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Background

The purpose of this research is the development of an unsteady aerodynam-
ic model for rotors such that it can be used in conventional aerocelastic
analyses (e.g., eigenvalue determination and control-system design). For
this to happen, the model must be in a state-space formulation such that the
states of the flow can be defined, calculated, and identified as part of the
analysis. The proposal upon which this work is based presented such a
state-space model. In that model, the induced flow is represented as an
expansion both radially and azimuthally. Although, in principal, any expan-
sion functions could be used, there is computational advantage in using
Fourier components in the azimuthal direction and either Legendre functions
(Pﬂ(v) where v = l-rz) or Pg(v)/v in the radial direction.

The fluid mechanics of the problem is given by a closed-form inversion
of an acceleration potential. The result is a set of first-order differen-
tial equations in time for the unknown flow coefficients. These equations
are hierarchical in the sense that they may be truncated at any number of
radial or azimuthal terms. It should be noted that we have consistently
underestimated the richness and rigor of this approach and have been sur-
prised several times by what effects are implicitly included in such a model.
The coefficients of the first-order equations can be written explicitly in
terms of certain integrals of the Legendre functions taken over the disk or
along streamlines. The right-hand-side of the equations are written in terms
of integrals of the blade loading which must come from a blade 1ift theory
such as 2-D quasi-steady theory, dynamic stall models, or any other 1ift
methodology.

Although the theory is, in principal, "written down", much remains to be
done before it can be a viable theory for use by designers and researchers.
First, all of the coefficient matrices need to be determined either numeri-
cally or (whenever possible) in closed form for easy application. Second,
the convergence properties of the method must be studied to determine how
many shape functions are required to match a particular phenomenon. Third,
theoretical studies need to be performed to determine the strengths and



Timitations of the model. We already know that the model implicitly in-

cludes:
1.) The near-wake approximation to the Theodorsen Function
2.) Loewy Theory (with improved time constants) in hover
3.) Dynamic Inflow Theory
4.) Hover momentum theory with implicit account of tip losses
5.) Bessel Function behavior of 1ift with reduced frequency
6.) Unsteady flow anywhere in the flow field

However, we do not know how many terms are required to capture these effects
to a given accuracy; and we do not know the best scheme for distinguishing
between induced flow due to bound vorticity and flow due to shed vorticity.
These are the types of questions we expect to answer in this research.

Technical Personnel

Three people have been supported on this grant during the first six-
month period. The principal investigator, David A. Peters, has contributed
1.0 man-months; a full-time graduate assistant, Cheng-Jian He, has contrib-
uted 2.0 man-months; and another graduate student, Ay Su, has contributed 1.0
man-months. Both of these students are working toward Ph.D. degrees. A
third student, David Doug Boyd, is working on the project but is being
supported by Georgia Tech funding. He is working toward a Master of Science

Degree in Aerospace Engineering.

Radial Convergence Issues

In order to adequately address the convergence issues, we have assembled
a dynamic set of equations for rigid or elastic blade flapping in hover
including the wake state variables. Mr. Su is in charge of this work. We
are presently exercising this model in hover to determine these convergence
properties. We must first concentrate on hover both because it is the more
fundamental regime and because the forward flight model is still under
development. The first area we addressed was convergence to the quasi-steady



lift-deficiency function of Sissingh, Curtiss, and Shupe. For this to occur,
a certain matrix inner product (Q=ZTB-IZ) must converge to 15/8 = 1.875

(where only the zeroeth harmonic is required).

Figure la shows the convergence of Q when the shape functions are the
Legendre Functions. For this case, B=I; and Q reduces to ZTZ. For only one
shape function, there is 25% error; but this error is reduced to 2% for two
functions and to essentially zero for four functions. Figures 1b and lc show
the saTe plot when Pg(v)/v are taken as the shape functions. In that case,
B=B=A

A-inverse in the 1imit as the number of functions goes to infinity. There-

, both of which are known in closed form. However, B is only equal to

fore, we have the option of using the truncated A matrix (Fig. 1b) or of
inverting the truncated B matrix (Fig. 1c). In the former case, one shape
function gives the exact answer; but two shape functions increases the error
to 12%. This fortunate occurrence at S=1 explains why dynamic inflow (with
only one shape function) can give the exact 1ift deficiency. On the other
hand, though, the use of a truncated A matrix gives poor convergence as S
increases. The inverse of the truncated B matrix (which is what one would
obtain in a straightforward application of the theory) has a 12% error at
S=1, but it conVerges very rapidly to the exact answer. (This 12% error is
exactly the 8/9 discrepancy between Sissingh and Shupe due to assumption on
inflow distribution.) Therefore, based on quasi-steady inflow, one would
predict that a conventional application of Pg(v)/v is the best choice of
shape function.

