STRAIN-ENERGY-RELEASE RATE ANALYSIS OF THE END-NOTCHED FLEXURE SPECIMEN USING THE FINITE-ELEMENT METHOD

S. A. Salpekar, I. S. Raju, and T. K. O'Brien

NOVEMBER 1987
STRAIN-ENERGY-RELEASE RATE ANALYSIS OF THE END-NOTCHED FLEXURE SPECIMEN USING THE FINITE-ELEMENT METHOD

S. A. Salpekar*, I. S. Raju*, and T. K. O'Brien**
NASA Langley Research Center
Hampton, Virginia 23665-5225

SUMMARY

Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain-energy-release rates, G_{II}. The G_{II} values were computed using two different techniques: the virtual crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain-energy-release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G_{II} values calculated using the compliance derivative method compared extremely well with those calculated using the virtual crack-closure technique. The G_{II} values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain-energy-release

** Senior Scientist, Aerostructures Directorate, U. S. Army Aviation Research and Technology Activity (AVSCOM), NASA Langley Research Center, Hampton, Va 23665-5225.
rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G_{II} values for one material system calculated from the finite-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.

INTRODUCTION

With the growing use of laminated composites in aircraft structures, more attention is being paid to the failure modes of such composites. A major source of failure in such materials is delamination (also referred to as a crack in this paper) along ply interfaces. In order to better understand the behavior of laminated composites and to be able to characterize and predict failure, the interlaminar fracture toughness must be evaluated.

ASTM has undertaken a round robin test program to evaluate various test methods for determining the mode II interlaminar fracture toughness of laminated composite materials. The end-notched flexure (ENF) test [1] is being considered for the determination of mode II interlaminar fracture toughness.

The ENF test is a three-point bend test of a unidirectional laminate and is used to obtain the compliance and mode II strain-energy-release rate (G_{II}) of the test specimen. A theoretical estimation of the specimen compliance and G_{II} is useful in correlating and predicting the results of experiments involving different material properties and specimen configurations. For this reason, beam theory equations were proposed in the literature for the ENF specimen [1,2]. The accuracy of these equations
needs to be established by methods which do not use simplifying assumptions of beam theory. Attempts were made to analyze the ENF specimen by two-dimensional finite-element analysis [3-6]. However, the strain-energy-release rates in reference 3 disagreed with those in reference 4 for several values of (a/L).

The purpose of this paper is, therefore, to analyze the ENF specimen by finite-element analysis using higher order elements, to determine the specimen compliance and the strain-energy-release rates, and to compare these results with the beam theory solutions. Two methods, virtual crack closure technique (VCCT) and compliance derivative technique, were used to calculate the G_{II} values. The G_{II} values calculated from these two methods are compared to each other and to those in references 3 and 4. The analyses were performed for three commonly used material systems for values of delamination length to semi-span (a/L) ratios ranging from 0.2 to 0.9.

SYMBOLS

- a: crack length
- b: beam width
- C^{BT}: beam compliance considering bending deformation
- C^{SH}: beam compliance considering bending and shear deformation
- C^{FE}: beam compliance from finite-element analysis E_{11}, E_{33}
- G^{SH}: mode II strain-energy-release rate from beam theory considering bending and shear deformation
- G_{II}: transverse shear modulus

3
FE
G II
mode II strain-energy-release rate from finite-
element analysis
h
beam half-thickness
L
beam half-span
P
line load
νFE
deflection under a unit load calculated using
finite-element analysis
νSH
deflection under a unit load calculated using
beam theory with shear deformation
ν13
Poisson's ratio
Δ
length of the side of a square element around the
crack tip

ANALYSIS

Specimen Configuration, Loading, and Materials

Figure 1 shows the configuration of the specimen. The specimen is a
24-ply unidirectional laminate with a through-width delamination at mid-
depth at one end of the specimen. As shown in the figure, a is the
delamination length, L is the specimen half-span, b is the width, and
2h is the thickness. The half-depth, h, was assumed to be 0.066925 in.,
and the beam half-span was taken equal to 1.5 in. A line load, P, is
applied at the mid-span as shown in Figure 1.

Three sets of material properties which are shown in Table 1 were
considered in this study. Material 1 properties were used to compare the
present results with the results of reference 3. Material 2 represents
typical properties for S2/SP250 glass/epoxy, and material 3 represents those of AS4/PEEK.

