A System of Three-Dimensional Complex Variables

E. Dale Martin, Ames Research Center, Moffett Field, California

June 1986
A SYSTEM OF THREE-DIMENSIONAL COMPLEX VARIABLES

E. DALE MARTIN

NASA Ames Research Center, Moffett Field, CA 94035

Abstract. This note reports some results of a new theory of multidimensional complex variables including, in particular, analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.

1. Introduction. Early in the nineteenth century, mathematicians began a search for a "three-dimensional complex number and its algebra" that would be a generalization of the ordinary "two-dimensional" complex number [1, p. 90]. In 1843, William R. Hamilton introduced quaternions (see [1]), an important four-dimensional generalization of complex numbers and variables. Hypercomplex analysis has developed mainly as a further generalization of quaternions and, as such, is often referred to as Clifford analysis. The recent papers [2], [3], [4], [5] supply many references, including early work by Fueter (e.g., [6]). These algebras that generalize quaternions are noncommutative.

S. Bergman [7] has introduced a method based on E. T. Whittaker's [8, p. 390] general integral solution to Laplace's equation that provides a certain generalization of analytic functions of one complex variable. However, the present state has been summarized as follows by E. T. Copson [9, p. 207]: "The theory of harmonic functions in two dimensions can be made to depend on the theory of analytic functions of a complex variable, z + iy. There is nothing corresponding to the theory of functions of a complex variable x + iy in three dimensions. The nearest approach is given by Whittaker's general solution ... of Laplace's equation."

The elements of the 3-D theory (a commutative algebra) to be described here are direct generalizations of corresponding elements of the classical 2-D theory. Therefore a direct comparison with 2-D is helpful for this description.

2. Basics in Two Dimensions for Comparison. A most important property of analytic functions of an ordinary complex variable is that from them are obtained vector functions \(g \) that are both solenoidal and irrotational. As a result, the components of \(g \) are harmonic functions.

Let \(\mathbf{R} \) denote the set of all real numbers and \(\mathbf{C}_2 \) denote the set of all ordinary complex numbers. The complex variable \(z = x + iy \) in \(\mathbf{C}_2 \) may be written also as \(z = (x, y) = (1, 0)x + (0, 1)y \), which may be interpreted as a vector in \(\mathbf{R}^2 \) with real components \(x, y \) and with basis vectors \((1, 0) = 1 \) and \((0, 1) = i \), whose rules of multiplication are: \(1^2 = 1, \, 1i = i1 = i, \, i^2 = -1 \). However, the unit \((1, 0) = 1 \) as a factor is commonly omitted. If now \(g = \phi_1 + i\phi_2 \), in \(\mathbf{C}_2 \), is defined to be the vector (complex function) whose complex conjugate is an analytic function \(\bar{g} = f(z) = \phi_1 - i\phi_2 \), then the conditions of analyticity for \(\bar{g} = f(z) \) are the Cauchy-Riemann equations: \(\text{div} \, g = \phi_{1x} + \phi_{2y} = 0 \) and \(\text{curl} \, g = \phi_{2x} - \phi_{1y} = 0 \).
(In two dimensions the result of the curl operation is defined as a scalar.) Therefore, g is solenoidal and irrotational (Sand 1).

Any 2-D S and I vector may be represented by a complex variable having the same form as g. For example, in 2-D ideal flow with velocity components v_1 and v_2 and with velocity potential ϕ and stream function ψ, the velocity vector $v = v_1 + iv_2$ and the vector $g = \phi_1 + i\phi_2$ (where $\phi_1 = \phi$ and $\phi_2 = -\psi$) are called, respectively, the complex velocity and the complex potential. Both v and g are Sand I vectors, and their respective complex conjugates $v = w(z) = v_1 - iv_2$ and $g = f(z) = \phi_1 - i\phi_2$ may be represented by analytic functions for which $w = df/dz$.

