

COMPUTER STUDIES

TECHNICAL REPORT

David E. Eckhard t
A1 per Cagl ayan

John P . J . Kelly

TR -87 -08

North Carolina State University
Raleigh, N. C. 27650

EFFECTIVENESS OF BACK-TO-BACK TESTING*

Mladen A. Vouk, David F. McAllister
North Carolina State University

Department of Computer Science, Box 8206, Raleigh, NC 27695-8206

David E. Eckhardt
National Aeronautics and Space Administration

* Langley Research Center, Hampton, Va 23665

Alper Caglayan
Charles River Analytics

55 Wheeler St., Cambridge, Ma 02138

John P. J. Kelly
University of California, Santa Barbara

Department of Electrical and Computer Engineering, Santa Barbara, Ca 93,06

Key Words : Software fault-tolerance, software testing, back-to-back testing,
correlated errors, software reliability

Abstract

Three models of back-to-back testing process are described. Two models treat the case
where there is no inte-omgonent failure dependence. The third model describes the
more realistic case where there is correlation among the failure probabilities of the
functionally equivalent components. The theory indicates that back-tu-back testing can,
under right conditions, provide a considerable gain in software reliability. The models
are used to analyse the data obtained in a fault-tolerant software experiment. It is shown
that the expected gain is indeed achieved, and exceeded, provided the inter-component
failure dependence is sufficiently small. HoweverI even with relatively high correlation
the use of several functionally equivalent components coupled with the back-to-back
testing may provide a considerable reliability gain. Implications of this finding are that
the rnultivenion software development is a feasible and cost-effective approach to
providing highly reliabile software components intended for fault-tolerant software
systems, on condition that special attention is directed a t early detection and elimination
of correlated faults.

(*) This research was supoorted in part by NASA grants NAG-1-667, and NAG-1-512.
and contract NAS-1-17705.

1. Introduction

Fault-tolerance is or wil l become part of many critical software and hardware

systems [e.g., Mar82, Mad84, Tro85, Bis861. There are two common methods for

achieving software fault-tolerance. These are the N-version programming approach and

the recovery-block approach [Ran?% Avi841.
a

Although existing fault-tolerant software (FTS) techniques can achieve an

improvement in reliability over non-fault-tolerant software, experiments show that

failure dependence among FTS system components may not be negligible in the context

of current software development and testing techniques [Nag% Sco84, Nag84, Vou85,

Wig84, Kni86, Kel861. Correlated coincidental component failures may be disastrous in

current FTS approaches and can seriously undermine any reliability gains offered by the

fault-tolerance mechanisms (e.g. Sco83a, Sco84, Avi84, EckBS, Vou86aI. Hence it is

important to detect and eliminate them as early as possible in a FTS life-cycle.

Throughout this paper we shall use the terms "component(s)", "version(s)",

"functionally equivalent software components", and "software components"

interchangeably. The terms "coincident", "correlated" and "dependent" failures (faults)

have the following meaning. When two or more functionally equivalent software

components fail on the - same input case we say that a coincident failure has occurred,

and k failing components give a level-k coincident failure. The fault(s) causing a Level-k

failure we shall call level-k fault(s). When two or more versions give the same incorrect

response, to a given tolerance, w e say that an identical-and-wrong (IAW) answer was

obtained. If the measured probability of the coincident failures is significantly different

from what would be expected by random chance on the basis of the measured failure

probabilities of the participating components [e.& Eck85, Kni86, Vou851, then we say

that the observed coincident failures are correlated or deoendent, Le. if Pr denotes

probability, then

2

pFf version(i) fails I venion(j) fails 1 # Pr { version(i) fails I.

If a fault, or a fault combination, results in a IAW answer from k components we say that

the falut(s) has (have) "spBn" of size k. The fault span is important because with the

probability of excitation of the fault (fault intensity or visibility) it determines the level

of the inter-component failure correlation for that fault.

The back-to-back testing technique discussed here involves pairwise comparison of

all functionally equivalent components. Whenever a difference is observed among

responses, the problem is thoroughly investigated and appropriate action is taken. If all

answers are identical to within a specified tolerance then a "no detected failure" event is

said to occur. We say that back-to-back testing fails when all the components fail with

(within tolerance) IA W answers. Our e-veriments indicate that these corrrelated faults

occur in practice but can be prevented or reduced.

In section 2 we present three models of the back-to-back testing process. In

section 3 we use the models to analyse and discuss the e.uperirnenta1 information

concerning the effectiveness of the back-to-back testing and the multiversion

development approach.

2. Faiiute Models

Our goal is to model the probability that k versions obtain IAW answem and

compare it with experimental findings. W e will present three models, two of which

assume that the versions fail independently and the third attempts to capture the

correlation between versions. We assume that m functionally equivalent software

components of versions were developed by independent programming teams from

equivalent specifications. We will select a subset of size k from these m versions which

we will call a k-tuple.