Beam Theory Solutions

Simple expressions for compliance and G_{II} in the ENF test are given in the literature [1,2]. These expressions were obtained by using beam theory with and without shear deformation.

The equation for beam compliance, considering only bending deformation, was given by Russell [1]. For a mid-plane delamination in a unidirectional composite beam, this equation reduces to [5]

$$C^{BT} = \left(1 + \frac{1.5(a/L)^3}{4E_{11}b(h/L)^3}\right)$$ \hspace{1cm} (1)

This equation for C^{BT} was modified by Carlsson et al. [2] to include the effect of transverse shear deformation

$$C^{SH} = C^{BT} \left[1 + \frac{(1.2 + 0.9\frac{a}{L})}{(1 + 1.5\frac{a}{L})} \frac{h}{E_{11}} \frac{E_{11}}{E_{13}}\right]$$ \hspace{1cm} (2)

The strain-energy-release rates are calculated by taking the derivative of the compliance expression

$$G_{II} = \frac{P^2}{2b} \frac{dc}{da}$$ \hspace{1cm} (3)

The G_{II} values corresponding to compliance Equations (1) and (2).
respectively, are

\[
G_{II}^{BT} = \frac{(9a^2P^2)}{(16E_{11}b^2h^3)} \quad (4)
\]

\[
G_{II}^{SH} = G_{II}^{BT}(1 + 0.2\left(\frac{E_{11}}{G_{13}}\right)(h/a)^2) \quad (5)
\]

The compliance and strain-energy-release rate values from these simple expressions will be compared with the finite-element results.

Finite-Element Analysis

Model. A two-dimensional plane-strain analysis of the specimen in Figure 1 was performed because the width is large in comparison to the thickness. The difference between plane-strain and plane-stress assumptions will be discussed later in this paper.

Figure 2 shows a finite-element model with 1699 nodes and 516 8-node isoparametric, parabolic elements. A very fine mesh was used in the vicinity of the delamination tip, with square elements around the delamination tip. The same model was used to study the effect of (a/L) ratio on \(G_{II}\). This was accomplished by moving the support points and the central load point to achieve the desired (a/L) ratio. The (L/h) ratio was the same in all the analyses. A wide range of (a/L) ratios (0.2 to 0.9) and material properties (presented in Table 1) were considered.

Due to transverse loading and an (L/h) ratio of 22.4, the ENF specimen behaves like a plate. Therefore, to examine if reduced integration [7] is needed, all the elements in the model were integrated with three-point-Gaussian quadrature in the two coordinate directions. Then, the analysis was repeated with two-point-Gaussian quadrature. The deflection under the
load and the G_{II} values calculated by the two quadrature schemes differed by less than 0.1 percent. Therefore, in the rest of the analysis, the two-point-Gaussian quadrature was employed.

Crack-Face Constraints.- Initially, the finite-element model was analyzed allowing nodes on either side of the delamination to deform without any restraint. The resulting deflections indicated that delamination faces had crossed into each other. Because this deformation is physically inadmissible, the nodes along the crack face must be restrained so that such crossover is prevented [3,4]. When such a constraint is prescribed, the delamination faces press against each other and frictional forces will develop along the delamination faces. Thus, in a rigorous analysis, friction needs to be considered. However, the coefficient of friction (μ) needs to be assumed because data on μ are not experimentally available. Finite-element analyses were performed in references 4 and 5 for various values of friction, μ, and showed that the effect of friction is to lower the G_{II} values, in general, by a small amount. Therefore, in the present analysis, friction is neglected, i.e., smooth delamination faces are assumed.

In the present analysis, two methods that prevent crossover of the delamination face nodes were used. Figure 3 illustrates these two methods. In the first method, the nodes on either side along the entire delamination face were constrained to move the same vertical distance (i.e., to have the same v-displacement), but were allowed to slide past each other freely (i.e., to have different u-displacements). The nodes on the top and bottom crack face (e.g., g,g') are shown separated in the vertical direction in Figure 3 for clarity only. In the second method, the same constraints as in
the first method were used, but only on a small region of the crack face. Consider the node \(r \) on the crack face vertically above the right support (see Fig. 3). The nodes \(p, q, r, s, t \) belong to two elements, one on either side of node \(r \). Only these nodes were subjected to multipoint constraints; the remaining nodes on the crack face were unconstrained. The reason for this prescription is that the load transfer from the upper half of the beam to the lower half takes place in a very small region around node \(r \) [5]. Thus, only a few nodes around node \(r \) need to be constrained. The differences in the solutions obtained using the two methods will be discussed later.

