC CALIBRATION ROUTINE

OIU'.1NJL

DF. EOOR QUALiTY

29

THIS IS THEINITIALIZATION ROUTINE FOR THE RAMPS SIMULATOR. 	 THIS	 *
* SECTION OF CODE WILL SET UP THE SERIAL PORT AND TIMER 0 ON THE 8731.	 THE	 *

ROUTINE ALSO INITIALIZES THE HARRIS PERIPHERAL INTERFACE (PPI). 	 THE 8751	 *

AND THE PPI ARE INITIALIZED AS SHOWN BELOW:
K-

PPI
3:-

* PORT A - BASIC INPUT
PORT B STROBED INPUT
PORT C - HANDSHAKING AND CONTROL

K.

-	 crisi

SERIAL PORT - 156K BAUD,	 ODD PARITY (9 BIT UART)	 *

TIMER 0	 - 13 LilT TIMER (MODE 0)

THE INTERRUPTS FOR THE SERIAL PORT AND TIMER 0 HAVE BOTH BEEN SET TO
HAVE HIGH PRIORITY.

INIT: MOV. DPTR14tCWR ,MOVE ADDRESS OF PPI CONTROL. REGISTER
410 DATA POINTER

MO') A, #96H i PUT CONTROL WORD IN ACCUMULATOR
MOVX DPTRIA ;WRITE CONTROL WORD TO PPI
MOV A,*0H ;SET PC2 IN PPI TO ENABLE INIE B
MOVX @DPTRIA ;WRITE TO PPI,	 SETS PC2
MDV A,*06H iSET PC3 IN PPI FOR A/D CONVERT PULSE
MOVX @DPTRSA ;ENABLE
MDV TMOD,*01H. ;PLACE TIMER 0 IN MODE 1	 (16 BIT TIMER)
MO') SCON.#80H ;PLACE SERIAL PORT IN 9 BIT UART MODE
MOV A,*OOH ;CLEAR ACCUMULATOR TO INITIALIZE 1W
MOV RO,A ;INITIALIZE RO TO ZERO
SETS IE.4 ENABLE SERIAL PORT INTERRUPT
SETS IE. 1 ENABLE TIMER 0 INTERRUPT
SETS IP.4 ;SET SERIAL PORT TO HIGHER PRIORIT'(
SETS IP. 1 SET TIMER 0 TO HIGHER PRIORITY
CLR TX BUSY ;SET TRANSMITTER FLAG TO NOT BUSY
CLR PSW. 4 CLEAR PSW. 4 AND PSW. 3 TO SELECT
CLR PSW.3 1REGISTER BANK 0
RET ,RETURN FROM SUBROUTINE

THIS IS THE MAIN BLOCK OF CODE FOR THE RAMPS SIMULATOR. 	 THIS CODE *

* USES THE SERIAL PORT OF THE 8751 TO TRANSMIT A "RAMPS LIKE" MESSACE.
THE FORMAT OF THE MESSASGE IS EXACTLY AS IT IS SPECIFIED IN THE BEGINNING *

OF THE PROGRAM.	 IN SUMMARY,	 THE MESSAGE FORMAT IS: *

4* K-

* ** *

* Message * Subblock 	 1 * Roll * Roll * Pitch * Pitch * Yaw	 * Yaw	 *

;* * Byte	 * Count	 * Low	 * High * Low	 * High	 * Low	 * High *

* * Count	 *	 .	 * Byte * Byte * Byte	 * Sijte	 * Byte * Iitjte * *

* ** *

* **
* Collective * Collective * Extra * Subblock 2 * Checksum * - K-

.* * Low	 * High	 * Data	 * Count	 *	 * K-

;* * Byte	 * Byte	 *	 *	 *	 * K--

* ***

Me

MIT_r1SC: MOV A, R3
ACALL PARITY
SETI3 TX—BUSY
MDV SBUF,A

TXMTI: JNB TI,BUSY1
DUSY1: •JB TX_BUSY, TXMTJ

MOV A.R4
ACALL PARITY
SETH TX—BUSY
MOV SBUF,A

TXMT2: JNB TI. BUSV2
3USY2: iB TX_BUSY, TXMT2

FORM MESSAGE BYTE COUNT IN ACCUMULATOR
;SET UP PARITY BIT - USE ODD PARITY
;SET TRANSMITTER BUSY FLAG TO BUSY
;START TRANSMITTING MESSAGE BYTE COUNT
,WAIT FOR TRANSMITTER TO FINISH
TRANSMITTING MESSAGE
FORM SUB BLOCK 1 COUNT IN ACCUMULATOR
.SET UP PARITY BIT -. USE ODD PARITY
SET TRANSMITTER BUOY FLAG TO BUOY
;START TRANSMITTING SUBBLOCR 1 COUNT
;WAIT FOR TRANSMITIER TO FINISH
TRANSMITTING MESSAGE