The next step in this area has been to see how these conclusions vary
when unsteady terms are added. In this part of our research, we consider
full coupling between all harmonics and the blade. This results in equations
with periodic coefficients (even in hover). In earlier work, we saw these
periodic coefficients and thought there was an inconsistency. Actually,
there is no inconsistency. The periodic coefficients describe the true
rotating to nonrotating coupling of rotor and wake. When multiblade coordi-
nates are used for the rotor, most of the periodic coefficients vanish; but
some remain if more inflow harmonics exist than there are blades. In the
results of Figs. 2 and 3, we neglect periodic coefficients. This is equiva-
Tent to study of only the collective flapping mode with collective inflow.




This allows us to view the unsteady effect in a simple setting. However, by
keeping the uncoupled harmonics in the analysis (M=2), we can also compare
the uncoupled inflow time constants with known, closed-form solutions.

Figures 2 and 3 show the effect of shape functions (and, thus of the
inflow dynamics) on the rigid flap damping, collective mode. Figures 2a and
2b give the Real and Imaginary parts of the fundamental eigenvalue for Pg(v)
as the shape functions. With no dynamic inflow, the Real portion is -y/8=
-.325; but, as shape functions are added, the solution approaches -.2925.
The quasi-steady value is =-.2167, but the time lag has lessened the 1ift
deficiency. Interestingly, it takes 2 shape functions to converge to within
3% and four shape function to converge completely. Figures 3a and 3b provide
a similar plot but with Pﬂ(v)/v as the shape functions. Here, a similar

convergence pattern appears.

The future direction of our work in this area is the inclusion of
complete, periodic-coefficient coupling. We intend to study the interaction
of various Floquet modes with the inflow. Hopefully, this will illuminate
the effects of all types of rotor modes (collective, cyclic, differential,
etc.) even though we have only a one-bladed model. However, we are prepared
to add more blades if that is necessary.

The last area of radial convergence has to do with tip loss. Figures 4a
and 4b provide static inflow distributions from our theory (unsteady terms
set to zero) for 0=1. Figure 4a is with PI(v)/v and Fig. 4b is with PT(v)
for the shape functions. First, we examine Fig. 4a. The dashed-dot line is
the solution with no tip loss. The solution well approximates the straight-
Tine with slope of 1/3 which is the exact solution for inflow. The dashed
line is the solution when Prandtl's tip-loss function is applied to the
right-hand side of the equations; and the solid line is the exact Prandt]
solution. It takes about 8 shape functions to fit this behavior, although
many fewer give the correct tip-loss factor. In contrast, we see that the
Legendre functions Pﬂ(v) do a poor job of matching quasi-steady values, Fig.
4b. Although the functions "do their best" to fit the true behavior, the
fact that they are zero at r=1 precludes any true convergence. Based on
these results, we abandoned Pﬂ(v) and are continuing only with Pﬁ(v)/v.
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Harmonic Convergence

A second important area of our research has been in harmonic conver-
gence, and part of the results were unexpected. In particular, we were
surprised in the area of tip-loss factor. As background, recall that our
original work on this method suggested using Prandtl's tip-loss function on
the right-hand-side of the equations in order to force the 1ift to zero (and
the inflow to be finite) at the tip. We wanted to do this because, in quasi-
steady inflow theory, the induced flow must follow the pressure distribution.
Thus, the 1ift does not drop off at the tip. What we failed to recognize,
however, was that quasi-steady theory is equivalent to an infinite number of
blades for which there is no tip loss. When we add the unsteady terms, this
changes. For example, in hover (even for constant collective pitch) the wake
sees a periodic pressure excitation due to blade passage. Although the fun-
damental (zero) inflow harmonic will exactly match the shape of the pressure
distribution, the higher harmonics are influence by the unsteady operator

2

which gives inflow that varies as 1/V1-r" near the tip. This forces large

induced flow at the tip which decreases 1ift.

Figure 5a shows this effect for S=1. The results are inflow distribu-
tions with no tip-loss "correction" but with the unsteady, blade-passage
terms included. One sees how the inflow begins to climb near the tip as more
and more harmonics are added. Figure 5b shows the effect as more radial
functions are added at M=4. By S=4, the solution has essentially converged
to the Prandtl tip-loss function (compare Fig. 4a). It is also interesting
that fewer shape functions are required to capture tip losses in this
unsteady manner than were necessary in the quasi-steady version with a
correction. The reason for this is that the higher-harmonic shape functions
(m larger) automatically are weighted toward the tip region as m increases.
Thus, fewer are needed to match the rapid tip-loss gradients near the tip.
It is also interesting that the true tip-loss behavior has come forth from an
unsteady term, although tip loss 1is thought of as a static phenomenon.
Remember, however, that the "unsteady" harmonic inflow terms (as seen in the
nonrotating system) can be viewed as static with respect to a moving blade.
This result adds another impressive item to the list of important effects
that are automatically included in our unsteady theory.