Strain-Energy-Release Rates. The strain-energy-release rates were calculated using Irwin's virtual crack-closure technique. The equations utilized were similar to those given in references 8 and 9.

\[
G_I = -\frac{1}{2\Delta} \left[F_{yi}(v'_x - v'_y) + F_{yj}(v'_m - v'_m) \right] \quad (6a)
\]

\[
G_{II} = -\frac{1}{2\Delta} \left[F_{xi}(u'_x - u'_y) + F_{xj}(u'_m - u'_m) \right] \quad (6b)
\]

where \(\Delta \) is the element size. \(F_{xi} \) and \(F_{yi} \) are the forces at node \(i \) in the \(x \)- and \(y \)-directions, and \((u'_x - u'_x')\) and \((v'_x - v'_y')\) are the relative sliding and opening displacements at node \(x \), respectively (see Fig. 4). Forces at node \(j \) and relative displacements between \(m \) and \(m' \) are defined similarly.

A compliance derivative method was also used to obtain the strain-energy-release rates. For each \((a/L)\) ratio, the finite-element solution yields the deflection under the unit load (and, hence, the compliance) of
the specimen. Using these numerical compliance values for various \((a/L)\) ratios, a curve fit was made to obtain the compliance of the specimen as a function of \((a/L)\) as

\[
C = A_1 + A_2(a/L) + A_3(a/L)^2 + \ldots
\]

(7)

where \(A_1, A_2, A_3, \ldots\), are numerical constants determined by a least-square curve fit. The strain-energy-release rate, \(G_{II}\), was obtained by differentiating Equation (7) and then substituting in Equation (3)

\[
G_{II} = \frac{p^2}{2bL} \frac{dC}{d(a/L)}
\]

(8)

The \(G_{II}\) values by this procedure were obtained using three-, four-, and five-term approximations in Equation (7). Comparison of \(G_{II}\) values indicated a maximum difference of 1.34 percent between the three sets of results. Thus, the cubic polynomial was used in the curve fitting for compliance.

RESULTS AND DISCUSSION

In this section, various factors that affect the finite-element solution for the ENF specimen are presented first. Then, the compliance and the strain-energy-release rates obtained by the various methods presented earlier are discussed. Next, the present results are compared to the beam theory solutions and other finite-element solutions.

Multipoint Constraints
The normalized displacements and G_{II} values (computed by VCCT) obtained for material 1 from the two methods of prescribing multipoint constraints were found to be identical for configurations ranging from very small to very large crack lengths. No overlapping of the crack faces occurred behind the crack tip when the second method was used, indicating the absence of mode I type deformation. Comparison of the two methods confirms that the load transfer from the upper half section of the beam to the lower half occurs in the immediate vicinity of node r in Figure 3. This was also confirmed by summing the vertical forces at locations p through t in the first method and comparing the sum to the support reaction. Similar conclusions were reached in reference 5. The multipoint constraints for the entire crack face (method 1) were used in the rest of this study.

Convergence Study

In order to examine the convergence of the finite-element solution, the analysis was first performed using square elements of size 0.0075 in. ($\Delta/h = 0.112$) around the delamination tip. The elements around the delamination tip were then subdivided to obtain element sizes with (Δ/h) values of 0.056 and 0.028 in the two subsequent analyses. Note that this subdivision extends through the specimen thickness and length along narrow bands. Figure 5 shows the convergence of G_{II} values with mesh refinement for an (a/L) ratio of 0.4.

The G_{II} values changed by 1.4 percent as (Δ/h) changed from 0.112 to 0.056. For the next refinement, the G_{II} values changed by 0.5 percent as (Δ/h) changed from 0.056 to 0.028. These results indicate that G_{II} values with $\Delta/h = 0.028$ can be considered as accurate. Therefore, the model with
\(\Delta/h = 0.028 \) was used in all subsequent analyses. Converged \(G_{II} \) values at other \(a/L \) ratios are also presented in Table 2 for completeness.