Back-to-back testing of k zomponents fails to signal a potential error :vhen ii!

3 ' -

the Components agree, to a given tolerance, on a value which is a wrong answer. This

results in an "undetected" failure. Of course, if k=l i.e. single component, then every test

case (run time errors resulting in operating system intervention excepted) is a potential

"undetected" failure in the absence of an oracle or tfgoldenl' program. In the following

text the term "agreement" means equality. between two responses (answers) within a

tolerance TOL. I t is also assumed that a "golden" or oracle answer is available.

Consider a k-tuple of components. The following two Events are independent of

the golden program (see examples in Figure 1).

* If all k components agree on an answer, a "COLLECTIVE AGREEMENT" event

occups.

If there is any disagreement among the components (components being compared

pairwise with each other, C(k,2) comparisons in all), a "COLLECTIVE WARNING"

event occurs.

The following event depends on the golden answer:

* If all k components agree with the "golden" answer a "SUCCESS" event occurs.

The following three events are called FAILURE events and they also depend on the

golden answer:

If one or more of the component answers disagree with the golden answer a

"ONEPLUS FAILURE" event occurs. This is a pessimistic (conservative) view of the

failure recognition process, since one or more failures is considered to fail the k-

tuple.

The following events are subevents of the ONEPLUS FAILURE event:

If the majority of the components disagree with the golden answer then we say that a

"MAJORITY FAILURE" event h a s occurred. The majority of k components is defined

as r(k+lV 2 1 . It is possible to define other intermediate states such as the majority

4

of components agreeing with the golden answer, two-or-more disagreeing etc.

If all the components disagree with the golden answer then we say that a n "ALL

FAILURE" event takes place.

-

Other rneaSuFe of "distance", such as t h e difference between the mean value of the

component answers and the golden answer, may coalesce the ONEPLUS through ALL

FAILURE events into a single event.

Combinations of the above "eiementary" events produce the following mutually

exclusive and collectively exhaustive back-to-back testing events (see Figure 1):

* If a SUCCESS occurs together with a COLLECTIVE AGREEMENT then a n "OK?*

event occurs.

* If a SUCCESS occurs together with a COLLECTIVE WARNING then a "FALSE

FLAG" event occurs. The back-to-back testing signals an error when one is not

present. We note that la-bl - < TOL and 1b-d 5 TOL does not imply tha t la-cl 5 TOL.

Hence, FALSE FLAG events a r e not inconsistent.

If a FAILURE occurs together with a COLLECTIVE WARNING w e say that a "FLAG"

event has occurred. The back-to-back testing correctly de t ec t ed a potential fa i lure

(fault).

If FAILURE occurs simultaneously with a COLLECTIVE AGREEMENT then w e s a y

that a NO - FLAG event occurs. This is the mos t significant back-to-back testing

event. A potential failure exists (the failure is fully confirmed if ALL FAILURE has

occured) but was not detected by back-to-back testing.

*

*

2.1 IAW Models

Formally, the probability that a given subset of k versions or a k-tuple

obtains a IAW answer can be writ ten as a conditional probability as follows. Let X

denote the event "k versions obtain identical answers" (COLLECTIVE AGREEMENT).

. .
,

5

c
D

Y
0

. .

a a
A
LL w cn

A
1L
a

I- *:
w
2
2 n

(0

>
L

rl +

I
Y

I
0

n
0

i
LL

oz

6

a n B the event "k versions fai l simultaneously" (ALL FAILURE), and A&B their

intersection (NO-FLAG), then

P(AdcB) = P(AIB)P(B) (1)

Let Pi represent the probability that component i, 1 C - - i < m, fails on a given

input, and let 'p be the mean fa i lure probability per tes t case per component' for the

set of m components. Then

where the sum is from i=l to m,

I t is possible to construct C(m,k) sets of k-tuples f rom a pool of rn

components, where C(m,k) is the number of combinations of m objects taken k at a

time. If the failure probabilities are independent then the probability of an ALL

FAILURE for the j t h k-tuple is as follows:

Pj(k) = PIP2 - 0 - Pk

We will use P(k) t o denote t h e average of the Pj(k)'S over all C(m,k) subsets:

where sum is from j=1 to C(m,k). W e note that i t can be shown that (sk 2 P(k). We

also note that if & denotes the average failure probability of a single k-tuple, then

the average of this value over C(m,k) k-tuples is E- In the following text, unless

stated otherwise, all the quant i t ies are averaged over C(m,k) k-tuples.

From the definition of the NO FLAG event it follows that the probabili ty of

this event is less than or equal to the probability of a FAILURE event, L e t PI(k) be

the probability of an IAW answer from all k components of a k-tuple (ALL FAILURE

event). Then

PI(k) = F k) P r (k versions fail simultaneousiv)

. .