THE A_TO_D ROUTINE USES A SAMPLE/HOLD WITH AN ANALOG TO DIGITAL
CONVERTER TO TRANSMIT THE 8 BYTES FOR NEEDED FOR THE FOUR COMMAND AXES. 	 *

* EACH COMMAND AXIS IS MADE UP OF TWO BYTES. THE LOW BYTE ALWAYS PRECEDES *
THE HIGH BYTE.	 *

THE ROUTINE BELOW IS LOOPED THROUGH EIGHT TIMES USING RO IN REGISTER	 *
* ZERO AS THE COUNTER FOR THE LOOP.

A_TO_D: INC R
MDV DPTR,*CWR

MOV A. *07H
MOVX @DPTRIA
MOV A,*O6H
MDVX @DPTRSA
MDV DPTR,*PPIA

.JNB	 - P1.01$
MOVX A,@DPTR
ACALL PARITY
SETH TX—BUSY
MDV SBUF.A

TXMT3: JNB TI,BUSY3
I3USY3: is TX_BUSY, TXMT3

MDV DPTRIftPPIB

MOVX A,@DPTR
ACALL PARITY
SETH TX—BUSY
MDV SBUF,A

TXMT4: .JNR TI,BUSY4
BUSY4: JB TX_BUSY. TXMT4

CJNE RO. *04H. A_TO_D

MOV A, *OOH
MDV RO.A

INCREMENT LOOP COUNTER
;LOAD ADDRESS OF CONTROL WORD REGISTER
INTO THE DATA POINTER

;SET PC3 OF PPI TO START All>
CONVERSION
;RESET PC3 OF PPI TO REMOVE CONVERSION
COMMAND
LOAD ADDRESS OF PPI PORT A INTO THE

;DATA POINTER
,WAIT FOR A/D CONVERSION TO F-INISH
;READ LOW BYTE OF COMMAND FROM PPI
;SET UP PARITY BIT - USE ODD PARITY
;SET TRANSMITTER BUSY FLAG TO BUSY
;START TRANSMITTING LOW BYTE OF COMMAND
;WAIT FOR TRANSMITTER TO FINISH
TRANSMITTING MESSAGE

;LOAD ADDRESS OF PPI PORT B INTO THE
;DATA POINTER
;READ HIGH BYTE OF COMMAND FROM PPI
;SET UP PARITY BIT - USE ODD PARIIY
;SET TRANSMITTER BUSY FLAG TO BUSY
;TRANSMIT HIGH BYTE OF COMMAND
;WAIT FOR TRANSMITTER TO FINISH
TRANSMITTING MESSACE
IF RO IS NOT 8, THEN ALL THE COMMAND
BYTES HAVE NOT BEEN TRANSMITTED

;CONTINUE UNIIL DONE
CLEAR ACCUMULATOR TO RESET RO
;RESET RO FOR NEXT LOOP

31

*	 THIS ROUTINE WILL TRANSMIT THE EXTRA DATA USED IN THE RAMPS SIMULATE))
MESSAGE. 1W OF REGISTER BANK 0 IS USED AS A COUNTER IN THIS LOOP. FIVE *

* BYTES OF DATA ARE TRANSMITTED AS EXTRA DATA. THE DATA WILL BE THE CURRENT -
VALUE OF THE LOOP COUNTER (R0).

