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Dynamic analysis of aerospace systems is required to in-
sure that the structures will maintain their integrity
and provide predictable and acceptable mechanical per-
formance throughout the mission profile of specified
acceleration environments. This analysis includes the
structural response to shock and vibration and evaluates
the maximum deflections and material stresses and the po-
tential for the occurrence of elastic instability, fa-
tigue and fracture. The required computations are often
performed by means of finite element analysis (FEA) com-
puter programs in which the structure is simulated by a
finite element model which may contain thousands of ele-
ments. The formulation of a finite element model can be
time consuming, and substantial additional modeling ef-
fort may be necessary if the structure requires signifi-
cant changes after initial analysis. This paper pre-
sents rapid methods for obtaining rough estimates of the
structural response to shock and vibration, for the pur-
pose of providing guidance during the intial mechanical
design configuration stage.

INTRODUCTION

Structures are often made up of simple components such as beams, rings,
arcs, plates and she|Is. The natural frequencies of such a structure cannot
usually be found from the frequencies of these components. However, the stiff-
ness, damping and mass of these components, the stiffness and damping of the
connections between components, and the type of attachment of the structures to
mounting surfaces will determine the natural frequencies of the structure.
Estimates of natural frequencies can only be made for simple structures without
developing an FEA (finite element analysis) model and utilizing an FEA computer
program. But even rough estimates of natural frequency can provide a rela-
tively rapid means of comparing maximum acceleration, stress and fatigue in dif-
ferent design approaches, and identifying potential problem areas in a struc-
ture. This type of information can help to avoid excessive modification of the
FEA model when a comprehensive computer analysis is done.

The methods presented here for evaluating natural frequencies of simple
structures will typically have a frequency error on the low side, which will
result in a conservative (larger than actual) estimate of stress.
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Composite Beams

Beams may be made of two or more layers of different materials adhered to

one another, with each layer running the length of the beam. In this section,

the layers are assumed to have constant, rectangular cross sections. The

layers may be oriented so that the direction of vibration is parallel to the

layer interfaces or normal to the layer interfaces.

Vibration Parallel to Layer Interfaces

Figure 1 shows the case where the direction of vibration is parallel to

the layer interfaces. The term EI/L is referred to as the stiffness of a beam.

Defining E1 as the stiffness factor of a beam, the stiffness factor of the com-

posite beam of Figure 1 is

E1 =

n n

I Eil i = (i/12) Z Eibihi 3 ibf-in 2

i=l i=l

(z)

where E i = modulus of elasticity of layer i, lbf/in 2,

b i = width of layer i, inch,

h i = height of layer i, inch,

I i = area moment of inertia of layer i about neutral (Z) axis, in 4.
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The weight per unit length of the composite beam is

W

n (2)
Pibihi Ibf/in

i=1

where Pi = weight density of layer i, Ibf/in 3

Equations (i) and (2) may be used with slender beam frequency formulas when the

composite beam is uniformly loaded and the neutral axis through the beam cross

section, parallel to the Z axis, remains undeflected (no bending along the Z
axis).

Vibration Normal to Layer Interface

Figure 2 shows the case where the vibration is normal to the layer inter-

faces. The stiffness factor of the composite beam of Figure 2 is

n

El = 7 bihiEi[(__Yi)2 + (i/12)hi2 ] ibf. in2
i=1

(3)

where

i-1

Yi = _ hj + (I/2)h i inch, where ho = O,
j=O

and Y =
n iZC1 "bl7. bihiEiY "hiE i inch

i=1

See Equation 1 for definitions.
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The weight per unit length of the composite beam, W, is given by Equation iz).

Equations (2) and (3) may be used with slender beam frequency formulas to

obtain approximate values of natural frequency. Accuracy is improved when the

layer widths, bi, approach equality with one another.

Stepped Beams

Stepped beams have two or more different cross sections along their span,

resulting in two or more different moments of inertia. Figure 3 shows two

examples of stepped cantilever beams. In Figure 3a the beam has two different

cross sections and the average moment of inertia for the beam is [l]

= L31112/[3(a2b+b2a+b3/3)l I + a312] in 4 (4)IA

In Figure 3b the beam has three different cross sections and the average moment

of inertia for the beam is

L3111213/ _3[(a+b)2c + (a+b)c 2 + c3/3]1112IA (5)

+ 3(a2b+ab2+b3/3)lll 3 + a31213_in 4
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206



In general, for a beamwith n different cross sections, an approximate value
for the average momentof inertia is

n

IA = (I/L) Z xil i in 4
i=l

(6)

where xi = spanwise length of cross section i, inch.