7

where r (k) is the conditional probability of an identical level-k answer (given an

ALL FAILURE event occurred). This quantit y has , in general, two components. One

is due to the cardinality of the output space, and the second component is the failure

(fault) dependence. The probability of IAW answers increases as the cardinality of

the output spacesdecreases. For low cardinality (finite) output spaces the probability

of a coincident failure of two or more components resulting in an IAW answer may be

quite high without any correlation being present. For example, if output space is

binary, then ail programs which are incorrect wil l produce the same wrong answer,

Le. the probability of IAW answers is 1 for failing versions.

In our first model we approximate the probability of event B in equation (1)

by the relationship Pr(k versions fail simultaneously) = (PIk . Therefore in Model I

the probability that back-to-back testing fails to detect an error (NO-FLAG event) is

where rs(k) represents the component of f(k) associated with the output space

cardinality effect. Since independence is assumed the failure (fault) correlation is

zero. The space cardinality component rS(k) is expected to be a decreasing function

of the size of the error output space, x, and the number, k, of the interacting

Components (Sun851. Hence, a shape similar to l/x would be expected. In practice

)(s(k) will also reflect the sampling strategy over the input/output domains, and will

be a composite function over a l l the variables involved in determining the

correctness of an answer. See (Sun851 for a more detailed discussion of this

phenomenon.

k

Equations (1). (3) and (4) yield Model I1 for the failure probability of the

back-to-back testing approach:

8

When pi's are equal to, say p, for all i, then the two models become

equivalent, Le. PI(k) =br,(k) pk . The difference in the es t imates offered by the two

models depends on t h e var iance of g. I t can b e shown tha t Model I will always of fe r

a more conservative e s t i m a t e of the back-to-back failure probability than Model 11.

Since r & k) < - 1, P(k) and (6)k provide upper bounds or worst-case values for PI(k) .

As an illustration of the detrimental influence of inteF-component failure

correlation consider the following. Let P,(k) denote the average probability of an

ALL FAILURE event in a n environment where inter-component failure (fault)

correiation is present. Then Model I11 is given by:

The components of r (k) are

[(k) = rS(k)+ Il,(k)-P(s&c) (9)

denotes the influence of the fault correlation, and P(s&c) the probability
where r
of the intersection of the space and correlation events.

The conditional probability c(k) is a function of the number of components

containing the fault(s) resuit ing in an IAW answer (faul t span), the visibility (or

excitation probability under given sampling conditions, [Ram82]) of the fault(s), and

of the number of such f au l t s in the set under consideration.

r

L e t C(k)=&This is o f t en a reasonable assumption. Also assume t h a t all the

failures are caused by t h e s a m e fault, or fau l t combination, and that all failures

result in IAW answers f rom s components, Le. the fault span is s. Then, given an

input which results in failure, and provided k - c s, we can construct C(s,k) k-tuples

where al l components fa i l with a n IAW answer, and C(m,k) k-tuples in all. Therefore

the probability of randomly choosing a k-tuple exhibiting level-k IXW is

C(s,k)/C(m,k). If we assume tha t :he ?robability of failure on input is Ti on :he

9 -

average, then the probability that back-to-back testing fails to signal a level-k

failure is

PI(k) = EC(s,k)/C(m,k)l (10)

When s<kj C(s,k) is defined to be zero. Note that if failures are completely

uncorrelated fault span is one (s=l), and then PI(k>1)=0

3. Experimental Results

In the summer 1985 a FTS experiment took place sponsored by NASA

Langley Research Center. The participants were the authom, the Research Triangle

Institute (NC), the University of Illinois (Urbana-Champagne, Il), and the University

of Virginia (Charlottesville, Va). h detailed description of the experiment is given in

[KelSGI. The programmers worked in two-person teams formed by random selection.

All the programmers worked from the same specification. The programming teams

were responsible for the software design, the implementation and the testing phases

of the lifecycle. The experimenters provided acceptance testing of the product.

The experiment resulted in 20 functionally equivalent programs for solving a

problem in inertial navigation. The problem specification w a s new, written for the

experiment, and was not debugged via a 'pilot" version of the code prior to the

production of the redundant components. This resulted in a very heavy query traffic

between the experimenters and the programming teams during the component design

phase and in the initial stages of the implementation.

The acceptance testing w a s a low-expectation process, i.e. only a few

critical variables were checked, and only 50 random test cases were used.

Consequently the functional and structural test coverage of the products was low.

The reliability of the components based on the acceptance testing was about 0.94.

