ISOTROPIC PROBABILITY MEASURES IN INFINITE DIMENSIONAL SPACES

(Inverse Problems/Prior Information/Stochastic Inversion)

George Backus

Institute of Geophysics & Planetary Physics, A-025
University of California, San Diego
La Jolla, CA 92093

September 4, 1987
Abstract. Every isotropic probability measure on the space \mathbb{R}^∞ of real sequences $\mathbf{x} = (x_1, x_2, \ldots)$ is a convex combination of the measure concentrated at 0 and a member of $I_0(\mathbb{R}^\infty)$, the set of all isotropic probability measures p_∞ on \mathbb{R}^∞ with $p_\infty(\{0\}) = 0$. Each $p_\infty \in I_0(\mathbb{R}^\infty)$ is completely determined by any one of its finite-dimensional marginal distributions p_n. Each p_n has a density function f_n with $dp_n(x_1, \ldots, x_n) = dx_1 \cdots dx_n f_n(x_1^2 + \cdots + x_n^2)$. Each f_n is completely monotone in $0 < \xi < \infty$ (hence analytic in the right complex ξ half-plane), and

$$
\pi^{n/2} \Gamma(n/2)^{-1} \int_0^{\infty} d\xi \xi^{n/2-1} f_n(\xi) = 1.
$$

Every f which satisfies these two conditions is f_n for a unique $p_\infty \in I_0(\mathbb{R}^\infty)$. Hence the equation

$$
\pi \int_\xi^\infty d\zeta f_2(\zeta) = \int d\mu(t) e^{-t\xi}
$$

defines a bijection between $I_0(\mathbb{R}^\infty)$ and the set of all probability measures μ on $0 \leq t < \infty$. If $p_\infty \in I_0(\mathbb{R}^\infty)$ then $p_\infty(\{\mathbf{x} : \sum_{i=1}^{\infty} x_i^2 < \infty\}) = 0$, so p_∞ is not a "softened" or "fuzzy" version of the inequality $\sum_{i=1}^{\infty} x_i^2 \leq 1$. If the prior information in a linear inverse problem consists of this inequality and nothing else, stochastic inversion and Bayesian inference are both unsuitable inversion techniques.
Introduction. Let R be the real numbers, R^n the linear space of all real n-tuples, and R^∞ the linear space of all infinite real sequences $x = (x_1, x_2, \ldots)$. Let $P_n : R^\infty \to R^n$ be the projection operator with $P_n(x) = (x_1, \ldots, x_n)$. Let μ be a probability measure on the smallest σ-ring of subsets of R^∞ which includes all of the cylinder sets $P_n^{-1}(B_n)$, where B_n is an arbitrary Borel subset of R^n. Let μ_n be the marginal distribution of μ on R^n, so $\mu_n(B_n) = \mu_\infty(P_n^{-1}(B_n))$ for each B_n.

A measure on R^n is "isotropic" if it is invariant under all orthogonal transformations of R^n. The measure μ_∞ will be called isotropic if all its marginal distributions μ_n are isotropic. The set of all isotropic probability distributions on R^∞ will be written $I(R^\infty)$. The present note describes all members of $I(R^\infty)$. The result calls into question both stochastic inversion and Bayesian inference, as currently used in many geophysical inverse problems.

Necessary Conditions for Isotropy. Let $\Theta = (0, 0, \cdots)$ and let μ_0 be the member of $I(R^\infty)$ such that $\mu_0(\Theta) = 1$. If $\mu_\infty \in I(R^\infty)$ and $\alpha, \beta \geq 0$ and $\alpha + \beta = 1$, then $\alpha \mu_\infty + \beta \mu_0 \in I(R^\infty)$. Conversely, if $\mu_\infty \in I(R^\infty)$ and $\mu_\infty(\Theta) = \beta$, then $\mu_\infty = (1-\beta)\tilde{\mu}_\infty + \beta \mu_0$ where $\tilde{\mu}_\infty \in I(R^\infty)$ and $\tilde{\mu}_\infty(\Theta) = 0$. Therefore it is necessary to study only those $\mu_\infty \in I(R^\infty)$ for which $\mu_\infty(\Theta) = 0$.

They constitute the subset $I_0(R^\infty)$ of $I(R^\infty)$.

