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Abstract. Every isotropic probability measure on the space R™ of real sequences
x=(x;,X2,...) is a convex combination of the measure concentrated at 0 and a member of I (R ),
the set of all isotropic probability measures p., on R™ with p_({0})=0. Each p_e I((R™) is
completely determined by any one of its finite-dimensional marginal distributions p,. Each p,
has a density function f, with dp,(x;,....x,)=dx; - dx, [, xE+ - +x,,2). Each f, is com-

pletely monotone in 0 <& < oo (hence analytic in the right complex & half-plane), and

T2y [dg e, @) =1.
0

Every f which satisfies these two conditions is f, for a unique p..€ I o(R™). Hence the equation

T !dsz(C)= 4 du(t)e™*

defines a bijection between I o(R™) and the set of all probability measures £ on 0t <oo, If

Pw€ ITo(R™) then p ({x: .21 x,-2 <e0})=0, so p., is not a "softened" or "fuzzy" version of the ine-
=

quality ¥ x2<1. If the prior information in a linear inverse problem consists of this inequality
i=1

and nothing else, stochastic inversion and Bayesian inference are both unsuitable inversion tech-

niques.

September 4, 1987



George Backus 3 Proc. Natl. Acad. Sci. USA (1987)

Introduction. Let R be the real numbers, R" the linear space of all real n-tuples, and R*
the linear space of all infinite real sequences x = (xy,x5,,...). Let P, :R*— R" be the projection
operator with P, (x) =(x,,....x, ). Let p, be a probability measure on the smallest &-ring of sub-
sets of R™ which includes all of the cylinder sets P,}(B,), where B, is an arbitrary Borel subset
of R". Let p, be the marginal distribution of p, on R", so p,(B,)= PP, \(B,)) for each B,.
A measure on R” is "isotrépic" if it is invariant under all orthogonal transformations of R*. The
measure p, will be called isotropic if all its marginal distributions p, are isotropic. The set of all
isotropic probability distributions on R* will be written J(R*). The present note deécribes all
members of I(R”™). The result calls into question both stochastic inversion and Bayesian infer-

ence, as currently used in many geophysical inverse problems.

Necessary Conditions for Isotropy. Let 0=(0,0, - --) and let p3 be the member of
I(R™) such that p2({0})=1. If p.e I(R™) and @, ZOYanda-f_ﬁ= 1, thenap.+Bpl e IR™).
Conversely, if p.e I(R*) and p..({0))=B, then p.=(1-B)p..+Bp2 where f..e I(R™) and
P«({0})=0. Therefore it is necessary to study only those p.e I(R™) for which p({0})=0.

They constitute the subset I o(R*) of I(R™).

If p.€ Io(R™), for every € in 0 <& < oo define

F,@©)=p({x:xf + - +x2>E)). (1]

Then F,, is right semi-continuous, and

F,(0)=1 (2a]
F ()= glimF,,(f) =0. [2b]

Also, if n <N anda £A, then

0<F,(A)<F, (@) <Fy@)<s1. [2c]

Properties sufficient to characterize the members of I o(R *) are given in
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Theorem I: Suppose p..€ I (R™) and F,, given by [1]. Then for each integer n 21, F,, §) is ana-
lytic in the open right half plane of complex £&. There is a function f, (), also analytic there,

such that for every Borel subset B, of R"
p,,(B,.)=IdX1 dx,.f,,(112+"' +xn2)' [3a]
B,

In particular, if 0 <a < e then

Fo@)=n"T(n2)™ | dEE"2f,€). [3b]

The f, are related by

fn®)= 2[ dn-€)"f pur@) [3c]
Fan@€)=-n"13 g dn@m-£)%f,, @) (3d]
fa&)=n g dn fps2M) [3e]
fns2€) =101, €) [3f]

ForeveryB in 0<ff <o

lim F,@)=1. [3g]
n —300
PROOF: Let S (n—1) denote the unit sphere in R", and let |S(n—1)! be its (n—1)-dimensional
Euclidean content, 2z"?I'(n/2)”!. Let IS (n-1)1¢,(w) be the content of the part of S(n—1)

where x,2<1—w. Then

anw)=1-1S(r=D11Sm)I™! [dL L 2A-L77.
0

Since p, is the marginal distribution on R" of p,,; on R™,

oo

F,€)=- g dF, ()¢ 1EM), [4a]

the right side being a Stieltjes integral. For anyf and B satisfying& < <B, 0,9 ,.,1(€/M) is con-

tinuous in 8 <1 <B, so integration by parts (1) permits the conclusion
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B B
JdFm(n)m@m + J ANF, 11039 nn €M)