3. Definitions and Results in Three Dimensions.

DEFINITION 1. Let C_3 denote the set of all "three-dimensional (3-D) numbers" of the form $Z = x + \delta y + \epsilon z$, in which (i) Z may be interpreted as a vector with basis vectors $1, \delta, \epsilon$ and with components x, y, z in C_2; and (ii) the rules of multiplication are as follows (or other equivalent forms of them):

\[
I^2 = 1, \quad 1\delta = \delta I = \delta, \quad 1\epsilon = \epsilon I = \epsilon, \\
\delta^2 = -\frac{1}{2}(1 + i\epsilon), \quad \epsilon^2 = -\frac{1}{2}(1 - i\epsilon), \quad \delta \epsilon = \epsilon \delta = -\frac{1}{4}(i\delta).
\]

The 3-D unit 1 as a factor may be omitted (as the factor 1 in 2-D is omitted), with Z written generally as

\[
Z = z = x + \delta y + \epsilon z = Z_R + iZ_I,
\]

where $Z_R = x_R + \delta y_R + \epsilon z_R$ and $Z_I = x_I + \delta y_I + \epsilon z_I$, with $x_R, y_R, z_R, x_I, y_I, z_I$ real.

DEFINITION 2. Let C_3' be a subset of C_3 such that, for every element $Z = x + \delta y + \epsilon z$ in C_3', the components x, y, z are real.

Then, for Z in C_3, Z_R and Z_I are in C_3', and the basis vectors $1, \delta, \epsilon$ are in C_3'. If Z is an independent variable, for which values can be prescribed, then one can set $Z_I = 0$, so that x, y and z are real and Z is in C_3'.

The algebraic properties of these numbers in C_3 are developed and discussed in papers by the author to be published. The multiplicative inverse, Z^{-1}, is of special significance. It can be found by setting $Z^{-1} = a_1 + i\delta a_2 + \epsilon a_3$, where $a_k \in C_2$, and by requiring $Z Z^{-1} = 1$.

It is found that there are certain nonzero values of Z for which Z^{-1} is not defined, with results including the following:

THEOREM 3. For $Z = x + \delta y + \epsilon z$ in C_3, the domain of definition of Z^{-1} includes all of the R^3 space of (x, y, z) except the origin and any of the six rays in the plane $x = 0$ where $\vartheta = \tan^{-1}(z/y) = (\ell - 1)/3 \varphi$ for $\ell = 1, 2, \ldots, 6$.

REMARK 4. The algebra of C_3 is a linear algebra of order 3 over the field of ordinary complex numbers, C_2. Further, C_3 is a commutative ring with unity, and not a field, since, for some nonzero elements Z, the inverse Z^{-1} is not defined.

Further discussion of Z^{-1} is beyond the scope of this note, but is included elsewhere.

DEFINITION 5. For every $Z = x + \delta y + \epsilon z$ in C_3, denote as the bijugate of Z the element of C_3 given by $Z = \frac{1}{2}z - \delta y - \epsilon z$.

(The bijugate can be defined more generally.) The 3-D bijugate is in some ways analogous to the 2-D conjugate. The similar role in regard to analytic functions will be demonstrated here.
As an analogy to the variables z and g in C_2 described in the previous section, consider the two variables in C_3: $Z = x + i y + cz$ and $G = \phi_1 + \delta \phi_2 + \epsilon \phi_3$, which are also vectors in C_3^2. Now let G be defined to be the vector (3-D complex function) whose bijugate is an analytic function $\bar{G} = F(Z) = \frac{1}{2} \phi_1 - \delta \phi_2 - \epsilon \phi_3$. The concepts of function, limit, derivative, and analytic function can be extended, with some care, to the set C_3. Then, in analogy to the Cauchy-Riemann conditions in two dimensions, the following necessary conditions for the differentiability, and hence analyticity, of $F(Z)$ are found:

Theorem 6. For Z in some domain $D_3 \subseteq C_3$, and G in C_3 with components ϕ_k in C_2 such that $\bar{G} = F(Z)$, the necessary conditions for analyticity of $F(Z)$ are:

\[
\begin{align*}
\text{div } G &= \phi_{1x} + \phi_{2y} + \phi_{3z} = 0, \\
\text{curl } G &= \langle \phi_{3y}, -\phi_{2x}, \phi_{1z} \rangle + \delta(\phi_{1x} - \phi_{3z}) + \epsilon(\phi_{2x} - \phi_{1y}) = 0,
\end{align*}
\]

along with $\phi_{1y} - i(\phi_{2z} + \phi_{3y}) = 0$ and $\phi_{1z} - i(\phi_{2y} - \phi_{3z}) = 0$.