Specimen Compliance

The deflection under a unit central concentrated load (point D in Fig. 1) equals the compliance of the specimen. The compliance values predicted with the finite-element analyses and those from the shear deformation theory (Eq. (2)) are presented in Table 3. Figure 6 shows typical results for material 1. Excellent agreement is observed between the two sets of results.

Strain-Energy-Release Rate

In this section, a comparison of strain-energy-release rates, \(G_{II} \), from two different techniques (VCCT and compliance derivative technique) is presented. The finite-element solutions are also compared with the beam theory solutions and the results in the literature. Finally, the effect of plane-stress and plane-strain assumptions on \(G_{II} \) is examined.

The \(G_{II} \) values calculated by the virtual crack-closure technique (Eq. (6)) and the compliance derivative technique (Eq. (8)) for various materials are given in Table 4, and typical results are shown in Figure 7 for material 1. The \(G_{II} \) values calculated by the two methods are in excellent agreement, showing the consistency of the finite-element results.

Often in experimental investigations, instead of measuring the deflection at the point of load application, some investigators prefer to measure the deflection at a point on the load line but on the bottom surface of the specimen (point D' in Fig. 1). The deflections at point D' will be referred to herein as the bottom deflections. These deflections are also
included in Table 3. The compliance derivative method was also applied to the bottom deflections and the G_{II} results are included in Table 4. Excellent agreement between G_{II} values from the compliance derivative technique using either the top or bottom deflections was obtained, indicating that either deflection can be used.

Comparison with Beam Theory Solutions.- In order to assess the usefulness of the beam theory equations in predicting strain-energy release rate, finite-element results for G_{II} were compared with the beam theory solutions, Equations (4) and (5). These values are included in Table 4. This table and Figure 8 show that the finite-element analysis agrees better with the beam theory with transverse shear than with the theory without shear deformation. The finite-element G_{II} values, are higher than the shear deformation theory, but the maximum difference is about 7 percent for the range of (a/L) ratios and materials considered. Note that this maximum difference did not occur at the same (a/L) ratio for the various materials considered herein. Also, the beam theory neglecting shear deformation gave lower G_{II} values compared to the finite-element values with larger percentage differences occurring at low values of (a/L).

Comparison with Other Solutions from the Literature.- Several finite-element solutions [3-5] of the ENF specimen exist in the literature. The specimen configurations in references 3 and 4 were modeled using 4-node quadrilateral elements. In reference 4, the multipoint constraints were prescribed all along the crack line similar to those in the first method in this study. In reference 3, "nonlinear truss elements" were used to prescribe the constraints along the crack line. In order to have a common basis for comparison, the results shown in Figure 3 of reference 4 and
Figure 7 of reference 3 were normalized with the G_{II}^{SH} values from Equation (5) and are shown with the results of the present analysis in Figure 9. Note that in references 3 and 4 specimens with different parameters, (E_{11}/G_{13}) and L, were analyzed. To be able to compare with the results of these references, the present analyses were repeated with the appropriate values of (E_{11}/G_{13}) and semi-span L. A new finite-element model for $L = 2$ in. was developed. This model is very similar to that shown in Figure 2 for $L = 1.5$ in.

The results of the present analysis are in very good agreement with the results of Mall and Kochhar [4] and are in considerable disagreement with the results of reference 3. The disagreement between the present results and reference 3 results is larger for (a/L) values greater than 0.4. Also, the present results for the two sets of parameters showed very small differences.

Gillespie, et al. [5], presented finite-element results for various values of (E_{11}/G_{13}) and a semi-span, $L = 1.5$ in. The G_{II} values presented in reference 5 differed from the shear deformation beam theory by about 2 to 48 percent for (E_{11}/G_{13}) ratios ranging from 12.8 to 26.9. In contrast, in the present analysis, the maximum difference between the finite-element and the shear deformation beam theory is only about 7 percent for (E_{11}/G_{13}) ratios ranging from 10.5 to 31.7. The reasons for these discrepancies are not known.

