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Chapter 1

!
II Introduction

Satellite communication has become common over the past 25 years, especially as

a means of providing long distance communications. Of particular interest in this

manuscript are communication satellites using the geostationary orbit (GSO). This

orbit exists in the equatorial plane of the earth at a radius of 42,000 km from the

center of the earth. A satellite placed in this orbit has an orbital period of 24 hours

and appears to be stationary to an observer on the earth.

The Fixed Satellite Service (FSS) is the most heavily used of all of the space ser-

vices using the GSO. There are a wide range of FSS networks currently in existence.

These differ considerably in terms of the types of equipment used and the services

provided. These services include telephony, television, teleconferencing, data trans-

missions, intracompany services, communications between computers, telecommu-

nication services for remote regions and services for weather forecasting. Many

frequency bands are available for use by FSS systems. The most commonly used

bands are 3.7 to 4.2 GHz for down-link transmissions and 5.925 to 6.425 GHz for

up-link transmissions. Other bands used are those between 10.95 and 11.2 GHz,

11.45 and 11.7 GHz, 11.7 and 12.2 GHz, and 14.0 and 14.5 GHz [1].

!



The systems considered in this manuscript are domestic satellites in the FSS

serving a single administration. These systems are used to provide a means of

communication between various earth stations within the service area of the satellite

serving the administration. Regional or global systems involving satellites with

service areas that may include several administrations are not considered. Direct

broadcast systems are also not considered, although the methods presented here

could be used for such systems with small modifications.

Use of the GSO is linfited by the amount of electromagnetic interference that

satellites transmitting in the same band present to each other. It is this interfer-

ence which determines how closely communication satellites can be placed and thus

makes the GSO a limited resource. Because of this limitation on the number of

satellites which can be accommodated, the question of how to allocate this resource

to the world's nations in a fair and emcient manner arises. This question has been

addressed in a series of World and Regional Administrative Radio Conferences fa-

cilitated by the International Telecommunications Union (ITU). These conferences

have attempted to generate orbital allotment plans for the GSO and methods of

analyzing the feasibility of these plans.

The quality of an orbital allotment plan can be characterized in terms of carrier

power to interference power ratios (C/I). This is the ratio of the received carrier

power from a desired signal in a satellite network to the total amount of interfering

signal power received from undesired signals being transmitted by other networks.

When interference from all significant interferers is included in the ratio it is termed

an aggregate C/I ratio. When it includes only the interference from one particular

source, it is termed a single-entry C/I value. Generally, the criterion set for an

acceptable orbital allotment scheme is a minimum threshold on the aggregate C/I

2
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ratio. As long as all satellite networks in question are given orbital assignments

which allow them to transmit on the specified channels with all of the resulting

aggregate C/I ratios above the threshold, the scheme is satisfactory. In the calcula-

tions of this manuscript, only co-channel interference will be considered. Appendix

A describes a procedure that might be used to extend the calculations to include

interference from multiple channels.

The work towards developing suitable orbital allotment methods at The Ohio

State University (OSU) originally involved attempts to optimize aggregate C/I

values. This involved the use of nonlinear programming methods to search for

assignment plans which would provide each administration with a satellite network

with suitable aggregate C/I values. These methods proved to be cumbersome and

slow in finding solutions for large problems [2,3].

To overcome the problems associated with nonlinear programming, linear mixed-

integer programming models of the orbital assignment problem were formulated.

Levis, Reilly, et. al. [4] proposed a new model for the satellite synthesis problem,

which included linear constraints on the minimum spacing between satellites. These

spacings or separations were calculated on a single-entry basis, i.e., the minimum

required separations which satisfied some slngle-entry C/I requirement between

all pairs of satellites in the scenario in question were calculated with a procedure

developed by Wang [5]. The single-entry C/I requirement was chosen so that if this

requirement were satisfied for all pairs of satellites, the resulting allotment scheme

would also satisfy the aggregate C/I requirement for all satellites, even though

the amount of aggregate interference present was not a factor in the procedure for

finding the solution. Thus, the single-entry C/I requirement had to be sufficiently

higher than the desired minimum aggregate level to insure this result. A margin of

3



5 dB between the desired aggregate level and the single-entry requirement was used

in the calculations by Levis et. al. and Wang.

The required separation value between two satellites i and j with a particu-

lar mean orbital location 0 was referred to as A_i,j(O) (later shortened to simply

q_i,j(0)) --the location-dependent separation value. The maximum of the required

separation values over the entire arc was called ASi,j (or simply Ai,j ). The original

methods of solving the orbital allotment problem used the AS values as the sepa-

ration constraints regardless of orbital location [4]. Other methods have since been

developed which allow the use of the location-dependent separation constraints [6].

The method of using the linear constraints on satellite spacing to make the synthesis

problem into a linear problem has been labeled the "Delta S" approach.

The purpose of this manuscript is to expand upon Wang's method of determining

the required separation values and to examine various issues associated with the

"Delta S" method. Wang's original computer program considered only interference

on the down link in the required separation calculations. The goal of Chapter 2 is

to provide a new method of calculating the required separation constraints which

includes both up-link interference and down-link interference. In Wang's program,

elliptical patterns were assumed for the satellite transmitting antennas. Chapter 3

is a preliminary study into finding reasonable methods of modelling the effects of

multiple-feed shaped-beam antennas on the orbital allotment problem. Chapter 4

is an investigation of the aggregate interference problem. The relationship between

single-entry interference values and the resulting aggregate interference values are

examined and a new program for calculating aggregate C/I values is presented.

4
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| Chapter 2

| Up-Link Interference and Its

| Effects on Required Satellite

| Separation

2.1 Description of the Problem

A communications satellite link in the Fixed Satellite Service (FSS) consists of

both an up link from earth transmitters to the satellite and a down link from the

satellite to receivers on the Earth. Interference from undesired transmissions can

occur on either one of these links. The level of interference can be represented by

the carrier to interference power ratio (C/I). This is the ratio of the carrier power

received from a desired transmission to the total interference power received from

other satellite networks.

In the "Delta S" approach to orbital assignments the requirements for given C/I

protection ratios between satellite networks are transformed into a set of constraints

on the orbital locations of the satellites. At present, the method of performing

these calculations considers only the down-link interference problem. In general,

for the FSS, significant amounts of interference may be introduced on both the

5



up link and the down link. For this reason, a modified method of calculating the

mininmm required separations which includes tile effects of both up-link and down-

link interference is proposed. These modifications are tile subject of this chapter.

2.2 Up-Link C/I Calculation

The up-link interference calculations are based on the procedure described in CCIR

report 455-3 [7, p. 319]. The sketch in Figure 2.1 shows the interference geome-

try between two satellite networks sharing an up-link frequency. In the sketch, a

transmitter in administration 2 is interfering with the up-link transmission from

administration 1.

Under ideal propagation conditions, the carrier power received at satellite 1

from the desired transmitter in its service area is found from the Friis transmission

formula to be

C : P1GETIGsRIDsRI(_,_bo)A_
(4_rL1)2 (2.1)

The interference power received from a transmitter in the service area of satellite 2

is found similarly from

I = P2GET2DET2(6, 6o)Gsm Dsm(a, C_o)AI
y_(4_rL2)2 (2.2)

The variables listed stand for:

P: power input to earth transmitter

G: on axis gain of an antenna

D: relative gain below maximum of an antenna

I
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I
I
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I
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I
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Figure 2.1: Interference geometry between administrations sharing an up-link fre-

quency.
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L: range from earth transmitter to satellite

)t: wavelength of up-link transmission

Y,,: minimum polarization discrimination between interfering up-link carrier and

wanted satellite receiving antenna

a: angle between the aimpoint of the wanted satellite receiving antenna and an

interfering transmitter in the other service area as seen from the satellite

0: angle between the two satellites as seen from an interfering transmitter on the

earth

_b: angle between the aimpoint of the satellite receiving antenna and a desired

transmitter in the satellite's service area as seen from the satellite .

The following subscripts have been used in the equations:

E: earth station

St satellite

T: transmitting antenna

R: receiving antenna

1: service area from which the desired transmission originates

2: service area from which the interfering transmission originates

o: denotes the half-power beamwidth of an antenna.

[
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The minimum possible C/I ratio at satellite 1 is then found from

Pl GET1DSR1 (_b, _bo)(41rL2)2 y,

(C/I)up- P_GET2DETz(O, Oo)DsRI(a, ao)(4,rLt)ZMu

with: As = A1

or, working in dB, from

(2.3)

(C/I)_,(dB) PI(dB) + GETI(CIB)+ Dsm(_b,_bo)(dB)+

AL,,(dB) + Y,,(dB) - P2(dB) - GET2(dB) -

DF,T,(O,Oo)(dB)- DsRl(a,C_o)(dB)- M_(dB).

(2.4)

where: AL_(dB) = 201og(4_rL2)- 201og(4_rL1)

The term, M_, is called the up-link margin and is defined in section 2.1 of CCIR

report 455-3 [7, pp. 328-329]. Its purpose is to account for the possible reduction

of the C/I ratio at the satellite due to local propagation effects and precipitation.

This would occur only if the fluctuations in the power received at the satellite due

to these effects was different for the interfering and desired signals. In general, this

would mean that the desired and interfering transmitters were widely separated

geographically. For the calculations reported here, this term is neglected (set to 1

or 0 dB).

The term, Y_,, representing the minimum polarization discrimination is also ne-

glected. The two signals are thus assumed to have the same polarization so that

there is no benefit from polarization discrimination at the satellite receiving an-

tenna. This is in accordance with the recommendation of Rep. 455-3 in section

2.1: "In the absence of information on satellite antenna polarization, the factors Y_

9



and lid nmst be set at 0 dB"[7, p. 329]. This procedure would not be followed if a

suitable scheme were developed for coordinating the use of polarization among inter-

fering administrations, and an agreement were reached on an appropriate satellite

receiving antenna reference pattern for cross-polarized signals.

A further simplification in the C/I equation results from assuming that the

power input to each earth station transmitter is adjusted to achieve a specified

power flux density at the satellite serving the earth station. The power flux density,

S, at the satellite is given by

PGET (2.5)
S = 4rL_ •

Thus the approximation used is

P1GET1 P2GET_
(2.6)

4_L_ 4_L_

This results in the following simplified form of the C/I equation,

Dsm(¢,¢o) (2.7)
(C/I)_p _ DsRl(a, ao)DET2(0,0o) ,

or in dB,

(C/I),_p(dB) Dsm(¢,¢o)(dB) - Dsm(a, ao)(dB)-

DET2(O,0o)(dB).

(2.8)

It is assumed in the calculations presented here that the satellite receiving an-

tenna is using an elliptical pattern. The -3 dB contour of the satellite receiving

antenna is chosen to be the minimum size ellipse (subject to a constraint on the

smallest permissible minor axis length) that completely encloses the test points

10
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defining the service area. The ellipse is defined in a plane orthogonal to the axis of

the satellite receiving antenna. Thus the half-power beamwidth of this antenna is

not a constant but is a function of the plane in which it is calculated. The half-power

beamwidth angles _o and ao are measured in the same planes as _b and a, respec-

tively, see Figure 2.1. The earth station pattern is circular, thus the half-power

beamwidth denoted by 0o is a constant.

Many reference pattern envelopes have been proposed and adopted for the satel-

lite regulation problem. For the results reported in this chapter, the relative gains

below maximum of the earth station and satellite antennas are determined from the

reference pattern envelopes shown in Figures 2.2 and 2.3, respectively. The satellite

antenna pattern comes from the CCIR recommendations of 1982 [8, p. 382]. The

expressions of the relative gain as a function of normalized off-axis angle are

DsR( , o)(dB) = 2
I - -20

-7.5- 251og(_/,_o)

= -G - 10

0 < ao _< 1.3

1.3 < ao < 3.15

3.15 < c_/ao < _1

O_1 < O_/(Xo.I

1
I

I
I

I

(2.9)

where G is equal to the on axis gain in (dB) and ch = 10(_).

The ground station antenna pattern is the same one used by Wang [5, p. 23].

For this pattern, the relative gain is determined from

DET(O, Oo)(dB) = -12(0/0o) 2 0 < 0 _< 01

= (29 - G) - 251og(0) 01 < 0 < 02 (2.10)

= -G- 10 02 < 0.

In this expression, 01 is angle at which the first two expressions are equal, i.e.,

-12(0/01) 2 = (29 - G) - 251og(01). The angle at which the second and the third

expressions are equivalent is denoted by 0z and is found from 02 = 10 sg/2s. G is the

on axis gain of the antenna. For the calculations of this manuscript it is 43.2 dB

for a 4.5 m dish at 4.0 GHz and 46.8 dB for a 4.5 m dish at 6 GHz.
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for purposes of illustration).
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This pattern is a modification of the ground station pattern reported in CCIR

Report 391-4 [9], the modification being to change the antenna gain for values of

the off-axis angle, 0, between 1 to 7 degrees from 32 - log(0) to 29 - log(0). This

modification was suggested in Recommendation 580 of the CCIR, 1982 [10] and in

the CCIR-CPM-82/RARC-83 report [11, p. 137]. It is in accordance with the FCC

requirements regarding U.S. earth station antennas [12], which were designed to

permit 2 degree spacing of U.S. satellites.

For purposes of comparison, the earth station gain pattern is shown in Figure 2.3

at both the transmitting frequency of 6 GHz and the receiving frequency of 4 GHz.

The patterns shown are for 4.5 m parabolic dishes. The increase in the effective

size of the antenna for the 6 GHz up-link signal results in approximately 3 dB more

discrimination as compared to the 4 GHz down-link signal for the same satellite

separation. For this reason, the worst up-link C/I ratio for each service area tends

to be somewhat greater than the worst down-link C/I ratio. This depends, however,

on the reference patterns used for the satellite transmitting and receiving antennas.

The minimum size ellipses used in the calculations reported here were calculated

using a program developed by Akima and described in NTIA Report 81-88 [13].

The half-power beamwidth of the satellite receiving antenna, as measured in a

plane containing the test point and the beam axis of the antenna, can be calculated

for a given location of a transmitter on the earth's surface using the procedure

described in detail in the Spectrum Orbit Utilization Program (SOUP) manual

[14, pp. III.10-III.13] and summarized by Wang in his description of the original

program to calculate required separation values [5, pp. 16-17].

The up-link C/I equation, equation 2.7, can be interpreted intuitively as follows.

13
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The term D$Rl(_b,_bo), in the numerator, represents the amount of discrimination

of tile receiving antenna on the satellite to a desired signal from a transmitter in

the satellite's service area. Its value will be between 0 dB and -3 dB since the -3 dB

contour of the antenna is assumed to enclose the service area. In order to get an

estimate of the worst case interference to the satellite system, test points are always

chosen to be on the borders of the administrations. For this reason, this term can

generally be approximated as -3 dB.

The term Dsm(a, _o), in the denominator represents the amount of discrimina-

tion of the receiving antenna on the satellite to an interfering signal from a trans-

mitter in another administration's service area. It is a measure of the geographical

separation of the service areas of the desired and interfering satellites.

The third factor, DET2(0,0o), is the amount of discrimination from the earth

station transmitting antenna in the interfering satellite's service area. It is a measure

of how closely spaced the two satellites are and, to some extent, their location in

the geostationary orbit.

A completely analogous interpretation can be given to the down-link C/I equa-

tion. The following section will follow closely the section on calculating single entry

down-link C/I values in Wang's Chapter 4, section B [5, pp. 88-94]. The notation

is slightly different to maintain consistency with the rest of this manuscript. The

other change is that Wang wrote expressions which summed interference over many

channels whereas these calculations consider only co-channel interference.

Figure 2.4 shows the interference geometry on the down link for satellite 2 in-

terfering with satellite 1. For the down link, the carrier power received at a test

point in area 1 can be determined from

15
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C : P1GsT1DsTI(e, eo)GER1)_
(4_rL1) 2

The interference power received from satellite 2 is

I : P2GsT2DsT2(_, _o)GERIDERz( 0, 0o))_
(4_L2) 2

(2.11)

(2.12)

The same notation is used here as was used in deriving the up-link expressions.

Note that the satellite transmitting antennas are assumed to be using elliptical

patterns. The angle 5 represents the off-axis angle from the aimpoint of satellite 2

to the test point while 5o represents the half-power beamwidth of the elliptical beam

as measured in a plane containing the test point and the beam axis. Similarly,

represents the off-axis angle from the aimpoint of satellite 1 to the test point, while

is the half-power beamwidth.

The C/I ratio can be expressed as

P1GsT1DsTl(e'e°)(41rL2)2 (2.13)
(C/I)down : P2GsT_DsT2(6,_o)DEI_l(O, Oo)(41rL1) 2.

Using the approximation

P1GsT1 P_GsT2
(2.14)

L_ Li '

the equation simplifies to

DSTI(e, eo) (2.15)
(C/I)d_,, _ nsT2(_f,,fo)nEm(6,8o)"

In the simplified down-link equation, equation 2.15, the important terms are

the interfering satellite transmitting antenna discrimination, DsT2($,6o), and the

earth station receiving antenna discrimination, DERI(0,6o). The discrimination,

DST_($, 6o), increases with increasing geographical distance between the two service

areas and DEm(6, 0o) increases with increased orbital spacing.

17
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2.3 Computer Program To Calculate Required

Separation

The computer program, "DELTA", to compute the minimum required separations

for all pairs of satellites works to satisfy a specified total link C/I ratio. The link

C/I ratio for each service area is found by first finding the worst up-link and down-

link C/I ratios for each area. The FORTRAN code for this program is listed in

Appendix B.

The worst up-link C/I is found by perfornfing an up-link calculation for all

interfering transmitter test points in the interfering satellite's service area. The

location of the desired transmitter in the sateUite's service area is fixed at the test

point which is closest to the -3 dB contour of the receiving antenna. A selection of

possible satellite receiving antenna patterns and earth station transmitting antenna

patterns is offered to the user. For the calculations presented in this manuscript,

the patterns displayed in section 2.1 have been used.

Similarly, tile worst down-link C/I is found by performing a down-link calcu-

lation at each receiver test point in the satellite's service area. These calculations

are performed using the procedure and equations described by Wang in his chapter

on the "Delta-S" method [5, pp. 86-106]. Again, a selection of possible antenna

patterns for the satellite and the earth station are offered. Elliptical patterns are

used for the satellite transmitting antenna while the earth station antenna uses a

circular beam. The power flux density at the aimpoints of all satellites is assumed

to be equal to a constant. This is the same assumption made by Wang.

The link C/I ratio is then found by assuming that the C/I ratio on the trans-

mission from the satellite is the same as that which is received by the satellite. This

18
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results in the following expression.

-1(o/i)_,, = (o/i)_ + (o/x),__,, (2.16)

This equation is really a worst case assumption that implies that the satellite

does not do any on board processing of the signal but merely converts it from 4 GHz

to 6 GHz and transmits it back to the earth. With current technology, it is feasible

to have on board processing and error correction capability for digital signals [15, p.

9-2]. In a system of this type, if interference on the up link induced bit errors at the

satellite receiver, these could be detected and corrected before transmission back

to the earth. An alternative to the procedure used in these calculations would be

to set a lower limit on the up-link C/I ratio and a separate limit on the down-link

C/I ratio and to space the 2 satellites the minimum distance apart for which both

requirements were satisfied.

The program calculates required separation values at uniform increments over

the intersection of the two feasible arcs for all combinations of two satellites. The

feasible arc of an administration is defined to be the range of possible satellite orbital

locations for which an observer at any test point in the satellite's administration can

view the satellite at an elevation angle no lower than a predetermined limit. The

elevation angle limit has been taken to be 10 degrees for the calculations reported

here. In other work, this limit has to be relaxed to 3 or 5 degrees when performing

calculations for polar nations, such as Canada, from which the GSO is visible only

at low elevation angles.

The flow chart displayed in Figure 2.5 illustrates the procedure used in the

program. A binary search is used to locate the minimum required separation at

each orbital location considered. The orbital location is the mean longitude of

19



the satellites; throughout the search process, the two satellites are spaced equally

about this location. First, the two satellites are separated by a distance equal to the

initial trial solution of 3 degrees at the eastern most location of the intersection of

the two feasible arcs. For the first satellite, up-link C/I values are calculated, using

equation 2.7, for interfering transmitters located at every test point in the interfering

satellite's administration and the worst value is saved. Down-link C/I values are

calculated, using equation 2.13, at every test point in the satellite's administration

and the worst value is saved. The link C/I for the first administration is then found.

This process is then repeated for the second satellite and its administration. The

lower of the two worst case link C/I ratios is then compared to the lower limit set

for the link C/I ratio. If the C/I ratio is below the limit then the spacing between

the satellites is increased in equal increments until a spacing is found for which the

worst case link C/I ratio is above the linfit. If the C/I ratio is above the limit, then

the spacing between satellites is decreased in equal increments until a spacing is

reached where the worst case link C/I is below the limit. In this way, an upper and

lower bound on minimum required satellite separation is found. The two satellites

are then spaced by an amount equal to the average of the upper and lower bound.

The worst case link C/I is then recalculated and compared to the limit. If it is

too low, then the lower bound on satellite separation is Set to the present value of

satellite separation. If it is too high then the upper bound on satellite separation

is set to the present value of satellite separation. This process is repeated until the

resulting worst case link C/I is within the predetermined margin of error of the

lower limit.
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The two satellites are then moved west to the next position in the arc for which

a separation value is to be deternfined and the process described above is repeated.

Now, however, instead of using 3 degrees as the initial trial solution, the value

calculated at the eastern most location is used. Since the required separation values

do not, in general, change drastically over the orbital arc, this is a good estimate

of the required separation. After the required separation value is found for this

location, the satellites are again moved to the west to the next location in the arc

for which values are to be calculated. This process is continued until they have been

calculated at all required positions.

To speed up the calculations, it is assumed that, for small changes in the loca-

tions of the satellites, the only angle used in the C/I calculations which will change

significantly is the angle of separation between the two satellites as seen from the

earth stations. This is a reasonable approximation since the coverage patterns of

the satellite antennas change very slightly as the location of the satellite is changed

slightly. Thus only the angle labeled 6 in Figure 2.1 needs to be recalculated during

each iteration.

The "DELTA" computer program is designed to be used as one step in solving

the satellite synthesis problem. The starting point for the synthesis problem is a

set of administrations to be provided with one satellite each. The service areas of

the administrations are defined by sets of test points. The test points are points

on the surface of the earth which represent the vertices of a polygon circumscribing

each administration's service area. The test points are specified by their latitude

and longitude. The number of test points needed to define a service area depends

on its size and shape and ranges from 4 to 12.

The second stage of the process is to generate the minimum ellipse data for
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each administration's service area using Akima's program. This must be done at

many locations in the feasible arc of each administration as the minimum ellipse

may change significantly from one end of the feasible arc to the other. In addition

to the test points defining the service areas of each administration, information

must be input to Akima's program concerning the error tolerance on each ellipse,

including satellite pointing error and orientation-angle error and a constraint on the

minimum size of a beamwidth. For the calculations of this report, the minimum-

size beamwidth has been chosen to be 0.6 degrees, the pointing error to be 0.1

degrees and the orientation-angle error to be 1 degree. The output of Akima's

program is the minimum ellipse data for the administrations at each orbital location

considered. Each ellipse is specified by five parameters: the longitude and latitude of

the aimpoint of the antenna on the earth, the major axis and minor axis beamwidths

of the elliptical beam, and the orientation angle of the ellipse. The orientation

angle is defined as the angle measured in a counterclockwise direction, in a plane

orthogonal to the antenna axis, from a line parallel to the equatorial plane to the

major axis of the ellipse.

The third stage of the process is the new program to calculate required separation

values described in this report. The following information which applies to all

administrations must be input to this program:

1. The minimmn link, single-entry C/I requirement to be met for all satellites.

2. Up-link and down-link frequencies at which calculations are to be performed.

The following additional information must be input for every administration:

1. Service area data of each administration in the form of the test points de-

scribed earlier.
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2. The minimum ellipse data calculated by Akima's program.

3. Reference patterns to be used for the satellite receiving antenna, satellite

transmitting antenna, ground station receiving antenna, and ground station

transnfitting antenna.

4. Diameter of parabolic earth station antennas for transmitting and receiving.

5. Information on range of feasible arc for the administration.

The output of the program is the required separation data. This is output in

two forms. One is a matrix of maximum required separation values, for every pair

of adnfinistrations. Tile second is a set of required separation matrices, calculated

at orbital locations specified by the user. These are the A_b values for the orbital

locations considered.

The next stage in solving the synthesis problem is to use the required separa-

tion data in linear constraints in the various formulations for the orbital allotment

problem developed by the Industrial and Systems Engineering Department at OSU.

These formulations and the computer programs to implement them have been de-

scribed in detail in several reports [3,4,6]. The ultimate output of these programs

is a list of feasible solutions for the allotment problem, specifying an orbital location

for each adnfinistration's satellite.

The final stage in the process is to analyze the possible solutions to the allot-

ment problem. Aggregate C/I ratios are calculated for each administration using

a program which will be described in detail in Chapter 4. In this way, the quality

of each proposed solution can be checked.
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2.4 Results

The plots displayed in Figures 2.6 through 2.9 illustrate the variation of the mini-

mum required satellite separation values for various administrations in South Amer-

ica. The plots have been calculated over the extent of the feasible arc common to

both administrations. The plots are parametric in (C/I)L, the mininmm required

link C/I ratio, and have been generated using the program described earlier. For

these runs it has been assumed that each ground station in both administrations is

using a 4.5 m dish for receiving and transmitting. The calculations have been per-

formed at the nominal FSS up-link frequency of 6 GHz and the nominal down-link

frequency of 4 GHz.

These curves exhibit roughly the same variation over the feasible arc as those

reported earlier [5,16] in which up-link interference was not considered. That is, the

maximum required separation between two service areas generally occurs near the

ends of the arc that can be used by satellites of both administations. This occurs

for two reasons.

First, when the two satellites are located at the ends of the arc, the topocentric

angle of separation between the two satellites as seen from the earth is smaller than

it is when they are located at the midpoint of the arc, for a given longitudinal, or

geocentric, angle of separation. This phenomenon is illustrated in Tables 2.1 and

2.2. These tables show the resulting topocentric angle of separation seen by an

observer on earth, when two satellites are separated by a given geocentric angle.

This angle is a function of the latitude of the location of the observer on earth and

the longitudinal separation between the location of the observer and the satellite

pair. The geometry of the situation is displayed in Figure 2.10. Table 2.1 shows
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the topocentric angle of spacing for a fixed geocentric spacing of two degrees. This

has been calculated for an observer at latitudes of 0, 20, 40, aild 60 degrees and for

satellite locations ranging from directly overhead to 60 degrees in longitude away

from the observer. The resulting transmitting discrimination at 6 GHz and receiving

discrimination at 4 GHz for a 4.5 m dish on the ground at an off-axis angle equal to

the topocentric angle calculated is also displayed. Table 2.2 shows the same results

for a geocentric angle of spacing of 4 degrees.

The second reason why the spacing requirement can be much larger at the ends

of the arc involves the coverage of a satellite transmitting or receiving pattern for

administrations with irregular shapes. A satellite located at -14 ° W, for example,

transnfitting a signal to Chile, will necessarily send a great deal more interfering

power into neighboring countries than will a Chilean satellite at -60 ° W. This

occurs because the administration can not be fitted with a tight ellipse at the ends

of the arc.

This is illustrated in Figures 2.11 through 2.13. Figure 2.11 shows the gain

contours for a satellite at -14 ° W with an antenna using an elliptical pattern either

transmitting a signal to Chile or receiving a signal from a Chilean transmitter. The

contours have been calculated and are displayed in a plane orthogonal to the satellite

antenna axis, as viewed from the satellite. The X axis Of the plot was chosen to

correspond to an axis parallel to the equatorial plane of the earth. A more detailed

description of the routine to calculate these contours is found in Chapter 3. Test

points in the nearby country of Paraguay have also been projected onto the plane

orthogonal to the axis and plotted to show the extent of the transmitted power

spillover for the specific case illustrated in Figure 2.6, i.e., the interaction between

Paraguay and Chile. Distances on the plot are measured in terms of the radius of
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Table 2.1: Changes in the apparent angle between two satellites and the resulting

earth station antenna discrimination with longitudinal separation of the satellites

and the observer and the latitude of the observer. The geocentric angle of separation

is 2 degrees.

Lonsituciinai Separat_oa %Vocentric X_Sie.... Gai_ _eio_,-bi_?-
Observer/Satellite (deg.) (deg.) Transmitting (dB)

Earth Observer at Latitude - 0 Degrees
0.00 2.36 -27.11

I0.00 2.35 -27.07

20.00 2.32 -26.95

30.00 2.28 -26.77

40.00 2.23 -26.53

50.00 2.18 -26.26

60.00 2.12 -25.96

Earth Observer at Latitude = 20 Degrees
0.00 2.33 -26.97

10.00 2.32 -26.93

20.00 2.30 -26.83

30.00 2.26 -26.66

40.00 2.22 -26.45

50.00 2.17 -26.19

60.00 2.11 -25.92

Earth Observer at Latitude = 40 Degrees
0.00 2.25 -26.60
I0.00 2.24 -26.57

20.00 2.23 -26.49

30.00 2.20 -26.37

40.00 2.17 -26.20

50.00 2.13 -26.01
60.00 2.09 -25.79

Earth Observer at Latitude : 60 Degrees
0.00 2.14 -26.07

lO.O0 2.14 -26.06

20.00 2.13 -26.01

30.00 2.12 -25.94

40.00 2.10 -25.84
50.00 2.07 -25.72

60.00 2.05 -25.60
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Table 2.2: Same as Table 2.1 but with the satellites separated by a geocentric angle

of 4 degrees.

Longitudinal Separation Topocentric Angle Gain Below Max.