10

The validation testing using much stricter criteria, a range of tolerances for

comparing r e d number values test data sets consisting of random and extrema1 and

special value test cases, and providing fu l l functional and linear-block coverage,

detected a number of faults of varying prevalence and seriousness. Some of the

faults were found to be highly correlated. The reliability of the components w a s

found to be a strong function of the tolerance used for comparisons. Adjudication of

the answer correctness was performed using a "golden" or oracle program developed

at NCSU. Software development and testing w a s done on VAX 11/750 and 780

hardware running UNIX 4.2BSDT and MicroVAX I1 hardware running Ultrix 1.2.

f

In order to study the influence of component reliability and intercomponent

failure dependence on the performance of back-to-back testing we have formed

subsets of components. The subsets had different average component failure

probability (p'), and different inter-component correlation characteristics.

Components for the subsets were selected on the basis of their behaviour during

different stages of the validation testing. The four subsets which are discussed in this

paper are coded 6(2.1), 4(2.1), g(2.1) and 13C3.1). The first number identifies the

number of versions (rn) and the second the problem specification update number to

which the test data and the goiden code used for testing conformed.

3.2 Experimental Measurements

The effectiveness of back-to-back testing was investigated using random

test cases. The emor detecting power, and the structural and functional coverage

provided by the random sets saturated very rapidly. Measured values (e.g. r (k))

stabilized by the time about 100 cases were run (not an unexpected result,

[Vou86a,b]), and hence we used only 200 random test cases. In the back-to-back

event space this, of course, expands to 200*C(m,k) event samples and gives

15

acceptable 95% confidence Sounds on '.he back-to-back testinq parameters.

3 .

I I

To measure the "reliability gain" (or unreliabilitg reduction factor), G(k),

offered by back-to-back testing process of k components, as opposed to the

development of a single component, we shall use the ratio of the probability of an

"undetectedff failure in an average single component to the probability of an

"undetected" failure in an average k-tuple after back-to-back testing:

Experimentally, single component "undetected" failures were recorded by

running functionally equivalent components against a "golden" or oracle program to

estimate component failure probabilities. An average value was then computed for

the pool of available (operational) components.

The "undetected" multicomponent failures probabilities were computed from

pairwise comparisons of responses of all components. The results of the comparisons

for each test case were recorded in a (k+l) by k response matrix. The zeroth row of

the response matrix (i=O) contains information on the comparison of the components

with the golden code. The remaining rows cary information about the mutual

comparisons of the components. For example, if the comparison of components i and

j detected a difference for a given test case then the entries (i,j) and U,i) were given

value 1, otherwise the value w a s zero. Unless stated otherwise, a comparison

involved eleven variables, or 52 individual values if array elements are counted

separately. A difference w a s signalled if even one of these 52 values differed from

the golden value. The results shown in this paper were obtained with TOL=0.0001

absolute for real numbers, and TOL=O for integers. The response matrices were used

to compute the usual multiple component failure profiles [Vou85,86aI, intensity

profiles [EcksSI, and counts of the back-to-back events (see section 2).

Let a hat," , denote experimentally obtained estimates. If ^pi cenotes an

12

estimate of the failure probability of component i (relative to the gold program),

then 5 WIW computed by substitution of the $i values into equation (2). Individual

Pj(k)'S were similarly computed by substitution in equation (31, and 6(k) was then

computed using equation (4). The estimate Pc(k) was computed from the count of all

level-k FAILURE events. The estimate P^i(k) was calculated from the ratio

A

A

A

[NO-FLAG-count/200*C(m,k)], where the count w a s over all 200 test cases and over

all the k-out-of-m possible k-tuples. The parameter was estimated from the ratio

[NO-FLAGcount/FA.fLURE-count]. The analysis was performed for all three
Y

FAILURE event categories defined in section 2, Le. ONEPLUS, MAJORITY and ALL.

The results are summarized in Table 1.

To illustrate the relative size of the inter-cornponent correlation among the

sets, and order them by correlation level, we compute a function L(k) defined by:

where L(k) may be regarded as the amplification factor of the worst-case

uncorrelated back-to-back testing failure probability required to achieve the

observed PI(k) . The value of L(k) is always positive and may be 1 q e r than 1. Since

the output space cardinality is the same for all subsets any differences in the L(k)'s

stem from the inter-component failure dependence and therefore can be used to

estimate its relative magnitude.

A

3.3 The Gain

The experimental gain estimates (using ONEPLUS FAILURE events) are

shown in Figure 2. Note that the ordinate uses logarithmic scale. The notation used

in the legend of this and other figures h a s the following meaning. The first two

letters describe the function that is being plotted. If the first letter is T then the

curve is the resuit of theoretical computations, if it is E the data was obtained

Table 1.

Experimental Results

-
6(2.1) p = 0.379 using ONEPLUS FAILURE events i i

i Set:
i ! 2 2.80 0.136 0.615 0.126 0.221 3000 I

i 3 9.85 0.0385 0.769 0.0351 0.0501 4000
1 4 51.7 7.33e-3 0.873 7.85e-3 8.40e-3 3000 i
! 6 i nf 0 1.0 2.01 e-4 0 200
1 5 455.0 8.3 3e-4 0.947 1.38e-3 8.80e-4 1200 !