Plane Stress Versus Plane Strain. - The finite-element analysis in reference 3 was performed assuming plane-stress condition, whereas plane-strain condition was assumed in reference 4. To examine the differences due to these two assumptions, consider the expression for strain-energy-release
rate in Table 6 of reference 10

\[G_{II} = cK_{II}^2 \] \hspace{2cm} (9)

where

\[c = \frac{A_{11}}{\sqrt{2}} \left[\sqrt{\frac{A_{22}}{A_{11}}} + \frac{2A_{12} + A_{66}}{2A_{11}} \right]^{1/2} \] \hspace{2cm} (10)

for an orthotropic material. The \(A_{ij} \)'s in Equation (10) are the compliance coefficients of the material. The stress-intensity factor \(K_{II} \) is a function of specimen configuration and loading and is identical in plane-stress and plane-strain conditions.

The ratio of \(G_{II} \) for the plane-stress to the plane-strain case is therefore given by the corresponding ratio of \(c \). This ratio was calculated to be 1.023 for S2/SP250 glass/epoxy (material 2) and 1.016 for AS4/PEEK (material 3). The corresponding ratios from finite-element analysis were obtained as 1.025 and 1.01, respectively.

Since the difference in the plane stress and plane strain results are so small, either assumption may be used in an analysis.

CONCLUDING REMARKS

Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain-energy-release rates, \(G_{II} \). The \(G_{II} \) values were computed using two different techniques: the virtual crack-closure technique (VCCT) and the compliance derivative technique. The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems covering a wide range of...
material properties were considered. The compliance and G_{II} values calculated from the finite-element analysis were compared with those based on beam theory equations and with other finite-element solutions from the literature. Based on this analysis, the following conclusions were reached:

1. The compliance of the specimen calculated with the present finite-element analysis agrees very well (within 2.7 percent) with beam theory equations which consider shear deformation. The beam theory with shear deformation underestimates the G_{II} values in comparison to finite-element results. The maximum difference was about 7 percent. Thus, beam theory equations which include the effect of shear deformation may be used to estimate the compliance and strain-energy-release rates of the end-notched flexure specimen. The results of beam theory equations which do not include the effect of shear deformation differ considerably from the finite-element results, especially at low (a/L) ratios.

2. The G_{II} values were also obtained from the compliance derivative method. The G_{II} values agreed extremely well (within 1 percent) with those calculated using the virtual crack-closure technique.

3. A close agreement (within 0.3 percent) was obtained between G_{II} results from the top or the bottom deflections by the compliance derivative method, indicating that either deflection may be used to measure compliance.

4. The strain-energy-release rates from plane-stress analysis are higher than the plane-strain values by about 2.5 percent for $S2/SP250$ glass/epoxy and 1 percent for $AS4/PEEK$ graphite/thermoplastic.
REFERENCES

<table>
<thead>
<tr>
<th>Material</th>
<th>E_{11}</th>
<th>E_{33}</th>
<th>G_{13}</th>
<th>ν_{13}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material 1</td>
<td>16.7</td>
<td>1.4</td>
<td>0.65</td>
<td>0.3</td>
</tr>
<tr>
<td>Material 2</td>
<td>6.31</td>
<td>2.5</td>
<td>0.6</td>
<td>0.25</td>
</tr>
<tr>
<td>Material 3</td>
<td>21.23</td>
<td>1.5</td>
<td>0.67</td>
<td>0.37</td>
</tr>
</tbody>
</table>
Table 2 - Convergence of G_{II} Values with Mesh Refinement: (Material 1)

<table>
<thead>
<tr>
<th>a/L</th>
<th>$G_{II} \times 10^6$ in-lb/in2</th>
<th>$\Delta h = 0.1121$</th>
<th>0.0560</th>
<th>0.0280</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>12.9415</td>
<td>13.1274</td>
<td>13.1970</td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td>45.4101</td>
<td>45.9955</td>
<td>46.2033</td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td>97.6077</td>
<td>98.8145</td>
<td>99.2334</td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td>169.368</td>
<td>171.416</td>
<td>172.118</td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td>211.564</td>
<td>214.094</td>
<td>214.959</td>
<td></td>
</tr>
</tbody>
</table>
Table 3 - Comparison of Compliance Values from Finite-Element Analyses and Beam Theory Solutions