If $\mu_\infty \in I_0(R^\infty)$, for every ξ in $0 \leq \xi < \infty$ define

$$F_n(\xi) = \mu_\infty(\{ x : x_1^2 + \cdots + x_n^2 > \xi \}) \quad \text{[1]}$$

Then F_n is right semi-continuous, and

$$F_n(0) = 1 \quad \text{[2a]}$$
$$F_n(\infty) = \lim_{\xi \to \infty} F_n(\xi) = 0 \quad \text{[2b]}$$

Also, if $n \leq N$ and $\alpha \leq A$, then

$$0 \leq F_n(A) \leq F_n(\alpha) \leq F_N(\alpha) \leq 1 \quad \text{[2c]}$$

Properties sufficient to characterize the members of $I_0(R^\infty)$ are given in
Theorem 1: Suppose \(p_\alpha \in I_0(\mathbb{R}^\infty) \) and \(F_n \) given by [1]. Then for each integer \(n \geq 1 \), \(F_n(\xi) \) is analytic in the open right half plane of complex \(\xi \). There is a function \(f_n(\xi) \), also analytic there, such that for every Borel subset \(B_n \) of \(\mathbb{R}^n \)

\[
p_n(B_n) = \int_{B_n} dx_1 \cdots dx_n f_n(x_1^2 + \cdots + x_n^2).
\]

In particular, if \(0 \leq \alpha < \infty \) then

\[
F_n(\alpha) = \pi^{n/2} \Gamma(n/2)^{-1} \int_{\alpha}^\infty d\xi \xi^{n/2} f_n(\xi).
\]

The \(f_n \) are related by

\[
f_n(\xi) = \int_\xi^\infty d\eta (\eta-\xi)^{-\frac{1}{2}} f_{n+1}(\eta) \]

\[
f_{n+1}(\xi) = -n^{-1} \partial_\xi \int_\xi^\infty d\eta (\eta-\xi)^{-\frac{3}{2}} f_n(\eta)
\]

\[
f_n(\xi) = \pi \int_\xi^\infty d\eta f_{n+2}(\eta)
\]

\[
f_{n+2}(\xi) = -n^{-1} \partial_\xi f_n(\xi)
\]

For every \(\beta \) in \(0 \leq \beta < \infty \)

\[
\lim_{n \to \infty} F_n(\beta) = 1.
\]

PROOF: Let \(S(n-1) \) denote the unit sphere in \(\mathbb{R}^n \), and let \(1S(n-1)1 \) be its \((n-1)\)-dimensional Euclidean content, \(2\pi^{n/2} \Gamma(n/2)^{-1} \). Let \(1S(n-1)1 \phi_n(\omega) \) be the content of the part of \(S(n-1) \) where \(x_n^2 \leq 1-\omega \). Then

\[
\phi_{n+1}(\omega) = 1 - 1S(n-1)1 1S(n)1^{-1} \int_0^\omega d\zeta \zeta^{n/2} (1-\zeta)^{-\frac{1}{2}}.
\]

Since \(p_n \) is the marginal distribution on \(\mathbb{R}^n \) of \(p_{n+1} \) on \(\mathbb{R}^{n+1} \),

\[
F_n(\xi) = -\int_\xi^\infty dF_{n+1}(\eta) \phi_{n+1}(\xi|\eta),
\]

the right side being a Stieltjes integral. For any \(\beta \) and \(B \) satisfying \(\xi < \beta < B \), \(\partial_\eta \phi_{n+1}(\xi|\eta) \) is continuous in \(\beta \leq \eta \leq B \), so integration by parts (1) permits the conclusion
\[
\int_{\beta}^{B} dF_{n+1}(\eta) \phi_{n+1}(\xi | \eta) + \int_{\beta}^{B} d\eta F_{n+1}(\eta) \partial_{\eta} \phi_{n+1}(\xi | \eta) \\
= F_{n+1}(B) \phi_{n+1}(\xi | B) - F_{n+1}(\beta) \phi_{n+1}(\xi | \beta).
\]

Here let \(\beta \to \xi^+ \) and \(B \to \infty \). The integrated parts tend to zero, so the Lebesque bounded convergence theorem permits \([4a]\) to be rewritten

\[
\xi^{-n/2} F_n(\xi) = 1 S(n-1) 1 S(n) 1^{-1} \int_{\xi}^{\infty} d\eta \eta^{-(n+1)/2} F_{n+1}(\eta) (\eta - \xi)^{-1/2}.
\]