Observer/Satellite (deg.) (deg.) Transmitting (dB)

Earth Observer at Latitude -- 0 Degrees
0.00 4.71 -31.03

10.00 4.70 -30.99

20.00 4.65 -30.88
30.00 4.57 -30.69

40.00 4.47 -30.46

50.00 4.36 -30.18
60.00 4.24 -29.89

Earth Observer at Latitude = 20 Degrees
0.00 4.65 -30.90

10.00 4.64 -30.86

20.00 4.59 -30.75

30.00 4.52 -30.59

40.00 4.43 -30.37

50.00 4.33 -30.12

60.00 4.23 -29.85

Earth Observer at Latitude = 40 Degrees
0.00 4.50 -30.52

10.00 4.49 -30.50

20.00 4.45 -30.42
30.00 4.40 -30.29

40.00 4.34 -30.13

50.00 4.26 -29.93

60.00 4.18 -29.72

Earth Observer at Latitude = 60 Degrees
0.00 4.28 -30.00
10.00 4.28 -29.98

20.00 4.26 -29.94

30.00 4.23 -29.86

40.00 4.19 -29.77

50.00 4.15 -29.65

60.00 4.10 -29.52
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Table 2.3: Spillover of Chilean Elliptical Pattern Into Paraguay For Chilean Satel-

lites Located at -110°W,-60°W, and -14°W.

Test Point in Paraguay

Lat. (deg) Long. (deg) -110 W
-25.3 -57.6
-27.3 -58.6

-27.2 -56.2
-25.5 -54.7

-24.1 -54.2

-20.2 -58.1
-19.3 -59.1

-20.5 -62.2

-22.2 -62.7

Antenna Discrimination

At This Location (dB)
-60 W -14 W

-11.34 -18.66 -5.08
-10.77 -15.00 -3.17

-13.78 -20.00 -5.69

-15.07 -20.00 -8.89

-15.07 -20.00 -10.90

-8.39 -19.84 -8.19
-6.87 -17.36 -7.67

-4.33 -9.23 -3.71

-4.43 -7.66 -2.53

the earth, R_. Figure 2.12 shows the gain contours for a Chilean satellite located

at -rio ° W while Figure 2.13 shows the contours when the satellite is at -110 °

W. Table 2.3 shows this effect numerically. For each test point in Paraguay, tile

amount of discrimination received from a satellite transmitting antenna serving

Chile is listed when the satellite is located at -14 ° W, -60 ° W and -110 ° W.

This is also the discrimination that the receiving antenna on the Chilean satellite

provides to an up-link interference signal originating from that point in Paraguay.

Note that for the worst test point in Paraguay, the discrinfination increases from

-7.66 dB down from the maximum at -riO ° W to -2.53 dB down from the maximum

at -14 ° W. At -110 ° W it is -4.43 dB below maximum.

This helps illustrate why the required separation plots for Paraguay and Chile

show a sharper increase in required separation at the ends of the arc than do the

plots for countries with more regular shapes. Less discrimination is provided by the

satellite antennas at the ends of the arc so more discrimination must be provided
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Table 2.4: Required Separation Matrix For South America, (C/I)L = 30 dB.

Surinam

Fre. Guiana

Brazil

Guyana

Paraguay

Uruguay
Argentina
Venezuela

Bolivia

Chile

Columbia

Peru

B G P U A V B C C P E

r u a r r e o h o e c

a y r u g n 1 i 1 r u

z a a g e e i 1 u u a
i n g u n z v e m d
1 a u a t u i b o

y y i e a i r
n 1 a

a a

4.88 5.09 1.13 0.78 1.21 4.17 1.17 1.86 2.36 1.43 1.12

5.39 5.22 4.84 5.39 4.93 5.09 4.22 5.44 5.60 3.46

1.16 0.93 1.20 5.28 1.27 1.75 2.91 1.79 1.13

3.28 4.97 1.16 4.83 3.86 1.31 2.95 1.13
4.74 1.10 2.19 3.60 1.09 1.61 1.01

1.20 4.84 5.24 1.47 3.54 1.38

1.30 1.85 5.56 3.10 2.42

5.03 2.91 5.19 1.61
2.20 4.95 2.40

5.05 4.78

5.07

Maximum Required Separation in Degrees Over Arc

by the earth station antennas. This requires more satellite spacing.

Table 2.4 shows the maximum required separation matrix for South American

administrations where both up-link and down-link interference has been included.

It has been calculated at (C/I)L = 30 dB.

the up-link and down-link expressions. This symmetry results in a relationship

between the values of up-link interference and clown-link interference between tile

satellite networks serving two adnfinistrations.

The test points in one administration that are closest to the aimpoint of the

second administration's satellite as measured in terms of the normalized off-axis

40
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angle (#//fo) will tend to receive the worst interference from that satellite as the term

DsTz(5,50) in the down-link equation, equation 2.13, will be the greatest. When

these test points are used as the sites for transmitters on the up-link, however, they

will likewise present the most serious interference to the second administrations

up-link transmissions as the term DsRl(ct, ao) in the up-link equation, equation

2.7, will also be the greatest. The other factors in these two expressions show less

variation from test point to test point. In general, if one administration receives

significantly more interference on the down link than the other administration, it

will receive less interference on the up link.

The following two examples illustrate this point. The first shows the interference

between a Brazilian satellite at -52.57 ° W and an Argentine satellite at -47.43 °

W. The two satellites are spaced by the value of q_i,j of 5.14 degrees at -50 ° W.

Table 2.5 lists the resulting C/I ratios. The down-link C/I ratios are displayed for

both administrations at every test point in each. The up-link C/I values at each

administration's satellite are shown at each test point for the interfering transmitter

in the other administration's service area. The test point for the desired up-link

transmitter in each administration's service area is fixed at the one which results

in the lowest C/I values. The up-link C/I actually changes only slightly with the

location of this point, however. All C/I values are listed from tlle best to the worst

when moving down within a column.

Table 2.6 lists the same thing for the interference between a Chilean satellite

at -111.61 ° W and a Paraguayan satellite at -108.390 W. Note that the'receivers

in Paraguay receive a great deal of interference. This is due to the spillover of the

Chilean ellipse at this orbital location described earlier. The Paraguayan satellite

receives significantly less interference on the up-link transmissions. For the Chilean

41



receivers on the ground, however, the interference is significantly better than for

those in Paraguay. The Chilean satellite receives much worse interference on the

up-link transmissions, however.
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Table 2.5: Up-link and down-link interference between an Argentine satellite at

-47.43 ° W and a Brazilian satellite at -52.57 ° W.

Brazilian C/I Ratios

Down link

Location

of Receiver
Down-link (C/I)

(dB)

4.50,-52.00

5.10,-60.00

-7.50,-34.80

2.00,-70.00
-22.50,-42.00

-7.50,-73.50

-11.50,-70.50

-22.50,-57.80

-32.50,-52.50

-30.00,-57.50

51.16

51.03

50.63

50.56

47.95

46.70

41.70

33.69

33.15

31.17

Up link

..........Braz_i!ian T__._a_nsmitter_t (2:0,-70)
Location Up-link (C/I)

of Argentine Transmitter (dB)
-50.0,-73.5 43.53

-55.0,-66.0 43.45
-43.0,-72.2 41.98

-32.0,-70.4 39.29

-37.0,-56.5 38.33

-28.0,-69.2 38.23

-22.0,-66.0 36.55

-22.0,-63.0 36.05

-26.2,-53.6 35.76

Argentine C/I Ratios
Down link

Location

of Receiver

-50.00,-73.50

-55.00,-66.00

-43.00,-72.20

-37.00,-56.50

-32.00,-70.40

-28.00,-69.20
-22.00,-63.00

-22.00,-66.00

-26.20,-53.60

Up link

Argentine Transmitter at (-55.0,-66.0)
Down-link

(dB)
40.63

40.36

39.45

36.85

36.50

35.30
34.06

33.60

32.92

(C/I) Location Up-link (C/I)

of Brazilian Transmitter (dB)
4.50,-52.00

-7.50,-34.80

5.10,-60.00

2.00,-70.00

-7.50,-73.50
-22.50,-42.00

- 11.50,-70.50

-32.50,-52.50

-22.50,-57.80

-30.00,-57.50

54.62

54.52

54.48

54.47

50.57
50.18

44.91

37.05

35.94

34.90
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Table 2.6: Up-link and down-link interference between an Paraguayan satellite at

-111.61 ° W and a Chilean satellite at -108.39 ° W.

Paraguayan C/I Ratios

Down link

Location

of Receiver

-25.5,-54.7

-24.1,-54.2

-27.2,-56.2

-25.3,-57.6
-27.3,-58.6

-20.2,-58.1

-19.3,-59.1

-22.2,-62.7
-20.5,°62.2

Down-link (C/I)

(dB)
43.78

43.53

41.87

40.38
38.08

35.97

33.64

31.37

31.16

Up link

Paraguayan Transmitter at (-19.3,-59.1)
Location Up-link (C/I)

of Chilean Transmitter (dB)

-56.0,-69.0 51.47

-46.0,-76.0 50.47

-18.5,-71.5 49.51

-34.0,-72.0 49.35
-44.0,-71.0 49.17

-17.6,-70.0 48.98
-23.0,-66.5 37.02

Down link

Location Down-link

of Receiver (dB)
-34.0,-72.0 47.53

-56.0,-69.0 47.52

-46.0,-76.0 47.28

-44.0,-71.0 46.36

-18.5,-71.5 46.16

-17.6,-70.0 45.99
-23.0,-66.5 33.69

Chilean C/I Ratios

(C/I)

Up link

Chilean Transmitter at (-56.0,-69.0)
Location Up-link (C/I)

of Paraguayan Transmitter (dB)

-24.1,-54.2 46.13

-25.5,-54.7 46.11

-27.2,-56.2 44.59

-25.3,-57.6 41.78

-27.3,-58.6 41.12

-20.2,-58.1 38.43
-19.3,-59.1 36.71

-22.2,-62.7 33.94

-20.5,-62.2 33.83
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Chapter 3

Modelling The Effects of

Shaped-Beam Antennas On The

Required Separation Calculations

3.1 Introduction

To this point, the required satellite separation calculations have been made under

the assumption that the satellite antennas are transmitting elliptical gain patterns.

That is, the loci of constant directivity in a plane perpendicular to the beam are

ellipses for all values of directivity. The -3 dB contour of the satellite antenna has

been set to correspond to the smallest ellipse which comphtely encloses the service

area. In practice, however, a beam can be shaped to more closely follow the border

of the service area of a satellite than a single elliptical beam can. One common

practice is to use a multiple-feed antenna to cover the service area with a beam

composed of many smaller spot beams rather than with a single large ellipse.

The use of a multiple-feed shaped-beam antenna has two main advantages over

simply covering a service area with a beam of simpler shape. One advantage is

that much less power will be transmitted to areas outside the service area with
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the shaped-beam antenna. The directivity of the shaped-beam antenna will fall off

more rapidly outside the -3 dB contour circumscribing the service area than it will

for a single elliptical pattern. A second advantage is that a more uniform main

beam illumination level can be achieved. The directivity of the antenna inside the

service area will be more uniform than with an elliptical beam.

No method of calculating the resultant interference from shaped-beam anten-

nas to regions outside their service areas has yet been adopted by the CCIR. For

this reason, work has been done to develop guidelines for making this calculation.

It would be a hopeless task to attempt to predict in any detail what antenna de-

signs and shaped-beam contours might be implemented on satellites launched in

the future which have not even been proposed yet. However, it should be possible

to develop reasonable gain contours which more closely reflect the capabilities of

shaped-beam antenna technology than do simple elliptical patterns.

Note that all of the methods presented have limitations. All are heuristic meth-

ods which attempt to make reasonable assumptions about the nature of shaped-

beam antennas which might be used on future satellites. Rather than being gener-

ally applicable, all of them are based on particular assumptions which may or may

not be valid for a given service area. Care would have to be used in extending the

methods considered here to a service area which consists of two or more disjoint

land areas; two obvious examples of such service areas are Japan and the United

Kingdom. A further limitation is that no detailed data on the radiation patterns of

real shaped- beam satellite antennas in areas outside the satellite's service area has

been obtained with which to compare these models. Thus, this chapter should be

regarded as only a preliminary study of various ideas for modelling shaped beams

and an examination of whether the results that they produce are sensible.
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Several papers of interest concerning this topic can be cited. H. Akima describes

one method for modelling the effects of shaped-beam antennas in the reference

manual to GSOAP [17]. This is similar to the "uniform rolloff" method described

in this chapter, in that it determines relative gain as a function of the distance from

the service area polygon. Akima [18] has also presented a model for calculating the

antenna gain in the direction of an earth point from several contour lines given on

the map of the earth. In a recent paper, Rao and Moody [19] develop a model for

specifying the radiation envelope of shaped-beam antennas for use in planning the

FSS. The model is described primarily in terms of local beamwidth size and peak

sidelobe level.

Four methods of modelling the gain rolloff from a shaped-beam antenna will be

presented here. The first is a simple method which uses an elliptical -3 dB pattern

but a modified rate of gain rolloff from this contour. The other three are attempts

to predict the nature of shaped-beam gain contours which would be implemented

for a service area based on the geographical shape of the service area. All methods

are discussed in detail in sections 3.2 and 3.3. Section 3.4 presents graphical plots

of the gain contours which result when these methods are used. Section 3.5 presents

an analysis of the effects of using one of these methods on the required separation

calculations.

3.2 Elliptical Half-Power Patterns

The first method investigated is based on a reference pattern published in the Final

Acts of RARC-83 [20, p. 150]. In this pattern, the rate of rolloff is modified to

reflect the capabilities of multiple-feed shaped-beam antennas. It is elliptical only
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inside the halbpower, -3 dB, relative gain contour. The governing equations are:

D(a, ao)(dB) = -12(a/ao) 2 0 <_a/ao <_0.5
= -18.75ao2 [(a/ao)- X] 2 0.5 < a/a,, < 1.161ao + X

= -25.23 1.16/ao + X < a/a0 < 1.45

= -22- 201og(a/a°) 1.45 < a/ao (3.1) [

-G -G > -22- 201og(a/ao) |

x = 0.5(1.0- 0.8/ao).

In this expression, G is the on-axis gain of the antenna, a is the off-axis angle to

the test point, and ao is the half-power beamwidth of the antenna measured in a

plane containing the test point and the beam axis of the antenna.

Note that for this reference pattern, outside the -3 dB contour, the relative gain

is no longer a function only of the ratio (a/ao) but of the actual values of the off-axis

angle and the measured half-power beamwidth. Thus this pattern does not give rise

to uniformally elliptical gain contours as do the satellite antenna patterns agreed

upon in earlier conferences. Wang [5, p. 22] reported results with a modified version

of this pattern which was suggested by a CCIR-CPM-82 report. This version of the

pattern is identical to the one listed above for small values of a but gives more

antenna discrimination for larger values. It is listed below:

0 < a/ao < 0.5

0.5 < a/ao < 1.265/ao + X

1.265/ao + X < alao < 1.585

1.585 < a/ao

.G > -24- 301og(a/ao)

= -12(a/ao) 2

= -18.75ao 2 [(a/ao) - X] 2

= -30

= -24 - 30 log(ct/ao)
=-e

D(a, ao)(dB)

(3.2)

x = o.5(1.o- 0.8/ao).

The same procedure is used to calculate the relative gain of the satellite antenna

using these patterns as with the uniform elliptical patterns. That is, the minimum

size ellipse which covers the service area for a particular orbital location of the

I

I

I
I

I
I

!

I

I

I

I
48



I

I
I

I
I

I
I

I

I
I

I
I
I

I
!

i

I
I

satellite serving the area must be specified. These ellipses are found using Akima's

computer program [13] and are defined in a plane orthogonal to the beam axis. The

half-power beamwidth, Cto, is calculated in a plane which contains the beam axis

and the test point. Once the off-axis angle is found from the antenna axis to the

point on the surface of the earth for which the gain is being calculated, the relative

gain is calculated from the equations listed earlier.

3.3 Methods Using Service Area Polygons

The other three methods of modelling the gain contours from shaped-beam antennas

all involve working in a plane orthogonal to the satellite antenna axis. In each of

these methods, it is assumed that it is acceptable to work in this plane rather

than on the spherical surface about the satellite on which its antenna patterns are

defined because of the large length of the GSO radius compared to the relatively

small dimensions of the service areas involved.

3.4 Coordinate Systems

The starting point for these methods is the set of test points given in terms of

latitude and longitude which describes the service area of an administration and a

satellite location denoted by its longitude. For the computer programs presented

here it is necessary to have a convention regarding the order in which these test

points are specified, so that it is clear how they are connected and which direction

is the interior of the service area. This has been chosen as follows: the test points

are entered in the order they must be connected to form a polygon circumscribing

the service area so that, if one draws a line between successive points, the interior
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of the service area will always be on the left hand side.

Several different rectangular coordinate systems will be used in the calculations

presented in this chapter. The first, is the earth-centered coordinate system, i.e., a

system whose origin is the center of the earth. The z axis is the axis of the earth and

passes through the earth's poles. The y axis is selected so that it runs through the

Prime Meridian (0 degrees longitude). The most natural way of specifying points on

the earth or in the GSO is with spherical coordinates (R, 0, ¢) where R represents

the radius from the center of the earth, 0 is the latitude of the point and ¢ is the

longitude. To convert from spherical coordinates to the earth-centered rectangular

coordinates, the following transformation is performed

z = Rsin0

y = Rcos0sin¢

= Rcos0cos ¢. (3.3)

Distances in this report will be measured in units of Earth radii. Thus for points

on the surface of the earth, R = 1.0 . For points in the GSO, R is approximately

6.6134. The earth's radius is denoted by R_.

A second coordinate system that will be used is one centered at the aimpoint

of the antenna of the satellite serving the administration in question. Aimpoints

are selected for the satellite antennas of each administration at all orbital locations

considered. The exact locations of these aimpoints are not crucial, though it must

generally be close to the center of an administration's service area. For the calcula-

tions presented here, the aimpoint from Akima's minimum ellipse program for the

given satellite location has been used. The aimpoint is specified by its latitude and
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longitude, (0a, Ca). Its earth-centered coordinates are given by

z_ = Rsin0a

g_ = Rcos0_sin_ba

z_ = R cos O,.cos ¢_. (3.4)

A satellite's orbital location is specified by its longitude only, since the latitude

of the GSO is 0 and its radius is approximately 6.6134 times the earth radius. Given

a satellite's orbital location, ¢,, the earth centered coordinates of the satellite are

Zs -- 0

y0 = 6.6134 sine,

Xo = 6.6134 cos ¢0. (3.5)

The aimpoint-centered coordinate system is selected as follows. The z' axis

extends from the aimpoint through the satellite's location in the GSO. The y' axis

is chosen to be parallel to the equatorial plane of the earth and orthogonal to the

a_' axis. The z' axis is then taken to be orthogonal to the x' and y' axes. This

is depicted in Figure 3.1. To derive the transformation from the earth-centered

coordinate system to the aimpoint-centered coordinate system, the unit Vectors

(_',0',£') will be derived in terms of the unit vectors (_,$), 2) of the earth-centered

system.

The unit vector _' is in the same direction as the vector from the satellite

antenna's aimpoint to the satellite. It is found from

_,= (z° - xo)_ + (y0 - V.)Y - z._ (3.6)

_/(_°- _°)_+ (v.- v.)_+ _.'
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Figure 3.1: Aimpoint-centered coordinate system for use in gain contour plots and

shaped-beam calculations.
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The unit vector _' must be orthogonal to _' and _'. It also must be orthogonal

to _ since the y' axis is parallel to the equatorial plane. Let

_'= a_ + b_ + 0_, (3.7)

where

a 2 + b2 = 1, (3.8)

and

$'._' = O. (3.9)

Then the dot product of _' and _' is

$'" 0' = a(z, - xa) + b(y, :_y_! ..... (3.10)

_/(_. - _a)' + (_. - y.)_+ z._

Setting the dot product to zero yields

a(_. - _°) + b(v. - v.) = 0.

Now, substituting for b and solving for a produces

a(_. - _.) + v/(1- a2)(v.- v.) : o,

a2 = (Y,-y.)_
(_. - _.)_ + (v, - v.)"

and

+(v° - va)

_/(_. _ _°)2+ (v. - v°)2"

Choosing the "-" sign and solving for b gives

(3.11)

(3.12)

(3.13)

(3.14)
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b2= (_. - _o)2+ (u. - _o)' _ (_°- y.)_
(_. _ _o)2+ (u. _ _o),

(3.15)

or

b= ::k(xo- Xo) (3.16)

((_. _ _.), + (y0_ y.)2

The "+" sign must be selected here to force the dot product to zero. Thus the

expression for 9' is

^, (Ya - Y,)._+ (xo - x°)9 (3.17)

u = _/(_. - _°), + (y. - y°),

The remaining unit vector _ can now be found using the cross product. To simplify

the expressions, let

R1= ((_.- _o)"+ (y.- yo)_+ zl, (3.18)

and

R_= V/(_.- _°)' + (y. - yo)_. (3.19)

Now _' is found from

_'= _'x _', (3.20)

or

RI R1 Rx

_ 0
R2 R2

(3.21)
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Thus, _' is found from

_"=_L -h-_R_- l+Yl R,R_ I +s R,R, . (3.22)

Since the origin of the new coordinate system is chosen to be the aimpoint, a

point given in earth-centered coordinates, (z, y, z), can be represented in aimpoint-

centered coordinates, (z _, y', z'), by the transformation

L _R2 ] L _R2 J _(=-

I 3.4.1 Projection Test Points Defining Service Area Polygon

I

I
I

I
I

I

The methods of this chapter involve working with test points on the surface of the

earth projected onto a plane orthogonal to the axis of the satellite antenna. Given

the coordinate transformation above, finding the projection points of the test points

on the earth to this plane is straightforward. A test point on the surface of the earth

is given by its latitude and longitude, (0_,_). The earth centered coordinates of

this point are

Ze -- sin Oe

y_ = cosO, sin_

xe = cosOecosbe. (3.26)
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! t
These are then transformed to the aimpoint-centered coordinates, (x_,ye,z'_) ,

using the equations listed above. The projection of these points onto the plane

orthogonal to the satellite antenna's beam axis is made by setting x'_ to zero.

Thus, from this point on, the service areas are represented by sets of points

in the projection plane, i.e., the y', z' plane. These projection points will always

be specified by their aimpoint-centered coordinates and denoted by (y_, z_). Note

that in this system the aimpoint is at the origin. Thus given the earth-centered

coordinates of the test points on the surface of the earth, the aimpoint- centered

coordinates of the projections of the points can be found from

' (Y"_Y') (_ - _")+ t R2YP=L 2 J

z; [_o¢_,__o/l [_o¢_.:_o/1 R,
= L nln2 l(Z¢-za)+ L nin2 J (y¢-ya)+n_(z'-z')" (3.28)

The sides of the service area polygons in the y_, z' plane can be characterized by

the lines containing them. In the computer algorithms used for the calculations of

this chapter, they are designated by their slopes and z' axis intercepts. For an n

sided polygon, the line which includes the first and second vertices is designated as

line 1, the line containing the second and third points is designated as line 2, and so

on; the line which contains the points n and 1 is designated as line n. Two arrays

store the necessary information specifying the lines; one array containing the slopes

and another containing the z' axis intercepts.

The slope, ml, of line i is found from

t t

zP'i+l - zP'i (3.29)
mi - Y_,i+l - Y_,i"

The array element is set to -99999 as a flag when the slope is infinite. The z' axis

intercept, ci, of line i is
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Figure 3.2: Seven-sided concave polygon to be made convex.

I I (3.30)

3.5 Forming a Convex Polygon

For the first of the methods discussed in this chapter, it is necessary to have a

convex polygon which describes the service area. Any concavities in the service

area must be eliminated by forming a new polygon with fewer sides which does not

contain the points which cause the concavity. For example, Figure 3.2, shows a

seven-sided polygon with a concavity. Test points 3 and 4 must be elinfinated to

form the five-sided convex polygon of Figure 3.3.

To generate a convex polygon the following algorithm is used. It requires check-

ing all n points of the service area polygon at least once to see if they can be

included in a convex polygon. The procedure starts with the test point designated
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I
Figure 3.3: Five-sided convex polygon.

as 1. Consider the three points n, 1, and 2 as shown in Figure 3.4.

The angle 01 that the line segment between test point n and test point 1 makes

with the positive y' axis, measured in a counterclockwise direction, is determined

using the following procedure. First the terms Az_ and Ayl are calculated, where

/
Az I : z;, 1 -- zp,n, (3.31)

and

' (3.32)

If the principal value of the arctan function is defined to lie between -90 ° and 90 °,

then in order to insure that 0 ° < 01 _ 360 °, 01 is found as follows:

1. If Azl > 0 and Ayl > 0 then 01 = arctan _
_y_

2. If Azl < 0 and Ayl > 0 then 01 = 360 ° + arctan _

I

I
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Figure 3.4: Angles used in checking whether point 1 can be included in a convex

polygon.
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3. If Ayl < 0 then 01 = 180 ° + arctan -_
Ayl

The angle, 82, that the line segment between test points 1 and 2 makes with positive

y' axis is determined in a similar manner.

Now if 81 < 180 ° and 81 < 82 < 81 -{- 180 ° then test point 1 can be included

in the convex polygon. Otherwise, it must be rejected. For 81 > 180 °, it must be

rejected if 01 - 180 ° < 8_ < 01. Otherwise it can be accepted.

This procedure must be carried out at least once for all n test points. Every time

a test point is found to produce a concavity, a new polygon is formed which does

not contain this point. Once this point has been rejected, the next lower indexed

point that has been accepted must be rechecked using the new polygon. This is

necessary since a concavity can include more than one test point.

3.5.1 Projection Through Center of Service Area Polygon

The first model for the directivity of the shaped-beam antenna is one that attempts

to predict the shape of the loci of constant directivity based on the geometric shape

of the service area. This method starts with the n sided polygon representing the

service area which possibly contains some concavities. From this polygon is formed

a m sided convex polygon with the procedure described in the previous section. This

polygon is taken to be the locus of relative gain equal to-3 dB. This is, of course,

an approximation as in practice the -3 dB contours are unlikely to be straight lines.

The heuristic argument behind this method is as follows. Consider a point

(y_, z_) outside the service area polygon, at which the relative gain is to be calcu-

lated. If a line is extended from this point through the origin of the y', z' plane (the

aimpoint) and across the polygon, it will intersect the polygon in two points. The

distance between these points gives a measure of the "beamwidth" in this direction.
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Now, for the satellite using an antenna with multiple spot beams, the service area

will not be covered with a single large beam but with many smaller beams. Outside

the -3 dB contour, the relative gain will decay more rapidly for the shaped-beam

antenna then it would for the single-beam antenna, reflecting the smaller half-power

beamwidth of the sub-beams. To reflect this in the model, the distance across the

polygon representing the -3 dB contour is not used as the beamwidth in the calcula-

tions, but a fraction of this distance is used (1/2,1/3,1/4,...). For the calculations

of this manuscript, 1/3 has been used. The relative gain in the exterior of the service

area polygon is calculated by assunfing that it falls off from -3 dB as would a single

beam with a beamwidth equal to 1/3 the distance across the polygon, measured in

the ye, z _ plane. This is illustrated in Figure 3.5.

It is important with this method to place a constraint on the minimum beamwidth

dimension that can be permitted. Otherwise the relative gain could decay arbitrarily

fast outside a service area that is narrow in one dimension. In the computer pro-

gram used for the calculations of this report, the minimum allowable beamwidth is

an input parameter.

Note that this method does not provide a model that has a consistent beamwidth

size as do the other methods explained in this chapter. The value of the beamwidth

used in the calculations will vary considerably depending on the location of the

point at which the relative gain is being calculated. One can visualize the service

area being covered with many sub-beams. The "axial ratio" of the sub-beams will

be approximately equal to the ratio of the longest dimension across the service area

polygon to the smallest dimension.

The following procedure is used to calculate the gain at the point (y_, z_) which

is outside the service area polygon.
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Figure 3.5: Geometry of the "Projection Through Center" method.
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1. Find the slope, m0, of the line, I0, passing through the origin and (yb, z_); this

is given by m0 = _.
v0

2. For each side i of the polygon, find if there is an intersection with 10 using the

following procedure.

: I Z ! x(a) First find the point of intersection, tYk,i, k,i}, of l0 and the line li which

contains side i of the polygon using the following relationships. Setting

the z' coordinates equal yields

I I

Yk,lmi "Jr el : moyk, i. (3.33)

Thus, the desired y' coordinate of intersection is found from

Y_,i - cl . (3.34)
Trt 0 -- _Tt i

The z' coordinate of intersection is found from

Z I I_,i = miYk,i + ci. (3.35)

(b) Check to see if the point (Y_,,i, Z_k,i) is on the line segment which is side i

of the polygon.

3. After this has been done for all sides of the polygon , there will be two points

of intersection. Compute the distance between the point being tested and

these points. Label the closest point, (y_, z_), and the farthest point, (y', z'r).

4. Compute the "beamwidth", do, by computing the distance across tile polygon

and taking 1/3 of this distance. Thus, do is found from

1 _/(y__ y})_ + (z_- z_,) 2. (3.36)do=_
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5. Compare do to the value of the minimum permissible beamwidth. If do is less

than the minimum beamwidth, then set do equal to the minimum beamwidth.

6. Compute the distance, dl from the point being tested to the polygon from

dl= _- y_)'+ ¢z_- z_)2. (3.37)

7. Calculate the relative gain below maximum by using one of the two gain

patterns given below.

The following two patterns are used for both this method and the "uniform

rolloff" method to be discussed. The first is basically the FSS elliptical pattern

described in Chapter 2. The quadratic portion of this curve has been modified

slightly by adding an additional factor of-3 dB so that the relative gain falls off

from -3 dB at the borders of the service area polygon.

= -20

= - 7.5 - 25 log (d_
/

0 < _ < 1.19
-- do --

1.19 < & < 3.15
do --

> 3.15.
do

(3.38)

The second pattern is a modification of a BSS satellite transmitting pattern

from the WARC-85 Conference [21, p. 102]. The equations describing the envelope

are

D (_o) (dB ) =-3-12 (_2_do/
0<_<1.5

-- d o --

_< 3.15
1.5 < do -

> 3.15.
do

(3.39)= -30

= -17.5- 251og (d_)

Notice that the two patterns are identical except the level of the flat portion of

the curve in the sidelobes of the antenna. Thus, these two patterns will produce

identical results for values of the relative gain of -20 dB or greater.
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3.5.2 Uniform Rolloff From the Boundary of the Service

Area Polygon.