Ii moment of inertia of cross section i, in4,

L = Zx i = full span of beam, inch.
i

Equations (4), (5) and (6) may be used in standard frequency formulas to obtain

values of natural flexural frequencies of stepped beams. Equations (4) and (5)

are only for cantilever beams and should provide accurate results for slender

beams. Equation (6) may be used for any end support conditions, and will usu-

ally yield a natural frequency roughly 5% to 10% lower than the correct value.

Slender Right Angles and U Bends

for vibration in the plane of the figures (in-plane vibration) is [2]

F = (_/2_R 2) • (Elyg/W) ½ Hz

where

Figure 4 shows a right angle and a U bend with intermediate supports. The

ends, E, may have any combination of pinned, P, or clamped, C, boundary con-

ditions. The intermediate supports, S, prevent transverse motion (perpendic-

ular to the beam axis) at the support but allow the beam to move parallel to

its own axis and to rotate about any axis. The fundamental natural frequency

(7)

% = dimensionless frequency parameter in Table I,

R = radius of curvature shown in Figure 4, inches,

E = modulus of elasticity of beam material, ibf/in 2,

Iy = area moment of inertia about axis perpendicular to the plane of
the figures, in 4,

g = gravitational acceleration at surface of earth = 386 in/sec 2,
W = weight per unit length of beam, ibf/in.

The fundamental natural frequency for vibration perpendicular to the plane of
the figures (out-of-plane vibration) is

F = (%12_R 2) • (GlpglW) ½ Hz

where R, E, g and W are as defined for Equation (7),

and = dimensionless frequency parameter in Table 2,

G = shear modulus = E/2(1+_) ibf/in 2,

= Poisson's ratio, dimensionless,

Ip = polar area moment of inertia = Ix+ly , in 4,

Ix area moment of inertia about axis in the plane of the figure

and perpendicular to the local beam axis, in4,

Iy is as defined for Equation 7.

(8)
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Table I In-Plane Vibration of Right Angles and U Bends

FUR USE IN EQUATION (7)

RIGHT ANGLES (FIGURE 4a) U BENDS (FIGURE 4b)

L/R P-P P-C C-C C-C

22.8
18.3

14.5
8.3
5.0
3.5

22.8
18.5
15.5
8.3
5.0
3.5

22.8
19.0
16.8
11.8
7.5
5.0

P-P P-C

4.5 4.5
3.7 3.8
3.4 3.5
3.2 3.3
2.8 2.9
2.4 2.6

0
0.4
0.8
1.2
1.6
2.0

4.5
3.8
3.5
3.3
3.1
2.9

NOTES: 1. L = length of legs, inch
2. R = radius of curvature, inch
3. P = pinned end condition
4. C = clamped end condition
5. Vibration in the plane of Figures 4a and 4b
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Table 2 Out-of-Plane Vibration of Right Angles and U Bends

FUR USE IN EQUATION (8)

RIGHT ANGLES (FIGURE 4a) U BENDS (FIGURE 4b)

L/R P-P P-C C-C C-C

5.9"9.5
7.5
6.0
5.0
3.5
2.6

9.5
7.6
6.4
5.4
4.1
3.0

9.5
7.8
6.8
5.9
5.0
3.8

P-P "P-C

5.8 5.9

5.1 5.3

4.7 4.8

4.3 4.4

3.6 3.8

2.7 2.9

0
0.4
0.8
1.2
1.6
2.0

5.3
4.9
4.6
4.2
3.6

NOTES: 1. See notes 1-4 of Table 1
2. Vibration perpendicular to the plane of Figures 4a and 4b
3. x values for v = 0.3

Equations (7) and (8) do not take into account shear deformation, cross

sectional distortion due to torsion, or coupling of rotation and displacement.

The rotary inertia of the beam twisting about its own axis is not included in

Equation (7) but is included in Equation (8). However, the values of % given

in Table 2 are only valid for circular beams or tubes with a value of_ =0.3.