Since all the components of the curl must vanish, G is an S and I vector in three dimensions. Further, if we write $\phi_k = \phi_{kR} + i \phi_{kI}$ and $G = G_R + i G_I$, with the components ϕ_{kR} of G_R and components ϕ_{kI} of G_I real, then G_R and G_I are also S and I vectors (with the final two equations in Theorem 6 serving to connect the components ϕ_{kR} of G_R to the components ϕ_{kI} of G_I). In Theorem 6, x, y, and z are independent variables defined generally to be complex, but as independent variables, may be taken to be real (i.e., $Z \in C'_3$).

Corollary 7. If $W = v_1 + \delta v_2 + \epsilon v_3$, in C_3, is defined to be the vector whose bijugate is the analytic function that is the derivative of $F(Z)$: $\bar{W} = V(Z) = dF/dZ = \frac{1}{2} v_1 - \delta v_2 - \epsilon v_3$, then W is also an S and I vector and

\[
\begin{align*}
v_1 &= \phi_{1x} = -\phi_{2y} - \phi_{3z}, \\
v_2 &= \phi_{1y} = \phi_{2x} = i(\phi_{2y} + \phi_{3y}), \\
v_3 &= \phi_{1z} = \phi_{3x} = i(\phi_{2y} - \phi_{3z}), \\
\phi_{3y} &= \phi_{2z},
\end{align*}
\]

Example 8. For Z in C'_3 the product $Z^2 = Z \bar{Z}$, with use of the rules of multiplication from Definition 1, is $Z^2 = x^2 - \frac{1}{2}(y^2 + z^2) + \delta(2xy) + \epsilon(2xz) - i\delta(yz) - i\epsilon\frac{1}{2}(y^2 - z^2)$. Then for $F(Z) = Z^2$, the results are $\phi_{1R} = 2x^2 - (y^2 + z^2)$, $\phi_{2R} = -2xy$, $\phi_{3R} = -2xz$, $\phi_{1I} = 0$, $\phi_{2I} = yz$, $\phi_{3I} = \frac{1}{2}(y^2 - z^2)$, which are readily seen to satisfy Theorem 6. The two S and I vectors G_R and G_I, with respective Cartesian components ϕ_{kR} and ϕ_{kI}, are thus generated by $F(Z) = Z^2$.

The (harmonic) components of either G_R or G_I can be related to a 3-D velocity potential and general 3-D stream functions, and either G_R or G_I can be taken to be a “3-D complex potential,” with the corresponding “3-D complex velocity” then being either W_R or W_I.

A primary result here is that this theoretical structure can be used to generate S and I vectors and harmonic functions in three dimensions, as can the Whittaker-Bergman method, but without integration here, as in ordinary analytic-function theory for two dimensions.

Details, proofs, and further results are in [10].

References

A SYSTEM OF THREE-DIMENSIONAL COMPLEX VARIABLES

E. Dale Martin

Ames Research Center
Moffett Field, CA 94035

National Aeronautics and Space Administration
Washington, DC 20546

This note reports some results of a new theory of multidimensional complex variables including, in particular, analytic functions of a three-dimensional (3-D) complex variable. Three-dimensional complex numbers are defined, including vector properties and rules of multiplication. The necessary conditions for a function of a 3-D variable to be analytic are given and shown to be analogous to the 2-D Cauchy-Riemann equations. A simple example also demonstrates the analogy between the newly defined 3-D complex velocity and 3-D complex potential and the corresponding ordinary complex velocity and complex potential in two dimensions.