-
i Set: 6(2.1) p = 0.379 using MAJORITY FAILURE events

~~~ ~~~ ~ 

2 12.5 0.0303 0.134 0.126 0.21 1 3000 
, 3  24.1 0.0156 0.306 0.0351 0.0515 4000 
% 4  284.3 1.33e-3 0.156 7.85e-3 8.5 5 e-3 3000 
I 5  inf 0 0.270 1.38e-3 0 1200 , 
1 6  inf 0 0.160 2.02 e-4 0 ZOO i 

- 1 I- 
i Set: 6(2.1) p = 0.379 using ALL FAILURE events 

------ -- ---.- -. 
2 12.5 0.0303 0.114 0.126 0.21 1 3000 
3 137.8 2.7 5e-3 0.0625 0.0351 0.0440 4000 

I 4 1137.1 3.33e-4 0.0313 7.85e-3 0.0106 3000 
' 5  inf 0 0.0192 1.38e-3 0 1200 

6 i nf 0 0.0150 2.02e-4 0 200 

Set: 4(2.1) @ = 0.185 using ONEPLUS FAILURE events 
-. 

2 1.12 0.166 0.302 0.0276 0.550 1200 
3 1.66 0.111 0.376 3.31e-3 0.296 800 

I j 4  3.08 0.060 0.420 3.44e-4 0.143 200 , 
I Set: 4(2.1) 'p = 0.185 using MAJORITY FAILURE events 1 I 

1 

I 2  4.19 0.0442 0.0683 0.0276 0.646 1200 

I 4  18.5 0.010 0.060 3.44e-4 0.167 200 
3 3.61 0.0513 0.153 3.31e-3 0.336 800 

1 Set: 4(2.1) = 0.185 using ALL FAILURE events 

2 4.19 0.0442 0.0683 0.0276 0.646 1200 
3 29.6 6.2 5e-3 0.0262 3.31e-3 0.238 800 1 
4 inf 0 0.01 50 3.44e-4 0 2 00 



Table 1. (continued) 

k & k )  k k )  k k )  P^(k) i ( k )  aanplej 
s i z e  -- 

S e t :  g ( 2 . 1 )  p = 0.366 u s i n g  ONEPLUS FAILURE events 
-- 

2 
3 
4 
5 
6 
7 
8 
9 

S e t :  

-- -- .- -- - ----- ----- --- - -~ -.__ 

2.1 1 0.174 0.562 0.126 0.309 7200 
4.40 0.0832 0.683 0.0406 0.122 16800 
9.74 0.0376 0.767 0.0122 0.0490 25200 
23.4 0.0157 0.830 3.41e-3 0.0189 25200 
60.9 6.01e-3 0.882 8.71e-4 6.82e-3 16800 
175.7 2.08e-3 0.926 2.00e-4 2.25e-3 7200 
658.6 5.56e-4 0.961 4.0 5e-5 5.76e-4 1800 
i nf 0 7.25e-6 0 1.000 

g ( 2 . 1 )  'p = 0.366 u s i n g  ALL FAILURE events 

200 --- ---__ -. -- - -- 

2 6.72 0.054 
3 26.6 0.0137 
4 93.2 3.93e-3 
5 279.5 1.3le-3 
6 768.6 4.76e-4 
7 2635.2 1.39e-4 
8 i nf 0 

inf 0 9 

S e t :  13(3.1) = 0 .443  

2 2.45 0.181 
3 6.53 0.0656 
4 18.8 0.0232 
5 56.0 7.76e-3 
6 187.1 2.32e-3 
7 739.1 5.86e-4 
8 3732.3 1.17e-4 
9 31102 1.40e-5 
10 inf 0 
11 inf 0 
12 inf 0 
13 inf 0 

__ - - - . - .- - 

- 

0.169 
0.0936 
0.0556 
0.0317 
0.0226 
0.0155 
0.0117 
0.0100 

u s i n g  

0.631 
0.731 
0.789 
0.821 
0.839 
0.848 
0.853 
0.854 
0.855 

- 

_L_______ 

0.126 
0.0406 
0.0122 
3.3le-3 
8.7 1 e-4 
2.0 0 e-4 
4.05e-5 
7.25e-6 

0.322 
0.147 
0.0706 
0.0377 
0.0211 
8.93e-3 
0 
0 

---______ - 
7200 
16800 
25200 
25200 
16800 
7200 
1800 j 
200 

ONEPLUS FAILURE events 

0.189 
0.0782 
0.03 11 
0.0119 
4.38e-3 
1.5 5 e-3 
5.27e-4 
1.73e-4 
5.46e-5 
1.67e-5 
4.94e-6 
1.42e-6 

0.286 
0.0697 
0.0294 
9.46e-3 
2.77e-3 
6.94e-4 
1.37e-4 
1.64e-5 
0 
0 
0 
0 

15600 
57200 
143000 
257400 
343200 
343200 
275400 
143000 
57200 
15600 
2600 
200 

Set: 13(3.1) p = 0.443 u s i n g  ALL FAILURE events 

2 4.82 0.0920 0.254 0.189 0.362 15600 
3 22.2 0.0199 0.167 0.0782 0.119 57200 
4 86.3 5.13e-3 0.123 0.031 1 0.0418 143000 

' 5  304.1 1.46e-3 0.0976 0.0119 0.0149 257400 
1 6  1187.8 3.73e-4 0.0810 4.3 8e-3 4.61e-3 343200 
I 7  6081.5 7.28e-5 0.0686 1.55e-3 1.06e-3 343200 

8 57014 7.77e-6 0.0587 5.2 7e-4 1.32e-4 275400 
1.73e-1 0 14300 

11 57200 
9 i nf 0 0.0501 
10  inf 0 'I. 0 4 "3 3.46e-J 
11 inf 0 0.0337 1.67e-5 0 15600 
12 i nf 0 0.0273 4.94e-6 0 2600 

- --- - - - . - . - ---. -- ___ - 

i inf 0 0.0200 1.42e-6 0 
-------.-.-----------.--.---I__ 

__-- - 
1 13 



experimentally. The 

L(k), c = r ( k ) .  The 

versions involved in 

14 

second letter has the following meanings: G = G(k) or gain, L = 

number following the first two le t ten  denotes the number of 

the comparisons (m), and is used to identify the component 

subset used. If the data are experimental this number may be followed by another 

letter. Letter A denotes that ALL FAILURE events were used to derive the plotted 

values, letter M that the MAJORITY FAILURE events were used, and if there is no 