MDV A, R5
JZ NOBYTES
MOV A,R5
MOV Ro,A

EXDATA: INC RO
MDV A,R0
ACALL PARITY
SETS TX BUSY
MDV SBUF,A

TXMT5: JNB TI,BUSY5
13USY5: JB TX_BUSY, TXMT5

DEC R6
MOV A.R6

JNZ EXDATA
:40I3YTES: MOV A,*OOH

MOV RO1A

ACALL PARITY
SETS TX BUSY
MDV SBUFIA

TXMT6: JNI3 TI.BUSY6
I3USY6: JB TX_I3USY.TXMT6

MDV A. *OFFH
ACALL PARITY
SETS TX BUSY
MOV SI3UF,A

TXMT7: JNB TI, BUSY7
I3USY7: JB TX_I3USY.TXMT7

;SEE IF THE EXTRA BYTE COUNT IS
ZERO AND JUMP AROUND IF IT IS
USE R6 AS THE LOOP COUNTER

;R0 ACTS AS EXTRA DATA BYTE
;PREPARE TO TRANSMIT EXTRA DATA
,SET UP PARITY BIT - USE ODD PARITY
,SET TRANSMITTER BUSY FLAG TO BUSY

;START TRANSMITTING EXTRA DATA
;WAIT FOR TRANSMITTER TO FINISH

TRANSMITTING MESSAGE
DECREMENT THE LOOP COUNTER
IF ACCUMULATOR IS NOT ZERO THEN ALL

;EXTRA DATA HAS NOT BEEN TRANSMITTED
;CONTINUE UNTIL DONE
;CLEAR ACCUMULATOR TO RESET RO
,RESET RO AND TRANSMIT AS

SUBBLOCK 2 COUNT
;SET UP PARITY BIT - USE ODD PARITY
;SET TRANSMITTER BUSY FLAG TO BUSY
START TRANSMITTING SUBBLOCK 2 COUNT

;WAIT FOR TRANSMITTER TO FINISH
;TRANSMITTING MESSAGE
;LOAD ACCUMULATOR WITH DUMMY CHECKSUM
;SET UP PARITY BIT - USE ODD PARITY
;SET TRANSMITTER BUSY FLAG TO BUSY

START TRANSMITTING DUMMY CHECKSUM
;WAIT FOR TRANSMITTER TO FINISH

TRANSMITTING MESSAGE

THE FOLOWING CODE LOADS TIMER 0 WITH A VALUE THAT WILL MAKE IT TIME OUT *
* IN A LITTLE OVER 1MS. AFTER THE TIMER TIMES OUT, THE NEXT MESSAGE IS	 *

* IS TRANSMITTED.	 *

SETS	 TX BUSY
SETS	 ICON. 4

tN1R1:	 JNB	 ICON. 5,TI3USY1
TI3USY1:	 J2	 TX_BUSY. TMRI

LJMP	 XMIT_MSG

;SET TIMER BUSY FLAG TO BUSY
;START TIMER 0
WAIT FOR TIMER TO TIME OUT BEFORE

;TRANSMITTING THE NEXT MESSAGE
JUMP TO START THE NEXT MESSAGE

	

THE FOLLOWING SHORT ROUTINE ADDS THE PARITY BIT TO THE MESSAGE. THE	 *

	

* PARITY 1311 IS THE 9TH BIT TRANSMITTED AND IS PLACED IN THE SERIAL PORT	 *

CONTROL REGISTER - BIT 3 (SCON.3). ODD PARITY IS USED.	 *

PARITY:	 MDV	 C,P	 ;MOVE PARITY BIT TO CARRY FLAG
CPL	 C	 ;COMPLEMENT CARRY FOR ODD PARITY
MOV	 SCON.3,C	 ;PLACE IN SCON.3 AS 9TH BIT