This method attempts to model the effects of shaped beams by means of a uniform

rate of falloff of the relative gain outside the service area polygon. With this method,

it is assumed that the service area has been covered with circular sub-beams of a

uniform diameter. The beamwidth size used in the calculations is considered fixed

at the specified beamwidth of the individual sub-beams. The locus of relative gain

equal to -3 dB is taken to be the polygon defining the service area. As in the

previous method, this assumption is contrary to fact as the -3 dB contour will most

likely not be a set of straight lines following the sides of the service area. A choice of

polygons is available; the original polygon which may contain some concavities can

be used as can the convex polygon used in the first method. The second choice is a

more conservative selection. The relative gain below maximum outside the service

area polygon is a function of the closest distance from the point being tested to the

polygon.

Given a test point outside the service area polygon, the minimum distance to

the polygon is determined as follows.

1. For each side, i, of the polygon, find the shortest distance between it and the

point being tested using the following procedure.

(a) Find the perpendicular from the point being tested to the line containing

the side of the polygon. There are three cases:

i. The side of the polygon is vertical in the y', z' plane. The equation

of line li, which contains side i is y = K, for some constant K. The

point of the intersection of the perpendicular with the side of the
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polygon is (K, z_)

ii. The side of the polygon is horizontal in the Y', z' plane. The equation

of line i is z = cl. The point of intersection of the perpendicular with

side i is (y_, ci).

iii. The side is contained by Ii which has finite, non-zero slope. The

point of intersection, (Y_,_, z_,i) of the perpendicular with the side of

the polygon is found from
!

y_ = z o + (1/mi)y_ - c_ (3.40)
m_ q- 1/m_ '

and

(Z_o- c_)rni + Y_o (3.41)
4 = (m, + 1/m,) + c_.

(b) Determine whether the point of intersection of line i and the perpendic-

ular to it containing the point being tested is on the line segment which

is side i of the polygon. If it is, it is the closest point to the polygon. If

not, then the closest point is the closer of the two endpoints of side i.

2. Given a set of the shortest distances to each side of the polygon, take the

minimum of these as the shortest distance from the point being tested to the

polygon. Label this shortest distance, dl.

Once the shortest distance to the service area polygon is found, the relative

gain can be calculated. For this method, the size of the beamwidth, do, (i.e., the

common diameter of the circular sub-beams) is an input parameter. The beamwidth

is specified in terms of the chord measured in the y_, z _ plane rather than an angle

measured at the satellite. The relative gain is calculated from the ratio of dl to do

using either of the two patterns listed in the previous section, i.e., Equation (3.35)

or (3.36).
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The final method of generating shaped-beam contours is by covering the service

area polygon in the plane orthogonal to the beam axis with circular sub-beams of

uniform radius. Given the locations of the centers of the sub-beams, the relative

gain at a given point can be estimated by the superposition of the fields from each

at that point. This method has been used to substitute for the lack of data on

real shaped-beam antennas. It simulates the sort of process that might be used in

designing a shaped-beam antenna with multiple feeds.

This sort of method would probably not be feasible for an actual program to

determine required separation values for a large number of satellites due to its

subjective nature and the length of time involved in its application. The diameter

of the circular sub-beams is selected to allow a sensible number of beams to cover the

service area. The placement of the individual beams is then done using a graphics

terminal to produce an arrangement that seems reasonable. After an arrangement

is produced, gain contours for that arrangement are calculated using the method

described in the next section. If the contours produced are not satisfying, the

placement of the sub-beams is changed slightly and the contours recalculated. The

drawing work is done using the Teknicad graphics package available at the OSU

Electro-Science Lab [22].

Once the location of the sub-beams in the plane orthogonal to the beam axis is

determined, the gain contours are deternfined using the superposition of idealized

voltage patterns for each sub-beam. The two relative gain patterns used are es-

sentially the same patterns described earlier without the modifications for use with

polygonal -3 dB contours. The first is the FSS elliptical pattern from Chapter 2.
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Tile equations describing the envelope of this pattern are

D(_'o)(dB ) = -12(_) z 0 _< do-6_< 1.29

- -20 1.29 < _ < 3.15 (3.42)
-- do --

7.5- 251og(6) 6 > 3.15.
-- -- dodo

The second is the satellite transmitting antenna envelope listed earlier which

comes from the WARC-85 conference. The equations describing the envelope, in

dB, are

D(_o)(dB) = -12(_) 2 0 _< d0d__< 1.58

= -30 1.58 < 6 < 3.15 (3.43)
do --

= -17.5- 251og(_) _ > 3.15.

These two patterns are converted to the following two voltage patterns, listed

in terms of ratios. The first corresponds to the FSS envelope,

V(_) = 10 -°'6(_)2 0 _< -o_ -< 1.29

= 0.1 1.29 < _ < 3.15 (3.44)
Ot 0 --

= 0.41965(_) -_28 3.15 < "--,
ct 0

The second corresponds to the BSS envelope,

V( ,,%) = 10 -°s( oo)2 0 _< _0-_- -< 1.58

= 0.03162 1.58 < _ < 3.15 (3.45)
Of 0 --

= 0.13269(2_)-1'25 3.15 < _0_-"

Figure 3.6 shows plots of these voltage patterns for comparison. The two are

identical out to the fiat portion of the envelope in the sidelobes.

The first step in the process is to calculate a value for the gain at the aimpoint,

which is the origin of the y', z' plane. The aimpoint is assumed to be the point

of maximum gain as a simplifying assumption. In general, a maximum gain will

not occur precisely at the aimpoint but somewhere close to it in the interior of the

service area. The distance from the aimpoint to the center location of each sub-

beam is found; from this is determined the contribution from that sub-beam. The

total voltage is just the sum of the contributions from each sub-beam,
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Figure 3.6: Comparison of the two voltage patterns used in the "N-beam" method.
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m

Vt = _ V_. (3.46)
i=l

The value in dB, of the square of this quantity, denoted by G is then found from

G(dB) = 201og(Vt)= 20log V_ (3.47)

This value is saved to be used as the maximum gain value in the succeeding calcu-

lations.

To calculate the relative gain at a point other than the aimpoint, the same

process is used. The distance from the point being tested to the center location

of each circular sub-beam is calculated and the voltage contribution from the sub-

beam is determined. The total voltge is the sum of the contributions from all of

the sub-beams. The square of this quantity, in dB, is then found. The relative gain

below maximum is then found by subtracting the value of G found earlier from this

value.

3.6 Gain Contour Plots

3.6.1 Introduction

The following section contains plots of the gain contours which result from these

procedures. These plots show a view from the satellite of the y', z' plane orthogonal

to the axis of the satellite antenna. The projections, in this plane, of the test points

defining the service area are marked in these plots by asterisks. The plots are

generated as follows.

A ray is extended from the origin at a given angle, 8, and the distance along

this ray that an observer must move for the relative gain of the satellite antenna

to be at a specified level is determined. This is repeated for all values of 6 from 0

7O

I

i
I

I
I

l

I
I
I

I
I

I

I

i
I

I

I

i



!

I

!
degrees to 358 degrees in 2 degree increments, for all specified values of the relative

I gain. In this way, the loci of constant relative gain can be determined for all values

of relative gain desired. In the plots of this chapter, the -3 dB, -6 dB, -12 dB, and

I -18 dB contours are shown.

For the elliptical pattern and elliptical half-power pattern, the distance from the

I origin that must moved can be calculated directly by following algorithm.be the

The geometry of the minimum ellipse in the y', z' plane is shown in Figure 3.7. Note

I that the orientation angle, is defined as the angle the major axis makes with the y'

axis.

I First, the range from the satellite to its aimpoint must be calculated. This is

trivial if the satellite is described by its aimpoint centered coordinates, (Z'o,0,0),

i as it is just z'0. Next, the lengths of the major and minor axes in the y', z' plane

are determined. This must be done because these dimensions are specified in terms

I of the angles subtended by the ellipse as seen from the satellite. Let the angular

I major axis be specified as Ca, and the minor axis as Cb- The length of the chord
OA in the y', z' plane is

I ' tan(¢J2). (3.48)

The major axis, a, is twice this length: a = 20A. The length of the chord, OH

I , in the y', z' plane is

I

I

!

!
OB = z. tan(¢b/2). (3.49)

Tile length of the nfinor axis, b, is b = 20B. The beamwidth, c, seen by the observer

at point R can now be calculated from

a (3.50)
C _

_/cos'(O - a) + (alb) 2 sin'(0 - a)
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Figure 3.7: Configuration of minimum ellipse in V', z' plane.
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as this is twice the length of the chord OC. The angular beamwidth, _bc, seen at

the satellite is

C

_/,c = 2 arctan( 2z----_,)" (3.51 )

Once the beamwidth is found, tile off axis angle needed to produce the desired

relative gain can be calculated. If the standard FSS elliptical pattern, i.e., Equation

(2.9), is being used the equation is

_ D(_,_o) (3.52)= _o 12

For tile "fast rolloff" elliptical half-power pattern, i.e. Equation (3.2) is used, the

equation is

Given ¢, the desired distance OR is found from

' tan ¢. (3.54)OR = z,

For the method of projection through the center, the distance on the ray between

the two sides of the polygon that it intersects is calculated, and this information

is used to calculate the required distance along the ray that must be moved to get

the desired gain. The calculation proceeds as described in Section 3.3.4, using the

pattern in equation 3.36

For the method which involves calculating the gain based on the superposition

of the fields from the individual sub-beams, an iterative procedure is used to find

the required distance out along this ray, with the gain calculated in each iteration

as explained in section 3.3.6. The pattern used is that described by equations 3.40

and 3.42.
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Likewise, for the method of uniform falloff from the edge of the polygon, an

iterative procedure is used with the gain calculated at each iteration as explained

in section 3.3.5 . The pattern used is that described by equation 3.36 .

3.6.2 Chilean Satellite at -50 ° W

The first set of plots shows the results of using the models described in this chapter

for a Chilean satellite at -50 ° W . Figure 3.8 shows the gain contours which result

when the FSS elliptical pattern described in Chapter 2 is used. Figure 3.9 (note the

change of scale) shows the improvement in these contours when the "fast rollof["

elliptical half-power pattern defined by Equation (3.2) is used. The reduction in

the amount of interference power transmitted to areas outside the service area is

dramatic.

Three different designs which have been developed using circular sub-beams and

the gain contours which result from these designs are displayed in the next six plots.

Figure 3.10 shows a three beam design with a beam radius of 0.11R_. Figure 3.11

shows the gain contours which result from this design. Figure 3.12 shows a five beam

design with a beam radius of 0.0fi5Re and Figure 3.13 shows the gain contours which

result. Figure 3.14 shows an 8 beam design with a beam radius of 0.045Re while

Figure 3.15 shows the resulting contours. These plots indicate the advantages of

using smaller sized sub-beams. As the beam size decreases, the -3 dB contour more

closely follows the outline of the service area and the gain decays faster outside the

service area.

Figures 3.16 through 3.19 show the results of using the uniform rolloff method.

Figure 3.16 is the result of using the uniform rolloff pattern from the concave service

area polygon with an assumed beam radius of 0.045R_. Figure 3.17 is the same plot
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Figure 3.9: Gain contours for a Chilean satellite at -50 ° W using the "fast rolloff"

elliptical half-power pattern.
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Figure 3.10: Three-beam design for a Chilean satellite at -50 ° W using a beam

radius of .11Re.
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Figure 3.12: Five-beam design for a Chilean satellite at -50 ° W using a beam radius

of 0.065R_.
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with the assumed beam radius changed to 0.065Re. Figure 3.18 shows the results

of assuming that the uniform rolloff occurs from a convex polygon with an assumed

beam radius of 0.045Re. Figure 3.19 is the same plot with the assumed beam radius

equal to 0.065R_.

Since the uniform rolloff method and the n-beam method are both based on

the assumption of coverage with uniform circular beams, the question arises as

to whether or not the contours which result from these two methods are similar.

Figure 3.20 shows an overlay plot of the contours which result from the uniform

rolloff method with an assumed beam radius of 0.045Re and those resulting from

the 8 beam design of Figure 3.14. Figure 3.21 shows an overlay of the contours using

the uniform rolloff method from the concave polygon with an assumed beam radius

of 0.065R_ and the 5 beam design of Figure 3.12. The overlay plots show the sets

of -6, -12 and -18 dB contours for both methods. The uniform rolloff patterns using

the concave polygon are, to some extent, approximations of the n circular sub-beam

designs. The are certainly not identical, however, and there is one notable difference

in the uniform rolloff patterns and the n circular sub-beams patterns. The gain in

the uniform rolloff pattern decays as a quadratic function of the normalized off axis

angle. Thus there is a wider spacing between the -3 dB and -6 dB contours than

between the -6 dB and -12 dB contours. The opposite effect occurs when the n

circular sub-beam patterns are calculated using the assumptions of section 3.3.6.

The next three figures show the results of using the method of taking a projection

through the center. Three different values of the minimum tolerable beamwidth are

tried. Figure 3.22 shows the contours when the minimum beamwidth is 0.05Re.

Figure 3.23 shows the same thing with the beamwidth changed to 0.09R_, while

Figure 3.24 shows the plot with a beamwidth of 0.13R_. As the minimum tolerable
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rolloff method from a concave polygon with an assumed beam radius of 0.045Re.
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beamwidth is increased, tile contours begin to more and more closely resemble the

"fast rolloff" contours. This is especially evident in the bulge which occurs at the

sides of the service area.

3.6.3 Brazilian Satellite at -50 ° W

The second set of plots show the results from using the methods described for a

satellite serving Brazil located at -50 ° W. Figure 3.25 shows the contours obtained

with the standard FSS elliptical pattern. Figure 3.26 shows the contours obtained

with the "fast rolloff" elliptical half-power pattern.

Three different circular sub-beam designs have been developed for the Brazilian

satellite at this location. The first, shown in Figure 3.27, uses 9 sub-beams with radii

of 0.13Rc. The contour plot which results from this design is shown in Figure 3.28. A

second design uses 15 sub-beams with radii of 0.10R_. This is shown in Figure 3.29.

The resulting contour plot is shown in Figure 3.30. A third design is shown in

Figure 3.31. This result uses 51 sub-beams with beam radii of 0.045R_. The results

from using this pattern are shown in Figure 3.32.

The results from these plots again indicate the result that as a smaller sub-

beam radius is used, the -3 dB contour of the satellite antenna can be made to

more closely follow the border of the service area. For the 51 sub-beam design, the

off-axis angle required to get the relative gain down to -18 dB is very large compared

to that required in the other beam designs with larger sub-beams. This effect would

appear to be caused by the flat portion of the voltage pattern used. As the test

point is moved farther and farther from the origin, the distance from most of the

sub-beams reaches the point where the voltage recieved from it will be somewhere

in this constant region. The value of the summation over all of the sub-beams used
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through center method with a minimum beamwidth of .05Re.
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tical pattern.
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Figure 3.27: Nine-beam design for a Brazilian satellite at -500 W using a beam

radius of .13Re.
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Figure 3.28: Gain contours for a Brazilian satellite at -50 ° W using the nine-beam

design with a .13Re beam radius.

97

I



\

\

Figure 3.29: Fifteen-beam design for a Brazilian satellite at -50 ° W using a beam

radius of 0.1R¢.
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Figure 3.30: Gain contours for a Brazilian satellite at -50 ° W using the fifteen-beam

design with a beam radius of 0.1Re.
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Figure 3.31: 51-beam design for a Brazilian satellite at -50 ° W using a beam radius

of 0.045R,.
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to find the relative gain will remain at approximately the same value until the test

point is far enough away that the individual signals received from several of the

sub-beams are out of the constant portion of the reference pattern and are decaying

again. Note that this is due to the assumption that the contributions from all of

the sub-beams are adding in phase.

Figures 3.33 and 3.34 show the results obtained with the uniform rolloff patterns.

Figure 3.33 shows the contours using a uniform rate of rolloff from a concave service

area polygon and an assumed beam radius of 0.13R_. Figure 3.34 shows the same

thing for an assumed beam radius of 0.1R_. Figures 3.35 and 3.36 are overlay plots

of the contours obtained using the uniform rolloff method and the n-beam method

for these values of the beam radius.

Figures 3.36 and 3.37 show the results from using the method of taking a projec-

tion through the center with two different constraints on the minimum beamwidth.

For a service area as large as Brazil, the minimum beamwidth constraint has very

little effect. It only comes into play when the projection extends across the most

narrow region of the service area.

3.6.4 Summary

Gain contour plots have been presented for the various methods for modelling

shaped beams that have been attempted. Each of these methods is based on a

set of assumptions about how the service area is being covered with sub-beams and

the distribution of interference to areas outside the service area.

The elliptical half-power pattern with "fast rolloff" outside the service area poly-

gon is a modification of the standard method adopted for satellite regulation where

elliptical patterns were assumed for satellite antennas. Instead of a pattern where
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Figure 3.35: Overlay plot of the gain contours for a Brazilian satellite at -50 ° W

using the uniform rolloff method from a concave polygon and a nine-beam design,

both of which have an assumed beam radius of 0.13R_.
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Figure 3.36: Overlay plot of the gain contours for a Brazilian satellite at -50 ° W

using the uniform rolloff method from a concave polygon and a flfteen-beam design,
both of which have an assumed beam radius of 0.1Re.
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Figure 3.37: Gain contours for a Brazilian satellite at -50 ° W using the projection

through center method with a minimum beamwidth of .1R,.
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Figure 3.38: Gain contours for a Brazilian satellite at -50 ° W using the projection

through center method with a minimum beamwidth of .2R_.
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the relative gain is determined solely from the ratio of tile off-axis angle to the

measured half-power beamwidth, the relative gain in this pattern is a function of

the actual values of both. The method is simple to implement since it involves tile

same angle calculations as with elliptical patterns and is a completely consistent

model once the assumptions about the rate of rolloff are made.

The method which uses a uniform rate of rolloff from the border of the service

area polygon is very simple to implement. It assumes that the service area has

been covered with uniform circular beams. Under this model, the -3 dB contour is

represented by the service area polygon and the relative gain of the shaped-beam

antenna falls off from tile -3 dB contour as would a single circular beam of the

specified radius. In essence, it assumes that a test point outside tile service area

polygon is only receiving significant interference from one feed of the multiple-feed

antenna. The contours obtained with this method are similar to those obtained with

the n-beam method except when the number of beams is large. The assumption

that the -3 dB contour will exactly follow the outlines of the service area is clearly

a very optimistic one unless the size of tile sub-beams is very small. If a more

conservative model is desired, than tile service area polygon can be forced to be

convex.

Tile method of taking a projection through the center of the service area assumes

that the service area is being covered with sub-beams (generally not circular) in such

a way that the number of beams across tile service area is constant. This assumption

results in contours which more closely resemble the "fast rolloff" pattern contours

than the n circular sub-beam contours. However, for service areas of a Uniform

shape, such as Brazil, this results in contours which are not too different from

those obtained with the uniform rolloff method as the calculated "beamwidth" is
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approximately the same in any direction. It also uses the service area polygon as

the -3 dB contour and is in that sense too optimistic.

The n-beam method involves several approximations which would require further

study to be justified. One is the assumption that the aimpoint of the satellite is

always the point of maximum gain regardless of the distribution of the sub-beams.

The second is the fact that as presently implemented, all of the sub-beams add in

phase. It is this second assumption that leads to a large amount of power spillover

into neighboring regions when the number of beams is large. Contours calculated

under these assumptions and with the idealized voltage pattern given by 3.42 are

somewhat similar to the uniform rolloff contours. The beam designs themselves

are quite subjective, and for that reason, this method could not really be used for

purposes of regulation but only to indicate the types of contours that a reasonable

regulatory pattern should produce.

3.7 The Effects of Shaped Beams on the Required

Separation Calculations

This section compares the results obtained when the "fast rolloW', elliptical half-

power, pattern is used for both the satellite transmitting antenna and receiving

antenna in place of a standard elliptical pattern. This is the only type of shaped-

beam pattern that can presently be used with the required separation program

"DELTA". The version of the pattern described by Equation (3.2) is used. The

earth station patterns used are identical to the ones used in the calculations of

Chapter 2 with 4.5 m ground station antennas assumed. The scenario considered

is the same one as in Chapter 2, i.e., South America.
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Table 3.1 shows the new maximum required separation matrix (AS matrix) that

is obtained when the shaped beam pattern is used with a link (C/I) requirement of

30 dB. This table is the same as Table 2.4 except that the satellite antenna patterns

have been changed. Table 3.2 shows the percentage reduction in the separation

requirements when the shaped beam pattern is used as compared to the standard

elliptical pattern. The numbers preceeded by a "+" indicate places where there is

an increase in the minimum required separation when the shaped beam pattern is

used.

Some general rules can be stated as to the effects of the shaped beam pattern.

For adjacent countries, the shaped beam pattern has no effect at all. This is because

the required separation calculations are performed for the worst test points in each

administration. For a pair of administration's whose service areas share a common

border, the worst test points will be those right along the border. These points will

always lie along or just inside the -3 dB contour of the interfering satellites trans-

mitting or receiving antenna and will thus receive significant interference. Shaped

beams cannot compensate for this effect. This implies that the largest required

separation values, which occur for administrations with adjacent service areas, will

not be improved by using the shaped beam pattern. Required separation values for

countries which do not have a common border are substantially reduced by using

the shaped beam pattern. These values are the relatively small ones in the matrix.

The AS matrix does not fully describe the effects of the shaped beam pattern,

however, since it only presents the maximum required separation over the entire

arc. For some cases, the effects of the pattern differ depending on the mean orbital

location of the two satellites. Figures 3.39 and 3.41 show comparitive plots of
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Table 3.1: Required Separation Matrix Using Shaped Beams For South America,

(C/I)L = 30 dB.

B G P U A V B C C P E

I
I

I
I

I

l
I

Surinam

Fze. Guiana

Brazil

Guyana

Paraguay

Uruguay

Argentina
Venezuela

Bolivia

Chile

Columbia

Peru

r u a r r e o h o e c

a y r u g n 1 i 1 r u

z a a g e e i 1 u u a

i n g u n z v e m d
1 a u a t u i b o

y y i e a i r
n 1 a

a a

4.88 5.09 0.00 0.00 0.46 4.19 0.48 0.44 1.32 0.48 0.23

5.39 5.22 4.84 5.39 4.93 5.09 4.13 5.44 5.60 3.14

0.00 0.00 0.49 5.28 0.59 0.47 2.31 0.57 0.39

2.66 4.97 0.27 4.83 3.81 0.54 1.70 0.00

4.71 0.00 0.83 3.62 0.35 0.48 0.00

0.56 4.84 5.24 0.62 1.44 0.47
0.62 0.57 5.56 1.34 1.28

5.03 0.70 5.19 0.59

0.62 4.95 0.51

5.05 4.78

5.07

Maximum Required Separation in Degrees Over Arc
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Table 3.2: Percentage Reduction in Maximum Required Separation Values From

Using Shaped Beams for the Administrations of South America. (C/I)L = 30 dB.

("+" indicates that the maximum required separation increases)

Surinam

Fre. Guiana

Brazil

Guyana

Paraguay
Uruguay

Argentina
Venezuela

Bolivia

Chile

Columbia

Peru

B G P U A V B C C P E

r u a r r e o h o e c

a y r u 8 n 1 i 1 r u
z a a g e e i 1 u u a

i n g u n z v e m d
1 a u a t u i b o

y y i e a i r
n 1 a

a &

0.00 0.00 100. 100. 62.0 +.48 58.9 76.3 44.1 66.4 79.5

0.00 O.00 0.00 0.00 0.00 0.00 2.13 0.00 0.00 9.25
100. 100. 59.2 0.00 53.5 73.1 20.6 68.2 65.5

18.9 0.00 76.7 0.00 1.29 58.8 42.4 100.
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required separation over the common feasible arc for pairs of administrations when

the "fast rolloff" patterns are used and when they are not used.

Figure 3.39 shows the importance for an administration such as Chile which

has a service area with an irregular shape of an orbital location near the center of

its feasible arc. When the shaped beam pattern is used, the required separation

between Paraguay and Chile is substantially decreased in the center of the arc. At

the ends of the arc it actually is slightly higher when shaped beams are used. This

is due to the bulge in the gain contours for Chile at the sides of the service area as

seen in Figure 3.40. This figure shows the elliptical half-power pattern contours for

the Chilean satellite at -126 ° W . Thus, the maximum required separation value

will be greater even though a substantial improvement in required separation could

be achieved in the center of the arc.

Figure 3.41 shows the improvement which can be achieved when shaped beams

are used by both Guyana and Columbia. Here again the largest benefit is achieved

if the two satellites are located in the center of the arc.

The results presented in this section made use of just one of the methods dis-

cussed for modelling the effects of shaped-beam antennas. They should, however,

be qualitatively typical of those that would be obtained if the other methods were

used, since all of them reduce interference to non-adjacent administrations.
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Figure 3.39: Comparison of required separation values for Paraguay and Chile over

the common feasible arc when a shaped-beam pattern is used and when an elliptical

pattern is used.
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Chapter 4

The Aggregate C/I Problem

4.1 Introduction

In the "Delta-S" approach to the orbital assignment problem, constraints on the

orbital locations of satellites are determined on a single-entry basis. The minimum

required spacing between two satellites to achieve a desired carrier to C/I ratio is

determined for all pairs of satellites. While the constraints are determined on the

basis of single-entry interference, the actual measure of how good a solution to the

orbit allotment problem has been found is determined by the aggregate interference

levels present in the satellite links of the administrations in question. Thus to specify

single-entry interference requirements that will lead to solutions with acceptable

aggregate interference levels, an estimate must be made of the extent to which the

worst aggregate C/I ratio can fall below the worst single-entry value.

In the past, when only down-link interference was considered, it was found that

the aggregate C/I ratio for a given solution would, in general, not be more than 5

dB below the worst single entry C/I ratio between any pair of satellites [5, pp. 106-

108]. This 5 dB margin was originally suggested at the WARC-77 conference [23,
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pp. 104-108]. Thus, if the minimum required aggregate C/I ratio was 25 dB, the

constraints were calculated on the basis of a single-entry requirement of 30 dB.

This practice has been continued in the calculations being done presently. It is not

obvious, however, that the margin of 5 dB between the single-entry requirement

and the resulting aggregate C/I values will remain sufficient when the interference

calculations include the effects of both up-link and down-link interference.

The subject of this chapter is the aggregate interference problem when both up-

link and down-link interference are included. The topics covered are the computer

program, "MISOUP", to calculate aggregate C/I values, actual cases in which the

5 dB margin between single-entry and aggregate C/I values is exceeded, and a

discussion of what should be done if the margin is exceeded.

4.2 New Streamlined SOUP Program

A streamlined version of the orbital analysis program SOUP [14] was developed by

Wang to help analyze the aggregate interference problem [5, p. 17 and appendix A].

This program calculated aggregate C/I ratios at all test points of an administra-

tion's service area, considering the interference that entered on the down link only.

This program has been modified to include interference from both the up and down

links in the aggregate C/I calculations. The program considers the worst-case in-

terference that will enter the satellite network of each adnfinistration in the orbital

assignment solution being tested from all sources of significant interference. Note

that when the word "administration" is used in this context it refers to a single

satellite network with one satellite serving a single service area. If there are several

satellites which all have the same service area they are all considered separate ad-
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ministrations. That is, if there are 25 satellites in a scenario that are all serving the

U.S., each is considered to be part of a different administration.

The FORTRAN code for the new aggregate C/! computer program is listed

in Appendix C. This program will henceforth be referred to as the "MISOUP"

program. The inputs to the program are essentially the same as for the required

separation program. The test points defining the service areas of each adminis-

tration must be entered as well as the orbital location of the satellite serving that

administration. Since all satellite antennas are assumed to have either elliptical

patterns or elliptical half-power patterns, the data for the minimum elliptical beam

used at that orbital location must be entered. The data on the types of reference

patterns being used for the satellite and earth station antennas must also be entered.

The program output is a listing of the worst total link aggregate C/! value

for each administration. The output also lists the worst aggregate C/I ratio on

the up link only, the worst aggregate C/I ratio on the down link, and the worst

single-entry C/I ratios which occur for both the up link and the down link for each

administration.

The first step of the calculation for each administration considered is to calcu-

late the aggregate C/I ratio on the up link. For each interfering administration, the

amount of up-link interference presented to the desired up-link signal by a trans-

mitter located at each test point of the interfering administration's service area is

calculated. This calculation proceeds as explained in Chapter 1. The largest value

of interference power is then taken from among these. The values of the worst-case

up-link interference from each administration are summed as noise powers and com-

pared to the desired received power at the desired satellite to determine the worst

aggregate up-link C/I ratio.
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The down-link calculations then proceed just as they did in Wang's originM

program, i.e., the down-link C/I ratio is cMculated at each test point in the admin-

istration considered, including down-link interference from M1 significant interfering

satellites. The worst aggregate down-link C/I value from all the test points in the

adnfinistration's service area is then chosen.

The worst aggregate down-link C/I value, (C/I)down, is combined with the worst

aggregate up-link value, (C/I)uj,, using the expression

(C/i)_ h = (C/I):_ + (Cli)_2,, (4.1)

to yield the worst-case aggregate link C/I value.

4.3 Examples of Aggregate C/I Calculations

This section contains six examples of aggregate C/I calculations for various scenarios

that have been examined. These examples demonstrate that the 5 dB margin

between the single-entry C/I values and the aggregate C/I values is a reasonable first

estimate but that it will not be sumcient in all cases. The first three examples were

developed intuitively using calculated A_, values and a trial-and-error process for

assigning orbital assignments to a small group of satellites. Later examples in this

chapter come from actual orbital assignments generated with the K-permutation

algorithm [6] at OSU. These examples suggest more serious problems that might

appear in satisfying the C/I target in the future using a 5 dB margin as new ways

are developed to add more satellites within a given orbital arc. As the orbital

capacity of the arc is maximized, with more and more satellites being located closer

together, the trend will naturally be for aggregate C/I ratios to decrease. Thus,
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these examples do not represent the highest level of aggregate interference which

could appear when all of the single-entry separation requirements are met.