<table>
<thead>
<tr>
<th>a/L x 10^5</th>
<th>FE Analysis</th>
<th>Beam Theory Solution</th>
<th>Percent Difference*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x 10^5 in-lb</td>
<td>x 10^5 in-lb</td>
<td>C^{FE} - C^{SH} x100</td>
</tr>
<tr>
<td>Top of Beam</td>
<td>Bottom of Beam</td>
<td>** BT</td>
<td>*** SH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Material 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>17.8895</td>
<td>17.7610</td>
<td>16.8551</td>
</tr>
<tr>
<td>0.2</td>
<td>18.2047</td>
<td>18.0734</td>
<td>17.0574</td>
</tr>
<tr>
<td>0.4</td>
<td>19.8769</td>
<td>19.7484</td>
<td>18.4732</td>
</tr>
<tr>
<td>0.6</td>
<td>24.1446</td>
<td>24.0173</td>
<td>22.3162</td>
</tr>
<tr>
<td>0.8</td>
<td>32.2045</td>
<td>32.0777</td>
<td>29.7999</td>
</tr>
<tr>
<td>0.9</td>
<td>38.0182</td>
<td>37.8909</td>
<td>35.2862</td>
</tr>
</tbody>
</table>

| Material 2 |
0.0	44.7062	44.5981	44.6087	45.7293	-2.29
0.2	45.3901	45.2820	45.1440	46.4327	-2.30
0.4	49.4907	49.3866	48.8911	50.3480	-1.73
0.6	60.1585	60.0563	59.0619	60.6868	-0.88
0.8	80.5224	80.4211	78.8681	80.6612	-0.17
0.9	95.3141	95.2129	93.3883	95.2654	0.05
Table 3 - (Continued).

<table>
<thead>
<tr>
<th>a/L (x 10^5 in-lb)</th>
<th>FE Analysis</th>
<th>Beam Theory Solution</th>
<th>Percent Difference*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>CFE - CSH x100</td>
</tr>
<tr>
<td></td>
<td>Top of Beam</td>
<td>Bottom of Beam</td>
<td>** BT</td>
</tr>
<tr>
<td>0.0</td>
<td>14.2584</td>
<td>14.1369</td>
<td>13.2586</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>14.5045</td>
<td>14.3830</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>15.8404</td>
<td>15.7217</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>19.2291</td>
<td>19.1116</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>25.6082</td>
<td>25.4913</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>30.1973</td>
<td>30.080</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>14.2622</td>
<td>14.2622</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>14.5718</td>
<td>14.5718</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>15.8361</td>
<td>15.8361</td>
</tr>
<tr>
<td></td>
<td>0.6</td>
<td>19.0096</td>
<td>19.0096</td>
</tr>
<tr>
<td></td>
<td>0.8</td>
<td>25.0470</td>
<td>25.0470</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>29.4379</td>
<td>29.4379</td>
</tr>
</tbody>
</table>

* CFE is compliance determined from displacement at the top of the beam.

** BT is beam theory considering bending deformation.

*** SH is beam theory considering bending and shear deformation.
Table 4 - Comparison of G_{II} Values Calculated by Various Methods

<table>
<thead>
<tr>
<th>a/L</th>
<th>VCCT</th>
<th>FE Analysis $x 10^6$ in-lb/in2</th>
<th>Beam Theory Solution $x 10^6$ in-lb/in2</th>
<th>Percent Difference*</th>
<th>Material 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Top Compliance Derivative</td>
<td>Bottom Compliance Derivative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>13.1970 13.2381 13.2399</td>
<td>10.113 12.699 3.77</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td>46.2033 46.2042 46.2407</td>
<td>40.452 43.038 6.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td>99.2334 99.2827 99.3130</td>
<td>91.017 93.6038 5.67</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td>172.118 172.474 172.457</td>
<td>161.809 164.395 4.49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td>214.959 216.611 216.556</td>
<td>204.789 207.376 3.53</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>a/L</th>
<th>VCCT</th>
<th>FE Analysis $x 10^6$ in-lb/in2</th>
<th>Beam Theory Solution $x 10^6$ in-lb/in2</th>
<th>Percent Difference*</th>
<th>Material 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Top Compliance Derivative</td>
<td>Bottom Compliance Derivative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td></td>
<td>31.2631 31.1766 31.2102</td>
<td>26.7652 29.5668 5.43</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.4</td>
<td></td>
<td>114.422 114.386 114.435</td>
<td>107.061 109.862 3.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.6</td>
<td></td>
<td>249.717 249.846 249.884</td>
<td>240.887 243.688 2.41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.8</td>
<td></td>
<td>437.108 437.559 437.555</td>
<td>428.243 431.045 1.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.9</td>
<td></td>
<td>549.781 551.010 550.975</td>
<td>541.995 544.797 0.91</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

