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Abstract. Every isotropic probability measure on the space R" of real sequences 

x = (x  x2, .. .) is a convex combination of the measure concentrated at 0 and a member of I o(R "), 

the set of all isotropic probability measures p on R O0 with pm( (0}) = 0. Each p m  E Zo(R ") is 

completely determined by any one of its finite-dimensional marginal distributions p ,  . Each p ,  

has a density functionf, with dp, (x l ,  ..., x, , )=drl  dr, , f , , (xf  + +$). Eachf, is com- 

pletely monotone in 0 <e < 00 (hence analytic in the right complex e half-plane), and 

m 

znnr(, i21-l J de en/2-*fn (5) = 1 . 
0 

Every f which satisfies these two conditions is f, for a unique p E Io@"). Hence the equation 

m m 

z dCf2(5) = pP(t>e- le  c 0 

defines a bijection between Zo(Rm) and the set of all probability measures p on OSt COO. If 

00 

p E Z o(R m, then p -( (x : X xi2 < 0 0 ) )  = 0, so p is not a "softened" or "fuzzy" version of the ine- 
i=l 

m 

quality Z xi25 1. If the prior information in a linear inverse problem consists of this inequality 
i=l  

and nothing else, stochastic inversion and Bayesian inference are both unsuitable inversion tech- 

niques. 
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Introduction. Let R be the real numbers, R" the linear space of al l  real n-tuples, and R m  

the linear space of all infinite real sequences x = ( x ~ , x z ,  ...). Let P,  : R" + R" be the projection 

operator with P, (x) = ( x ~ ,  ..., x,). Let po. be a probability measure on the smallest O-ring of sub- 

sets of R" which includes all of the cylinder sets P;'(B,,), where B, is an arbitrary Bore1 subset 

of R ,. Let p n  be the marginal distribution of p on R ', so pn (B, ) = p "(P;'(B,, )) for each B, , 

A measure on R" is "isotropic" if it is invariant under all orthogonal transformations of R n  . The 

measure p.. will be called isotropic if all its marginal distributions pn are isotropic. The set of all 

isotropic pmbability distributions on R" will be written I@"). The present note describes all 

members of I@"). The result calls into question both stochastic inversion and Bayesian infer- 

ence, as cumntly used in many geophysical inverse problems. 

Necessary Conditions for Isotropy. Let O=(O, 0, * ) .and let p i  be the member of 

I (R") such that p i  (IO})= 1. If po. E I (R") and a , P 1 0  and a +P = 1, then a p m + j 3 p i  E I@") .  

Conversely, if p , ~  I @ " )  and p,((O})=P, then p , = ( l + 3 ) p m + p p ?  where B,E I(R") and 

p - ( ( O ) ) = O .  Therefore it is necessary to study only those p.. E I ( R 7  for which p,((O})=O. 

They constitute the subset I o(R ") of I (R "). 

If p a .  E I &  "), for every in 0 16 < - define 

F, ( { )=p"( [x :x :  + * . .  +%,2>()). 
Then F, is right semi-continuous, and 

F, (0) = 1 

F, (=) = limF, g) = 0. 
t+ 

Also, if n I N  anda I A ,  then 

0 I F, (A)  I F, (a )  I F N ( a )  I 1 .  

Properties sufficient to characterize the members of Io(R") are given in 
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Theorem I :  Suppose p m  E Io(Rw) and Fn given by [ 13. Then for each integer n 2 1. F, e)  is ana- 

lytic in the open right half plane of complex e. There is a fimction f, (e). also analytic there, 

such that for every Bore1 subset B, of R 

In particular, if 0 l a  < - then 

Thef, are related by 

m 

For everyp in 0 I p  c - 
lim F,@)  = 1 .  

n - w  

PROOF: Let S(n-1) denote the unit sphere in R " ,  and let IS@-1) I be its (n-1)-dimensional 