4.3.1 Example 1

The first example illustrates how the presence of interference on both the up-link

and down-link from a number of sources can degrade the aggregate C/I level below

the 5 dB margin from the single-entry requirement used in the required separation

calculations. It involves a Chilean satellite network receiving interference from a

number of satellite networks in nearby administrations.

This example, comes from a list of A_ values calculated for the following ad-

ministrations: Argentina, Venezuela, Surinam/French Guiana, Ecuador, Paraguay,

Bolivia, Uruguay, and Chile. The single-entry C/I requirement is 32 dB. The

"rolloff" pattern described in Chapter 3 (Equation (3.2)) is used for the satellite

transmitting antenna of all administrations as well as for the receiving pattern of all

satellite antennas. The standard earth antenna pattern described in Chapter 2 is

used and a 4.5 m dish diameter is assumed for both the transmitting and receiving

antennas on the ground. The Chilean satellite has been fixed at the orbital location

of -50 ° W . The satellites of the other administrations have been spread about this

location, with care taken to make sure that all required separation requirements

have been met. The distribution of satellites considered is listed in Table 4.1.

An aggregate C/I analysis, made with the MISOUP program described in sec-

tion 2, indicates that the worst-case link aggregate C/I ratio for Chile is 26.24 dB,

over 5.7 dB below the single-entry requirement. The worst aggregate C/I ratio on

the down link for the Chilean system is 29.28 dB. This occurs at the test point with

latitude -23.0 degrees and longitude -66.5 degrees. The worst single-entry value
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Table 4.1: Satellite locations for aggregate C/I calculations of example 1.

Administration Satellite Location (Longitude)

Bolivia

Uruguay
Ecuador

Surinam/French

Guiana

Chile

Paraguay

Argentina

-44.49

-48.72

-49.36

-49.80

-50.00

-51.42

-57.20

on the down link comes from the satellite serving Paraguay and is 32.63 dB. The

single-entry down-link C/I ratios from all interfering satellites at the worst test

point are listed in Table 4.2.

The worst aggregate C/I ratio on the up link is 29.22 dB. This occurs when the

Chilean earth station transmitter is at the test point with latitude -17.6 degrees

and longitude -70.0 degrees. The worst single-entry interference values on the up

link from every administration are listed in Table 4.3. The table also includes the

test point in the interfering administration's service area which provides the worst

interference.

4.4 Example 2

This case involves 6 satellites interfering with a Mexican satellite at -110 ° W .

Three of the satellites have service areas consisting of the continental United States

and the 3 others serve Canada, Ecuador, and Nicaragua. A¢ values are calculated

using the "DELTA" required separation computer program with the standard FSS
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Table 4.2: Down-link, single-entry interference values for Chile in example 1. The

Chilean test point is located at (-23.0,-66.5).

Interfering Administration Down-Link Single-Entry C/I (dB)

Paraguay
Bolivia

Argentina

Sur./Fre. Guiana
Ecuador

Uruguay

32.63

34.76

37.58

42.33

42.64

49.89

Aggregate Down-Link C/I 29.28(dB)

Table 4.3: Worst single-entry C/I ratios on the up link for the Chilean satellite in

example 1. Chilean transmitter is located at (-17.6,-70.0).

Interfering

Administration

Sur/Fre Guiana

Bolivia

Ecuador

Argentina

Uruguay

Paraguay

Site of Worst Interfering
Transmission

(Latitude , Longitude)

2.1,-56.2

-22.7,-67.5

-2.0,-81.1

-32.0,-70.4

-33.9,-58.4

-22.2,-62.7

Single-Entry

Up Link C/I (dB)

32.93

36.94

37.72

38.28

40.85

41.65

Aggregate Up-Link C/I Value 29.22 dB
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Table 4.4: Satellite locations for tile aggregate interference calculations of example

2.

Administration Satellite Location (Longitude)

USA 1

USA 2

Ecuador

Mexico

Canada

Nicaragua
USA 3

-103.82

-106.91

-108.96

-110.00

-111.28

-112.24

-114.59

elliptical pattern specified for both the transmitting and receiving antennas on the

satellite. The standard earth antenna pattern described in Chapter 2 is used and a

4.5 m dish diameter is assumed for both the transmitting and receiving antennas on

the ground. The single-entry C/I requirement is set to 25 dB to achieve aggregate

interference levels of 20 dB or higher.

The orbital assignment scheme shown in Table 4.4, in which all single entry

separation requirements are met, is considered.

An aggregate interference analysis for Mexico using "MISOUP" indicates that

the resulting llnk aggregate C/I level is 19.70 dB. This is below the aggregate C/I

allowance of 20 dB by 0.3 dB. The worst aggregate C/I ratio on the down link

occurs at the Mexican test point with latitude 31.78 degrees and longitude -106.55

degrees and is 22.31 dB. The worst up-link interference occurs with the Mexican up-

link transmitter test point at latitude 32.53 degrees and longitude -117.20 degrees

and is 23.16 dB.

Table 4.5 shows the interference from each satellite on the down link at the worst

test point in Mexico. Table 4.6 shows the worst interference on the up link from the
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Table 4.5: Single-entry, down-link C/I values for tile Mexican satellite in example

2. The Mexican test point is (31.78,-106.55).

Interfering Administration Single-Entry Down-Link C/I (dB)

Canada

USA 2

USA 3

USA I

Ecuador

Nicaragua

26.21

26.76

30.96

34.33

37.51

46.75

Aggregate Down-link C/I 22.31 dB

satellite networks of the other administrations. The main sources of interference on

the down link come from Canada and the U.S. while the main source of interference

on the up link is Nicaragua. Note that in this example, that the Mexican satellite

has four neighboring satellites (Nicaragua, Canada, USA 2, and Ecuador) which are

all located at the minimum spacing from it allowed by the single-entry requirement.

This is possible because the Canadian and Nicaraguan satellites do not interfere

very strongly with each other and neither do those from the U.S. and Ecuador.

4.4.1 Example 3

This example shows the negative effects of having many satellites clustered together

due to required separation values that are all small or zero. The "fast rolloff" pattern

described in Chapter 3 (Equation (3.2)) is used for the satellite transmitting antenna

of all administrations as well as for the receiving pattern of all satellite antennas.

The standard earth antenna pattern described in Chapter 2 is used and a 4.5 m

dish diameter is assumed for both the transnfitting and receiving antennas on the

ground. The single-entry link C/I requirement is 36 dB.
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Table 4.6: Worst single-entry up-link C/I values for the Mexican satellite of example

2. The location of the Mexican transmitter is (32.53,-117.20).

Interfering
Administration

Nicaragua

USA 2

Canada

Ecuador

USA 3

USA 1

Site of Worst Interfering
Transmission

(Latitude , Longitude)

14.70, -84.80

26.00, -97.20

48.30,-123.90

1.40, -78.90

26.00, -97.20

26.00, -97.20

Single-Entry

Up-Link C/I (dB)

27.74

29.76

30.57

31.97

34.03

37.30

Aggregate Up-link C/I 23.16 dB

Table 4.7 shows an arrangement of 8 satellites over 4.93 degrees of orbital arc

where all single-entry separation requirements are met. Many of the pairs of these

satellites can be located quite close together or collocated since their service areas

are widely separated geographically and the "fast rolloff" patterns are being used.

The results from MISOUP for this distribution of satellites show that the link

aggregate C/I for Paraguay is only 29.05 dB or nearly 7 dB below the single-entry

requirement. The worst-case down-link aggregate C[I value is 32.37 dB at the

test point at -27.2 degrees latitude and -56.2 degrees longitude. The worst-case

aggregate C/I was 31.77 dB. The single-entry down-link C/I values at the worst

test point are listed in Table 4.8. The worst single-entry up-link C/I values are

listed in Table 4.9.

The following three examples are the result of runs made with the K-permutation

algorithm. Each is a feasible solution to some orbital assignment problem for which

the aggregate C/I goal is not met for every administration even though all of the
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Table 4.7: Satellite locations for aggregate interference calculations of example 3.

Adnfinistration Satellite Location (Longitude)

Peru

Paraguay

Costa Rica

Virgin Islands

Quebec
Falkland Islands

Grenada

Uruguay

-36.91

-36.00

-36.00

-36.00

-36.00

-35.52

-34.79

-31.98

Table 4.8: Single-entry down-link C/I values for Paraguay at (-27.2,-56.2) in exam-

ple 3.

Interfering Administration Single-Entry Down-Link C/I (dB)

Peru

Uruguay

Quebec

Falkland Is.

Costa Rica

Virgin Is.
Grenada

36.99

37.62

39.03

44.63

45.78

47.04

63.35

Aggregate Down-Link C/I 32.37 dB
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I

I Table 4.9: Worst single-entry up-link C/I values for each interferer in example 3.

The transmitter in Paraguay is located at (-20.5,-62.2).

I
I
I
i

Interfering
Adnfinistration

Falkland Is.

Costa Rica

Virgin Is.

Quebec

Uruguay
Peru

...... Gren___ada ....... (12.6,-61.7)

Aggregate Up-Link C/I

Site of Worst Interfering

Transmission

(Latitude , Longitude)

(-51.0,-61.5)

(8.1,-82.9)

(18.7,-64.3)

(51.0,-67.0)

(-30.1,-56.9)

(-18.3,-70.4)

Up-Link C/I (dB)

37.67

38.52

39.22

39.22

40.68

45.78

60.57

31.77 dB

I
I

I

single-entry requirements are satisfied. For each example, the system parameters

used to generate the required separation constraints are listed. These are followed

by a listing of a solution obtained from the K-permutation algorithm. The solution

lists the orbital location of every satellite, the worst-case down-link aggregate C/I,

the worst-case up-link aggregate C/I, and the worst-case link aggregate C/I.

i 4.4.2 Example 4

i This example 14 administrations in includinginvolved South America 3 Brazilian

satellites. For the transnfitting pattern of all satellite antennas the "fast rolloff"

I pattern (Equation (3.2)) is used. For the receiving pattern of all satellite antennas

the standard FSS elliptical pattern is used. The standard earth station pattern

I described in Chapter 2 is used for all administrations and a dish diameter of 4.5 m is

assumed. The single-entry C/I requirement is 32 dB; thus the goal for the aggregate

i C/I values using the 5 dB margin is 27 dB. The objective function used is to
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Table 4.10: Solution for example 4: South American scenario with a single-entry

requirement of 32 dB.

Administration Sat. Loc. Worst Up-Link Worst Down-Link

(Longitude) C/I (dB) C/I (dB)
Brazil 1

Brazil 2

Brazil 3

Surin. Pie.

Guyana
Chile

Columbia

Paraguay
Guyana

Uruguay
Bolivia

Venezuala

Argentina
Peru

Ecuador

-44.95

-50.69

-56.43

-61.81

-62.57
-64.42

-65.28

-66.05

-68.48

-70.85
-71.86

-78.05
-80.88

-88.05

36.67

33.63

31.12

31.08

28.00
28.11

28.34

29.50

35.67

29.32
31.74

33.50
32.35

40.09

34.80

31.83

31.36

29.44

32.93
34.21

30.51

30.87

33.72
33.77

33.28

36.27
36.74

37.14

Worst Link

C/I (dB)
32.62

29.63

28.23

27.17

26.79

27.16
26.28

27.13

31.58

27.99

29.43
31.66

31.00

35.36

minimize the maximurr_ deviation from a desired location. For each administration

the desired location is defined to be the center of its feasible arc with a minimum

elevation angle of 10 degrees. The best solution obtained to the problem is listed

in Table 4.10, along with the resulting aggregate C/I levels.

Note that two administrations, Chile and Paraguay, have link C/I values below

the goal of 27 dB. For both administrations the aggregate interference is worse on

the up link than on the down link. Actually, for a small scenario like this, only those

administrations whose satellites end up in the center of the arc will have trouble

since these have the most potential interferers.
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4.4.3 Example 5

This example involves 29 satellites in North and South America. Again the single-

entry requirement is 32 dB with an aggregate goal of 27 dB. The "fast rolloff"

pattern (Equation (3.2)) is used for the transmitting antennas of all of the satellites

with the standard FSS receiving pattern for the receiving antennas. The standard

earth station pattern described in Chapter 2 is used for all administrations and

a dish diameter of 4.5 m is assumed. The objective function is to minimize the

total deviation of all satellites from their desired locations. The maximmn required

separation values over the entire arc (AS values) are used in this example, thus the

solution is a conservative one in which the distance between the orbital locations

of adjacent satellites generally exceeds the minimum required to meet the limit on

single-entry interference. Two U.S. administrations, however, still do not meet the

goal of 27 dB for the link aggregate C/I ratio. All of the other administrations

have very good levels of aggregate interference except Columbia which only slightly

exceeds the goal. The results are summarized in Table 4.11.

4.4.4 Example 6

This scenario involves 41 satellites in North and South America. The single-entry

C/I requirement is 25 dB with an aggregate C/I goal of 20 dB. The standard FSS

elliptical pattern is used for both the satellite transndtting and receiving patterns

on all satellites. The standard earth station pattern described in Chapter 2 is

used for all administrations and a dish diameter of 4.5 m is assumed. Location-

dependent separation values are used in this example. The results are summarized

in Table 4.12. Note that 6 satellites do not quite meet the goal of 20 dB although
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Table 4.11: Solution and the aggregate C/I ratios for example 5.

Administration

Brazil
Surinam and

French Guiana

Guyana

Paraguay
Caribbean

Bolivia

Uruguay
USA 1

Venezuela

Chile
USA 2

Columbia

Argentina
Cuba

Ecuador

Costa Rica

USA 3

Honduras

Peru

USA 4

Nicaragua
USA 5

Mexico I

Canada 1

Mexico 2

Canada 2

USA 6

USA 7

USA 8

Sat. Loc.

Longit_ud_e) .....C_/I (dB) .....
-44.25

-50.17

-56.30

-57.58

-60.46

-63.39

-65.51

-66.65
-68.31

-69.84
-73.07

-75.00

-76.29

-78.56
-80.74

-82.17

-83.65

-86.00

-87.41

-88.35

-91.94

-94.38

-100.37

-102.18
-106.60

-108.40

-114.90

-120.93

-140.96

Worst Up-Link

37.56 34.93

35.60 32.87

36.29

33.63
34.70

34.92

40.84

31.87
34.20
33.18

32.71

33.95

33.99

32.04
32.24

34.79

30.54

34.34

33.82

29.68

33.73
31.87

31.64

33.14

33.41

32.06

30.89

31.28

34.30

34.53

35.80
32.57

30.84

38.17

30.94

33.35
31.39

30.70

28.37
33.78

33.86

33.50

34.90

27.60

33.34

31.40

27.97

35.77
30.35

30.86

30.38

31.29

30.62

33.22

34.06

36.97

Worst Down-Link

C/I (dB)

Worst Link

C/I (dB__
33.04

31.01

32.31

31.57

30.49

29.41

36.29

28.37
30.74

29.18

28.58
27.31

30.87

29.84

29.81

31.83
25.82

30.80

29.43

25.73

31.62

28.04

28.22

28.53

29.21
28.27

28.89

29.44

32.42
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they may come near enough for practical purposes. The lowest link aggregate C/I

value is the one for Cuba of 19.28 dB. Missing the aggregate goal by only 0.72 dB

for the worst satellite is still a promising result considering there are 41 satellites in

this scenario.

4.5 Discussion of the Aggregate Interference Prob-

lem

While the 5 dB margin between the single-entry C/I requirement specified for the

required separation calculations and the aggregate C/I goal will not be sufficient

in every case, it is still a reasonable first estimate for many scenarios. There are

situations, however, for which this margin will be exceeded and these become more

frequent as satellites are packed closer together to maximize use of the orbit. One

important criterion that will be used to judge whether or not a given solution to the

orbital assignment problem is acceptable is the set of aggregate C/I values obtained

for all administrations. Some thought must be given as to how to modify the search

procedure if a problem develops in satisfying the aggregate C/I requirement.

There are several potential ways to handle this problem. If many feasible so-

lutions to a given problem were available, then an aggregate C/I analysis of each

could be done to help determine which ones were acceptable. A feasible solution is

defined as one which meets two criteria. First, all administrations receive an orbital

location within a portion of the GSO visible from all sites in their service areas with

at least some minimum elevation angle. Secondly, all single-entry C/I requirements

are satisfied. An acceptable solution requires that every administration has a link

aggregate C/I ratio above some stated goal. Furthermore, such a study could be
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Table 4.12: Solution and aggregate C/I values for example 6.

Administration

Brazil 1

Brazil 2

Surinam and

French Guiana 1

Brazil 3
Surinam and

French Guiana 2

Caribbean

Paraguay

Guyana
Cuba

Bolivia

Uruguay
USA I

Chile

USA 2

Venezuela

Argentina
USA 3
Peru

USA 4

Columbia

USA 5

Ecuador
USA 6

Nicaragua
USA 7

Costa Rica

USA 8

Honduras

USA 9

Sat. Loc.

(Longitude)
-44.93

-47.81

-50.64

-53.47

-56.30

-57.95

-59.27

-60.08

-60.88

-61.67

-62.91
-63.71

-65.78

-66.81

-68.14

-69.03
-69.91

-71.64

-73.01

-74.48
-76.45

-78.00
-79.55

-80.91

-82.61

-83.80

-85.64

-87.18

-88.72

USA 10

USA II

USA 12

USA 13

USA 14

USA 15

-91.73

-94.74

-97.75

-100.75

-103.75
-106.75

Mexico 1

Canada 1

Mexico 2
Canada 2

Mexico 3

Canada 3

-109.84

-111.12

-112.74

-114.32

-115.64

-117.11

Worst Up-Link

C/I (dB)
28.24

25.80

23.10

24.86

27.70

23.15

27.69

26.91

26.72

23.44

33.15
25.27

26.52

24.71

29.70

26.35

24.87
26.30

24.76

24.18
25.31

30.51
23.64

28.38

23.42

29.15

23.28

32.83

23.54

25.41

25.49

25.58

25.51

25.26

24.70
24.32

24.08

24.09

23.37

2520
25.40

Worst Down-Link

C/I (dB)
26.53

23.73

26.63

23.32

22.14

25.53

21.28

20.98

20.14

25.16

21.48
23.72

24.64

21.83

24.03
21.56

21.43
25.34

22.18

24.92
23.26

27.33
23.22

22.51

23.00

22,72

23.24

21.65

23.13

23.21

23.13

23.15

23.26

23.24

23.54

21.32

22.20

21.62
21.64

21.96

24.20

Worst Link

C/I (dB)
24.29

21.63

21.50

21.01

21.08

21.17

20.39

19.99

19.28

21.21

21.20
21.42
22.47

20.02

22.99

20.32

19.81
22.78

20.27

21.52
25.31

25.62

20.42
21.51

20.20

21.83

20.25

21.33

20.32

21.16

21.14

21.19

21.23

21.12

21.07

19.55

20.03

19.67

19.41

20.27

21.75
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used to decide which solution was the best in some sense. The best solution could

be defined in many ways. One definition would be to define it as the one for which

the lowest link aggregate C/I ratio for an individual administration was maximized.

A second would be to define it as one for which the difference between the greatest

and least link aggregate C/I levels for individual administrations was minimized.

For a large and difficult scenario, many feasible solutions might not be available.

Even if several such solutions were available, then each one might have a few admin-

istrations for which the link aggregate C/I goal was not reached. In such cases, it

would be necessary to increase the margin between single-entry C/I levels and the

aggregate goal. The new margin could be set at 6 or 7 dB perhaps. Naturally, this

could make the task of finding such solutions more difficult. It would also make the

solution to the orbital assignment problem into an iterative process. The required

separation constraints would first be calculated assuming a 5 dB margin between

the single-entry requirement and the aggregate C/I goal. The K-permutation algo-

rithm would be run to determine feasible solutions. If no solution were found for

which a satisfactory aggregate C/I value was obtained for all administrations, then

the margin between the single-entry requirement and the aggregate C/I goal would

be raised and the separation constraints recalculated. This would continue until a

suitable solution was found.

If tile margin between the required single-entry C/I ratio and the desired ag-

gregate C/I were raised, the amount of extra satellite separation required would

be determined by the ground station antenna reference pattern. For the ground

station antenna pattern reported in Chapter 2, the relative gain in the sidelobes

is determined from (29 - G) - 251og(0), where 0 is the topocentric off-axis angle

measured at the ground station and G is the on-axis gain of the antenna. Suppose
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that the amount of earth discrinfination needed on either tile up link or the down

link is equal to a constant K. Thus K is given by

K = (29- _) - 25log(01).

The off-axis angle, 61, needed to provide the discrimination is

01 ---- 10- (2_:_-__K).

(4.2)

(4.3)

Now, if the amount of discrimination provided by the earth station antenna

needs to be lowered by 1 dB to satisfy the new margin, the required separation can

be found from

K - 1 = (29 - G) - 251og(02), (4.4)

and

02 = 10( 2'-°2ffK+' ). (4.5)

Thus the relationship between the off-axis angle required to get the additional dis-

crimination and the original off-axis angle is

(10 s°/'5)02= i029/2 s , (4.6)

so that,

62 = 1.09681. (4.7)

The resulting increase in required topocentric angle is approximately 10_. The

required increase in longitudinal spacing would be approximately the same.

The assumption that the interfering satellite is in the sidelobes of the ground

station antenna is valid when the original required separation value is large. If it is
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not, then the additional required separation might be more or less than the figure

stated above.

In some cases it might be possible to increase the margin, not for all adminis-

trations, but only for those where the aggregate C/I ratio was not satisfactory in

any solution. Thus, only the separation constraints which affected the particular

administrations with low C/I values would be increased. In this way, the task of

finding new solutions would not be as difficult as it would if all separation constraints

had to be increased. This would require some changes to the required separation

program, "DELTA", however. It would now require an array of single-entry C/I

requirements rather than just a single value which applies to all administrations.

These changes would not be difficult, however.
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Chapter 5

Conclusions

The purpose of this study has been to examine several areas pertaining to the

"Delta-S" method of solving the orbital assignment problem for the FSS. This

method involves calculating pairwise separation requirements to use in linear con-

straints on the orbital assignments. These are calculated by finding the minimum

required separation between two satellites that satisfies a specified single-entry C/I

ratio at a given location in the GSO. By limiting the single-entry interference to

acceptable levels, it is assumed that the aggregate C/I requirement will be met for

all administrations as well. Thus a suitable margin must be allowed between the

single-entry C/I requirement and the permissable level of aggregate interference.

In Section 2, the required separation calculations are extended to include up-link

as well as down-link interference. The procedure for incorporating up-link interfer-

ence into the calculations is relatively simple and is analogous to the procedure used

on the down link. A new computer program to compute the required separation

values is introduced which incorporates both the up link and the down link. This

program is not significantly more complex than the previous program as many of

tile angle and range calculations can be used in both the down-link and up-link
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equations. Since the amount of computer time needed to generate the required

separation values is small compared to the time required to solve the orbital allot-

ment problem, the small increase in this time needed to include the up link is not

significant. While for the BSS case the up link could be disregarded, this is not

possible for the FSS case since significant levels of interference can be present on

both the up link and the down link. Thus the inclusion of up-link interference into

the required separation calculations seems to be a sensible extension of the original

computer program.

In Section 3, a preliminary study is made of various methods for modelling the

gain of shaped-beam satellite antennas in regions outside the satellite's service area.

All of the methods discussed are based on heuristic reasoning and, as of yet, have

not been compared to actual data from operational or proposed satellites.

One of the methods discussed is a modification of an elliptical pattern. The loci

of constant directivity for this pattern are no longer ellipses outside the minimum

ellipse enclosing the service area. Use of this pattern results in a dramatic improve-

ment in the amount of interference power presented to areas outside the service area

of the satellite. The effects of using this pattern in place of the standard elliptical

pattern in required separation calculations is discussed. When it is used for both

the transmitting and receiving antennas of the satellite, the amount of required

separation for the satellites of adnfinistrations that do not have adjacent service

areas is greatly reduced. For the satellites of administrations with adjacent service

areas there is no reduction in required separation.

Another attempt to model the effects of shaped beams assumes that a service

area will be covered by n circular sub-beams of a constant radius. The service area

to be covered is represented by a polygon in the plane orthogonal to the antenna
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axis and the circular sub-beams are placed within this in such a manner as to cover

the polygon with a sensible number of beams. This is a very subjective method

which involves a certain amount of trial and error. It has been used to offset the

lack of data from operational satellites. While it would not be practical to use

for the required separation calculations, it provides interesting data which can be

compared with the results of the other methods.

Two other methods are presented which attempt to predict the gain pattern of

the shaped beam based on the geometrical shape of the service area. Both of these

methods represent the service area by a polygon in a plane orthogonal to the axis

of the antenna. This polygon represents the -3 dB contour. In one, the gain outside

the contour is determined solely from the distance from the boundary of the polygon

and the gain falls off uniformly from the -3 dB contour. In the second, a line is

extended from the point at which the gain is being tested through the aimpoint of

the antenna and across the polygon. The distance across the polygon between the

two points on it that this line intersects is measured. A second distance is measured

from the point being tested to the point at which the line through the aimpoint first

hits the -3 dB contour. These two distances are then used to determine the gain.

The uniform rolloff method is extremely simple both conceptually and com-

putationally. It may be a reasonable method of estimating the relative gain of a

shaped-beam antenna outside its service area, but the conditions of such validity

have yet to be demonstrated. More work needs to be done on the application of

this method. Incorporating a simple model like this into the required separation

program would not be a difficult task. If actual data from operational or proposed

satellites were available, the rate of gain rolloff from the edge of the polygon could

be adjusted to more closely reflect this data. This method and the "projection
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through center" method could, perhaps, be combined to produce a model with a

rate of rolloff decided both by the dimension of the sub-beams and the width of the

service area.

In Section 4, the aggregate C/I problem is discussed. A new computer program,

"MISOUP", to analyze the aggregate interference for a distribution of satellites is

introduced which includes the effects of interference on both the up link and the

down link into a total link aggregate C/I value. The 5 dB margin between the

single-entry C/I requirement and the desired aggregate C/I ratio is shown to be a

reasonable first estimate. It is not sufficient in all cases, however.

Two potential solutions to the problem of satisfying the aggregate C/I criterion

in solutions to linear and mixed-integer programs that only consider single-entry

interference are proposed. One is that an aggregate C/I analysis be used as one of

the criteria, in addition to visible arc constraints and single-entry C/I requirements

for deciding whether a given solution is acceptable or not. Given a large number of

feasible solutions from the K-permutation algorithm, the link aggregate C/I values

could be used in addition to the objective function values of the solutions to help

decide which solutions were desirable. The second is to raise the 5 dB margin, either

for all administrations or for just those which do not receive good aggregate C/I

values for any solution found.

More work needs to be done on this area, particularly with large scenarios. It

is not clear for an 80 satellite scenario, for example, how many feasible solutions

will be found and what sort of link aggregate C/I values will be obtained. Nor is

it clear how serious the effects of increasing the margin between the single-entry

requirements and the aggregate C/I goal will be. If an ample number of solutions

can be found when a margin of 6 or 7 dB is used for all satellites then this problem
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may not be significant.
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Appendix A

Multiple-Channel Calculations

The calculations of Section 2 consider only co-channel interference between two

satellite networks in determining the required separation. For the BSS problem,

the Final Acts of WARC (ORB-85) [21] recommend a procedure that includes in-

terference from the four nearest channels of an interfering satellite in addition to

the co-channel interference. It is not clear what methods will be adopted in future

conferences for the FSS, however a similar approach might be taken. Thus, the

purpose of this appendix is to briefly explain the BSS approach and to describe

how it might be included in the calculations of Section 1.

The BSS method requires the specification of protection ratios for the desired

channel of a satellite for all significant interfering channels. The protection ratios

represent the minimum tolerable ratio of received carrier power to the interfering

power present on a given interfering channel. These can be defined on a single-

entry or an aggregate interference basis. They are designated by the symbol, PR.

A channel margin, M, is also defined. The channel margin, for a given interfering

channel, is the difference in decibels between the ratio of the received carrier power

to the received interference power on this channel (C/I) and the channel protection
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ratio. Thus a channel margin of 0 dB would mean that the interference of that

particular channel would be sufficient by itself to reduce the C/I ratio in tile desired

channel to the minimum satisfactory value. In general, channel margins are greater

than zero to allow for interference contributions from several interfering channels.

In the total interference calculations, the first adjacent upper and lower interfer-

ing channels and second adjacent upper and lower interfering channels are included

in addition to the interfering channel with the same carrier frequency as the desired

channel. The interference power present on these channels is used to determine an

overall equivalent protection margin, M, which is given by the expression

n

M = -lOlog[_ lO-M,/'°],
i=1

where

(A.1)

1. M1 = overall co-channel protection margin.

2. Ms = overall adjacent channel protection margin for the upper adjacent chan-

nel.

3. Ms = overall adjacent channel protection margin for the lower adjacent chan-

nel.

4. M4 = overall second adjacent channel protection margin for the upper second

adjacent channel.

5. Ms = overall second adjacent chaamel protection margin for the lower second

adjacent channel.

An equivalent protection margin greater than zero indicates an acceptable level of

interference.
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Generally, a protection ratio template is supplied which gives the protection ratio

needed relative to the co-channel protection ratio. This is specified as a function

of the frequency offset between the desired carrier and the interfering signal. In

principle, this template might depend on the signal charateristics of both the desired

and interfering signals, i.e., on the type of information being transmitted and the

modulation schemes employed. In practice, if this information is not available, it

nfight be useful to define a "worst-case" template to use in these calculations. An

example of such a template is shown in Figure A.1 [24].