letter ONEPLUS events were used. For theoretical curves the number of components 

is followed, in parentheses, by a roman numeral (1, 11 or 111) identifying the 

theoretical model bound used to compute the values. In the case of Model 111 the 

identifier is followed by the span value used in computations. 

I t  is obvious that even in the worst observed case (subset 4(2.1)) the 

multiversion development coupled wi th  back-to-back testing offers some gain in 

reliability over the single component development approach. The size of the fault 

correlation level, as measured by L(k), is illustrated in Figure 3. Experimental r ( k )  

estimates are shown in figure 4. The largest inter-component fault-correlation is 

exhibited by set 4(2.1) and the smallest by set 6(2.1). From Table 1 we see that the 

most unreliable set  is 13 (average failure probability is 0.4431, and the most reliable 

subset is g2.1) with an average failure probability of 0.185. The component sets 6, 13 

and 9 reach infinite gain (no "undetected" failures (faults)) for 6, 10 and 9 developed 

components respectively. Using the conservative ONEPLUS FAILURE events, subset 

4(2.1) never detects aU the potential failures. 

n 

The slopes of the curves in Figure 2, and the gain they imply vary among the 

subsets. The reason for this difference is primarily the intemomponent failure 

correlation. The influence of the average component failure probability of a set 

appean to be  far less important than the correlation effect. For example, the sets 6 

and 9 are approximately equally reliable but the lower correlation set 6(2.1) offers 



100000 'I 

10000 .r  

1000 ., 

1 0 0 .  

10 .' 

1 8  4 

1 2 3 4 5 6 7 e 9 

Number of Components (k) 

Figure 2.  Cain, C(k),  vs. Number of Developed components (k). The gain estimate of 
the ratio of "undetected" failures in an average single component to "undetected" 
failures remaining after back-to-back testing of the components computed using 
ONEPLUS FAILURE events. 

2 0  4 

1.6 a '  

A 

1.6 *d \ 
1.4 * I  

\ 
\ 

0. 

0.4 #&-+, 

1 2 3 4 5 6 7 6 0 

Number of Components (k) 

Figure 3 .  L(k) vs. Number of componentdk). Illustration of the relative inter- 
component correlation. The difference between the curves indicates the difference in the 
failure (fault) dependence. 



_. i.6 

0.0 

0.8 

0.7 

0.6 

Gamma 0.5 

0.4 

0.3 

0 2  

0.1 

0.0 
1 2 3 4 5 6 7 8 9 

Number of Components (k) 

Figure 4 .  
using ALL FAILURE events. 

(k) vs. Number of Components. Experimental estimate f (k) computed 

better gain figures. Similariy, the most "unreliable" set. 13(2.1)* has a comelation 

level which appears to be smaller than that of set  g(2.1). and its gain curve lies above 

that for the set 9. On the other hand, set 4(2.1) has relatively high reliability, but  its 

components are highly correlated resulting in a gain curve far below any of the other 

sets. 

Figures 5 to 8 show the experimental and theoretical gain curves for each of 

the component subsets separately. Filled (black) symbols refer to the experimental 

data and unfilled symbols to theoretical computations. Theoretical computations 

represent worstease bounds obtained using Model I (triangles), Model I1 (sqwres), 

and Model I11 (diamonds, equation (10) using the maximum fault span observed for 



.. 
17 

conservative gain estimates). In the case of set 4(2.1) this last l imit  would be 

constant and equal to  one, so diamonds in that case represent computat ions for t h e  

span of 3 recorded using the  ALL FAILURE events. 

I t  should be noted t h a t  the theoretical  models, as defined in sec t ion  2, do not 

account f o r  the tolerance e f f e c t  &e. a range of FAILURE events from ONEPLUS t o  

ALL), but  only for  the ALL FAILURE events. Therefore the  theore t ica l  values 

obtained using these models will underestimate the actual  failure probabili ty as 