Simple Frames

The simple frames shown in Figure 5 are also called portal frames in struc-

tural applications or bents in electronic applications. The following formulas

provide approximate values for the fundamental natural frequencies in the

specified vibration modes. [3]
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Fig. 5 A Simple Frame in a) In-Plane Vertical Vibration,

b) In-Plane Lateral Vibration, and c) Out-of-Plane Transverse Vibration
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5a,

where

5a,

For in-plane vertical vibration with legs hinged at the supports, Figure

F = (i/2_) _'__48EIIg/WL3[I-2.25/(2K+3)]_ ½ Hz

E = modulus of elasticity of frame material, ibf/in 2,

I 1 = area moment of inertia of top of frame about neutral axis, in 4,

g = gravitational acceleration at surface of earth = 386 in/sec 2,

W = total weight of frame, lbf,

L = length of top (span of frame), inch,

K = hll/Ll2, dimensionless,

h = height of frame (length of leg), inch,

12 = area moment of inertia of frame legs about neutral axis, in4.

(9)

For in-plane vertical vibration with legs fixed at the supports, Figure

(I/2_) 148EIIg/WL3[I-3/(2K+4)]I½ Hz (I0)F =

_ J

For in-plane lateral vibration with legs fixed at the supports, Figure 5b,

F = (i/2_) 124Elmg/WhB[1+3/(6K+l)]_½ Hz
(11)

For out-of-plane transverse vibration with legs fixed at the supports,

Figure 5c,
f

F = (g½/2_) _(W/2)[L3/24EI1 h3/3E12+

_ L4GC2/32EII(2hEII+LGC2)]__½k. Hz

where C2 = torsional constant, in 4.

(12)

The approximate fundamental natural frequency for a rigid body of mass M o

supported by n slender, uniform legs of length L, all in the same plane, clamp-

ed at their feet and at the rigid #_dy, as shown in Figure 6, for vibration in
the plane of the legs, is given by[

F = (I/2_)[(l_Eili)/L3(Mo+0.37_Mi)] ½ Hz (13)

where M o = rigid body mass, ibs.mass,

M i = mass of leg i, Ibs.mass,

E i = modulus of elasticity of leg i, ibf/in 2,

Ii = area moment of inertia of leg i about its neutral axis, in 4,

E = sum over all legs, i = i, 2, 3, ..., n,

n = number of legs > 2.

Housings

Housings may be analyzed to estimate their fundamental natural frequen-

cies. These frequencies may include flexura] vibration along one or more axes

of the structure, torsional vibration, and coupled modes of vibration. The

frequencies will depend on the geometry and material properties of the
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structure [5], the attachment efficiency factor between parts of the structure

and the connection of the structure to mounting surfaces (the boundary condi-

tions).

Flexure

Figure 7 shows a housing composed of several structural elements• It is

mounted by means of brackets attached at each end of the longer dimension, near

the bottom (Figure 7b). It will be analyzed as a simply supported beam which

can vibrate in flexure in the X direction and in the ¥ direction, and which can

vibrate in torsion about the Z axis. Evaluation of the flexural frequencies

requires an estimate of the stiffness factors of the structure, Exl x and Eyly.
These are determined as follows•

6

Exlx = 7 _iEi[Ai(_-Xi)2 + ix,i ] ibf.in 2
i=l

(14)

where H i = attachment efficiency factor for element i. dimensionless,

E i = modulus of elasticity of element i, Ibf/in _,

A i = cross sectional area of element i in the x-y plane, in 2,

Xi = distance from left edge of structure to neutral axis (or

mld-point) of element i, inch,

Ix,i = area moment of inertia of element i about the neutral
axis parallel to the Y direction at Xi, in4,
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and

where

and

and

6 6

= Z niAiEiXi/ Z niAiEi
i=l i=l

inch.

6

Eyly s Z qiEi[Ai(_-Yi)2 + ly,i ] ibf.in 2
i=l

ni,E i and A i are defined following Equation (14),

Yi = distance from bottom of structure to neutral axis (or

mld-point) of element i, inch,

Iy,i = area moment of inertia of element i about the neutral axis
parallel to the X axis at Yi, in4,

6 6

= Y_niAiEiYi / Z niAiEi inch

i=l i=l

(15)

(16)

(17)

Note that structural elements 7, 8 and 9 are not included in Equations (14)

through (17) because they are not subjected to bending but are either fixed to

the mounting brackets or displaced parallel to their own plane. The funda-

mental natural frequencies for flexural vibration in the X and Y directions are

Fx = (_/2L2)(ExIxg/W) ½ Hz (18)

and

Fy = (_/2n2)(Eylyg/W) ½ Hz

where L = length of housing, Figure 7b, inches,

g = acceleration of gravity at surface of earth = 386 in/sec 2,

W = weight of housing per unit length, ibf/inch (Total weight = WL)

Exl x and Eyly are found from Equations (14) and (16).