-	 RET	 ;RETURN FROM SUBROUTINE

32

ANALOG TO DIGITAL CONVERTER / SAMPLE AND HOLD CALIBRATION 	 *

;* *

, THIS ROUTINE REQUIRES A PRECISION VOLTAGE SUPPLY BE CONNECTED TO THE	 *

* OP-AMP INPUT OF THE RAMPS SIMULATOR. 	 *

* THE PROCEDURE IS AS FOLLOWS: 	 *

A) OFFSET ADJUSTMENT
1.	 ASSERT SWITCH 1 OF DIPSWITCIIES, 	 RESET SIMULATOR AND ALLOW TO WAflrl	 *

UP 10 MINUTES BEFORE ATTEMPTING A CALIBRATION. 	 *

2.	 CONNECT THE PRECISION VOLTAGE SOURCE TO THE OPAMP INPUT OLT THE	 *

SIMULATOR	 *

3.	 SET THE PRECISION VOLTAGE SOURCE TO -9.999V	 *

4.	 ADJUST THE SAMPLE/HOLD POTENTIOMETER UNTIL THE SAMPLE/HOLD OUTPUT	 *

* OUTPUT READS -9.999V
5.	 ADJUST THE ADC OFFSET POTENTIOMETER UNTIL THE ADC OUTPUT READS	 *

* FFEH
*

* B) GAIN ADJUSTMENT 	 *

1.	 SWITCH THE POLARITY OF THE PRECISION VOLTAGE SOURCE SO THAT THE	 *
* OUTPUT OF THE SOURCE IS NOW +9.999V	 *

2.	 ADJUST THE ADC GAIN POTENTIOMETER UNTIL THE ADC OUTPUT READS
* 00014

DCCAL: CLR	 IE.7	 DISABLE INTERRUPTSI THEY AREN'T NEEDED
MOV	 DPTRI#CWR	 ;LOAD ADDRESS OF PPI CONTROL WORD

;REGISTER INTO THE DATA POINTER
MDV	 . A. #07H	 ;MOVE WORD TO SET PC3 INTO ACCUMULATOR
MOVX	 @DPTR.A	 WRITE TO PPI,	 SENDS CONVERT PULSE
NOV	 A. *06H	 ;PUT 6 IN ACCUMULATOR TO TURN OFF
MOVX	 @DPTR,A	 ;CONVERT PULSE (RESET PC3)
JND	 P1.0,$;WAIT FOR CONVERSION TO GET DONE
MDV	 DPTR.#PPIB	 ;LOAD ADDRESS OF PPI PORT B INTO THE

;DATA POINTER
MOVX	 A. @DPTR	 ;PERFORM DUMMY READ TO CLEAR 113F

PIN ON THE PPI
SJMP	 ADCCAL	 .CONTINUE SAMPLING AND HOLDING UNTIL

;SYSTEM IS RESET
END

33

• __ _

rtri	 L...1 I1'I

IL

Wisp

o { J41JJ LTflTt!] ___

JE _4 lip

2.i_L_.._r Et-Li
1 I _.ilflTl'L__ 1

hi

i'

c,F ?GO

1. Report No. 2. Government Accession No. 3. Recipient's Catalog No.

NASA TM 88236
4. Title and Subtitle
DEVELOPMENT OF AN INTERFACE FOR AN ULTRARELIABLE

5. Report Date
September 1986

FAULT-TOLERANT CONTROL SYSTEM AND AN ELECTRONIC 6. Performing Organization Code

SERVO-CONTROL UNIT

7. Author(s) B. Performing Organization Report No.

Charles Shaver and Michael Williamson A86196
10. Work Unit No.

9. Performing Organization Name and Address

Ames Research Center
11. Contract or Grant No.

Moffett Field, CA 94035
13. Type of Report and Period Covered

Technical Memorandum 12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration 14. Sponsoring Agency Code

Washington, DC 20546 505-34-01

15. Supplementary Notes

Point of contact:	 Charles Shaver, Ames Research Center, MS 210-5,
Moffett Field, CA 94035. 	 (415)694-5941 or FTS 464-5941

16. Abstract

The NASA Ames Research Center sponsors a research program for the inves-
tigation of Intelligent Flight Control Actuation Systems.	 The use of arti-
ficial intelligence techniques in conjunction with algorithmic techniques
for autonomous, decentralized fault management of flight-control actuation
systems will be explored:-under this program. 	 This paper documents the
design, development, and operation of the interface and emulator equipment
for laboratory investigations of this research program.	 The interface,
architecturally based on the Intel 8751 microcontroller, is an interrupt-
driven system designed to receive a digital message from an ultrareliable
fault-tolerant control system (UFTCS). 	 The interface links the UFTCS to an
electronic servo-control unit, which controls a set of hydraulic actuators.
It was necessary to build a UFTCS emulator (also based on the Intel 8751) to
provide signal sources for testing the equipment.

This paper discusses the conversion of the 8-byte message (characteris-
tic command for the four control axes of a helicopter) to the appropriate
byte length.

17. Key Words (Suggested by Author(s)) 18. Distribution Statement

Interface
Fault-tolerant control system

Unlimited

Actuators, Microcontroller
Redundancy Subject category - 09

19. Security Classif. (of this report) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 37 A03

For sale by the National Technical Information Service. Springfield, Virginia 22161

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37