It will not be a difficult matter to extend the required separation calculations of

Section 2 to include multiple-channel interference. Consider the up-link interference

equation, Equation (2.3),

P1G ET1D ssl (¢ , ¢o )( 47rL2 )2Y,,

(C / I)_,n = P2 GsT2 Der_(#, 0o )DsRi (-_, _o)(4_;Li )'i Mu"
(A.2)

Note that for different interfering up-link channels from the same location in the

same service area, the only factors that will change in the interference power calcu-

lation would be the wavelength, A, and the polarization discrimination factor, Y,_, if

polarization discriminations are specified. The same is true for the down-link calcu-

lations. Thus, the co-channel calculations need be done only for a typical channel

in the center of the frequency band considered.

Now, considering the procedure outlined in Section 2 for the program "DELTA",

a modified search procedure for finding the required separation between two satel-

lites for a specified mean orbital location is as follows:

1. Space the satellites by the trial solution.

2. Calculate the down-link, single-entry equivalent protection margin at each test
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Figure A.I: Sample protection ratio template.
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point for a typical channel in the center of the frequency band considered. For

each test point:

(a) Calculate the down-link co-channel C/I as before for the test point being

considered.

(b) Calculate the single-entry down-link equivalent protection margin from

Equation (A.1) for the test point being considered.

3. Select the worst down-link, single-entry margin so calculated.

4. Calculate the up-link, single-entry equivalent protection margin at each in-

terfering ground station test point for a typical channel in the center of the

frequency band considered. For each test point:

(a) Calculate the up-link co-channel C/I as before for the test point being

considered.

(b) Calculate the single-entry up-link equivalent protection margin from Equa-

tion (A.1) for the test point being considered.

5. Select the worst up-link, single-entry margin so calculated.

6. Combine the worst up-link and down-link margins to obtain a worst single-

entry link protection margin.

7. Compare the worst single-entry link protection margin to the required margin

(5 dB perhaps, to allow for a 0 dB aggregate margin).

8. If the spacing is satisfactory, save the current trial solution as the value for

A_b. If not, then deternfine a new trial solution as before. Repeat the process
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from step one.
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Appendix B

DELTA: FORTRAN Program to

Calculate Required Separation
Values
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Program DELTA (cont.)

>> RAIN PROGRAM 4<

THIS IS A MODIFICATION OF C.W. WANG'S DELTA S PROGRAM (1985)

TO CALCULATE THE MINIMUM SATELLITE SEPARATION. THIS

PROGRAM TREATS BOTH THE UPLINK AND THE DOWNLINK.
THE CALCULATIONS ARE BASED ON CCIR REP-455 AND SOUP-3.

THE MODIFICATIONS WERE MADE BY P. KOHNHORBT AND P. BRASIN

IN 1986-1987.

THIS PROGRAM CONSISTS OF TWO MAIN BLOCKS. THE INNER BLOCK

CALCULATES THE MINIMUM REQUIRED LONGITUDINAL SPACING FOR

A PAIR OF SATELLITES AT A SPECIFIED ORBITAL LOCATION.

THE SECOND BLOCK IS BUILT AROUND THIS. THIS BLOCK INPUTS THE

REQUIRED INFORMATION ON EACH SATELLITE ADMINISTRATION, SETS UP

THE .LOOPS TO CALCULATE REQUIRED SEPARATION VALUES FOR ALL PAIRS

OF SATELLITES AT EVERY ORBITAL LOCATION SPECIFIED, AND WRITES

THE OUTPUT FILES.

******************************** **********************************

C

C>>>>>>>>>>>>>>>>>>>CONSTANTS TO BE INPUT<<<<<<<<<<<<<<<<<<<<<<<<<<<<

C

C OPTION .... SPECIFIES I OF 2 POSSIBLE OUTPUT FILE OPTIONS

C
C OPTIONsl ...... CALCULATES DELTA-PHIB OVER FEASIBLE ARC AT

C INCREMENTS SPECIFIED BY INTSP. OUTPUT IS

C LISTING FOUND IN FILE OUTFXLE + DELTA-S

C MATRIX

C

C OPTION-2 ...... CALCULATES DELTA-PHIS OVER FEASIBLE ARC

C ONLY AT LOCATIONS SPECIFIED BY FILE

C 8ATLOC. WRITES DELTA-PHI AND DELTA-S

C MATRICES + OUTFILE

C

C COIMIN .... MINIMUM ALLOWED TOTAL LINK SINGLE ENTRY CARRIER TO

C INTERFERENCE RATIO
C INTSP ..... INCREMENT BETWEEN CALCULATED ELLIPSES

C NUMSAR .... NUMBER OF SERVICE AREAS IN MATRIX

C UFREQ ..... FREQUENCY IN GHz AT WHICH UPLINK CALCULATIONS ARE

C PERFORMED

C DFRKQ ..... FREQUENCY IN GHz AT WHICH DOWNLINE CALCULATIONS ARE

C PERFORMED

C

C>>>INPUT ARRAYS CONTAINING XNFORHATION ON ALL OF THE ADMINISTRATIONS<<((<(

SANARE---ARRAY OF SERVICE AREA NARES

NUMSAT---NUMBER OF ADMINISTRATIONS WHICH HAVE THE SAME SERVICE

AREA AS THIS ADMINISTRATION. NORMALLY THIS IS I.

INTP ..... NUMBER OF TEST POINTS IN THIS ADMINISTRATION

ADELAT---AHEAY OF TEST POINT LATITUDES IN DEGREES

ADELON---AREAY OF TEST POINT LONGITUDES IN DEGREES

ADT ...... CONTAINS DIAMETERS OF EARTH STATION TRANSMITTING

ANTENNAS

ADR ...... CONTAINS DIAMETERS OF EARTH STATION RECEIVING

ANTENNAS

APTNER---INTEGEH ARRAY CONTAINING THE NUMBER OF THE REFERENCE

PATTERN USED FOR THE EARTH STATION RECEIVING ANTENNA

FOR EACH ADMINISTRATION

APTNET---INTEGER ARRAY CONTAINING THE NUMBER OF THE REFERENCE

PATTERN USED FOR THE EARTH STATION TRANSMITTING

ANTENNA FOR EACH ADMINISTRATION

APTNST---INTEGER ARRAY CONTAINING THE NUMBER OF THE REFERENCE
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Program DELTA (cont.)

PATTERN USED FOR THE SATELLITE TRANSMITTING ANTENNA

FOR EACH ADMINISTRATION

APTNSR---INTEGER ARRAY CONTAINING THE NUMBER OF THE REFERENCE

PATTERN USED FOR THE SATELLITE RECEIVING ANTENNA

FOR EACH ADMINISTRATION

NELLOC .... ARRAY CONTAINING NUMBER OF ORBITAL LOCATIONS FOR WHICH

MINIMUM ELLIPSES HAVE BEEN CALCULATED FOR EACH

ADMINISTRATION

WELLOC .... ARRAY CONTAINING WESTERN-MOST ORBITAL LOCATION FOR WHICH

A MINIMUM ELLIPSE BEEN CALCULATED FOR EACH ADMINISTRATION

EELLOC .... ARRAY CONTAINING EASTERN-HOST ORBITAL LOCATION FOR WHICH

A MINIMUM ELLIPSE BEEN CALCULATED FOR EACH ADMINISTRATION

AELLOC .... CONTAINS SATELLITE LOCATIONS FOR MINIMUM ELLIPSES

ADBLAT .... CONTAINS AIMPOINT LATITUDES FOR MINIMUM ELLIPSES (DEGREES}

ADBLON .... CONTAINS AIMPOINT LONGITUDES FOR MINIMUM ELLIPSES (DEGREES}

AORENT .... CONTAINS ORIENTATION ANGLES FOR MINIMUM ELLIPSES (DEGREES)

AAXMAJ .... CONTAINS MAJOR AXIS DATA FOR ELLIPSES (DEGREES}

AAXMIN .... CONTAINS MINOR AXIS DATA FOR ELLIPSES (DEGREES}

C>>>>>>>>>

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

2 ELEMENT ARRAYS USED IN THE INNER BLOCK <<<<<<<<<<<<
NANESA .... NAME OF ADMINISTRATION

NTPSA ..... NUMBER OF TEST POINTS IN SERVICE AREA OF ADMINISTRATION

DELAT ..... ARRAY OF TEST POINT LATITUDES IN DEGREES

DELON ..... ARRAY OF TEST POINT LONGITUDES IN DEGREES

DT ...... CONTAINS DIAMETERS OF EARTH STATION TRANSMITTING

ANTENNAS

DR ...... CONTAINS DIAMETERS OF EARTH STATION RECEIVING

ANTENNAS

IPTNER---INTEGER ARRAY CONTAINING THE NUMBERS OF THE REFERENCE

PATTERNS USED FOR THE EARTH STATION RECEIVING ANTENNAS

IPTNET---INTEGER ARRAY CONTAINING THE NUMBERS OF THE REFERENCE

PATTERNS USED FOR THE EARTH STATION TRANSMITTING

ANTENNAS

IPTNST---INTEGER ARRAY CONTAINING THE NUMBERS OF THE REFERENCE

PATTERNS USED FOR THE SATELLITE TRANSMITTING ANTENNAS

IPTNSR---INTEGER ARRAY CONTAINING THE NUMBERS OF THE REFERENCE

PATTERNS USED FOR THE SATELLITE RECEIVING ANTENNAS

DBCLAT .... AIMPOINT LATITUDE OF TRANSMITTING ANTENNA

DBCLON .... AIMPOINT LONGITUDE OF TRANSMITTING ANTENNA

ORIENT .... ORIENTATION ANGLE OF ELLIPTICAL BEAN

AXMAJ ..... MAJOR AXIS OF ELLIPTICAL BEAN

AXMIN ..... MINOR AXIS OF ELLIPTICAL BEAM

C>>>>>>>>>>>>>>>>>>>>>>>>

C

C

C
C

C

C

C

C

C

C

C

RESULTS <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

DELP(I,K,J) .... DELTA-PHI VALUE AT ORBITAL LOCATION I FOR
ADMINISTRATIONS K AND J

DELN(I,K) ...... DELTA-S VALUE FOR ADMINISTRATIONS I AND K

DELS .......... REQUIRED SEPARATION VALUE IN DEGREES OF LONGITUDE

OUTPUT OF INNER BLOCK OF PROGRAM

************************************************************

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)

CHARACTER*S NANESA,SANAME

INTEGER APTNER,APTNET,APTNST,APTNSR

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,
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Program DELTA (cont.)
ORIGINAI_ PPfGE Ig

OE POOR QUALITY

1

COMMON /PARAMS/

COMMON /VECTOR/
1

COMNON /VABnLS/

1
2

COMMON /MINELL/

1

2

COMMON /TPOINT/

1

COMMON /ANGLES/

I

COMMON /DIA/

COMMON /LOC/

COMMON /COOED/
1

PFD,ALOGE,ALNI0,COININ

NUMSAE,NANESA(2),NTPSA(2)

DSLON(2),RSLON(2),XO(2),YO(2),

XOAC(2),YOAC(2),ZOAC(2),ROAC(2)

UFREQ,DFREQ,GAINS(2},RGAIN(2},TGAIN(2),

UCPHI0(2),DCPHI0(2),EIRP(2),IPTNSR(2),

IPTNET(2),IPTNST(2),IPTNSR(2)

BCLAT(2),BCLON(2),DBCLAT(2),DBCLON(2),

REFLAT(2),REFLON(2),AXE(2),

ONIENT(2),AXMAJ(2)

RELON(2,20),RELAT(2,20),DELON(2,20},

DELAT(2,20),XE(2,20),YE(2,20),ZE(2,20)

PHI(2,20),PHI0(2,20),THETA(2,20),

ALPHA(2,20),ALPHA0(2,20)

DT(2),DR(2)

SLON

XH(2),YB(2),ZB(2),XPO(2),YPO(2),ZPO(2),

YP(2,2,20),ZP(2,2#20),YD(2,20),ZD(2,20)

COMMON /MULTIP/ ADELON(100,20),ADELAT(100,20),

i ADBLON(100,100),ADBLAT(100,100),AELLOC(100,100),

2 AORENT(100,100),AAXMAJ(100,100),

3 AAXR(100,100),WELLOC(100),EELLOC(100),INTP(100),

4 NELLOC(Z00),SANAME(100)

C

COMMON /AREAS/ DELTS,INTSP,NUMSA,OPTION

C

COMMON /SW/ DELM(IOO,IOO),DELMAX(IOO,IOO),DELP(20,100,100),
1 DELPH(20,100,100),DELPOS(20),NUNSAT(100),IPOS

C

COMMON /PTRN/ APTNER(100),APTNET(100),APTNST(100),APTNSE(100),

I ADT(100),ADR(100)

C

C ***********************************************************

FILE 5, IS THE INPUT FILE

FILE 6 IS A LISTING OF SATELLITE LOCATIONS AND REQUIRED

SEPARATION VALUES

FILE 7 IS THE DELTA-S MATRIX

FILE 8 IS THE INPUT FILE OF SATELLITE LOCATIONS AT WHICH REQUIRED

SEPARATION VALUES ARE TO BE CALCULATED

FILE 10 IS THE DELTA-PHI MATRIX

OPEN (UNITmS,FILE-'INPUT.DAT',TYPE-'OLD')

OPEN (UNIT-6,FILE-POUTFILE.DAT',TYPE='NEW ')

OPEN (UNITmT,FILE-'MATRIXl.DAT',TYPE-'NEW')

OPEN (UNIT-8,FILE-'SATLOC.DAT',TYPE-'OLD'}

OPEN (UNIT-10,FILE-'MATRIX2.DAT',TYPE_'_EW'_

CALL ICONST

CALL INDATA

IF OPTION 2, READ SATELLITE LOCATIONS AT WHICN TO CALCULATE

DELTA-PNIS

IF (OPTION .EQ. 2) THEN

READ(8,10) IPOS
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Program DELTA (cont.)

DR/G/NAL PAGE IS

Poor QuALrry

10 FORHAT(I5)

READ(8,20) (DELPOS(K), K-I,IPOS)

20 FORNAT(6F10.2)

END IF

C

C THIS IS THE MAIN LOOP OF THE PROGRAM WHICH FINDS DELTA-PHI

C VALUES BETWEEN ALL PAIRS OF ADMINISTRATIONS

C

WRITE(6,11)COIMIN

11 FORMAT(2X,'REQUIRED SEPARATION VALUES FOR LINK C/I REQUIREMENT

! OP',2X,FT.2,' dB')

DO 1000 NSI-1,NUHSAR-I

J-NSI+I

DO 900 NS2mJ,NUHSAR
DELS-3.0

C

NANESA(1)-SANANE(NSI)

NANESA(2)-SANANE(NS2)

C

C DETERMINE INTERSECTION OF FEASIBLE ARCS FOR TWO ADMINISTRATIONS

C

EI-EELLOC(NSI)

WI-WELLOC(NS1)

E2-EELLOC(NS2)

W2-WELLOC(NS2)

C

C THE FIRST CASE IS WHERE THERE IS NO OVERLAP OF THE TWO FEASIBLE

C ARCS BUT THE EASTERN ENDPOINT OF AREA 1 IS THE WESTERN ENDPOINT OF

C AREA 2. FOR THIS CASE, REQUIRED SEPARATION VALUES ARE CONPUTED AT THAT
C POINT AND FOR THE CLOSEST POINT IN THE ARC OF I TO THE WEST OF THAT

C ENDPOINT AND THE CLOSEST POINT IN THE ARC OF 2 TO THE EAST OF THE

C ENDPOINT.

C

IF (El .EQ. W2) THEN

IFIR-(W2*(-I.))-2.0

ISEC-(EI*(-I.))÷2.0

ELSE

C

C THIS HANDLES THE CASE WHERE THE INTERSECTION OF THE TWO ARCS

C IS BETWEEN THE WESTERN EDGE OF THE ARC OF AREA 2 AND THE EASTERN

C EDGE OF THE ARC OF AREA I.

C

IF ( ((Wl .LE. W2) .AND. (El .GE. W2)) .AND.

I (El .LE. E2) ) THEN

IFIR-(EI*(-1.))

ISEC-(W2*(-I.))

ELSE

C

C THIS HANDLES THE CASE WHERE THE ARC OF AREA 1 INCLUDES THE ENTIRE

C ARC OF AREA 2. THE INTERSECTION IS JUST THE ARC OF 2.

C

IF ( (WI .LE. W2) .AND. (E2 .LE. El) ) THEN

IFIR-{E2*{-I.))

ISEC-(W2*(-I.))
ELSE

C

C THIS HANDLES THE CASE WHERE THERE IS NO n_YERLA e _? TH_ TWO

C FEASIBLE ARCS BUT THE EASTERN ENDPOINT OF AREA 2 IS TIJE WESTERN

C ENDPOINT OF AREA 1. FOR THIS CASE, REQUIRED SEPARATIONS ARE

C COMPUTED AT TEAT POINT AND FOR THE CLOSEST POINT IN THE ARC

C OF 2 TO THE WEST OF THE ENDPOINT AND THE CLOSEST POINT IN THE

C ARC OF 1 TO THE EAST OF THE ENDPOINT.

C

IF (E2 .EQ. WI) THEN

IFIR-(WI*(-I.))-2.0

ISEC-(E2*(-I.))+2.0
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Program DELTA (cont.)

ELSE

C

C THIS HANDLES THE CASE WHERE THE INTERSECTION OF THE TWO ARCS

C IS BETWEEN THE WESTERN END OF THE ARC OF I AND THE EASTERN

C END OF THE ARC OF 2.

C

IF ( ((W2 .LB. WI) .AND. (E2 .OK. WI)) .AND.

1 (E2 .LB. El) ) THEN

IPIR-(E2*(-I.))

ISEC-(WI*(-1.))

ELSE

C

C THIS HANDLES THE CASE WHERE THE ARC OF 2 COMPLETELY CONTAINS

C THE ARC OF X. THE INTERSECTION OF THE 2 ARCS IS JUST THE

C ARC OF I.

C

IF ( (W2 .LB. Wl) .AND. (El .LB. E2) ) THEN

IFIR-(EI*(-X.))

XSEC-(WI*(-1.))

ELSE

C

C THERE IS NO INTERSECTION OF FEASIBLE ARCS. SET A PLA6 TO INDICATE THIS

C

IFIRo-999

END IF

END IF

END IF

END IF

END IF

END IF

C

C TRANSFER THE NEEDED INFORMATION ABOUT ADMINISTRATION I PROM THE

C ARRAYS or THE OUTER BLOCK OF THE PROGRAM TO THE ARRAYS OF THE INNER

C BLOCK

C

DELM(NS1,NS2) - 0.0
IPTNER(1)-APTNER(NSI)

IPTNET(1)-APTNET(NSI}

IPTNST(1}-APTNST(NSI)

IPTNSR(1)-APTNSR(NSI)

DT(X)-ADT(NSI)

DR(1)-ADR(NSI)

K-INTP(NSI)

NTPSA(1)-K

C

DO 850 I-X,K

RELON(1,I)-RADIAN*ADELON(NSX,I)

RELAT(1,I)-RADIAN*ADELAT(NSI,I)
CONTINUE850

C

C
C
C

C
C

TRANSFER THE NEEDED INFORMATION ABOUT ADMINISTRATION 2 FROM THE

ARRAYS OF THE OUTER BLOCK OF THE PROGRArl TO THE ARRAYS OF THE IN_ER

BLOC_

IPTNER(2)-APTNER(NS2)

IPTNET(2)-APTNET(NS2)

IPTNST(2)-APTNST(NS2)

IPTNSR(2)-APTNSR(NS2)

DT(2)-ADT(NS2)

DR(2)-ADR(NS2)

K-INTP(NS2)

NTPSA(2)-K

DO 860 I-1,K

RELON(2,I}-RADIAN*ADELON(NS2,I)

]

I

]

I

I

I

I

I

I

I

I

I

I

I

I
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Program DELTA (cont.)

RELAT(2,1}-RADIAN*ADELAT(NS2,I)

860 CONTINUE

C

C IF THERE IS NO INTERSECTION OF THE FEASIBLE ARCS THEN CALL A

C SPECIAL SUBROUTINE

C

IF (IFIR .EQ. -999} THEN
CALL NOINT(NS1,NS2,WI,EI,W2,E2}

GOTO 900

END IF

C

C THIS IS A LOOP OVER ALL OF THE ORBITAL LOCATIONS CONSIDERED

C OVER THE FEASIBLE ARCS OF THE 2 ADMINISTRATIONS.

C

C IF OPTION EQUALS 2 THEN THE SEPARATION VALUES ARE CALCULATED
C AT THE -LOCATIONS SPECIFIED IN THE ARRAY DELPOS. OTHERWISE

C THEY ARE CALCULATED AT EQUALLY SPACED INCREMENTS OVER THE

C ENTIRE ARC

C

IF (OPTION .EQ. I) THEN

NPI-IFIR

NP2-ISEC

NP3-INTSP

ELSE

NPI-1

NP2-IPOS

NP3-1

END IF

C

DO 800 NPOS- NPI, NP2, NP3

IF (OPTION .EO. 1) THEN

SLON-(-I.0)*DBLE(NPOS}

ELSE

SLON-DELPOS(NPOS)

IF ((((-I.)*SLON) .LE. IFIR) .OR.

1 (((-1.)*SLON) .GE. IS£C}) THEN

GOTO 800

END IF

END IF

C

CALL DETELL (NEI,NSI,SLON}

C

CALL DETELL (NE2,NS2,SLON}

C

C TRANSFER THE MINIMUM ELLIPSE INFORMATION FROM THE ARRAYS OF THE OUTER

C BLOCK TO THE ARRAYS OF THE INNER BLOCK

C

BCLON(1)-ADBLON(NS1,NE1}*RADIAN

BCLAT(1)-ADBLAT(NS1,NE1}*RADIAN

AXR(1)-AAXR(NSI,NEI)

ORIENT(1)-AORENT(NS1,NEI)*RADIAN

AXMAJ(1)-AAXMAJ(NSI,NEI)*RADIAN

C

BCLON(2)-ADBLON(NS2,NE2)*_ADIAN

BCLAT(2)=ADSLAT(NS2,NE2)*RADIAN

AXR(2}-AAXR(NS2,NE2)

ORIENT(2)-AORENT(NS2,NE2}_DIAr_

AXMAJ(2)-AAXMAJ(NS2,NEI)*RADIAN

C

C CALL A SUBROUTINE WHICH CALCULATES THE REQUIRED SEPARATION FOR

C THE TWO SATELLITES AT THE GIVEN ORBITAL LOCATION.

C

CALL SEPAR(DELS)

WRITE(6,100}NAMESA(1),NAMESA(2},SLON,DELS

FORMAT(2X,AS,2X,AS,5X,FS.2,SX,F7.2}100

C
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Program DELTA (cont.)

C
800

9OO
1000

C

C

C

C
C

C
C
C
C

C
C

C

C

C

IF (DELS .GE. DELH(NS1,NS2)) THEN
DELM(NS1,NS2)mDELS

END IF

IF (OPTION .EQ. 2) THEN

DELP(NPOS,NSI,NS2) - DELS

END IF

CONTINUE

CONTINUE

CONTINUE

CALL WRDN

IF (OPTION .EO. 2} THEN

CALL WRPH

END-IF

END

SUBROUTINE NOINT(NSI,NS2,WI,EI,W2,E2)

COMMON /CONSTS/

I

CONNON /PAEANS/

CONHON /VECTOR/
i

COMMON /VARBLS/

i

2

COMMON /HINELL/

1

2

COMMON /TPOINT/

I

COMMON /ANGLES/
I

COMMON /DIA/

COMMON /LOC/

CONNON /COOED/

I

THIS ROUTINE HANDLES THE CASE WHERE THERE IS NO INTERSECTION

OF THE FEASIBLE ARCS OF TWO ADMINISTRATIONS.

A REQUIRED SEPARATION VALUE IS CALCULATED AT THE MIDPOINT

OF THE GAP BETWEEN THE TWO ARCS

************************************************************

IMPLICIT INTEGER(I-L,N),REAL(A-H,N,O-Z)

CHAI%ACTER*8 NAMESA,SANAME

INTEGER APTNER,APTNET,APTNST,APTNSR

E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,

PFD,ALOGE,ALNI0,COININ

NUMSAR,NAMESA(2},NTPSA(2}

DSLON(2),RSLON(2),XO(2),¥O(2),

XOAC(2),YOAC(2),ZOAC(2),ROAC(2)

UFREQ,DFREQ,GAINS(2),RGAIN(2),TGAIN(2),

UCPHI0(2),DCPHI0(2),EIRP(2),IPTNER(2),

IPTNET(2),IPTNST(2),IPTNSR(2)

BCLAT(2),BCLON(2),DBCLAT(2),DBCLON(2),

REFLAT(2},REFLON(2),AXR(2),

ORIENT(2),AXHAJ(2)

RELON(2,20),RELAT(2,20),DELON(2,20),

DELAT(2,20),XE(2,20),YE(2,20),ZE(2,20)

PHI(2,2Or),FHIO(2,20_.THETA(2,20),

ALPHA(2,20),ALPHA0(2,_0)

DT(2),DR(2)

SLON

XB(2),YB(2),ZB{2),XPO(2),YPO(2),ZPO(2),

YP(2,2,20),ZP(2,2,20),YD(2,20),ZD(2,20)

CORNON /MULTIP/ ADELON(100,20),ADELAT(100,20),

i ADELON(100,100),ADBLAT(100,100),AELLOC(100,100),

2 AORENT(100,100),AAXMAJ(100,100),
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Program DELTA (cont.)

3 AAXR(100,100),WELLOC(100),EELLOC(100),INTP(100),
4 NELLOC(100),SANANE(100)

C

COMMON /AREAS/ DELTS,INTSP,NUHSA,OPTION
C

CONHON /SW/ DELN(100,100),DELMAX(100,100),DELP(20,100,100)_
1 DELPH(20,100,100),DELPOS(20),NUNSAT(100),IPOS

C

CONNON /PTRN/ APTNER(100),APTNET(100),AP_ST(100),APTNSR(100),
1 ADT(100),ADR(100)

C
C ,e*eeee_ee,ee*eeeeee*ee*eee,ee**eeeeee*eee_eeeeeeeeeeeee_ee
C

Ir (w2 .LE. W1) THEN
C ARC OF ADMINISTRATION 2 LIES TO THE WEST OF THE ARC OF ADMINISTRATION I

- DIFF - ABS(E2-W1)

NE2 - NELLOC(NS2)

NE1 - 1

SLON-0.5*(E2+W1)

ELSE

C ARC OF ADMINISTRATION I LIES TO THE WEST OF THE ARC OF ADNINISTRATION 2

NE2 - 1
NE1 - NELLOC(NSI)

DIFF - ASS(El-W2)

SLON-0.5*(EI+W2)

END IF

C

C IF THE TWO ARCS ARE SEPARATED BY MORE THAN 7 DEGREES THEN SUPRESS

C CALCULATION. INTERFERENCE WILL BE NEGLIGIBLE

C

IF (DIrt .GT. 5.01 THEN

DELS - 0.0

GOTO 5

END IF

C

C OTHERWISE, LOCATE SATELLITES AT NIDPOINT OF GAP BETWEEN THEIR ARCS

C AND CALCULATE DELTA-S

C

BCLON(1)-ADBLON(NS1,NEI)*RADIAN

BCLAT(1)-ADHLAT(NSI,NE1)*RADIAN

AXR(1)-AAXR(NSI,NEI)

ORIENT(1)-AORENT(NS1,NE1)*RADIAN

AXNAJ(1)-AAXNAJ(NSI,NE1)*RADIAN

C

SCLON(2)-ADBLON(NS2,NE2)*RADIAN

BCLAT(2}-ADBLAT(NS2,NE2}*RADIAN

AXR(2)-AAXR(NS2,NE2)

ORIENT(2)mAORENT(NS2,NE2)*RADIAN

AXNAJ(21-AAXNAJ(NS2,NE2)*RADIAN

DELS-DIFF

CALL SEPAR(DELS}

C

C SET DELTA-S VALUE EQUAL TO THE REQUIRED 3_?ARATION IN THE

C NIDDLE OF THE GAP

C

5 DELN(NSI,NS2)-DELS
C

WRITE(6,100)NANESA(1),NAHESA(2),SLO_,DELS

100 PORNAT(2X,AS,2X,AS,SX,F8.2,5X,F7.2)

C

C IF THE DELTA-PHI OPTION IS IN EFFECT, THEN SET EVERY VALUE EQUAL

C TO THE SEPARATION REQUIRED IN THE CENTER OF THE GAP

C

IF (OPTION .EQ. 21 THEN

DO i0 N-I,IPOS

DELP(N,NSI,NS21-DELS
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Program DELTA (cont.)

I0 CONTINUE

END IF

C

RETURN

END

C
SUBROUTINE DETELL(NE,NS,S&TLOC)

C

C THIS SUBROUTINE SELECTS THE APPROPRIATE ELLIPSE FOR TEE PRESENT

C ORBITAL LOCATION. THIS IS DONE BY FINDING THE ELLIPSE IN THE

C ADMINISTRATION'S INPUT FILE WHICH WAS CALCULATED AT THE CLOSEST

C ORBITAL LOCATION TO THE PRESENT LOCATION, SATLOC

C
C *************************************************************

C

IMPLICIT INTEGER(I-L,N),REAL(A-R,N,O-Z)

C

CHARACTER*8 NAMESA,SANANE

C

INTEGER APTNER,APTNET,APTNST,APTNSR

C

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COIMIN

C

COMMON /PARAMS/ NUMSAR,NANESA(2},NTPSA(2)

C

COMMON /VECTOR/ DSLON(2),RSLON(2},XO(2),YO(2),
1 XOAC(2),YOAC(2),ZOAC(2),ROAC(2)

C

COMMON /VARBLS/ UFREQ,DFREQ,GAINS(2),RGAIN(2},TGAIN(2},

i UCPHI0(2),DCPHI0(2),EIRP(2),IPTNER(2),

2 IPTNET(2),IPTNST(2),IPTNSR(2)

C

COMMON /NINELL/ ECLAT(2),SCLON(2),DBCLAT(2),DBCLON(2),

I REFLAT(2),REFLON(2),AXR(2),

2 ORIENT(2),AXNAJ(2)

C

COMMON /TPOINT/ RELON(2,20),RELAT(2,20),DELON(2,20),

I DELAT(2,20),XE(2,20),YE(2,20),ZE(2,20)

C

COMMON /ANGLES/ PHI(2,20),PHI0(2,20),THETA(2,20),

I ALPHA(2,20),ALPHA0(2,20)
C

COMMON /DIA/ DT(2),DR(2)

C

COMMON /LOC/ SLON

C

COMMON /COORD/ XB(2),YB|2),ZB(2),XPO(2),YPO(2),ZPO(2),

1 YP(2,2,20),ZP(2,2,20),¥D(2,20),ZD(2,20)

C

COMMON /NULTIP/ ADELON(100,20),ADELAT(100,20),
i ADBLON(100,100),ADBLAT(100,100),AELLOC(100,100),

2 AORENT(100,100),AAXNAJ(100,100),

3 AAXR(100,100),WELLOC(100),EELLOC(10¢_,INTP(100),

4 NELLOC(Z00),SANAME(100)

C

COMMON /AREAS/ DELTS,INTSP,NUNSA,OPT_nN

C

COMMON /SW/ DELM(100,100),DELNAX(100,100),DELP(20,100,100),

1 DELPH(20,100,100),DELPOS(20),NUMSAT(100),IPOS

C

CONNON /PTRN/ APTNER(IOO),APTNET(IOO),APTNST(IOO),APTNSR(IO0),

1 ADT(100),ADR(100)

C

C ***********************************************************

C IF THE SATELLITE'S LOCATION IS EAST OF THE EASTERNMOST LOCATION FOR
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Program DELTA (cont.)