Euclidean content, 2~"'~I ' (n /2) - ' .  Let IS(n-l)I@,(w) be the content of the part of S(n-1) 

wherex:Il-w. Then 

W 

4,+1(w)= 1 - IS(n-1)1 IS(n) l - l  p p ( l < ) - H  
0 

Sincep, is the marginal distribution on R" ofp,+l on R"+l, 

the right side being a Stieltjes integral. For anyp and B satisfying 5 <p < B , &#n+l(t/q) is con- 

tinuous inp  I q  I B , so integration by parts (1) permits the conclusion 
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gence theorem permits [4a] to be rewritten 

0 

{”+,({) = I S(n-1) I IS ( n )  1-1 dq ?p+lflFn+l(q)(q-&x. E 
Iterating this formula once, reversing orders of integration, and invoking the identity 

leads to 

By induction on n , it follows that F, (5) is infinitely differentiable in 0 <e < -. If we define 

f , g )  = ~ - n R r ( n / 2 ) 5 1 - n R ~ ~ ~ n ( 5 ) ,  mi 
then f, is also infinitely diffemtiable in 0<5 <- and [2b] yields [3b]. Then [3a] follows by 

Straightforward integration theory. Then the definition of marginal distributions implies 

m m 

which is [3e]. Then [3fJ follows from [3e], and [3d] follows from [3fl  and [3c] with n replaced 

by n-I. To prove analyticity, note that if q is an integer 20 and if O<a <p, then by Taylor’s 

theorem with remainder 
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But ( 4 { ) ' F 2 = n i f 2 i ,  SO by [3b] 

Hence, the Lebesque bounded convergence theorem implies that as a + O  the integral in [6a] 

converges to 1 -F2q+2(P). Therefore 

All terms in the sum [6c] are nonnegative, and FZq+2(P) I 1, so the series 

converges absolutely (here Ff) = d l F d .  Therefore, the power series for F 2 e )  ate =/I converges 

absolutely for all complex 5 in the closed disk le+ I Sp. Sincep is arbitrary, F2(5) is analytic 

for all complex 6 with positive real part. By Pa]. so is f 2 ( 1 )  and then by [3c,d] so is f,, (e) for 

every n 2 1. Hence so is F,, (5) for every n 2 1. Furthermore, since [6d] converges, Abel's 

theorem (2) implies that 

m ni 

Together, [6e], [6c] and [2al imply [3gl. 

COROLLARY I :  If one of the marginal distributions p,, is known, pm is completely determined. 

m 

COROLLARY 2: Let ~ ( a )  be the set o fx  in R" with c x:<a. Then ~ J H ( - ) ) = o .  This fol- 
i=l 

lows immediately from [3g] and the fact that H ( - )  is the monotone limit of the sets H ( a )  (3). 

Sufficient Conditions for Isotropy. Let M ( n )  be the set of infinitely differentiable real- 

valued functions f on the open half-line 0 <e < QO such that 
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and also for every integer q 2 0 and everye in 0 c4 c 00 

(+qf (4 1 2 0 * [7b1 

Note that ifp,E 10(Rm) andf, comes from p m  via [3a] then f, E M(n) .  The converse is also 

true, and to prove it we need 

LEMMA I :  Suppose n 2 1 andf E M(n). Then 

lim t"'2f (6) = 0 
€- 

m 

W 2 )  j de en'2-1f (5) = j d5 C"'"-J*f (511 

--Z%3{f E M(n+2).  

0 0 

PROOF: Let m = n /2 - 1 and let 0 <a < A  < =. Integration by parts gives 

A A 

(m +I) d5 5"f Q) = Am+'f (A  1 -am+'f (a) + de {"+l[-Jef ({>I. [9a1 
a .  a 

Fix a. The integral on the right in [9a] increases as A + and yet is bounded, so it has a limit. 

Therefore lim A'"+'f(A) exists. By [7a] it cannot be positive, so we have @a], and hence [8c], 
A+ 

and also 

As a decreases to 0, the integral on the right in [9b] ]increases, and that on the left has a finite 

limit, so a"+'f(a) approaches either +OO or a nonnegative limit. Then [7a] requires [8b]. and 

[9b] converges to [8d]. Then [gel follows from [8d] and [7b]. 