=F,.(B )¢n+l(§/8) —Fn+lw)¢n+l(§/ﬁ) .
Here let 8 &+ and B — . The integrated parts tend to zero, so the Lebesque bounded conver-

gence theorem permits (4a] to be rewritten

E2F,E)=1S(-DIIS(n)I™ ! ann ¢, a5y
Iterating this formula once, reversing orders of integration, and invoking the identity

'Y
! dn-n)"n-€) " =n

leads to

o0

EPELE)=(nl2) ;[ d{{ e DE, 0. [4b]

By induction on n, it follows that F, () is infinitely differentiable in 0<& <o, If we define

fn) = 2T(n 122 F, €), . [5a)
then f, is also infinitely differentiable in 0<& << and [2b] yields [3b]. Then [3a] follows by

straightforward integration theory. Then the definition of marginal distributions implies

fax+ o dxd= [ dty fan e+ x5, (5b]

whichis [3c] withé =x2 + - - +x2n=xZ+ - - +x2,. Also,

fn(x12 + - +xn2)= j dxn+l j dxn+2fn+2(x12 + +xn2+2)v [SC]

which is [3e]. Then [3f] follows from [3e], and [3d] follows from [3f] and [3c] with n replaced
by n—1. To prove analyticity, note that if ¢ is an integer 20 and if 0 <a <f3, then by Taylor’s

theorem with remainder

i . A |
Fa@)-Fo)= 5 L QP ap) + o [ aeG-a (07 Fa). (62]
i=1 : ‘a
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But (—9¢) F=rf 5;, 50 by [3b]

R

B
o7 4687 CTFAE) = Fag@) = Fog o). [6b]

Hence, the Lebesque bounded convergence theorem implies that as o« — 0 the integral in [6a]
converges to 1—F o, ,5(3). Therefore
F _$ B
20428) - F23) = E; 0 (—9)' F2B). [6¢c]
All terms in the sum [6c] are nonnegative, and F,,,(8) <1, so the series
) (l# F{)@) [6d]
= !

converges absolutely (here F§") =9{F ). Therefore, the power series for F,€) at& =8 converges
absolutely for all complex £ in the closed disk 181 <f. Since § is arbitrary, F (&) is analytic
for all complex & with positive real part. By [5a], so is f &) and then by [3c,d] so is f, (&) for
every n>1. Hence so is F,() for every n>1. Furthermore, sincé [6d] converges, Abel’s

theorem (2) implies that

Fy0)—Fof) = Ei % (—0) FoB) . (6e]
o i
Together, [6¢], [6¢] and [2a] imply [3g].
COROLLARY 1: If one of the marginal distributions p, is known, p ., is completely determined.
COROLLARY 2: Let H () be the set of x in R* with ‘_g x,-2<a. Then p (H (e=))=0. This fol-
lows immediately from {3g] and the fact that H (o) is the monotone limit of the sets H (@) (3).

Sufficient Conditions for Isotropy. Let M(n) be the set of infinitely differentiable real-

valued functions f on the open half-line 0 <& << such that

7" T(n/2)™ [dEEM > f &) =1 [7a]
0
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and also for every integer ¢ 20 and every& in 0 <€ <

(-9 f€)=0. (7b]
Note that if p..€ Io(R™) and f, comes from p_, via [3a] then f, € M(n). The converse is also

true, and to prove it we need

LEMMA 1: Supposen 21and f € M(n). Then

Jim £*2f €)=0 [8a]

. nl2 _

él_rpoé f&€)=0 [8b]

fé)= g dn-3,f @) (8c]

(n12) [ dEEMTf €)= [ dEEM YOS €)) (8d)
0 0

—n7'0:f € M(n+2). [8e]

PROOF: Letm =n/2—1 and let 0 < <A <oo. Integration by parts gives

A A
(m+1) [ dEE™f €) =A™ (A) —a™"f @) + | dEE™ [0 €)1. [9a]

Fix . The integral on the right in [$a] increases as A — <= and yet is bounded, so it has a limit.