C WHICH ELLIPSES WERE CALCULATED THEN CHOSE THE EASTERNMOST ELLIPSE

C

IF (SATLOC .GE. EELLOC(NS)} THEN

NE-NELLOC(NS)

ELSE

C
C TF THE SATRLLITE'S LOCATION IS WEST OF THE WESTERNMOST LOCATION FOR

C WHICH ELLIPSES WERE CALCULATED THEN CHOSE THE WESTERNMOST ELLIPSE

C

IF (SATLOC .LE. WELLOC(NS)) THEN

ME-1

ELSE

DIFFNN-1.0E+II

NE-0

J-NELLOC(NS)

C

C THIS LOOP CHECKS ABSOLUTE DISTANCE BETWEEN SATELLITE LOCATION AND THE

C LOCATIONS OF ALL POSSIBLE ELLIPSES AND TAKES THE SMALLEST

C

DO 35 N-1,J

DIFF-ABS(SATLOC-AELLOC(NS,N))

IF (DIFF .LT. DIFFHN) THEN

DIFFNN-DIFF

NE-N

END IF

35 CONTINUE

END IF

END IF

C

RETURN

END

C

SUBROUTINE INDATA

C

C THIS IS A SUBROUTINE WHICH INPUTS PARAMETERS DESCRIBING THE SERVICE

C AREAS, THE SATELLITE AND GROUND STATION ANTENNAS, THE FEASIBLE

C ORBITAL ARCS AND THE ELLIPSE DATA.

C

C ************************************************************

C

IMPLICIT INTEGER(I-L,N),REAL(A-H,H,O-Z)

C

CHARACTER* 8 NANESA, SANANE

C

INTEGER APTNER,APTNET,APTNST,APTNSR

COMMON /CONSTS/
1

C

COMMON /PARAHS/

C

COMMON /VECTOR/

1

C

COMMON /VANBLS/

1

2

C

COMMON /NINELL/

1

2

C

COMMON /TPOINT/

1

C

COMMON /ANGLES/

E,PI,EADIAN,DEGREE,GCR,ER,ERDS,EAP,

PFD,ALOGE,ALNI0,COININ

NUNSAR,NAMESA(2),NTPSA(2)

DSLON(2),RSLON(2),XO(2),YO(2),

XOAC(2),YOAC(2),ZOAC(_),ROAC(2)

UFREQ,DFREO,GAINS(2),_GAIN(2),TGAIN(2),

UCPHIO(2),DCPHIO(2),EIRP(2),IPTNER(2),

IPTNET(2),IPTNST(2)._PT_SR(?)

BCLAT(2),BCLON(2),DBCLAT(2),DBCLON(2),

REFLAT(2),REFLON(2),AXR(2),

ORIENT(2),AXNAJ(2)

RELON(2,20),RELAT(2,20),DELON(2,20),
DELAT(2,20),XE(2,20),¥E(2,20),ZE(2,20)

PHI(2,20),PHI0(2,20),THETA(2,20),

159

I



Program DELTA (cont.)

1
c

COMMON /DIA/
C

COMMON /LOC/
C

COMMON /COORD/
1

c

ALPHA(2,20),ALPHA0(2,20)

DT(2),DR(2)

SLON

XB(2),YB(2),ZB(2),XPO(2),YPO(2),ZPO(2),
¥p(2,2,20),ZP(2,2,20),YD(2,20),ZO(2,20)

COMMON /MULTIP/ ADELON(100,20),ADELAT(100,20)e
1 ADBLON(100,100),ADBLAT(100,100),AELLOC(100,100),
2 AORENT(100,100),AAXMAJ(100,100),
3 AAXR(100,100),WELLOC(100),EELLOC(100),ZNTP(100),
4 NELLOC(100),SANANE(100)

C
COMMON /AREAS/ DELTS,INTSP,NUMSA,OPTION

C
COMMON /SW/ DELM(100,100),DELNAX(100,100),DELP(20,100,100),

1 DELPH(20,100,100),DELPOS(20},NUMSAT(100),IPOS

C
COMMON /PTRN/ APTNER(100),APTNET(100),APTNST(100},APTNSR(100),

1 ADT(100),ADR(100)

C
C ***********************************************************

C
C ENTER GLOBAL CONSTANTS TO BE USED THROUGHOUT THE PROGRAM
C

C

C I00

C
C
C

C
C
C
C

C
C
C
C

C

C

101

C
C
C

102

C

103
C

C
C

C

104
C

20

READ(5,*) OPTION

READ(5,*} NUNSAR,COININ,INTSP,UFREQ,DFREQ
FORMAT (I5,FS.I,I5,F6.2,F6.2}

THE FOLLOWING CONVENTION IS USED WHEN THREE OR MORE ADMINISTRATIONS
HAVE IDENTICAL SERVICE AREAS (for example---25 satellltes serving U.S.)

THE SAME SERVICE AREA DATA IS ENTERED UNDER TWO CONSECUTIVE
ADMINISTRATIONS. FOR THE FIRST ADMINISTRATION, THE INTEGER VARIABLE
NUMSAT IS SET EQUAL TO THE TOTAL NUMBER OF ADMINISTRATIONS (SATELLITES)

WITH THE SANE SERVICE AREA (25 in the U.S. example above). FOR THE
SECOND ADMINISTRATION, NUMSAT IS SET EQUAL TO I. THIS IS DONE TO
AVOID REDUNDANT CALCULATIONS ON MULTIPLE ADMINISTRATIONS WITH THE

SANE SERVICE AREA.

DO 10 NS-I,NUMSAR

READ(5,101) SANANE(NS),NUMSAT(NS)
FORMAT (AS,2X,IS)

THIS IS THE ANTENNA INFORMATION

READ(5,102} APTNER(NS),APTNET(NS),APTNST(NS),APTNSR(NS),

! ADT(NS),ADR(NS)
FORMAT(12,I2,I2,I2,F5.2,F5.2)

READ(5,103) INTP(NS)

FORMAT(I5)

E-INTP(NS)

THESE ARE THE TEST POINTS WHICH DEFINE THE SERVICE AREAS.

DO 20 N1 - 1,K
READ(5,104) ADELAT(NS,NI),ADELON(NS,NI)

FORNAT(F6.2,2X,F7.2)

CONTINUE
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Program DELTA (cont.)

C
C
C

105
C

C 106
C

107

C

3O
C

10
C

COMMON /CONSTS/

i

COMMON /PARANS/

COMMON /VECTOR/
1

COMMON /VARBLS/
I

2

COMMON /MINELL/

i

2

COMMON /TPOINT/
I

COMMON /ANGLES/
I

THIS PORTION ENTERS THE MINIMUM ELLIPSE DATA

READ(5,105} NELLOC(NS)

FORMAT (I5}

READ(5,*} WELLOC(NS),EELLOC(NS}

FORMAT (F6.1,2X,F6.1)

N-NELLOC(NS}

DO 30 NE-I,N

READ(5,107}AELLOC(NS,NE),ADBLAT(NS,NE),

ADBLON(NS,NE),AORENT(NS,NE),AAXMAJ(NS,NE},
AAXMIN

FORMAT (FS.l,lX,F7.2,1X,F7.2,1X,F7.2,2X,FS.2,2X,F6.2)

AAXNAJ(NS,NE}-ANAXI(AAXMAJ(NS,NE),0.6)

AAXMIN-ANAXI(AAXMIN,0.6)

AAXR(NS,NE)-AAXNAJ(NS,NE)/AAXMIN

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE SEPAR(DELS)

THIS ROUTINE ITERATES TO FIND THE MINIMUM REQUIRED SEPARATION

AT A SPECIFIED POINT IN THE GSO FOR THE SATELLITES SERVING TWO

ADMINISTRATIONS. THIS IS THE MAIN ROUTINE FOR THE INNER BLOCK OF

THE COMPLETE PROGRAM.

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)

LOGICAL HIGH

CHARACTER*8 NAMESA,SANAME

INTEGER APTNER,APTNET,APTNST,APTNSR

E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,

PFD,ALOGE,ALNI0,COIMIN

NUMSAR,NAMESA(2),NTPSA(2)

DSLON(2),HSLON(2),XO(2},YO(2),

XOAC(2),YOAC(2),ZOAC(2),ROAC(2)

UFREQ,DFREQ,GAINS(2),RGAIN(2),TGAIN(2),

UCPHI0(2),DCPXI0(2),EIRP(2),IPTNER(2),

IPTNET(2),IPTNST(2),!rTNSR(2)

BCLAT(2),BCLON(2),DBCbAT(2),DBCLON(2),

REFLAT(2),REFLON(2),_XR(2),

ORIENT(2),AXMh._')

RELON(2,20),RELAT(2,20)oDELON(2,20),

DELAT(2,20),XE(2,20),YE(2,20),ZE(2,20)

PHI(2,20),PRI0{2,20),THETA(2,20),

ALPHA(2,20),ALPHA0(2,20)

COMMON /DIA/ DT(2),DR(2)
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Program DELTA (cont.)

COMMON /LOC/ SLON
C

COMMON /COORD/ XB(2),YB(2),ZB(2),XPO(2),YPO(2),ZPO(2),
1 yp(2,2,20),ZP(2,2,20),YD(2,20),ZD(2,20)

C
COMMON /MULTIP/ ADELON(100,20),ADZLAT(100,20),

1 ADBLON(100,100),ADBLAT(100,100),AELLOC(100,100),
2 AORENT(100,100),AAXMAJ(100,100),
3 AAXR(100,100),WELLOC(100),EELLOC(100),INTP(100),

4 NELLOC(100),SANANE(100)
C

COMMON /AREAS_ DELTS,INTSP,NUMSA,OPTION

C
CONI(ON /SW/ DELM(100,100),DELNAX(100tl00),DELP(20,100,100),

1 DELPH(20,100,100),DELPOS(20),NUMBAT(100),IPOB

C
COMMON /PTRN/ APTNER(100),APTNET(100),APTNST(100),APTNSR(100),

1 ADT(100),ADR(100)

C

COMMON /WDISCR/ WUDIS(2)

C

COMMON /CTOI/ COID(2),COIU(2)

C
DIMENSION LUWTP(2),JDWTP(2)

C

C ***********************************************************

C
C >>>>>>>>>>VARIABLE LIST FOR THIS SUBROUTINE AND INNER BLOCK(<<((((<

C

C DSLON SATELLITE LOCATIONS IN DEGREES FOR ADMINISTRATIONS

C 1 AND 2

C
C RSLON SATELLITE LOCATIONS IN RADIANS

C

C GAINS GAIN OF SATELLITE ANTENNA

C

C RGAIN RECEIVING GAIN OF EARTH STATION ANTENNA

C

C TGAIN TRANSMITTING GAIN OF EARTH STATION ANTENNA

C

C UCPHI0 UPLINK HALF POWER BEAMWIDTH FOR EARTH STATION ANTENNA

C

C DCPHI0 DOWNLINK HALF POWER BEANWIDTH FOR EARTH STATION ANTENNA

C

C EIRP DOWNLINE EIRP FOR SATELLITE TRANSMITTERS

C

C>>>>>>>>>>>)>>>>>>>>>>>>>>>>>ANGLES((((<(<<<<(((_<<(((<<(<<(<(<<((_(

C

C PRI(K,J) ANGLE SEEN AT SATELLITE K BETWEEN AXIS OF SATELLITE

C E'S ANTENNA AND TEST POINT J OF SERVICE AREA E

C

C PHI0(K,J) ELLIPTICAL HALF POWER BEAMWIDTH MEASURED FOR SATELLITE K

C TO TEST POINT J IN SERVICE AREA K

C

C THETA(H,J) TOPOCENTRIC ANGLE BETWEE_ TWO SATELLITES AS SEEN FROM

C TEST POINT J OF SERVICE AREA K

C

C

C

C

C PHI0(E,J) ELLIPTICAL HALF POWER BEANWIDTH MEASURED FOR SATELLITE I

C TO TEST POINT J IN THE OTHER SERVICE AREA

C

C>>>>)>>>>>>>>>)>>>>>>>>>>>>>>COORDINATES(<<<(<_(_((<((((_((_<((_<<<<(<

C

C XE RECTANGULAR COORDINATES OF EARTH STATIONS

ALPHA(E,J) ANGLE SEEN AT SATELLITE I BETWEEN AXI:; OF SATELLITE
I'S ANTENNA AND TEST POINT J OF THE OTHER SERVICE AREA

162

I

I

I

I
I

I

I

I
l

I

I

I

I

I

I

I

I

I



I

I

I
I
I

I

I
I

I
I

I

I
I

I

I
I

I

I

Program DELTA (cont.)

C YE
C ZE

C

C

C XO
C YO

C
C REFLAT

C REFLON
C

C

Z-AXIS IS EARTH POLAR AXIS, +Z TO NORTH

X-Y PLANE IS EQUATORIAL PLANE, +X-AXIS

PASSES THROUGH GREENWICH MERIDIAN

RECTANGULAR COORDINATES OF SATELLITE LOCATION

FOR GSO Z-0

LATITUDE AND LONGITUDE OF POINT ON MAJOR AXIS OF THE

MINIMUM ELLIPSE ON THE EARTH'S SURFACE. CALLED

REFERENCE POINT IN SOUP

XOAC

YOAC

ZOAC

C>>>>>>>>>>>>>>>>>>>>>>>>>>>>VECTORS<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<

ELEMENTS OF VECTOR FROM SATELLITE TO AIHPOINT

ON EARTH

XOAKEJ

YOARRJ

ZOAEHJ

XOAIKJ

YOAIKJ

ZOAIKJ

HOAC

ELEMENTS OF VECTOR FROM DESIRED SATELLITE TO

EARTH STATION J OF ITS SERVICE AREA

ELEMENTS OF VECTOR FROM INTERFERING SATELLITE

TO TEST POINT J OF THE OTHER SERVICE AREA

RANGE FROM SATELLITE TO ITS AIRPOINT

C>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
C
C INITIALIZE PARAMETERS

C

CALL SETUP(DELS)

CALL VECCAL

C

DO 10 I-1p2
C

C ESTIMATE SATELLITE RECEIVING/TRANSMITTING GAIN AND

C FIND THE REFERENCE POINT LATITUDE AND LONGITUDE

C

CALL REFCAL(I)

GAINS(I) - 10.*ALOG10(EAP*AXR(I}*(PI*223./180./AXMAJ(I)}**2)

C

C ESTIMATE THE TRANSMITTING/RECEIVING GAINS AND HALF POWER

C BEAMWIDTHS FOR THE EARTH STATION ANTENNAS USING THE EQUATIONS

C FROM SOUP-3

C

DLANDA - 3.0E+08/(DFREQ*I.0E+09}
ULAMDA - 3.0E+08/(UFREO*I.0E÷09)

C

XO - DR(I)/DLA_DA

X1 - DT(I)/ULAMDA

X2 - 223./180.
C

RGAIN(I) - 10.*ALOG10(PI*PI*EAP*X0*_n)

C

TGAIN(I) - 10.*ALOGI0(PI*PI*EAF*XI*×I)

C

UCPHI0(1) - X2/X1

C

DCPHI0(1) - X2/X0

C

C*** CALCULATE THE DOWNLINK EIRP FOR EACH SATELLITE. THE POWER

C FLUX DENSITY AT THE AIMPOINT OF EACH ADMINISTRATION IS ASSUMED

C TO BE EQUAL TO THE CONSTANT PFD.

C

EIRP(I)-PFD+10.*ALOGI0(4*PI*HOAC(I)*HOAC(1)*EH*ER)
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Program DELTA (cont.)

C

I0 CONTINUE

C

C*** >> OUTER LOOP (OVER E) FOR BOTH SERVICE ARRAS <<

C

DO 1000 K - 1,2
C

I - 3-R

C

JNTP - NTPSA(K)

WUDIS(K)-I0.0

C

C >> MIDDLE LOOP (OVER J) FOR ALL TEST POINTS IN AREA K <<

C >>CALCULATIONS FIND THE NECESSARY ANGLES FOR ALL TEST POINTS <<

C

DO 900 J - I,JNTP

C

CALL EPHI (K,K,J,PH)

PHI(E,J)-PH

CALL XPHI0 (K,K,J,PO)

PHI0(E,J}-PO

C

C THIS STEP FINDS THE TEST POINT IN ADMINISTRATION E WHICH IS CLOSEST

C TO THE -3 DE CONTOUR OF ADMINISTRATION E'S SATELLITE RECEIVING ANTENNA.

C THIS TEST POINT IS USED AS THE SOURCE OF ALL DESIRED UPLINE TRANSMISSIONS

C FROM K AS IT REPRESENTS THE WORST CASE. THE RECEIVING DISCRIMINATION FROM

C K'S SATELLITE TO A TRANSMISSION FROM THIS POINT IS SAVED.

C
GO TO(ll,12,13,14,15)IPTNSR(K)

C

11 CALL PTNSTI(PH,PO,GAINS(K),RDISC}

GOTO 16

C

12 CALL PTNST2(PH,PO,GAINS(K),RDISC)

GOTO 16

C

13 CALL PTNST3(PN,PO,GAZNS(K},RDISC)

GOTO 16

C

14 CALL PTNST4(PH,PO,GAINS(E},RDISC)

GOTO 15

C

15 CALL PTNST5(PH,PO,GAINS(K},RDISC)

C

16 IF (RDISC .LT. WUDIS(E)} THEN

WUDIS(E)mRDISC

END IF

C

CALL XPHI0 (I,E,J,AO)

ALPNA0(I,J)mAO

CALL KPHI (I,K,J,AL}

ALPHA(I,J)-AL

CALL ZPHI (I,K,J,TH)

THETA(K,J)-TH
C •

900 CONTINUE

C

1000 CONTINUE

C

DO 800

C

I - 3-K

C

K - 1,2

JNTPmNTPSA(K)

NTPImNTPSA(I)
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Program DELTA (cont.)

C

C

C
C
C

C
C

C
C
C

700

C

C

C
C
C

C

C
C

C

C
500

C

600
C

800

C
C
C

C
C

C
C
C
C
C
C

C
C

C
C
C

C
C

C

COID(K)-200.

DO 700 J - 1,JNTP

FIND THE DOWNLINK C/I RATIO USING CALCULATIONS BASED ON SOUP.

CALL DOWNLK(IpK,J,COI)

CONPARE THE DOWNLINK C/I AT THIS TEST POINT WITH THE WORST VALUE.

IF IT IS LOWER THEN USE IT AS THE WORST VALUE AND SAVE THE INDEX

OF THE TEST POINT.

IF (COI .LT. COID(K)) THEN

COID(K) -COI

JDWTP(K) - J

END IF

CONTINUE

COIU(K)-200.

FIND THE UPLINK C/I RATIO FOR AN INTERFERING TRANSNITTER AT
TEST POINT L OF ADMINISTRATION I FOR ALL POSSIBLE L'S

DO 500 L - 1,NTPI

THIS CALLS A SUBROUTINE THAT CALCULATES THE UPLINK C/I RATIO

CALL UPLK(I,E,L,COI)

IF (COI .LT. COIU(K)) THEN

COIU(K)-COI

LUWTP(K)-L

END IF

CONTINUE

CONTINUE

CONTINUE

ICOUNT-I

THIS PORTION CALLS A SUBROUTINE THAT FINDS THE WORST TOTAL LINK

C/I BY ASSUMING THAT THE C/I RATIO AT THE OUTPUT OF THE

SATELLITE IS THE SANE AS AT THE INPUT

CALL COILK(WCOIL)

THIS PORTION USES A BINARY SF_%BCH TO FIND A SUITABLE SPACING

IF THE LINK C/I IS SIGNIFICANTLY LESS THAN THE PERMISSIBLE

LINK C/I RATIO THEN THE SATELLITES NEED TO BE SPACED FURTHER
THAN THEY ARE CURRENTLY

IF THE LINK C/I IS SIGNIFICANTLY LARGEE THAN THE PERMISSIBLE

LINK C/I RATIO THEN THE SATELLITES CAH BE SPACED LESS

THAN THEY ARE CURRENTLY

IF THE LINK C/I IS ACCEPTABLE THEN STOP THE SEARCH

DELCOI - COIMIN-WCOIL

IF (ABS(DKLCOI) .LT. (.001*COININ)) THEN

RETURN

ELSE

IF (DELCOI .LT. 0.0) THEN
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Program DELTA (cont.)

C THE LINK C/I RATIO IS HIGHER THAN IT NEEDS TO BE

C IF THE SATELLITES ARE NOW COLLOCATED, THEN THE REQUIRED SEPARATION
C IS ZERO. IF NOT THEN THEY NEED TO BE SPACED FARTHER APART. IF

C THE LINK C/I RATIO IS MORE THAN i dB TOO HIGH, THEN THEY ARE SPACED
C BY AN ADDITIONAL 1 DEGREE. IF IT IS LESS THAN 1 DE TOO HIGH THEN THEY

C ARE SPACED BY AN ADDITIONAL 0.1 DEGREE

C

IF (DELS .EQ. 0.0) THEN

RETURN

END IF

HIGH - .TRUE.

IF (DELCOI .LT. -1.0) THEN

STEP - -1.0

ELSE

STEP - -0.1

END I F

ELSE

C

C THE LINK C/I RATIO IS LOWER THAN IT NEEDS TO BE.

C THE SATELLITES NEED TO BE SPACED LESS FAR APART. IF THE

C THE LINK C/I RATIO IS MORE THAN 1 dH TOO LOW, THEN THEY ARE MOVED

C CLOSER BY AN ADDITIONAL 1 DEGREE. IF IT IS LESS THAN I DB TOO LOW THEN

C THEY ARE MOVED CLOSER BY AN ADDITIONAL 0.I DEGREE

C

HIGH - .FALSE.

IF (DELCOI .GT. 1.0) THEN

STEP - 1.0

ELSE
STEP - 0.1

END IF

END IF

END IF

C

2500 DELS - DELS ÷ STEP

DELS - AMAXI(DELS,0.0)

ICOUNT - ICOUNT + 1

C

C THIS SEQUENCE WAS ADDED SO THAT IN EXPERIMENTATION THE PROGRRR

C DOES NOT WIND UP IN INFINITE LOOPS

C

IF (ZCOUNT .EQ. 20) THEN

WRITE(6,999)

999 FORMAT(HX,'TO0 MANY ITERATIONS')

STOP

END IF

C

IF (DSLON(1) .LT. DSLON(2)) THEN

DSLON(1)-SLON-DELS/2.0

DSLON(2)mSLON+DELS/2.0
ELSE

DSLON(1)-SLON+DELS/2.0

DSLON(2)-SLON-DELS/2.0

END IF

C

RSLON(1)-DSLON(1)*RADIAN

RSLON(2)-DSLON(2)*RADIAN

C

C RECALCULATE RANGE FOR NEW SPACING

C

CALL VECCAL

DO 2800 K - 1,2

C

I-3-K

C
J-JDWTP(K)

CALL ZPHI (I,K,J,TH)
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Program DELTA (cont.)

THETA(E,J)-TH
C

C RECALCUTE WORST DOWNLINK POINT

C

CALL DOWNLK(I,R,J,COI)
C

COID(K)-COI

C

L-LUWTP(K}

CALL ZPHI (R,I,L,TH)

THETA(I,L)-TH
C

C RECALCULATE WORST UPLINK POINT

C

CALL UPLK(I,R,L,COI)

c COIUIEI-COX

2800 CONTINUE

CALL COILK(WCOIL)

C

C THE SATELLITES ARE SPACED FARTHER APART OR PUSHED CLOSER TOGETHER

C UNTIL A POINT IS REACHED WHERE THE SIGN OF DELCOI SWITCHES FROM + TO -

C OR FROM - TO +. WHEN THIS OCCURS ONE HAS A LOWER BOUND ON THE MINIMUM

C REQUIRED SATELLITE SEPARATION, SHALL, AND AN UPPER ROUND, RIG
C

DELCOI w COIMIN - WCOIL

IF (ABS(DELCOI) .LT. (.001*COIMIN)} THEN

RETURN

ELSE

IF ({DELCOI .LT. 0.0} .AND. (DELS .LE. 0.0)) THEN

RETURN

END IF

IF ((DELCOI .LT. 0.0) .AND. (HIGH .EQV. .FALSE.)} THEN

BIG-DELS

SHALL-DELS-STEP

ELSE

IF ((DELCOI .GT. 0.0} .AND. HIGH} THEN

SMALL-DELS

BIG-DELS-STEP

ELSE

GOTO 2500

END IF

END IF

END IF

C

C SET GUESS TO AVERAGE OF UPPER BOUND AND LOWER BOUND
C

3700 AVG-(BIG÷SHALL)/2.0

DELS-AMAXI(0.0,AVG)

REPEAT THE C/I CALCULATIONS ONCE MORE WITH THE SATELLITES SPACED

BY THE DISTANCE AVG. AFTERWARDS RE-SET THE UPPER AND LOWER SOUNDS

IF (DSLON(1) .LT. DSLON(2)) THEN

DSLON(1)-SLON-DELS/2.0

DSLON(2)-SLON+DELS/2.0

ELSE

DSLON(1)-SLON+DELS/2.0

DSLON(2)-SLON-DELS/2.0
END IF

RSLON(1)-DSLON(1)*HADIAN

RSLON(2)-DSLON(2)*HADIAN

CALL VECCAL
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Program DELTA (cont.)

DO 3800 K - 1,2

I-3-K

JoJDWTP(K)

CALL ZPHI (IwKwJ_TH)

THETA(K,J)-TH

CALL DOWNLK(I,K,J,COI)

COID(K)-COI

L-LUWTP(K)

CALL ZPHI (K,I,L,TH)

THETA(I,L)-TH

CALL UPLK(I,K,L,COI)

COIU(K)-COI

"C

3800 CONTINUE

C

CALL COILK(WCOIL)

C

DELCOI - COIMIN - WCOIL

IF (ARS(DELCOI) .LT. (.001*COIMIN)) THEN

C
C ACCEPT THIS VALUE AS THE VALUE OF DELTA-PHI

C

RETURN

END IF

C

IF (DELCOI .LT. 0.0) THEN

C

C SATELLITES ARE TOO FAR APART. RE-SET UPPER BOUND TO CURRENT SEPARATION

C

BIG-DELS

ELSE

SHALL-DELS

C

C SATELLITES ARE TOO CLOSE. RE-SET LOWER ROUND TO CURRENT SEPARATION

C

END IF

C

C THIS IS ANOTHER CHECK ON THE NUMBER OF ITERATIONS TO PREVENT
C EXCESSIVE RUN TINES DURING EXPERIMENTATION

C

ICOUNTmICOUNT+I

IF (ICOUNT .EO. 20) THEN

WRITE(6,999)

STOP

END IF

OOTO 3700

C

END

C

SUBROUTINE XPHI0 (I,K,J,P0)

C

C >> THIS ROUTINE COMPUTES THE ELLIPTICAL BEAM HALF POWER

C >> BEAM WIDTH IN A PLANE ORTHOGONAL TO THE ANTENNA AXIS USING

C >> THE METHOD GIVEN IN THE SOUP-3 MANUAL

C >> ON PAGES III-10 TO Ill-13. A MORE DETAIL EXPLAINATION OF

C >> A SIMILAR PROCEDURE IS FOUND IN THE SOUP-5 MANUAL

C >> ON PAGES 3-3 TO 3-10

C ************************************************************
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Program DELTA (cont.)