Iterating this formula once, reversing orders of integration, and invoking the identity

\[
\int_{\xi}^{\infty} d\eta (\xi - \eta)^{-1/2} (\eta - \xi)^{-1/2} = \pi
\]

leads to

\[
\xi^{-n/2} F_n(\xi) = (n/2) \int_{\xi}^{\infty} d\xi \xi^{-(n+2)/2} F_{n+2}(\xi).
\] \[4b\]

By induction on \(n \), it follows that \(F_n(\xi) \) is infinitely differentiable in \(0 < \xi < \infty \). If we define

\[
f_n(\xi) = -\pi^{-n/2} \Gamma(n/2) \xi^{1-n/2} \partial_{\xi}^{n} F_n(\xi),
\] \[5a\]

then \(f_n \) is also infinitely differentiable in \(0 < \xi < \infty \) and \([2b]\) yields \([3b]\). Then \([3a]\) follows by straightforward integration theory. Then the definition of marginal distributions implies

\[
f_n(x_1^2 + \cdots + x_n^2) = \int_{-\infty}^{\infty} dx_{n+1} f_{n+1}(x_1^2 + \cdots + x_{n+1}^2),
\] \[5b\]

which is \([3c]\) with \(\xi = x_1^2 + \cdots + x_n^2, \eta = x_1^2 + \cdots + x_{n+1}^2 \). Also,

\[
f_n(x_1^2 + \cdots + x_n^2) = \int_{-\infty}^{\infty} dx_{n+1} \int_{-\infty}^{\infty} dx_{n+2} f_{n+2}(x_1^2 + \cdots + x_{n+2}^2),
\] \[5c\]

which is \([3e]\). Then \([3f]\) follows from \([3e]\), and \([3d]\) follows from \([3f]\) and \([3c]\) with \(n \) replaced by \(n-1 \). To prove analyticity, note that if \(q \) is an integer \(\geq 0 \) and if \(0 < \alpha < \beta \), then by Taylor's theorem with remainder

\[
F_2(\alpha) - F_2(\beta) = \sum_{i=1}^{q} \frac{(\beta - \alpha)^i}{i!} (-\partial_\xi)^i F_2(\beta) + \frac{1}{q!} \int_{\alpha}^{\beta} d\xi (\xi - \alpha)^q (-\partial_\xi)^{q+1} F_2(\xi).
\] \[6a\]
But \((-\partial_\xi)_{\alpha} F_2 = \pi^i f_{2i}\), so by [3b]

\[
\frac{1}{\alpha} \frac{\beta}{q!} \int \alpha d_\xi \xi^{q} (-\partial_\xi)^{q+1} F_2(\xi) = F_{2q+2}(\alpha) - F_{2q+2}(\beta).
\]

Hence, the Lebesgue bounded convergence theorem implies that as \(\alpha \to 0\) the integral in [6a] converges to \(1 - F_{2q+2}(\beta)\). Therefore

\[
F_{2q+2}(\beta) - F_2(\beta) = \sum_{i=1}^{\infty} \frac{\beta^i}{i!} (-\partial_\xi)^{i} F_2(\beta).
\]

All terms in the sum [6c] are nonnegative, and \(F_{2q+2}(\beta) \leq 1\), so the series

\[
\sum_{i=1}^{\infty} \frac{(-\beta)^i}{i!} F_2^{(i)}(\beta)
\]

converges absolutely (here \(F_2^{(i)} = \partial^{i}_\xi F_2\)). Therefore, the power series for \(F_2(\xi)\) at \(\xi = \beta\) converges absolutely for all complex \(\xi\) in the closed disk \(|\xi - \beta| \leq \beta\). Since \(\beta\) is arbitrary, \(F_2(\xi)\) is analytic for all complex \(\xi\) with positive real part. By [5a], so is \(f_2(\xi)\) and then by [3c,d] so is \(f_{n}(\xi)\) for every \(n \geq 1\). Hence so is \(F_n(\xi)\) for every \(n \geq 1\). Furthermore, since [6d] converges, Abel’s theorem (2) implies that

\[
F_2(0) - F_2(\beta) = \sum_{i=1}^{\infty} \frac{\beta^i}{i!} (-\partial_\xi)^{i} F_2(\beta).
\]

Together, [6e], [6c] and [2a] imply [3g].

COROLLARY 1: If one of the marginal distributions \(p_n\) is known, \(p_\infty\) is completely determined.