If the ends of the housing, structural elements 7 and 8, were mated with and

fixed to mounting surfaces, then the constant in Equation (18) would be

(22.373/_) instead of _.

Torsion

Acceleration in the X direction will produce torsion as well as bending

since the housing is supported near its bottom and the center of gravity (CG)

is located above the support (Figure 7b). The axis of rotation for torsion

will be at the bottom of the housing parallel to the Z axis. See Figure 8.

Since the CG is not on the axis of rotation, the torsional natural frequency of

the housing will be coupled to the flexural natural frequency, Fx.
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The frequency formula for torsional vibration is

F O = (%/2_L) • (CGg/_Ip) ½Hz

where C = torsional constant of beam cross section, in 4

G = shear modulus of beam material, lbf/in 2

P

Ip

(19)

= weight density of beam material, ibf/in 3

= polar area moment of inertia of beam cross section about the beam

axis of torsion, in4.

The polar mass moment of inertia, J, about the axis of rotation is an important

factor in the present case. The half-housing shown in Figure 8 may be analyzed

with the frequency constant X found by solving the transcendental equation

which includes the parameter J:

cotX = (Jg/PLC)% (2O)

For the half-housing, L must be replaced by L/2 in Equations (19) and (20), and

J must be the polar mass moment of inertia about the axis of rotation for the

half-housing. The same results may be obtained by using the formula

Fo = (i/2_)" (4CG/LJ) ½ Hz (21)

instead of Equation (19) when (PLlp/gJ) =<< I. In Equation (21), L is the

full length of the housing and J is the polar mass moment of inertia about the

axis of rotation for the full housing. C and G have the same values as in Equa-

tions (19) and (20). Using the relation P = Mg/LA ibf/in 3, where M is the

total mass of the housing and A is the housing cross sectional area in the X-Y

plane, and equating Equations (19) and (21) yields:
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Ip/A = %2j/M in 2

where the radius of gyration is (Ip/A) ½.
replaced by L/2 in Equation (19).

(22)

In arriving at Equation (22), L was

The value of the polar area moment of inertia about the axis of rotation,

Ip, may be estimated by

Ip = (Exl x + Eyly)/E a in 4 (23)

where Ea is an appropriate average value for the structure. In the case where

the structure is composed primarily of a single structural material, Ea is the
modulus of elasticity for that material.

The value of J is given by

9

J = Z [Jz,i + mi(xi2+yi2)] ibmass.in2
i=l

(24)

where Jz,i = polar mass moment of inertia about axis through the neutral

axis of element i and parallel to the axis of rotation,
ibmass.in 2,

m i = mass of element i, ibmass,

xi,Y i previously defined.

A more rapid but less accurate approximation for J is

J = (M/12)(4h2+d 2) ibmass.in 2 (25)

where M is the total mass of the housing. (See Figure 7.)

If J is calculated for the entire housing, then only half of its value must be
used in Equation (20).

The torsional constant C is much more difficult to accurately estimate,
even for a simple structure. The following rough approximation may be used:[ 6]

C m [1/2]Ip in4 (26)

Coupled Modes

As pointed out previously, acceleration in the X direction produces both

bending at a frequency Fx and torsion at a frequency F e. These vibration modes

will be coupled to produce a fundamental natural mode of the structure which

can be approximated by Dunkerley's method [7]

Fc = (Fx-2+F8-2)-½ Hz (27)

where Fx and F e are found from Equations (18) and (19). The coupling of modes

of vibration always results in a natural frequency lower than the coupled
frequencies, and a consequent increase in deflection and stress. In the

example given in the preceeding two sections, this coupling of modes may be
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avoided by mounting the housing so that the center of gravity (CG) lles on the
mounting plane. Torsional modes may still occur but they will not be coup-
led with the bending mode. Figure 9 is an example of a CGmount.

M__L DUNTIN G

LUG

CG

m _ MOmUNTING

SURFACE

Fig. 9 A CG Mount

Other Housing Configurations

There are other housing geometries and mounting configurations where the

housing may be modeled as a beam or a plate with boundary conditions which ap-

proximate the mounting attachments. In these cases the standard frequency form-

ulas may be used to estimate the fundamental natural frequency of the housing.

The flexural stiffness factors, El, and the torsional frequency parameters C,

Ip and J must be estimated as in Section 5.3.

The examples shown in Figure I0 could be analyzed as follows.

Figure 10a.

i) For L > h,t: A beam with simply supported ends.