COMMON /CONSTS/
1

COMMON /PARAMS/

COMMON /VECTOR/
1

COMMON /VARBLS/

1
2

COMMON /MINELL/

1
2

COMMON /TPOINT/
1

COMMON /ANGLES/
1

COMNON /DIA/

COMMON /LOC/

COMMON /COORD/
1

C

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)
C

CHARACTER*8 NAMESA,SANANE

C

INTEGER APTNER,APTNET,APTNST,APTNSR
C

E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,
PFD,ALOGE,ALN10,COIMIN

C

NUMSAR,NANESA(2),NTPSA(2}
C

DSLON(2},RSLON(2),XO(2),YO(2),

XOAC(2),YOAC(2),ZOAC(2),ROAC(2}
C

UFREQ,DFREQ,GAINS(2),RGAIN{2),TGAIN(2),
UCPHI0(2),DCPHI0(2),EIRP(2),IPTNER(2},

IPTNET(2},IPTNST(2),IPTNSR(2)
C

BCLAT(2),BCLON(2),DECLAT(2),DBCLON(2),

REFLAT(2),REFLON(2),AXR(2},

OEIENT(2),AXNAJ(2)
C

RELON(2,20),RELAT(2,20),DELON(2,20),

DELAT(2,20),XE(2,20),YE(2,20),ZE(2,20)
C

PHI(2,20),PHI0(2,20),THETA(2,20},

ALPHA(2,20),ALPHA0(2,20)
C

DT(2),DR(2)
C

SLON

C

XB(2),YB(2),ZH(2),XPO(2),YPO(2),ZPO(2),

YP(2,2,20),ZP(2,2,20),YD(2,20),ZD(2,20)
C

COMMON /MULTIP/ ADELON(100,20),ADELAT(100,20),

i ADBLON(100,100),ADBLAT(100,100),AELLOC(100,100),

2 AORENT(100,100),AAXNAJ(100,100),

3 AAXR(100,100),WELLOC(100),EELLOC(100),INTP(100),

4 NELLOC(100),SANAME(100)
C

COMMON /AREAS/ DELTS,INTSP,NUNSA,OPTION
C

COMMON /SW/ DELM(100,100),DELNAX(100,100),DELP(20,100,100),

1 DELPH(20,100,100),DELPOS(20),NUMSAT(100),IPOS

C

COMMON /PTRN/ APTNER(100},APTNET(100),APTNST(100),APTNSR(100),

I ADT(100),ADR(100)

C
C ***********************************************************

C

C IN THIS SECTION THE COMPONENTS OF THE UNit' VECTORS DEFINING A NEW

C COORDINATE SYSTEM IN THE PLANE ORTHOGONAI. TO THE ANTENNA AXIS ARE

C CALCULATED

C

SINPHS - SIN(RSLON(I))

COSPHS - COS(RSLON(I))
C

COSW - COS(ECLAT(I)) * COS(RSLON(I)-BCLON(I))

SINW - SIN(ACOS(COSW))
C

RSLAT - 0.

IF (BCLON(I) .EQ. RSLON(I} ) GO TO I

IF (BCLAT(I) .EO. 0.0) GO TO 2

ARG - COS(HCLAT(I)) * SIN(ABS(BCLON(I)-RSLON(I))) / SINW
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A - ASIN(ARG)

IF (BCLON(I).GT.RSLON(I) .AND. BCLAT(I).GT. 0.0) A-2.*PI-A

IF (BCLON(I).LT.RSLON(I) .AND. BCLAT(I).LT. 0.0) AmPI-A

IF (BCLON(I).GT.RSLON(I) .AND. BCLAT(I).LT. 0.0) A-PI+A

C
COSA - COS(A)
SINA - SIN(A)

GO TO 3

C

C THIS SECTION IS USED ONLY WHEN THE SATELLITE IS DIRECTLY OVERHEAD

C TEAT IS THE SATELLITE LONGITUDE IS THE SAME AS TEE AIMPOINT LONGITUDE

C

1 CONTINUE

COSA - -i.

SINA - 0.

A -.PI
IF (ECLAT(I) .LT. 0.0) GO TO 3

COSA - 1.

A- 0.

GO TO 3

C

C THIS SECTION IS USED ONLY WHEN THE AIMPOINT OF TRE SERVICE AREA IS ON

C THE EQUATOR

C

2 CONTINUE

COSA - 0.

SINA - i.

A - PI/2.
IF (BCLON{I) .LT. RSLON(I}) GO TO 3

SINA m -i.

A - 1.5*PI

C

3 CONTINUE

TANT - SINW / (GCR - COSW)

TRAD - ATAN(TANT)

SINT - SIN(TEAD)

COST - COS(TRAD)

C

A21 - - COSA * SINPHS

A22 - COSA * COSPHS

A23 - SINA

C

A31 - SINT * COSPHS + COST * SINA * SINPHS

A32 - SINT * SINPHS - COST * SINA * COSPHS

A33 - COST * COSA

C

CSFLAT - COS(REFLAT(I))

C

C THIS CALCULATES COMPONENTS OF A VECTOR FROM THE ORIGIN TO THE REFERENCE

C POINT ON THE MAJOR AXIS OF THE ELLIPSE ON THE EARTH'S SURFACE

C

VR1 - CSFLAT * COS(REFLON(I))

VR2 - CSFLAT * SIN(REFLON(I))

VR3 - SIN(REFLAT(I))

C

C THIS CALCULATES THE COMPONENTS OF A VECTOR FROM THE ORIGIN TO THE

C INTERSECTION OF THE SATELLITE'S ANTENNA _':r_ WIT_ THE _APTH

C

CSBLAT - COS(HCLAT(I))

VCI - CSELAT * COS(BCLON(I))

VC2 - CSBLAT * SIN(BCLON(I))

VC3 - SIN(ECLAT(I))

C

C THIS CALCULATES THE COMPONENTS OF A VECTOR FROM TEE ORIGIN TO EARTH

C STATION OF INTEREST

C
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Program DELTA (cont.)

COSTE - COS(RELAT(K,J))

VEI - COSTE * COS(RELON(K,J)}

VE2 - COSTE * SIN(RELON(E,J))

VE3 - SIN(RELAT(R,J))

C
C CALCULTES COMPONENTS OF VECTOR FROM ORIGIN TO SATELLITE

C

VSI - GCR * COS(RSLON(I)}

VS2 - GCR * SIN(RSLON(I)}

VS3 - 0.0

C
VRMVCI - VR1 - VC1

VRMVC2 - VR2 - VC2

VRMVU3 - VR3 - VC3

C

VEMVS1 - VE1 - VSI

VEMVS2 - VE2 - VS2

VEMVS3 - VE3

C

C TWO ANGLES, El AND $2 ARE CALCULATED HERE. $2 IS THE ANGLE BETWEEN THE

C VECTOR JOINING THE AIMPOINT OF THE SATELLITE ANTENNA AND THE EARTH TEST

C POINT IN QUESTION AND THE VECTOR A2 CALCULATED EARLIER.

C S1 IS THE ANGLE BETWEEN THE MAJOR AXIS OF THE

C MINIMUM ELLIPSE COVERING THE SERVICE AREA AND A2.

C

SINUMR - A31*VRMVC1 + A32*VRMVC2 + A33*VRMVC3

SIDENR - A21*VRMVC1 + A22*VRMVC2 + A23*VRNVC3

C

S2NUMR - A31*VEMVS1 + A32*VEMVS2 + A33*VEMVS3

S2DENR - A21*VEMVS1 + A22*VEMVS2 + A23*VEMVS3

C

IF (SIDENR. NE .0.0) GO TO i0

S1 - PI / 2.0

GO TO 15

i0 SI - ATAN(SINUMR/SIDENR)

C

15 IF (S2DENR. NE .0.0} GO TO 20

S2 - PI / 2.0
GO TO 25

20 $2 - ATAN(S2NUMR/S2DENR)

C

C SIGMA IS THE ANGLE BETWEEN THE VECTOR FROM THE AIMPOINT TO THE

C TESTPOINT IN QUESTION AND THE MAJOR AXIS OF THE ELLIPSE

C

25 SIGMA - $2 - SI

CS - COS(SIGMA)

SS - SIN(SIGMA)

AR - AXR(I}

P0 - AXMAJ(I) / SQRT(CS*CS + AR*AR * SS*SS)

C

RETURN
END

C

SUBROUTINE I CONST

C

C THIS SUBROUTINE ENTERS VARIOUS CONSTANTS USED THROUGHOUT THE

C OTHER ROUTINES OF THIS PROGRAM

C

********************************************************************

C

IMPLICIT INTEGER(I-L,N),REAL(A-N,N,O-Z)

C

COMMON /CONSTS/ E, PI, RADIAN, DEGREE, GCR, ER, ERDB, EAP,

1 PFD, ALOGZ, ALNI 0, COIMI N

C
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C

CGCR

C

E - 2.7182818285

PI - 3.1415926536

RADIAN - PI / 180.0

DEGREE - 180.0 / PI

GCR - 8.6134

- RADIUS OF GEO-STATIONARY ORBIT IN EARTH RADII

ER - 8.371E+08

C

C ER - RADIUS OF EARTH IN METERS

C

ALOGE - 0.4342944819

ALN10 - 2.3028850930

ERDB - -20.0 * ALOG10(ER)

PFD - -90.

C

C CONSTANT PFD (POWER FLUX DENSITY) AT AIMPOINTS FOR ALL ADMINISTRATIONS

C ON THE DOWNLINK

C

SAP - 0.6

SAP - APPERTURE EFFICIENCY OF REFLECTOR ANTENNAS

RETURN

END

SUBROUTINE RPMI (I,K,J,PHITK)
************************************************************

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)

CHARACTER*8 NAMESA,SANAME

INTEGER APTNER,APTNET,APTNST,APTNSR

COMMON /CONST$/
1

COMMON /PARAMS/

COMMON /VECTOR/

1

COMMON /VARBLS/

I

2

COMMON /MINELL /

1

2

COMMON /TPOINT/

I

COMMON /ANGLES/

I

COMMON /DIA/

COMMON /LOC/

COMMON /COOMD/

1

E,PI,RADIAN,DEGEEE,GCR,ER,ERDE,EAP,

PFD,ALOGE,ALN10,COIMIN

NUMSAR,NAMESA(2),NTPSA(2)

DSLON(2),RSLON(2),XO(2),¥O(2),

XOAC(2),YOAC(2),ZOAC(2),ROAC(2_

UFREQ,DFREQ,GAINS(2),RGAIN(2),TGAIN(2),

UCPMIO(2),DCPHIO(2),EIRP(2),IPTNER(2},

IPTNET(2),IPTNST(2),IPTNSR(2)

PCLAT(2),BCT.ON{2),DSrLAT(2),DBCLON(2),

REFLAT(2),REFLON(2),AXR(2),

ORIENT(2),AXMAJ(2)

RELON(2,20),RELAT(2, _n),DELON(2,20),

DELAT(2,20),XE(2,20),_E(2,20),ZE(2,20)

PHI(2,20),PHI0(2,2_),TII_TA(?,?n),

ALPHA(2,20),ALPHA0(2,2U)

DT(2),DR(2)

SLON

XB(2),YB(2),ZB(2),XPO(2),¥PO(2),ZPO(2),

YP(2,2,20),ZP(2,2,20),YD(2,20),ZD(2,20)
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Program DELTA (cont.)

".

COMMON /MULTIP/ ADELON(100,20),ADELAT(100,20),

1 ADBLON(100,100),ADBLAT(100,100),AELLOC(100,100),

2 AORENT(100,100),AAXNAJ(100,100),

3 AAXR(100,100),WELLOC(100),EELLOC(100),INTP(100),

4 NELLOC(100),SANAME(100)

COMMON /AREAS/ DELTS,INTSP,NUMSA,OPTION

COMMON /SW/ DELM(100,100),DELNAX(100,100),DELP(20,100,100),

1 DELPH(20,100,100),DELPOS(20),NUMSAT(100),IPOS

COMMON /PTRN/ APTNER(100),APTNET(100),APTNST(100},APTNSR(100),

1 ADT(100),ADR(100)

***********************************************************

FIND THE ANGLE BETWEEN TEST POINT J OF SERVICE AREA R

AND THE AIMPOINT OF SATELLITE I AS SEEN FROM SATELLITE I

XOAKRJ - XE(K,J} - XO(I)

YOAEEJ - YE(E,J) - YO(I)

ZOAKKJ - ZE(K,J)

ROAKKJ - SQRT(XOAKRJ*XOAKKJ + YOARKJ*YOAKRJ + ZOAKKJ*ZOAKKJ}

COSPHI - (XOAC(I) * XOAKRJ + YOAC(I) * YOAKRJ ÷ ZOAC(I) * ZOAERJ)

$ / (ROAC(I} * ROAEKJ)
IF (COSPHI .GT. 1.0) THEN

COSPHI-1.0

ELSE

IF (COSPNI .LT. -i.0) THEN

COSPHI--1.0

ELSE

PNITK - ACOS(COSPHI)

END IF

END IF

RETURN

END

SUBROUTINE ZPHI (ItK,J,ATHETA)
************************************************************

IMPLICIT INTEGER(I-L,N),REAL(A-N,M,O-Z)

CHARACTER*8 NAMESA,SANANE

INTEGER APTNER,APTNET,APTNST,APTNSR

COMMON /CONSTS/
1

COMMON /PARANS/

COMMON /VECTOR/

1

COMMON /VARBLS/
1

2

COMMON /MINELL/

1

2

COMNON /TPOINT/

1

E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,

PFD,ALOGE,ALNI0,COININ

NUMSAR,NAMESA(2),NTPSA(2)

DSLON(2),RSLON(2),XO(:),YO(2),

XOAC(2),YOAC(2),ZOAC(2),ROAC(2)

UFREQ,DFREQ,GAINS(2_,_C_IN(?),TGAIN(2),

UCPHI0(2),DCPHI0t2_,EIRF(2),IFTNER[2),

IPTNET(2),IPTNST(2),IPTNSR(2)

BCLAT(2),BCLON(2),DBCLAT(2),DBCLON(2),

REFLAT(2),REFLON(2),AXR(2),

ORIENT(2),AXNAJ(2)

RELON(2,20),RELAT(2,20),DELON(2,20),

DELAT(2,20),XE(2,20),YE(2,20),ZE(2,20)
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C
COMMON /ANGLES/ PHI(2,20),PHI0(2,20),THETA(2,20),

l ALPHA(2,20),ALPHA0(2,20)

C

COMMON /DIA/ DT(2),DR(2)
C

COMMON /q, OC/ SLON
C

COMMON /COORD/ XB(2),YB(2)eZB(2),XPO(2),YPO(2),ZPO(2),
1 YP(2,2,20),ZF(2,2,20),YD(2,20),ZD(2,20)

C
COMMON /MULTIP/ ADELON(100,20)tADELAT(100,20),

1 ADBLON(100,100),ADBLAT(100tI00),AELLOC(100,100),
2 AORENT(IOO,IOO),AAXMAJ(IO0,100),
3 AAXR(100,100.),WELLOC(100),EELLOC(100),INTP(100),
4 NELLOC(100),SANANE(100)

C
COMMON /AREAS/ DELTS,INTSP,NUMSAeOPTION

C

COMMON /SW/ DELM(100,100),DELNAX(100,100),DELP(20,100,100),
1 DELPH(20,IOO,IOO),DELPOS(20),NUMSAT(IOO),IPOS

C
COMMON /PTRN/ APTNER(100),APTNET(100)wAPTNST(100)eAPTNSR(100),

I ADT(100),ADR(100)

C

C ***********************************************************

C

C THIS ROUTINE CALCULATES THE TOPOCENTRIC ANGLE BETWEEN THE

C TWO SATELLITES AS SEEN FROM THE EARTH STATION J OF AREA K

C
C*** >> CALCULATE OFF AXIS VECTOR COMPONENTS (IKJ) (<

C

XOAIKJ - XE(K,J) - XO(I)

YOAIEJ - YE(K,J) - YO(I)
ZOAIEJ - ZE(E,J)

ROAIEJ - SORT(XOAIEJ*XOAIKJ + YOAIEJ*YOAIKJ + ZOAIRJ*ZOAIEJ)

C

XOAEEJ m XE(K,J) - XO(E)

YOAEEJ " YE(K,J) - YO(E)

ZOAEEJ " ZE(K,J)

ROAKEJ " SQRT(XOAKEJ*XOAKRJ + YOAKKJ*YOAKEJ + ZOARKJ*ZOARRJ)

C

TNUMER " XOAEKJ * XOAIEJ + YOAEEJ * YOAIEJ ÷ ZOARKJ * ZOAIRJ

TDENON " ROAEEJ * ROAIKJ

C

TEMPU " TNUMER / TDENOM

C

ATHETA " 0.0

IF (ABS(TEMPU) .LT. 1.0) ATHETA " ACOS(TEMPU)

C

RETURN

END

C

SUBROUTINE REFCAL(N)

C

C*** >> THIS ROUTINE CALCULATES THE REFERE_4CE POINT LAT. & LON. <<

C*** >> BASED ON THE ALGORITHM IN SOUP rI^VPV_L _ 4, NAY 1983 <<

C ************************************************************

C

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)

C

CHARACTER*8 NANESA,SANANE

C

INTEGER APTNER,APTNET,APTNST,APTNSR

C

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,RRDB,EAP,

|
I

i

I
I

I
i
I

i

I
I

I

I
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Program DELTA (cont.)

1

C

COmmON /PARA_S/

C

COMMON /VECTOR/
1

C

COMMON /VARBLS/

1

2

C

COMMON /MINELL/

I

2

C

COMMON /TPOINT/

1

C

COMMON /ANGLES/

1

C

COMMON /DIA/

C

COMMON /LOC/
C

COMMON /COORD/

1

C

PFD,ALOGE,ALNI0,COIMIN

NUMSAR,NAMESA(2),NTPSA(2)

DSLON(2),RSLON(2),XO(2),YO(2),

XOAC(2),YOAC(2),ZOAC(2),ROAC(2)

UFRE0,DFREO,GAINS(2),RGAIN(2},TGAIN(2),

UCPHI0(2),DCPHI0(2),EIRP(2)#IPTNER(2),

IPTNET(2},IPTNST(2),IPTNSR(2}

ECLAT(2),BCLON(2},DBCLAT(2),DECLON(2),

REFLAT(2),REFLON(2),AXR(2},

ORIENT(2),AXMAJ(2}

RELON(2,20),RELAT(2,20},DELON(2,20),

DELAT(2,20),XE(2,20),YE(2,20),ZE(2,20)

PHI(2,20},PHI0(2,20),THETA(2,20),

ALPHA(2,20),ALPHA0(2,20}

DT(2),DR(2}

SLON

XB(2),YB(2),ZB(2),XPO(2},YPO(2),ZPO(2),

YP(2,2,20),ZP(2,2,20},YD(2,20),ZD(2,20)

COMMON /MULTIP/ ADELON( 100,20 ) ,ADELAT( 100,20 ),

i ADBLON(i00,100) ,ADBLAT( i00, i00) ,AELLOC( I00,100 ),

2 AORENT(100,100) ,AAXMAJ( 100,100),

3 AAXR(100,100),WELLOC(100),EELLOC(100),INTP(100),

4 NELLOC(100) ,SANAME(100)
C

COMMON /AREAS/ DELTS, INTSP,NUMSA,OPTION

C

COMMON /SW/ DELM(100,100),DELMAX(100,100),DELP(20,100,100),

1 DELPH(20,100,100 } ,DELPOS(20 ) ,NUMSAT(100 ), IPOS

C

COMMON /PTRN/ APTNER(100),APTNET(100),APTNST(100),APTNSR(100),

1 ADT(100) ,ADR(100)

C

C ***********************************************************

C

C TRANSLATE COORDINATES OF THE AIMPOINT TO PLANE ORTHOGONAL

C TO ANTENNA AXIS OF DESIRED SATELLITE, CALLED THE ANTENNA

C PLANE

C

PGMPS - BCLON(N) - RSLON(N}

COSTG - COS(ECLAT(N))
COSPP - COS ( PGNPS )

Q1 - COSTO * SIN(PGMPS)

02 - GCR - COSTG * COSPP

03 - SQRT(QI**2+Q2**2)

C

SX - ATAN2(Q1,02)

SY - ATAN2(SIN(BCLAT(N) ) ,Q3)

C

C FIND X AND Y DISTANCES IN THE ANTENNA PLANE

C FROM THE BEAM AXIS OF A POINT ON THE ELLIPSE MAJOR

C AXIS, ONE HALF SEMIMAJOR AXIS FROM THE AIMPOINT

C

AMAJ2 - AXMAJ(N) * 0.5

SX2 - AMAJ2 * COS(ORIENT(N)}

SY2 - AMAJ2 * SIN(ORIENT(N))
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C
C
C

C

901

C

10

FIND A REFERENCE POINT OF THE ELLIPSE MAJOR AXIS IN THE ANTENNA PLANE

Xl - SX + SX2

YI - SY + SY2

04 - ACOS(COS(XI) * COS(Y1}}

05 - SrN(04)
T - GCR * Q5
IF (T .LE. 1.0) GO TO I0

IF T > 0 THE REFERENCE POINT MUST BE PLACED ON THE OTBER BIDE

OF THE MAJOR AXIS

xl SX - SX2

Y1 - SY - SY2

Q4 _ ACOS(COS(X1) * COS(Y1))

Q5- SIN{Q4)
T - GCR * 05

IF (T .LE. 1.0 .AND. T .GE. -1.0) GO TO I0

IF (T .GT. 0.) T- 1.0

IF (T .LT. 0.) T - -1.0

IF T IS STILL > 1, AN ERROR EXISTS, THE ELLIPSE DOES NOT INTERSECT
THE EARTH

WRITE(6,901) T
FORMAT(/10X,'****** POSSIBLE ERROR IN ELLIPSE SELECTION ',

$ F5.1)

P1 - SIN(Y1)/Q5
P1 - AMAXI(P1,-1.0)

P1 - ARINI(PI,I.0)
PX - ASIN(P1)

IF (Xl .LT. 0.0) PX - PI - PX

BLAM - ASIN(T) - Q4

REFLAT(N) - ASIN(SIN(BLAN)*SIN(PX}}

AL - ACOS(COS(BLAN)/COS(REFLAT(N)))

IF (ABS(PX) .GT. PI/2.) AL - -AL

REFLON(N) m RSLON(N) + AL

RETURN

END

SUBROUTINE DOWNLK(I,E,J,DCOI)

IMPLICIT INTEGER(I-L,N),REAL(A-B,M,O-Z)

CHARACTER*8 NANESA,SANARE

INTEGER APTNER,APTNET,APTNST,APTNSR

COMMON /COMSTS/ E,PI,RADIAN,DEGREE,GC_,ER,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COIM_!

COMMON /PARA_S/ NUMSAR,NAMESA(2),NTP3A(2)

COMMON /VECTOR/ DSLON(2),RSLON(2),XO(_),YO(_),

1 XOAC(2),YOAC(2),ZOAC(2),ROAC(2)

COMMON /VARBLS/ UFREQ,DFREQ,GAINS(2),RGAIN(2},TGAIN(2},

1 UCPNI0(2),DCPHI0(2),EIRP(2),IPTNER(2},

2 IPTNET(2),IPTNST(2),IPTNSR(2)

COMMON /MINELL/ ECLAT(2),ECLON(2),DECLAT(2),DBCLON(2),

1 REFLAT(2),REFLON(2},AXR(2),
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Program DELTA (cont.)

SATELLITE I INTERFERING.

PH-PHI(K,J)

PO-PHI0(E,J)

AL-ALPHA(I,J)

AO-ALPHA0(I,J)

TN-THETA(K,J)

GK-GAINS(K)

GI-GAINS(I)

C

IF (IPTNST(K) .EQ. 6) THEN

TDISC - -3.

GOTO 60

END IF

C

GO TO(10,20,30,40,50),IPTNST(K)
C

10 CALL PTNSTI(PH,PO,GK,TDISC)
GOTO 60

C

20 CALL PTNST2(PH,POtGK,TDISC)

GOTO 60

C

30 CALL PTNST3(PH,PO,GK,TDISC)

GOTO 60
C

40 CALL PTNST4(PH,PO,GK,TDISC)

GOTO 60

C

50 CALL PTNST5(PH,PO,GE,TDISC)

C

60 IF (TDISC .LT. -3.) THEN

TDISC--3.

2 ORIENT(2),AXNAJ(2)
C

COMMON /TPOINT/ RELON(2,20),RELAT{2,20),DELON(2,20),

1 DELAT(2,20),XE(2,20},¥E(2,20),ZE(2,20)
C

COMMON /ANGLES/ PHI(2,20},PHI0(2#20},THETA(2,20),

1 ALPHA(2,20),ALPHA0(2,20)

C

COMMON /DIA/ DT(2),DR(2)

C

COMMON /LOC/ SLON
C

COMMON /COORD/ XB(2),YB(2),ZE(2},XPO(2},¥PO(2),ZPO(2),

1 YP(2,2,20),ZP(2,2,20),YD(2,20},ZD(2,20)
C

COMMON /MULTIF/ ADELON(100,20),ADELAT(100,20},

1 ADBLON(100,100),ADBLAT(100,100),AELLOC(100,100),

2 AORENT(100,100),AAXNAJ(100,100),

3 AAXR(100,100),WELLOC(100),EELLOC(100),INTP(100),

4 NELLOC(100),SANAME(100)

C

COMMON /AREAS/ DELTS,INTSP,NUMSA,OPTION
C

COMMON /SW/ DELM(100,100),DELNAX(100,100),DELP(20,100,100),

I DELPH(20,100,100),DELPOS(20),NUMSAT(100),IPOS
C

COMMON /PTRN/ APTNER(100),APTNET(100),APTNST(100},APTNSR(100),

1 ADT(100),ADR(100)
C

C ***********************************************************

C

C THIS IS A SUBROUTINE TO CALCULATE THE DOWNLINR C/I AT
C TEST POINT J IN THE SERVICE AREA OF R WITH

C

C
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Program DELTA (cont.)

C

C
C

C

C
110

C
120

C
130

C
140

C
150

C
160

C
210

C
220

C

230

C
240

C
250

C

C
C

260

END IF

CALCULATE DISTANCE FROM SATELLITE TRANSMITTER TO EARTH RECEIVER

XOAKJ-XE(R,J)-XO(_)

YOAKJmYE(K,J)-YO(K)

ZOAKJ-ZE(E,J)
ROAKJmSQRT(XOAKJ*XOAKJ+YOAKJ*YOAKJ+ZOARJ*ZOAKJ}

CALCULATE NUMERATOR OF C/I EQUATION FOR THE DOWNLINH

DESpRmEIRP(K}÷RGAIN(K)÷TDISC-20.0*ALOGI0(ROAEJ*SR)

GO TO(I10,120,130,140,150},IPTNST(1)

CALL PTNSTI(AL,AO,GI,TDISC)

GOTO 160

CALL PTNST2(AL,AO,GI,TDISC)

GOTO 150

CALL PTNST3(AL,AO,GI,TDISC)

GOTO 160

CALL PTNST4(AL,AO,GIpTDISC)

GOTO 160

CALL PTNSTS(AL,AO,GI,TDISC)

GO TO(210,220,230,240,250),IPTNER(K)

CALL PTNERI(TH,DCPHIO(K),DFREQ,RGAIN(K),RDIR}

GOTO 260

CALL PTNER2(TH,DCPHI0(K),DFREQ,RGAIN(K},RDIR)

GOTO 260

CALL PTNER3(TH,DCPHIO(K),DFREQ,RGAIN(E),RDIR)

GOTO 260

CALL PTNER4(TH,DCPHIO(E),DFREQ,RGAIN(K),RDIR}

GOTO 260

CALL PTNERS(TH,DCPHI0(K),DFREO,RGAIN(K),RDIR)

CALCULATE DISTANCE FROM INTERFERING SATELLITE TO TEST POINT J

XOAIJ-XE(K,J)-XO(I)

YOAIJmYE(K,J)-YO(I)

ZOAIJ-ZE(E,J)

ROAIJ.SORT(XOAIJ*XOAIJ+YOAIJ*YOAIJ÷ZOAIJ*ZOAIJ)

FIND DENOMINATOR IN C/I CALCULATION

PWRINTmEIRP(1)+TDISC+RDIR-20.O*ALOGIqIIROAIJ*ER)

CALCULATE DOWNLINK C/I IN DB

DCOI-DESPR-PWHINT

RETURN

END

SUBROUTINE UPLE(I,K,L,UCOI)

THIS IS A SUBROUTINE TO CALCULATE THE UPLINE C/I
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Program DELTA (cont.)

AT SATELLITE K RECEIVING A TRANSMISION FROM TEST

POINT J. INTERFERENCE IS FROM TEST POINT L OF

SERVICE AREA I.

************************************************************

IMPLICIT INTEGER(I-I.,N),REAL(A-H,M,O-Z}

CHARACTER*8 NAMESA,SANAME

INTEGER APTNER,APTNET,APTNST,APTNSR

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COIMIN

COMMON /PARAMS/ NUMSAR,NAMESA(2),NTPSA(2}

COMMON /VECTOR/ DSLON(2),RSLON(2},XO(2),¥O(2),

1 XOAC(2},YOAC(2),ZOAC(2),ROAC(2}

COMMON /VARBLS/ UFREQ,DFREQ,GAINS(2),RGAIN(2),TGAIN(2),

1 UCPHI0(2),DCPHI0(2),EIRP(2),IPTNER(2),

2 IPTNET(2),IPTNST(2),IPTNSR(2}

COMMON /MINELL/ BCLAT(2),BCLON(2),DBCLAT(2),DBCLON(2),

1 REFLAT(2),REFLON(2),AXR(2),

2 ORIENT(2),AXMAJ(2)

COMMON /TPOINT/ RELON(2,20),RELAT(2,20),DELON(2,20},
1 DELAT(2,20),XE(2,20),YE(2,20),ZE(2,20)

COMMON /ANGLES/ PHI(2,20),PHI0(2,20),TBETA(2,20},

1 ALPHA(2,20),ALPBA0(2,2C)

COMMON /DIA/ DT(2),DR(2)

COMMON /LOC/ SLON

COMMON /COORD/ XB(2),YB(2),ZB(2),XPO(2},YPO(2},ZPO(2},

1 YP(2,2,20),ZP(2,2,20),YD(2,20),ZD(2,20)

COMMON /MULTIP/ ADELON(100,20},ADELAT(100,20),

1 ADBLON(100,100),ADBLAT(100,100),AELLOC(100,100},

2 AORENT(100,100),AAXMAJ(100,100},

3 AAXR(100,100),WELLOC{100),EELLOC(100),INTP(100),

4 NELLOC(100),SANAME(100)

COMMON /AREAS/ DELTS,INTSP,NUMSA,OPTION

COMNON /SW/ DE[.M(100,100),DELNAX(100,100),DELP(20,100,100),

1 DELPH(20,100,100),DELPOS(20),NUMSAT(100),IPOS

COMMON /PTRN/ APTNER(100),APTNET(100).APTNST(100),APTNSR(100),

1 ADT(100),ADR(100}

COMMON /WDISCR/ WUDIS(2)

***********************************************************

FIND NUMERATOR OF C/I CALCULATION

THIS TERM IS THE DISCRIMINATION THE SATELLITE GIVES TO THE

DESIRED TRANSMISSION FROM THE WORST TEST POINT IN ITS SERVICE

AREA. THIS WAS CALCULATED AND SAVED IN THE SUBROUTINE SEPAR

RDISC - WUDIS(K)
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Program DELTA (cont.)