Now we can prove 

THEOREM 2: Suppose n is a nonnegative integer and f E M(n). Then there is a poo E lo(Rm) 

whose marginal distribution p n  on R" is given by [3a] with f, =f . 
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PROOF: For every integer q 2 0, define fn+a G)=n-Q (4$f e). If N-n is a nonnegative even 

integer, induction on [8c] implies 

If N-n is a nonnegative odd integer, define f N  from f ~ + ~  via [3c]. Then 

m 

[lob1 

That [lob] also holds when N-n is nonnegative and even follows from [loa]. Therefore [lob] 

holds for all N 2 n . Use it inductively to define f N  for 1 SN < n . For N = n , [7a] implies 

2 f N  (X f + * * * +x$) = j ~ x N + ~ N + ~ ( x  12 + * * + x N + ~  ) . - 

I , h 1  * * e  c ~ x N ~ N ( x : +  - 0 .  +X;)=I, [1OCl 
R 

and then [lob] implies [ lOc] for all N 2 1. Thus the probability distributions p~ on RN given by 

f N  via [3a] satisfy the Kolmogorov consistency condition. Then the existence of p, follows 

from Kolmogorov’s Fundamental Theorem (4). 

COROLLARY I: Iff E M ( n ) ,  f (e) is analytic in the open right half-plane of complexe. 

OI) 

COROLLARY 2: The equation F&)=J dp(t)e<‘ furnishes a bijection between the members of 

I o(R ”) and the probability measuresp on 0 I t < -. 

PROOF: Demanding that f E M (2) is equivalent to demanding that F2(5) be completely mono- 

tonic on 0 55 < - (5). 

Examples and Applications. Setting f 2(c)=n-1e4 gives fn(c)=n-nRe3. This poo is the 

gaussian with independent x1,x2, ..., each having mean 0 and variance 1. Setting 

f 2 ( ~ ) = n - 1 ~ [ ~ v - 1 ~ l ~ ) V - * ]  with O<v < 1 gives ap, for which lim f,({)=- if n 5 2  and also if 
5 4  

n = 1 and M l v  < 1. Thus the densities f,(() need not remain finite as5 + 0. 

The geophysical application is to inverse theory. An infinite dimensional linear space X of 

earth models x is given, along with a finite number of linear functionals, gj :X + R ,  
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j=l ,... ,D+l. AnobservermeasuresD datayi =gi(xE)+Ei fori=l. ..., D. Herex= isthecorrect 

earth model and ~i is the e m r  in observing yi. The observer wants to predict the value of 

z =gD+f(xE). Since dimX =-, the problem is hopeless unless gD+1 is a linear combination of 

g 1, ..., gD, or unless the observer has some prior information about xE not included among the 

data (6,7). One common sort of prior information is a quadratic bound on xE, a quadratic form Q 

on X such that XE is known to satisfy 

Q ( x E , x E ) ~  1. [111 

Often [ 1 11 is a bound on energy content or dissipation rate (8). In stochastic inversion and Baye- 

sian inference, such a bound is often "softened" to a prior personal probability distribution p .. on 

X (8-10). In practice, X is mca ted  to an R" , andp, is used in the inversion. 

To see why this process is questionable, complete X to a Hilbert space with the inner pro- 

be an orthonormal basis for X, and write x = C xi g i .  
" 

duct x x'= Q (x, x'). Let 121,122, - 
i =I 

Then X becomes the subset H(-) of R" defined in corollary 2 to theorem 1. The prior informa- 

tion [ l l] can now be written 

" 
xx;s1. 
i=l 

If the observer wants to soften [I21 to a probability distribution p.., without introducing new 

information not implied by [ 121, then clearly he should take p.. E l ( R m ) .  He is unlikely to assign 

nonzero probability to 0, so p.. E I#-).  But then pm(X)=O by corollary 2 to theorem 1. Any 

prior personal probability distribution obtained by softening [ 121 without adding new information 

must deny [ 121 with probability 1. 
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