COROLLARY 2: Let \(H(\alpha)\) be the set of \(x\) in \(R^n\) with \(\sum_{i=1}^{\infty} x_i^2 < \alpha\). Then \(p_\infty(H(\infty)) = 0\). This follows immediately from [3g] and the fact that \(H(\infty)\) is the monotone limit of the sets \(H(\alpha)\) (3).

Sufficient Conditions for Isotropy. Let \(M(n)\) be the set of infinitely differentiable real-valued functions \(f\) on the open half-line \(0 < \xi < \infty\) such that

\[
\pi^{n/2} \Gamma(n/2)^{-1} \int_{0}^{\infty} d_\xi \xi^{n/2-1} f(\xi) = 1
\]

September 4, 1987
and also for every integer \(q \geq 0 \) and every \(\xi \) in \(0 < \xi < \infty \)

\[
(-\partial_\xi)^q f(\xi) \geq 0.
\]

[7b]

Note that if \(p_\infty \in I_0(R^n) \) and \(f_n \) comes from \(p_\infty \) via [3a] then \(f_n \in M(n) \). The converse is also true, and to prove it we need

Lemma 1: Suppose \(n \geq 1 \) and \(f \in M(n) \). Then

\[
\lim_{\xi \to \infty} \xi^{n/2} f(\xi) = 0 \tag{8a}
\]

\[
\lim_{\xi \to 0} \xi^{n/2} f(\xi) = 0 \tag{8b}
\]

\[
f(\xi) = \int_\xi^\infty d\eta [\partial_\xi f(\eta)] \tag{8c}
\]

\[
(n/2) \int_0^\infty d\xi \xi^{n/2-1} f(\xi) = \int_0^\infty d\xi \xi^{n/2} [\partial_\xi f(\xi)] \tag{8d}
\]

\[-\pi^{-1} \partial_\xi f \in M(n+2). \tag{8e}
\]

Proof: Let \(m = n/2 - 1 \) and let \(0 < \alpha < A < \infty \). Integration by parts gives

\[
(m+1) \int_\alpha^A d\xi \xi^m f(\xi) = A^{m+1} f(A) - \alpha^{m+1} f(\alpha) + \int_\alpha^A d\xi \xi^{m+1} [\partial_\xi f(\xi)]. \tag{9a}
\]

Fix \(\alpha \). The integral on the right in [9a] increases as \(A \to \infty \) and yet is bounded, so it has a limit. Therefore \(\lim_{A \to \infty} A^{m+1} f(A) \) exists. By [7a] it cannot be positive, so we have [8a], and hence [8c], and also

\[
(m+1) \int_\alpha^\infty d\xi \xi^m f(\xi) = -\alpha^{m+1} f(\alpha) + \int_\alpha^\infty d\xi \xi^{m+1} [\partial_\xi f(\xi)]. \tag{9b}
\]

As \(\alpha \) decreases to 0, the integral on the right in [9b] increases, and that on the left has a finite limit, so \(\alpha^{m+1} f(\alpha) \) approaches either \(+\infty \) or a nonnegative limit. Then [7a] requires [8b], and [9b] converges to [8d]. Then [8e] follows from [8d] and [7b].

Now we can prove

Theorem 2: Suppose \(n \) is a nonnegative integer and \(f \in M(n) \). Then there is a \(p_\infty \in I_0(R^n) \) whose marginal distribution \(p_n \) on \(R^n \) is given by [3a] with \(f_n = f \).
PROOF: For every integer \(q \geq 0 \), define \(f_{n+2q} (\xi) = \pi^{-q} (-\partial_\xi)^q f (\xi) \). If \(N-n \) is a nonnegative even integer, induction on \([8c]\) implies

\[
f_N(x_1^2 + \cdots + x_N^2) = \int dx_{N+1} \int dx_{N+2} f_{N+2}(x_1^2 + \cdots + x_{N+2}^2).
\]

If \(N-n \) is a nonnegative odd integer, define \(f_N \) from \(f_{N+1} \) via \([3c]\). Then

\[
f_N(x_1^2 + \cdots + x_N^2) = \int dx_{N+1} f_{N+1}(x_1^2 + \cdots + x_{N+1}^2).
\]

That \([10b]\) also holds when \(N-n \) is nonnegative and even follows from \([10a]\). Therefore \([10b]\) holds for all \(N \geq n \). Use it inductively to define \(f_N \) for \(1 \leq N < n \). For \(N = n \), \([7a]\) implies

\[
\int_{R^n} dx_1 \cdots dx_N f_N(x_1^2 + \cdots + x_N^2) = 1,
\]

and then \([10b]\) implies \([10c]\) for all \(N \geq 1 \). Thus the probability distributions \(p_N \) on \(R^n \) given by \(f_N \) via \([3a]\) satisfy the Kolmogorov consistency condition. Then the existence of \(p_\infty \) follows from Kolmogorov's Fundamental Theorem \((4)\).