21
Table 4 - (Continued).

<table>
<thead>
<tr>
<th>a/L</th>
<th>VCCT</th>
<th>FE Analysis $x 10^6$ in-lb/in²</th>
<th>Beam Theory Solution $x 10^6$ in-lb/in²</th>
<th>Percent Difference *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Compliance Derivative</td>
<td>Compliance Derivative</td>
<td>**</td>
</tr>
<tr>
<td>0.2</td>
<td>0.2</td>
<td>10.6385</td>
<td>10.5896</td>
<td>10.6133</td>
</tr>
<tr>
<td>0.4</td>
<td>0.4</td>
<td>36.7811</td>
<td>36.8115</td>
<td>36.8468</td>
</tr>
<tr>
<td>0.6</td>
<td>0.6</td>
<td>78.6305</td>
<td>78.7069</td>
<td>78.7311</td>
</tr>
<tr>
<td>0.8</td>
<td>0.8</td>
<td>135.966</td>
<td>136.276</td>
<td>136.266</td>
</tr>
<tr>
<td>0.9</td>
<td>0.9</td>
<td>169.350</td>
<td>170.938</td>
<td>170.904</td>
</tr>
</tbody>
</table>
Fig. 1: Specimen configuration and loading.
Constraints: \(V_g - V_{g'} = 0 \)
\(F_{y_g} + F_{y_{g'}} = 0 \)

Method 1

Constraints at all nodes \(g = 1, n \)

Method 2

Constraints only at nodes \(g = p, q, r, s \) and \(t \)

Fig. 3: Effect of multipoint constraints.
Fig. 4: Detail near the crack tip and nodes used in the strain-energy-release rate calculation.
Fig. 5: Variation of normalized G_{II} calculated using VCCT with mesh refinement.
Fig. 6: Comparison of compliance calculated using finite elements and shear deformation beam theory (material 1).
Fig. 7: Comparison of G_{Π} calculated using finite elements by VCCT and compliance derivative method (material 1).
Fig. 8: Comparison of G_{II} calculated using finite elements and beam theory (material 1).
Fig. 9: Comparison of G_{II} from various analyses.

Parameter set 1
$E_{11}/G_{13} = 25.7,$
$L = 2.0 \text{ in.},$
$h = 0.066925 \text{ in.}$

Parameter set 2
$E_{11}/G_{13} = 20.5,$
$L = 1.5 \text{ in.},$
$h = 0.059 \text{ in.}$
Strain-Energy-Release Rate Analysis of the End-Notched Flexure Specimen Using the Finite-Element Method

S. A. Salpekar, I. S. Raju, and T. K. O'Brien

NASA Langley Research Center, Hampton, VA 23665-5225

U.S. Army Aviation Research and Technology Activity (AVSCOM)

Aerostructures Directorate
Hampton, VA 23665-5225

National Aeronautics and Space Administration
Washington, DC 20546

U.S. Army Aviation Systems Command
St. Louis, MO 63166

Two-dimensional finite-element analysis of the end-notched flexure specimen was performed using 8-node isoparametric, parabolic elements to evaluate compliance and mode II strain-energy-release rates, G_{II}. The G_{II} values were computed using two different techniques: the virtual crack-closure technique (VCCT) and the rate of change of compliance with crack length (compliance derivative method). The analysis was performed for various crack-length-to-semi-span (a/L) ratios ranging from 0.2 to 0.9. Three material systems representing a wide range of material properties were analyzed. The compliance and strain-energy-release rates of the specimen calculated with the present finite-element analysis agree very well with beam theory equations including transverse shear. The G_{II} values calculated using the compliance derivative method compared extremely well with those calculated using the virtual crack-closure technique. The G_{II} values obtained by the compliance derivative method using the top or bottom beam deflections agreed closely with each other. The strain-energy-release rates from a plane-stress analysis were higher than the plane-strain values by only a small percentage, indicating that either assumption may be used in the analysis. The G_{II} values for one material system calculated from the finite-element analysis agreed with one solution in the literature and disagreed with the other solution in the literature.