Flexural vibration in X and Z directions.

Torsional vibration about the axis through centroid, parallel to Y

axis.

Flexural and torsional modes not coupled.

2) For L _ h > t: A plate with two opposite sides simply supported, other

two sides free.

Flexural vibration in Z direction.
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3) For L m t > h: A plate with four corner supports.

Flexural vibration in X direction.

Figure 10b.

For L _ h > t: A plate with three simply supported sides.

Flexural vibration in Z direction.

Figure 10c. Same as 10b.

Figure 10d.

i) For h > L,t: A cantilever beam.

Flexural vibration in Y and Z directions.

Torsional vibration about the axis through centroid, parallel to X

axis.

Flexural and torsional modes coupled if CG is not at the mid-point of

the L and the t dimensions.

2) For L m h > t: A plate simply supported on one side with other three

sides free.

Flexural vibration in Z direction.

Torsional vibration about the axis through centroid parallel to X axis.

Flexural and torsional modes coupled if CG is not at the mid-point of

the L dimension.

Lumped Elements

One type of model that may be used to represent structures is the lumped

element model. In this approach, parts of the structures are treated as masses

and other parts as springs. Rigid, heavy components may be treated as masses,

while flexible, light weight components may be treated as springs. The spring

elements may be some of the same structural components that make up the masses,

even though they are treated as massless in the analysis. The combined weight

of the masses must add up to the total weight of the complete structure.

Figure 11 shows a three degree-of-freedom structure composed of a trans-

former mounted on a bracket which is attached to a PWB mounted in a housing.

The bottom of the housing is fixed to a mounting plate. When the acceleration

is parallel to the mounting plate and normal to the PWB, the housing will vi-

brate as a cantilever, the PWB will vibrate as a loaded plate, and the brack-

et will vibrate in the direction shown. Figure 12 is a lumped element model of

the structure shown in Figure Ii. The values of the spring constants, K, may

be determined by use of the following equation:

K = (W/g) • (2_F) 2 Ibf/inch (28)

where W = weight of element, Ibf,

g = acceleration of gravity at surface of earth = 386 in/sec 2,

F = fundamental natural frequency of the element, Hz.

The frequency formulas for finding the values of F in Equation (28) are given

by Equation (9) for the bracket and by standard formulas for the PWB and the

cantilever housing. The static deflections, for a one-g acceleration, are
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Yl = (WI+W2+W3)/KIinch (29)

Y2 = YI+(W2+W3)/K2inch

Y3 = YI+Y2+W3/K3inch

The fundamental natural frequency of the structure shown in Figures 11 and 12
is[8]

3 3
F = (I/2_)[g Y WiYi/ Y WiYi2]½

i=l i=l

Hz

(30)

For a structure with n degrees of freedom, which can be represented by n

spring/mass elements in series,

Yi =

i-i n

Y yj+.T.Wj/K i inch
j =i j =i

(31)

and

rl rl

F = (i/2_T)[g X WiYi/ X WiYi 2] ½ Hz

i=l i=l

(32)

Accelerations and Stresses

The natural frequency of a structure will determine what will be its accel-

eration response in a shock or vibration environment. Two different structural

designs with two different natural frequencies will generally experience differ-

ent accelerations, resulting in different stresses when exposed to the same

shock or random vibration spectrum. The estimates of natural frequency allow

comparison of structural designs in terms of dynamic loads due to the specified
acceleration environments.

Figure 13 shows the shock acceleration response spectrum for an NSI ordi-

nance, one-inch separation nut. The acceleration response is the three-sigma

peak value (exceeded only 0.28% of the time) in units of the gravitational

acceleration at the earth's surface, and it peaks at 15,000g and 10,000Hz. A

structure with a natural frequency of 200Hz will experience a 215g shock, while

one with a natural frequency of 250Hz will experience a 310g shock. The

acceleration ratio is 310/215 = 1.44.

Figure 14 shows a typical random vibration power spectral density (PSD) to

which a space structure would be exposed during launch. The three-sigma peak

acceleration response is approximated by

Gpk = 3[(7/2) • PSD • Qo " ro] ½ g (33)

where Qo = transmissibility at the structure's natural frequency, Fo. Assuming

the same value of Qo for the two structures with natural frequencies of 200Hz

and 250Hz, the acceleration ratio will be 1.12.
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In the above example, it is seen that the accelerations, and consequently

the dynamic loads, between different structural designs may be compared when

estimates of natural frequency can be made.
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