COROLLARY 1: If \(f \in M(n) \), \(f (\xi) \) is analytic in the open right half-plane of complex \(\xi \).

COROLLARY 2: The equation \(F_2(\xi) = \int_0^\infty d\mu(t) e^{\xi t} \) furnishes a bijection between the members of \(I_0(R^m) \) and the probability measures \(\mu \) on \(0 \leq t < \infty \).

PROOF: Demanding that \(f_2 \in M(2) \) is equivalent to demanding that \(F_2(\xi) \) be completely monotonic on \(0 \leq \xi < \infty \) \((5)\).

Examples and Applications. Setting \(f_2(\xi) = \pi^{\frac{1}{4}} e^{-\xi^2} \) gives \(f_n(\xi) = \pi^{-n/2} e^{-\xi^2} \). This \(p_\infty \) is the gaussian with independent \(x_1, x_2, \ldots \), each having mean 0 and variance 1. Setting \(f_2(\xi) = \pi^{-1}v[\xi^{v-1}-1(1+v)^{-1}] \) with \(0 < v < 1 \) gives a \(p_\infty \) for which \(\lim_{\xi \to 0} f_n(\xi) = \infty \) if \(n \leq 2 \) and also if \(n = 1 \) and \(1/2 \leq v < 1 \). Thus the densities \(f_n(\xi) \) need not remain finite as \(\xi \to 0 \).

The geophysical application is to inverse theory. An infinite dimensional linear space \(X \) of earth models \(x \) is given, along with a finite number of linear functionals, \(g_j : X \to R \),
j=1, ..., D + 1. An observer measures D data \(y_i = g_i(x_E) + e_i \) for \(i = 1, ..., D \). Here \(x_E \) is the correct earth model and \(e_i \) is the error in observing \(y_i \). The observer wants to predict the value of \(z = g_{D+1}(x_E) \). Since \(\dim X = \infty \), the problem is hopeless unless \(g_{D+1} \) is a linear combination of \(g_1, ..., g_D \), or unless the observer has some prior information about \(x_E \) not included among the data (6,7). One common sort of prior information is a quadratic bound on \(x_E \), a quadratic form \(Q \) on \(X \) such that \(x_E \) is known to satisfy

\[
Q(x_E, x_E) \leq 1. \tag{11}
\]

Often [11] is a bound on energy content or dissipation rate (8). In stochastic inversion and Bayesian inference, such a bound is often "softened" to a prior personal probability distribution \(p_\infty \) on \(X \) (8–10). In practice, \(X \) is truncated to an \(\mathbb{R}^n \), and \(p_\infty \) is used in the inversion.

To see why this process is questionable, complete \(X \) to a Hilbert space with the inner product \(\langle x, x' \rangle = Q(x, x') \). Let \(\xi_1, \xi_2, \ldots \) be an orthonormal basis for \(X \), and write \(x = \sum_{i=1}^{\infty} x_i \xi_i \).

Then \(X \) becomes the subset \(H(\infty) \) of \(\mathbb{R}^\infty \) defined in corollary 2 to theorem 1. The prior information [11] can now be written

\[
\sum_{i=1}^{\infty} x_i^2 \leq 1. \tag{12}
\]

If the observer wants to soften [12] to a probability distribution \(p_\infty \) without introducing new information not implied by [12], then clearly he should take \(p_\infty \in I(\mathbb{R}^\infty) \). He is unlikely to assign nonzero probability to 0, so \(p_\infty \in I_0(\mathbb{R}^\infty) \). But then \(p_\infty(X) = 0 \) by corollary 2 to theorem 1. Any prior personal probability distribution obtained by softening [12] without adding new information must deny [12] with probability 1.

Acknowledgments. The author is grateful for partial support from NSF grant EAR 85-21543 and NASA grant NAG 5-818.
References