measured by FAILURE or MAJORITY FAILURE events. Hence, to  va l ida te  the 

models we  use the ALL FAILURE event data. XLSo note  tha t  any resu i t  checking 

during the development/testing of Components effect ively acts as a n  additional 

version (even manual computations may qualify 85 a "version"). Therefore ,  in 

practice the minimal number of "developed" components is usually 2. 

Figure 5 shows the FAILURE (EG61, MAJORITY FAILURE (EGGM), and ALL 

FAILURE (EGGA), es t imates  of the gain for the six component set. Also shown are 

the worst-case gain curves expected using Model I, TG6(I), and Model 11, TGG(II), as 

wel l  as a Model I11 based bound (equation (10) with m=6, s=5, F=0.379), TG6(III/S). It 

is interesting to observe that for the ALL FAILURE events  the maximum fault span 

is one less than it is for the ONEPLUS FAILURE events. The conservat ive 

experimental  gain curve is well  approximated by the Model I1 womt-case bound, 

while t he  MAJORITY and ALL FAILURE est imates  are better then  this bound. 

Figure 6 shows the gain curves for the subset  32.1). Only the ONEPLUS 

FAILURE and the ALL FAILURE experimental  data are given. The component  sets 

6(2.1) and  g(2.1) have very s imilar  average component failure probabilities, bu t  they  

have significantly different  inter-component failure dependence charac te r i s t ics  (see 

Figure 3). The e f f ec t  of the increased inter-component failure correlat ion in subset  

g(2.1) manifests as a reduced slope of the 9 gain curves. The conservative gain 



loo00 

1000 

100 

10 

1 

1 2 3 4 5 6 

Number of Components (k) 

Figure 5 .  G(k) vs, Number of Components. Experimental and theoretical gain curves 
for set 6(2 . l ) .  

100000 

1 0 0 0 0  

1000 

1 0 0  

10 

1 

1 2 3 4 5 6 7 8 9 10 

Number of Components (k) 

Pigure 6 .  G(k) vs. Number of Components. Experimental and theoretical gain curves 
for set 9(2.1). 



.. 19 

1 WOO0 

1000 

100 

10 

1 

I A 

6- EG13 

f f i l 3 A  

A- TG1 3(l) 

0- TG1 3(11) 

0- TG1 3fl11/9) 

2 4 6 0 10 12 

Number of Components (k) 

Figure 7 .  G(k)  vs. Number of Components. Experimental and theoretical gain cQrves 
for s e t  13(3.1). 

1000 

10 

1 

1 .o 1 .5 20 2 5  3.0 3.5 4.0 

Number of Components (k) 

Figure 8. G(k) vs. Number of Components. Experimental and theoretical gain curves 
for set 4(2.1). 



20 * 

estimates f a l l  below the Model i predictions based on the average failure probability 

of the whole subset. Figures 7 and 8 illustrate the gain information for subsets 

13(3.1) and 4(2.1) respectively. 

Considering all four sets we note that the Model I worst-case bound provides 

a satisfactory lower l imit  with respect to all ALL FAILURE experimental curves. X 

reasonable conservative limit seems to be provided through the Model I11 bound. Work 

in progress at NCSU shows that good estimates of the correlation behaviour and of 

the bounds can be obtained without the use of a special golden program. For 

example, curve TGS(1x) w a s  computed using Model I with an estimate of 'p based 03 

on the relative performance of the 9 components. Each component w a s  in turn 

treated as the gold program and average failure probability of the other components 

was computed relative to it. A grand average was then computed over all the 

estimates €or us in Model I. 

4. Conclusions 

Using functionally equivalent software components we have experimentally 

investigated the effectiveness of back-to-back testing process. We compared the 

unreliability offered by a multiversion development approach with back-to-back 

testing, with the average unreliability of a single component. Even conservative 

estimates indicate a considerable increase in the probability of detecting failures 