Therefore Alim Am+l f (A) exists. By [7a] it cannot be positive, so we have [8a], and hence [8c],
-—Po0

and also

(m+1);fdé§"’f &) =-a"*'f @) +}d§§’"“[-8¢f €. [9b]
a
As o decreases to 0, the integral on the right in [9b] lincreases, and that on the left has a finite
limit, so a™*!f (@) approaches either +oo or a nonnegative limit. Then [7a) requires [8b], and
[9b] converges to [8d]. Then [8e] follows from [8d] and [7b].
Now we can prove
THEOREM 2: Suppose n is a nonnegative integer and f € M(n). Then there is a p € Io(R™)

whose marginal distribution p,, on R" is given by [3a] with f, =f .
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PROOF: For every integer g 20, define £, 2, €)=n"9(-9¢)7 f €). If N-n is a nonnegative even

integer, induction on [8c] implies

NG+ vxd)= [ diya [ divafneGE+ o +adg). [10a]

If N—n is a nonnegative odd integer, define fy from fy,; via [3c]. Then

a0

NG+ v = [ dyafvaGf + o 4 xda). {10b]

That [10b] also holds when N—n is nonnegative and even follows from [10a]. Therefore [10b]

holds for all N 2n. Use it inductively to define fy for 1<N <n. For N =n, [7a] implies

jdxldefN(x12+‘+x13)=l' [IOC]
RN
and then {10b] implies [10c] for all N =1. Thus the probability distributions py on RN given by

fn via [3a] satisfy the Kolmogorov consistency condition. Then the existence of p ., follows

from Kolmogorov’s Fundamental Theorem (4).

CORQLLARY 1:If f € M(n), f €) is analytic in the open right half-plane of complex .

o0

COROLLARY 2: The equation F,¢)= ({ au (t)e™*" furnishes a bijection between the members of
I o(R*) and the probability measures it on 0t <oo,

PROOF: Demanding that f , € M (2) is equivalent to demanding that F ,) be completely mono-
tonic on 0 <& < oo (5).

Examples and Applications. Setting f,€&)=n""e™* gives f,&)=n""e>. Thisp_. is the
gaussian with independent x; x, .., each having mean O and variance 1. Setting
f2&)=n"V[EY (14 )1} with O<v <1 gives a p.. for which 611_1)110 fn€)=ceif n <2 and also if
n =1 and Y4 <v < 1. Thus the densities f, €) need not remain finite as& — 0.

The geophysical application is to inverse theory. An infinite dimensional linear space X of

earth models x is given, along with a finite number of linear functionals, g; :X -5 R,
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Jj=1,..,D+1. Anobserver measures D datay; =g;(xg)+¢; fori=l,..,D. Here xg is the correct
earth model and ¢; is the error in observing y;. The observer wants to predict the value of
z=gp.1(Xg). Since dim X =0, the problem is hopeless unless gp,; is a linear combination of
g1 -+ 8D, Or unless the observer has some prior information about xz not included among the
data (6,7). One common sort of prior information is a quadratic bound on xg, a quadratic form Q
oﬁ X such that x is known to satisfy

Q(xg,xg)<1. _ [11]
Often [11] is a bound on energy content or dissipation rate (8). In stochastic inversion and Baye-
sian inference, such a bound is often "softened" to a prior personal probability distribution p ., on

X (8-10). In practice, X is truncated to an R"”, and p,, is used in the inversion.

To see why this process is questionable, complete X to a Hilbert space with the inner pro-

duct x-x"=Q (x,x). Let £),%,, --- be an orthonormal basis for X, and write x= Y, x;%;.
=1

Then X becomes the subset H (e<) of R defined in corollary 2 to theorem 1. The prior informa-

tion [11] can now be written

Y x2<1. [12]

If the observer wants to soften [12] to a probability distribution p.,, without introducing new

information not implied by [12], then clearly he should take p. € I(R*). He is unlikely to assign

nonzero probability to 0, so p. € I,(RT). But then p _(X)=0 by corollary 2 to theorem 1. Any

prior personal probability distribution obtained by softening [12] without adding new information
must deny [12] with probability 1.
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