A final area of questions on harmonic convergence deals with the conver-
gence of induced flow near the blade and the effect of the bound vorticity.
In our earlier work, we found that induced flow at some points could slowly
diverge due to the effects of bound vorticity on the blade. Usually, not
enough harmonics are retained to make this a practical problem (the trunca-
tion filters the spike near the blade). However, we know that we must study
this phenomenon for several blade chord-wise loadings to determine the true
effect. This is the work of Doug Boyd. He has completed the debugging of
his computer program, and we are only now beginning to interpret the results.

However, we expect some important answers soon.

Closed-Form Results

Another important area of our research is the development of closed-form
expressions for the matrices and influence coefficients of our theory. This
is necessary not only for the pursuit of our research but also so that others
will be able to use the model with ease. Mr. Cheng-Jian He is the lead
research assistant in this area.

Table 1 provides a summary of the important relations that we have
developed. None of these have we seen in the literature (save for the 92
integral). They have been derived by a combination of good fortune and
clever manipulations. For example, we originally had closed-form results for
the first row-column of each A matrix (1=m+1) and for the diagonals of the
m=0 A matrix. From this, we guessed a form for a general A and it agreed
with numerical results for as many decimals as we could calculate for all
(m,7,n) combinations. From this and the Legendre recursion formula, we were
able to find fm; and, from that, we developed the Bg formula. Then, a
comparison of Tn and pﬂ and a known result for m=0 gave the general PﬂPT.

The existence of general A and B matrices implies that the hover theory
can now be applied in complete generality without the need for numerical
integrals on the Teft-hand side. This also implies that we are able to
obtain the eigenvalues and modes of the inflow model. These come from the
matrix [Kg]l/z[A][ngl/z. Interestingly, this matrix comes in closed form



(Table 1) and is independent of explicit m dependence! However, the eigen-
values do depend on the value of m because one takes only the m+l, m+3, m+5,

. rows and columns for the mth harmonic. The modes follow expected oscilla-
tory patterns in r with more oscillations as n increases for any m. Figure
6aeshows these modes for the fundamental eigenvalue (m=0,4), and Fig.
shows the second mode for each harmonic. What is interesting is that the
modes all have zero flow at the blade tip which means that either of our
candidate shape functions would converge. The zero-velocity condition at the
tip occurs despite the fact that the forced inflow response does not exhibit
this boundary behavior.

The eigenvalues, which are the time constants of the flow, follow defi-
nite patterns in the root locus plane. Although they are purely real, they
tend to couple with modes (in the rotating system) that have frequencies
close to m. Thus, we can predict which modes might be affected by each
inflow state variable. Table II lists the fundamental time constant for each
harmonic and compares it with both the geometric mean approximation (used in
our previous work) and the Pitt model. We note that the fundamental time
constants are close to the geometric mean approximation, which is indicative
- of the fact that they are dominated by the lowest order Legendre function.
We also not that the Pitt model underestimates the time constants of higher
modes.

The final area to be discussed is the development of the LLK: matrix
which contains the influence coefficients between all harmonics and all shape
functions. Recall that this matrix depends only on wake skew angle. The
computation of this matrix is a monumental task both because of the complex-
ity of the Legendre functions (which are integrated along streamlines to
infinity) and because of the number of terms. For example, for 8 harmonics
and 6 radial functions per harmonic, we would have [(8+1)*(6)]2+[(8)*(6)]2 =
5,220 termsJeach a function of the skew angle B. This is too much informa-
tion to pass to every potential user. It now appears, however, that we will
be able to condense the model down to only a few crucial numbers. Presently,
we have computed numerical values for 4 harmonics and 3 shape function at
values g=0°, 30°, 60°, and 90°. Based on this, we have determined that each

mr combination is governed by a simple function of tan(g/2) independent of n

7



and 1. We now have these functions in closed form for both the cosine and
sine LL matrices. Now, we are working on a simplified form for the coeffi-

cients themselves.

To do this, we will need to calculate coefficients for higher harmonics.
However, this becomes increasingly difficult as the sum of m+n increases.
Thus, we are working on more efficient means of generation of Legendre func-
tions. We hope, ultimately, to have a short Legendre Function subroutine
that potential users could copy in order to use these functions in their own
modal integrals. Needless to say, we are very excited about these develop-
ments for the LL matrices and look forward to completion of that part of the
work. Once the LL matrices are known, we can begin to study the convergence
of our method in forward flight and see how it might affect flap dynamics.

Summar

Our research is progressing very well in every way. We have been con-
sistently surprised at the richness of physical description that is implicit
in our model and at the simplicity of structure that falls out of seemingly
hopeless complexity. We are right "on track" to complete all of our first-
year goals and to begin the second-year effort in July. Sometime before then
we would like to visit Ames, both to present more details about our findings
and to answer any questions that the Army and NASA technical people might
have.
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