(faults) if back-to-back testing is used. Three models of the back-to-back testing 

process were presented, and it was shown that they offer good estimates of the lower 

bounds on the observed multiversion development reliability gains. 



5. References 

CAvi841 A. Avizienis and J.P. Kelly, "Fault-Tolerance by Design Diversity: Concepts and  
Experiments", Computer, Vol. l?, pp. 67-80, 1984 

CBis861 P.G. Bishop, D.C. Esp, M. Barnes. P Humphreys, G. Dahl, and J. Lahti, 'lPODS-A 
Project on Diverse Software", IEEE Trans. Soft. Eng., Vol. SE-12(9), 
929-940, 1986. 

CEck851 D.E. Eckhardt, Jr. and L.D. Lee, "A Theore t ica l  Basis for the Analysis of 
Multivenion Software Subject to Coincident  Errors", IEEE Trans. Soft. 
Eng., Vol. SE-11(12), 1511-1517, 1985. 

Results from the Second Generat ion Multi-Version Software Experiment", 
submitted fo r  publication, 1986. 

Independence in Multiversion Programming", IEEE Trans. Soft. Eng., Vol. 

CKel861 J. Kelly, D. Eckhardt, A. Caglavan, J. Knight, D. McAllister, M. Vouk, "Early 

[KniSGI J.C. Knight and N.G. Leveson, "An Experimental  Evaluation of the  assumption of 

[Mad841 W.X. Madden, and K.Y. Rone, "Design, Development, In teqa t ion :  Space Shut t le  
Primary Flight Software System", Comm. of the  ACM, Vol. ?7(8), 902-913. 
1984. 

[Mar821 D.J. Martin, "Dissimilar Software in High Integri ty  Applications in Flight 
Controls", hoc. AGARD - C P  330. 36.1-36.13, September  1982. 

[Nag821 P.M. Nagel and J.A. Skrivan, "Software Reliability: Repetit ive Run 
Experimentation and Modeling", BSC-40366, Boeing, Seatt le.  Wa., 1982 

[Nag841 P.M. Nagel. F. W. Scholz and J.X. Skrivan, "Software Reliability: Additional 
Investigation into Modeling with Repl ica ted  Experiments", NASA 
CR172378, Boeing, Seattle, Wa., 1984 

[Ram821 C.V. Ramamoorthy and F.B. Bastani, "Software reliability - status and 
perspectives", IEEE Trans. Soft. Enq., Vol. SE-8, 354-371, 1982 

[Ran751 E. Randell, "System structure for so f tware  fault-tolerance", IEEE Trans. Soft. 
Eng., Voi. SE-1, 220-232, 1975 

[Sco83,a] R.K. Scott ,  "Data Domain Modeling of Faul t  Tolerant Software Reliability", 
Ph.D. Dissertation, North Carolina State University, Raleigh, North 
Carolina, 1983 

CSco83,bI R.K. Scott, J.W. Gault, D.F. McAllister and J. W i g g s ,  "Experimental 
Validation of Six Fault-Tolerant Software Reliability Models", Pmc. IEEE 
14th Fault-Tolerant Computing Symposium, pp. 102-107, 1983 

[Sco84] R.K. Scott, J.W. Gault, D.F. McAllister and J. W i g g s ,  "Investigating Version 
Dependence in Fault-Tolerant Software", AGARD 361, pp. 21.1-21.10, 1984 

[Sco86,b] R.K. Scott, J. W. Gault and D.P. McAllister, "Fault-Tolemnt Software 
Reliability Modeling", IEEE Trans. Sof tware  Eng., 1986, to appear 

[Sun851 C. Sun, "Reliability of N-version programming f o r  f ini te  output spaces", M.Sc. 
Thesis, North Carolina S ta t e  University, Raleigh, North Carolina, 1985 

[Tro85] R. Troy and C. Baluteau, "Assessment of Sof tware  Quality for the  Airbus A310 
Automatic Pilot", Proc. FTCS 15, Ann Arbor, USA, (IEEE CS Press), 
438-443, June 1985. 

[VouBS] M.A. Vouk, D.F. McAllister, K.C. Tai, "Identification of correlated failures of 
fault-tolerant software systemsf*, in Proc. COMPSAC 85, 437-444, 1985. 

[Vou86a] M A  Vouk, D.F. McAllister, K.C. Tai, "An Experimental  Evaluation of t he  
Effectiveness of Random Testing of Fault-tolerant Software", Proc. 
Workshop on Software Testing, Banff, Canada, IEEE CS Press, July 1986. 

[VouSBb] M.A. Vouk, M.L. Helsabeck, K.C. Tai. and D.F. McAllister, "On Testing of 
Functionally Equivalent Components of Fault-Tolerant Software". Proc. 
COMPSAC 86, 414-419, 1986. 

SE-12(1), 96-109, 1986. 

W ig841 J.E. W i g g s ,  "Experimental Validation of Fault-Tolerant Software Reliability 
Models", M.Sc. Thesis, North Carol ina State University, Raleigh. North 
CUOliM, 1984 