C

C THIS CHECK WAS PUT IN DURING EXPERIMENTATION. THIS VALUE SHOULD

C NEVER FALL BELOW -3 DB

C

IF (RDISC .LT. -3.) THEN
RDISC--3.

END IF

C

DESPRmRDISC+TGAIN(E)

C

C FIND DENOMINATOR OF C/I CALCULATION

C

C FIRS T FIND THE RECEIVING DISCRIMINATION PRESENTED TO UNWANTED

C SIGNAL BY THE SATELLITE ANTENNA

C
GO TO(II,12,I3,14,15)IPTNSR(I)

C

ii CALL PTNSTI(ALPHA(K,L},ALPHA0(E,L),GAINS(R),RDISC}

GOTO 20

C

12 CALL PTNST2(ALPHA(K,L},ALPHA0(K,L},GAINS(E),RDISC)

GOTO 20

C
13 CALL PTNST3(ALPHA(K,L),ALPHA0(K,L},GAINS(E},RDISC)

GOTO 20

C
14 CALL PTNST4(ALPHA(R,L),ALPHA0(R,L},GAINS(R),RDISC}

GOTO 20

C
15 CALL PTNSTS(ALPHA(K,L),ALPHA0(K,L},GAINS(K},RDISC)

C

20 GO TO(l10,120,130,140,150)oIPTNET(K)

C
C SECOND FIND THE TRANSMITTING DISCRIMINATION FROM THE F_%RTB STATION

C ANTENNA IN THE UNWANTED ADMINISTRATION'S SERVICE AREA

C

110 CALL PTNERI(THETA(I,L),UCPNI0(K),UFREQ,TGAIN(I},TOISC}

GOTO 160

C

120 CALL PTNER2(THETA(I,L),UCPNI0(E),UFREQ,TGAIN(I},TDISC}

GOTO 160

C
130 CALL PTNER3(THETA(I,L),UCPHI0(E),UFREQ,TGAIN(I),TDISC)

GOTO 160

C

140 CALL PTNER4(THETA(I,L),UCPHI0(K},UFREQ,TGAIN(I),TDISC)

GOTO 160

C

150 CALL PTNERS(THETA(I,L),UCPHI0(K),UFRE0,TGAIN(I},TDISC)

C

160 PWRINT-RDISC+TDISC

C

C CALCULATE UPLINK C/I

C

UCOI-OESPR-PWRINT

C

RETURN

END

C

SUBROUTINE PTNSTI(PT,P0,G,DISC)

C

C FSS SATELLITE TX PATTERN FROM CCIR REPORT 558-2

C

IMPLICIT INTEGER(I-N),REAL(A-H,O-Z)

C

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB,RAP,
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Program DELTA (cont.)

10

20

40

P1
P2

P3
P4
P5
P6

IF (xl .LE. 0.5)

IF (Xl .LE. P2)
IF (Xl .LE. P3)
IF (X1 .LE. P4)

IF (Xl .bE. PS)

IF (Xl .LE. P6)

DISC - -G
GO TO 40

1 PFD,ALOGE,ALN10,COIMIN

X-PT/P0
IF (X .LE. 1.3) GO TO 10
IF (X .LE. 3.15) GO TO 20

DISC - -(7.5 + 25.0 * ALOGI0(X))

IF (DISC.LE.(-G-10.)) DISC - -G-10.
GO TO40

DISC - -12.0 * X * X

GO TO 40

DISC - -20.0

RETURN

END

SUBROUTINE PTNST2(PT,P0,G,DISC)

FSS SATELLITE TX PATTERN FROM RARC 83 $ 5.1.10.1

IMPLICIT INTEGER(I-N),REAL(A-H,O-Z)

COMMON /CONSTS/ EePI,RADIAN,DEGREE,GCRwER,ERDR,EAP,

1 PFD,ALOGE,ALN10,COIMIN

DP0 -P0*DEGREE

X1 -PT/P0

X2 -DP0/0.8

X3 -.5"(1.-1./X2)

-.4/DP0+X3

-1.155/DP0 +X3

-1.60/DP0+X3

- 4.0/DP0+X3

- 6.960/DP0 +X3

- 10.**((G-11.5)/25.)/X2 + X3

GO TO i0

GO TO 12

GO TO 14

GO TO 16

GO TO 18

GO TO 20

C
10 DISC - -12.0 * Xl * X1

GO TO 40

C

12 DISC - -18.75*DP0*DP0*(X1-X3)*(X1-X3_

GO TO 40

C

14 DISC - -25

GO TO 40
C

16 DISC - -17.5 - 25.*ALOG10((Xl-X3)*X2)

GO TO 40

C

18 DISC - -35.

GO TO 40
C

20 DISC - -11.5 - 25.* ALOGI0((XI-X3)*X2)

C
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Program DELTA (cont.)

40 RETURN

END

C

SUBROUTINE PTNST3(PT,P0,G,DISC)

C

C FSS SATELLITE TX PATTERN FROM RARC 83 $ 5.1.10.1

C WITH MODIFICATION

C

IMPLICIT INTEGER(I-N),REAL(A-H,O-Z)

C

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COIMIN

DP0 - P0*DEGREE

X1 m PT/P0

X2 - DP0/0.8

X3 _ .5"(1.-1./X2)

C

IF (XI .LE. 0.5) GO TO I0

P2 - 1.265/DP0 +X3

IF (X1 .LE. P2) GO TO 12

P3 - I0.**((30.-24.)/30.)

IF (XI .LE. P3) GO TO 14

P4 - I0.**((G-24.)/30.)

IF (XI .LE. P4) GO TO 16

C

DISC - -G

GO TO 40
C

10 DISC - -12.0 * Xl * X1

GO TO 40

C

12 DISC - -18.75*DP0*DP0*(XI-X3)*(XI-X3)

GO TO 40

C

14 DISC - -30.

GO TO 40

C

16 DISC - -24.-30.*ALOG10(X1)

C

40 RETURN

END

C

SUBROUTINE PTNST4(PT,P0,G,DISC)
C

C PSS SATELLITE TX PATTERN FROM RARC 83 $5.10.1

C WITH MODIFICATION

C

IMPLICIT INTEGER(I-N),REAL|A-M,O-Z)

C

COMMON /CONSTS/ E,PI,RADYAN,DEGREE,GCR,ER,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COIMIN
C

DP0 - P0*DEGREE

Xl - PT/PO

X2 - DP0/0.8

X3 - .5"(1.-1./X2)

C

IF (Xl .LE. 0.51 GO TO I0

P2 - 1.265/DP0 +X3

IF (XI .LE. P2) GO TO 12

P3 - 10.**((30.-24.)/30.)

IF (X1 .LE. P3) GO TO 14

P4 - I0.**((G-24.)/30.)

IF (XI .LE. P4) GO TO 16

DISC - -G
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Program DELTA (cont.)

00 TO 40

C
10 DISC m -12.0 * X1 * Xl

GO TO 40
C

12 DISC - -I8.75*DP0*DP0*(Xl-X3)*(Xl-X3)
GO TO 40

C
14 DISC - -30.

GO TO 40

C
16 DISC - -24.-30.*ALOG10(X1)

C
40 RETURN

END

C SUBROUTINE PTNSTS(PTtP0,G,DISC)

C
C SATELLITE TX PATTERN PROM RARC 83 P.II1,

C BSS PATTERN

C

IMPLICIT INTEGER(I-N},REAL(A-M,O-Z)

C

COMMON /CONSTS/ E,PI,RADIAN,DEGRBE_GCR,ER,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COIMIN

C

XI - PT/P0

C

IF (xl .LB. 1.58) GO TO i0

IF (HI .LB. 3.16) GO TO 22

In (xl .LE. 10.) GO TO 14

C

DISC - -42.5

GO TO 40

C

10 DISC - -12.0 * X1 * Xl

GO TO 40

C

12 DISC - -30.

GO TO 40

C

14 DISC - -17.5-25.*ALOG10(X1)

GO TO 40

C

40 RETURN

END

C

SUBROUTINE PTNERI(PR,P0,P,G,DIREC)

C

C PSS EARTH REVETVER PATTERN ?ROM CCIR REPORT 391-4

C AIqTENNA DIRJqETER 3 METERS, PLqZN LOBE NOT GAUSSIAN

C

IMPLICIT INTEGER(I-N),REAL(A-H,O-Z)

C

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,SR,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COIMIN

C

DPR - PR*DSGREE

DP0 - P0 * DEGREE

WAVEL - 300./F
D-3.

X1 - D/WAVEL

G1 - 2. + 15.* ALOG10(X1)

PM - 20./XI* SQRT(G-G1)

PS - 15.85 / X1"*0.6

C
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Program DELTA (cont.)

IF (DPR .LE. PM) GO TO 50

IF (DPR .LE. PS) GO TO 60
IF (DPR .LE. 48.) GO TO 70

C
DIREC = -10.
GO TO 80

C

50 DIREC - G- 2.5E-3 * xl*XI*DPR*DPR

GO TO 8O
C

60 DIREC - G1

GO TO 80

C

70 DIREC - 32.-25.*ALOG10(DPR)

C

80 RETURN

END

C

SUBROUTINE PTNER2(PR,PO,r,G,DIREC)

C

C FSS EARTH REVEIVER PATTERN FROM CCIR REPORT 391-4

C MAIN LOBE GAUSSIAN, ANTENNA DIAMETER 3 METERS,

C NODIFZED FOR NON US COUNTRIES

C

IMPLICIT INTEGER(I-N),REAL(A-H,O-Z)

C

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COININ
c

DPR - PR*DEGREE

X - PR/P0

P2 - i0.**((32.+i0.)/25.)

C

IF (X.LE.0.5) THEN

DIREC - G - 12.*X*X

GO TO 80

ELSE IF (DPR .GE. P2) THEN

DIREC - -10.

GO TO 80

END I F

C

DIREC - G - 12.*X*X

D1 - 32. - 25.*ALOG10(DPR)

IF (D1 .GE. DIREC) DIREC - D1

C

SO RETURN

END

C

SUBROUTINE PTNER3(PR,PO,F,G,DIREC)

C

C FSS EARTH REVEIVER PATTERN FROM CCIR REPORT 391-4

C MAIN LOBE GAUSSIAN
C

IMPLICIT INTEGER(Z-N),REAL(A-H,O-Z)

C

COMNON /CONSTS/ E,PI,RADIAN,DEGREE,GCF.ER,ERDE,EAP,

1 PFD,ALOGE,ALN10,CO_ Tr_

C

DPR - PR*DEGREE

X - PR/P0
P2 - 10.**((29.+10.)/25.)

C

IF (X.LE.I.) THEN

DIREC - G - 12.*X*X

GO TO 80

ELSE IF (DPR .GE. P2) THEN
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Program DELTA (cont.)

8O

8O

DIREC - -10.
GO TO 80
END IF

DIREC - G - 12.*X*X

D1 - 29. - 25.*ALOG10(DPR)
IF (D1 .GE. DIREC) DIREC - D1

RETURN
END

SUBROUTINE PTNER4(PR,P0,F,G,DIREC)

FSSEARTR _EVBIVER PATTERN FROM CCIR REPORT 391-4

MAIN LOBE GAUSSIAN, ANTENNA DIAMETER 4.5 METERS,

NOD}PIED FOR US ONLY

IMPLICIT INTEGER(I-N),REAL(A-H,O-Z)

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COININ

DPR 8 PR*DEGREE

X - PR/P0

P2 - 10.**((29.+10.)/25.)

IF (X.LE.I.} THEN

DIREC m G - 12.*X*X

GO TO 80

ELSE IF (DPR .GE. PE) THEN

DZREC 8 -I0.
GO TO 80

END IF

DIREC - G - 12.*X*X

D1 - 29. - 25.*ALOGZ0(DPR)

IF (D1 .GE. DIREC) DIREC - D1

RETURN

END

SUBROUTINE PTNERB(PR,P0,P,G,DIREC}

FSS EARTH REVEIVER PATTERN FROM CCIR REPORT 391-4

MAIN LOBE GAUSSIAN, ANTENNA DIAMETER 4.5 METERS,

MODIFIED FOR US ONLY

IMPLICIT INTEGER(I-N),REAL(A-H,O-Z)

COMMON /CONSTS/ E,PI,RADTAN,DR_RRE,GCRoER,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COININ

DPR - PR*DEGREE

X - PR/P0

P2 - 10.**((29.+10.)/25.)

IF (X.LE.1.) THEN

DIREC - G - 12.*X*X

GO TO 80

ELSE IF (DPR .GE. P2) THEN
DIREC - -10.

GO TO 60

END IF

DIREC m G - 12.*X*X

D1 - 29. - 25.*ALOG10(DPR)
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Program DELTA (cont.)

IF (D1 .GE. DIREC) DIREC - D1

C

80 RETURN

END

C

SUBROUTINE VECCAL

C

C*** >> SET UP VECTORS FOR THE TEST POINTS <<

C ************************************************************

C
IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)

C

CHARACTER*8 NAMESA,SANAME

C

INTEGER APTNER,APTNET,APTNST,APTNSR

C

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAF,

1 PFD,ALOGE,ALNI0,COIMIN

C

COMMON /PARAMS/ NUMSAR,NAMESA(2),NTPSA(2)

C

COMMON /VECTOR/ DSLON(2),RSLON(2),XO(2),YO(2},

1 XOAC(2),YOAC(2),ZOAC(2),ROAC(2)

C

COMMON /VARBLS/ UFREQ,DFREQ,GAINS(2),BGAIN(2),TGAIN{2),

1 UCPHI0(2),DCPHI0(2),EIRP(2),IPTNER(2},

2 IPTNET(2},IPTNST(2),IPTNSR(2)

C

COMMON /MINELL/ BCLAT(2),BCLON(2),DBCLAT(2),DBCLON(2),
1 REFLAT(2},REFLON(2),AXR(2),

2 ORIENT(2),AXMAJ(2)

C

COMMON /TPOINT/ RELON(2,20),RELAT(2,20),DELON(2,20),

1 DELAT(2,20),XE(2,20),YE(2,20},ZE(2,20}

C

COMMON /ANGLES/ PHI(2,20),PHI0(2,20),THETAI2,20),

1 ALPHA(2,20),ALPHA0(2,20)

C

COMMON /DIA/ DT(2),DR(2)

C

COMMON /LOC/ SLON

C

COMMON /COORD/ XB(2),YB(2),ZB(2),XPO(2),YPO(2),ZPO(2),

i yp(2,2,20),ZP(2,2,20),YD(2,20),ZD(2,20)

C

COMMON /MULTIP/ ADELON(100,20),ADELAT(100,20),

1 ADBLON(100,100),ADBLAT(100,100},AELLOC(100,100),

2 AORENT(100,100),AAXMAJ(100,100),

3 AAXR(100,100),WELLOC(100),EELLOC(100),INTP(100},

4 NELLOC(100),SANAME(100)

C

COMMON /AREAS/ DELTS,INTSP,NUMSA,OPTION

C

COMMON /SW/ DELM(100,100),DELMAX(10N._00),DELP(20,100,100),

1 DELPH(20,100,100),DELPOS(10),NUMSAT(100),IPOS

C

COMMON /PTRN/ APTNER(100),APTNET(INN_._PTNST(_n0).APTNSR(100),

1 ADT(100),ADR(I00)

C

C ***********************************************************

DO 30 E - 1,2

C

C*** >> FIND RECTANGULAR COORDINATES OF ORBITAL LOCATION <<

C ZO-0 FOR GEOSTATIONARY SATELLITES

C

XO(K) m COS(RSLON(E))*GCR
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Program DELTA (cont.) ORIGINAU PAGE 1_

_OF.POOR QUALI'I_

COMMON /CONSTS/
1

COMMON /PARANS/

COMMON /VECTOR/
1

COMMON /VARSLS/
1
2

COMMON /MINELL/
1

2

COMMON /TPOINT/
1

COMMON /ANGLES/
1

COMMON /DIA/

COMMON /LOC/

COMMON /COOED/
1

YO(K) - SIN(RSLON(K))*GCR

C
C*** >> FIND VECTOR FROM SATELLITE TO AIM POINT ON EARTH
C

XOAC(E) - COS(BCLAT(E))

1 *COS(BCLON(K))-XO(E)

YOAC(E) - COS(BCLA?(_))*SIN(BCLON(_))-YO(K)

ZOAC(E) - SIN(ECLAT(K))
C
C*** >> FIND RANGE FROM SATELLITE TO AIM POINT

C

ROAC(E) - SORT(XOAC(K)**2+YOAC(K)**2+ZOAC(E)**2}

C

30 CONTINUE

RETURN

END.

C SUBROUTINE SETUP(DELS)

C
C COMPUTES RECTANGULAR COORDINATES OF TEE TEST POINTS AND TEE

C SATELLITE AIMPOINTS AND ESTABLISHES THE SATELLITE LOCATIONS

C RELATIVE TO DELS

C

C ************************************************************

C

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)

C

CHARACTER*8 NANESA,SANANE

C

INTEGER APTNER,APTNET,APTNET,APTNSR

C

E,PI,RADIAN,DEGREE,GCR,ER,ERDE,EAP,

PFD,ALOGE,ALNI0,COIMIN

C

NUMSAR,NANESA(2),NTPSA(2)

C

DSLON(2),RSLON(2),XO(2),YO(2),

XOAC(2),YOAC(2),ZOAC(2),ROAC(2}

C

UFREO,DFRE0,GAINS(2),RGAIN(2),TGAIN(2),

UCPHI0(2),DCPHI0(2),EIRP(2),IPTNER(2),

IPTNET(2),IPTNST(2},IPTNSR(2)

C

BCLAT(2),BCLOH(2),DBCLAT(2),DBCLON(2},

REFLAT(2),REFLON(2),AXR(2},

ORIENT(2),AXNAJ(2)

C

RELON(2,20),RELAT(2,20),DELON(2,20),

DELAT(2,20),XE(2,20),YE(2,20),ZE(2,20)

C

PHI(2,20),PHI0(2,20),THETA(2,20),

ALPHA(2,20),ALPHA0(2,20)

C

DT(2),DR(2)

C

SLON

C

XB(2),YB(2),ZB(2),XFO(_),YPO(2J,ZPO(2),

YP(2,2,20),ZP(2,2,20),YD(2,20),ZD(2,20)

C

COMMON /MULTIP/ ADELON(100,20),ADELAT(100,20),

1 ADBLON(100,100),ADBLAT(100,100),AELLOC(100,100),

2 AORENT(100,100),AAXNAJ(100,100),

3 AAXR(100,100),WELLOC(100),EELLOC(100),INTP(100},

4 NELLOC(100),SANANE(100)
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Program DELTA (cont.)

C

i ADT(100),ADR(100)
C

C ***********************************************************

C

DO 10 N - 1,2

C

C

C

C

C

C

C

C

12

C

C

C

C

10

C

COMMON /AREAS/ DELTS,INTSP,NURSA,OPTION

COMMON /SW/ DELM(IOO,IOO),DEL_(IOO,IOO),DELP(20,100,100),

1 DELPH(20,100,100),DELPOS(20),NUMSAT(100),IPOS

COMMON /PTRN/ APTNER(100),APTNET(100),APTNST(100),APTNSR(100),

DO 12 N1 - I,NTPSA(N)

)> FIND RECTANGULAR COORDINATES OF EARTH STATIONS <4

-X AXIS--POSITIVE X AXIS THROUGH POINT 0 DEGREES LONGITUDE

Y AXIS--POSITIVE Y AXIS THROUGH POINT 90 DEGREES EAST

Z AXIS--EARTH'S AXIS, POSITIVE Z AXIS THROUGH NORTH POLE

XE(N,NI) - COS(RELAT(N,NI)) * COS(RELON(N,N1))

YE(N,NI) - COS(RELAT(N,NI)) * SIN(RELON(N,NI))

ZE(N,N1) - SIN(RELAT(N,N1))

CONTINUE

FIND THE EARTH CENTERED RECTANGULAR COORDINATES OF THE AINPOINT

XB(N.)-COS(BCLAT(N))*COS(BCLON(N))

YE(N}-COS(BCLAT(N})*SIN(BCLON(N)}
ZB(N)--SIN(BCLAT(N))

CONTINUE

C SEPARATE THE ORBITAL LOCATIONS OF THE 2 SATELLITES BY THE INITIAL

C TRIAL SOLUTION VALUE. THE ONE WHOSE SERVICE AREA IS FARTHEST EAST IS

C PUSHED FARTHEST EAST.

C

IF (BCLON(2} .GT. ECLON(1)) THEN

DSLON(2) - SLON + DELS/2.0

DSLON(1) - SLON - DELS/2.0

ELSE

DSLON(1) - SLON + DELS/2.0

DSLON(2} m SLON - DELS/2.0

END IF

C

C CONVERT THE ORBITAL LOCATIONS FROM DEGREES TO RADIANS

C

RSLON(1) - DSLON(1) * RADIAN

RSLON(2) - DSLON(2) * EADIAN

C

RETURN

END

C

SUBROUTINE COILK(WCOIL)

C

IMPLICIT INTEGER (I-L,N), REAL(A-H,M,O-Z)

C

COMMON /CTOZ/ COID(2),COIU(2)

C

C THIS JUST FINDS THE WORST LINK C/I RATIO FOR THE 2 SATELLITES

C THE EQUATIONS FIRST CONVERT THE C/I VALUES FROM DB TO RATIOS
C

COIL1--10.0*ALOG10(10.**(-COIU(1)/10.0)+10.**(-COID(1)/10.))

C

COIL2m-10.0*ALOG10(10.**(-COIU(2)/10.0)+10.**(-COID(2)/10.))

C
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Program DELTA (cont.)

WCOIL-AMINI(COIL1,COIL2)

RETURN

END

C

SUBROUTINE WRPH

C THIS ROUTINE WRITES THE DELTA-PHI MATRIX TO BE USED IN THE

C SWITCHING ALGORITHM. IT INCLUDES THE REDUNDANT ENTRIES FOR

C MULTIPLE ADMINISTRATIONS WHICH HAVE THE SAME SERVICE AREA

C FOR WHICH CALCULATIONS WERE SKIPPED IN THE MAIN PROGRAM.

C

C ************************************************************

C

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)
C

CMAMACTER*8 NANESA, SANAME

C

INTEGER APTNER,APTNET,APTNST,APTNSR
C

COMMON /CONSTS/ E,PI,HADIAN,DEGREE,GCR,ER,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COIMIN

C

COMMON /PARAMS/ NUMSAR,NANESA(2},NTPSA(2}

C

COMMON /VECTOR/ DSLON(2),RSLON(2),XO(2),YO(2),

1 XOAC(2),YOAC(2),ZOAC(2),ROAC(2)

C

COMMON /VARBLS/ UFRZQ,DFREQ,GAINS(2},RGAIN(2),TGAIN(2),

I UCPHI0(2),DCPHI0(2),EIRP(2),IPTNER(2),

2 IPTNET(2),IPTNST(2),IPTNSR(2)

C

COMMON /MINELL/ BCLAT(2),BCLON(2),DBCLAT(2),DBCLON(2),

i REFLAT(2),REFLON(2),AXR(2},

2 ORIENT(2),AXMAJ(2)

C

COMMON /TPOINT/ RELON(2,20),RELAT(2,20),DELON(2,20},

I DELAT(2,20),XE(2,20),YE(2,20),ZE(2,20)

C

COMMON /ANGLES/ PHI(2,20),PHI0(2,20),THETA(2,20),

I ALPHA(2,20},ALPMA0(2,20)
C

COMMON /DIA/ DT(2),DR(2)

C

COMMON /LOC/ SLON

C

COMMON /COORD/ XB(2),YB(2),ZB(2),XPO(2),YPO(2),ZPO(2),

1 YP(2,2,20),ZP(2,2,20),YD(2,20),ZD(2,20)

C

COMMON /MULTIP/ ADELON(100,20),ADELAT(100,20),

i ADBLON(100,100),ADBLAT(100,100),AELLOC(100,100),

2 AORENT(100,100),AAXMAJ(100,100),

3 AAXR(100,100),WELLOC(100),EELLOC(100),INTP(100),

4 NELLOC(100),SANAME(100)

C

COMMON /AREAS/ DELTS,INTSP,NUMSA,OPTTnN

C

COMMON /SW/ DELM(100,100),DELMAX(100,I00),DELP(20,100,100),

1 DELPH(20,100,100),DELPO_r _),NUt_S_T(10n),IPOS

C

COMMON /PTRN/ APTNER(100),APTNET(100),APTNST(100),APTNSR(100),

1 ADT(100),ADR(100)

C

C ***********************************************************

C

ION - 0

MUM - 0

NGT2 - 0
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Program DELTA (cont.)

6

C

41

31

51
9

C

8

7
C

ITOTSA - 0

DO 6 L - I,NUMSAR

IF (NUMSAT(L) .GT. 2 ) THEN

ION - ION + NUNSAT(L)

NGT2 - NGT2 + 1

ENDIF

ITOTSA - NUMSAT(L) + ITOTSA

CONTINUE

IEIM - (NGT2 * 2 ) + 1

ION - ION + 1

DO 7 J - I,IPOS

NSAT1 - 1

NSAT2 - NUMSAT(IM}

IB- 2

IC- 3

ID- 1

IE- 1

IX- I

NGTT2 - NGT2

DO 8 IBULL - I,NGT2

DO 9 I - NSAT1,NSAT2

ICAT - I
IY - IB

IL - IC

NSAT - NSAT2

IA - IE

NUN - IKIN

DO 31 IZ - I,NGTT2

DO 41 K - ICAT,NSAT

DELPH(J,I,E) - DELP(J,IX,IY)

CONTINUE

IY - IY + 2

ICAT - NSAT + 1

NSAT - NSAT + NUMSAT(IL}

CONTINUE

DO 51 E - ION,ITOTSA

DELPH(J,I,E) " DELP(J,IA,NUR)

NUN - NUN + 1

CONTINUE

CONTINUE

IX - IE + 2

IM - IN + 2

IX - IX + 2

IX - IB + 2

NSATI - NSAT2 + 1

NSAT2 - NSAT1 + NUMSAT(IM_ -I

IC - IC + 2

NGTT2 - NGTT2 - 1

CONTINUE

CONTINUE

DO 34 J - I,IPOS

NUM- IKIM - i

DO 750 I - ION,ITOTSA

NUMK -NUM
NUM m NUM+ 1

NUME - NUN + 1

IRmI+I
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Program DELTA (cont.)

COMMON /CONSTS/
i

COMMON /PARANS/

CO_ON /VECTOR/
I

COMMON /VARBLS/
1
2

COMMON /MINELL/
1

2

COMMON /TPOINT/
1

COMMON /ANGLES/

1

COMMON /DIA/

COMMON /LOC/

COMMON /COORD/

1

DO 725 K - IR,ITOTSA

DELPH(J,I,E) - DELP(J,NUN,NUNK)

NUMK - NUMB + 1

725 CONTINUE

750 CONTINUE

C

WRITE(10,951) DEI_OS(J)

DO 200 I - 1,1TOTSA -I

WRITE(10,g52) (DELPH(J,I,E),K-I+I,ITOTSA)

200 CONTINUE

34 CONTINUE

C

951 FORMAT(10X,F15.5)

952 FORP.AT(13F5.2)

RETURN

END

C

SUBROUTINE WRDN

C

C THIS ROUTINE WRITES THE DELTA-S MATRIX TO HE USED IN THE

C SWITCHING ALGORITHM. ITS COMPLEXITY IS CAUSED BY THE ROUTINES

C USED TO AVOID REDUNDANT CALCULATIONS THAT ARE EXPLAINED IN THE

C SUBROUTINE INDATA.

C

C ************************************************************

C

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)

C

CHARACTER*8 NAMBSA,SANAMB

C

INTEGER APTNER,APTNET,APTNST,APTNSR
C

E,PI,RADIAN,DEGREE,GCR,ER,BRDB,EAP,

PFD_ALOGE,ALNI0,COIMIN

C

NUMSAR,NAMESA(2),NTPSA(2)

C

DSLON(2),RSLON(2},XO(2),YO(2),

XOAC(2},YOAC(2),ZOAC(2),ROAC(2}

C

UFREQ,DFREQ,GAINS(2),RGAIN(2),TGAIN(2),

UCPHI0(2),DCPHI0(2),EIRP(2),IRTNER(2),

IPTNET(2),IPTNST(2),IPTNSR(2)

C

BCLAT(2),BCLON(2),DBCLAT(2)#DBCLON(2),

REFLAT(2),REFLON(2),AXR(2),

ORIENT(2),AXMAJ(2}

C

RELON(2,20),RELAT(2,20),DELON(2,20),

DELAT(2,20),XE(2,20),YE(2,20),ZE(2,20)
C

PHI(2,20),PHI0(2,20)oTHETA(2,20),

ALPHA(2,20),ALPHA0(2,_n)

C

DT(2),DR(2)

C

SLON

C

XB(2),YS(2),ZB(2),XPO(2),YPO(2),ZPO(2),

YP(2,2,20),ZP(2,2,20),¥D(2,20),ZD(2,20)

C

COMMON /NULTIP/ ADELON(100,20),ADELAT(100,20),

1 ADBLON(100,100),ADBLAT(100,100),AELLOC(100,100),

2 AORENT(Z00,100),AAXMAJ(100,100),

3 AAXR(100,100),WELLOC(100),EELLOC(100),INTP(100),

4 NELLOC(100),SANANE(100)
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Program DELTA (cont.)

C
COMMON /AREAS/ DELTS,INTSP,NUMSA,OPTION

C

COMMON /SW/ DELM(100,100),DELMAX(100,100),DELP(20,100,100),

I DELPH(20,100,100),DELPOS(20),NUMSAT(100),IPOS

C

COMMON /PTRN/ APTNRR(IOO),APTNET(IOO),APTNST(IOO),APTNSR(IO0),

1 ADT(100),ADR(100)

C

C ***********************************************************

C

ION _ 0

NUN - 0

NGT2 - 0

ITOTSA - 0

C

DO 6 L - 1,NUMSAR

IF (NUMSAT(L) .GT. 2 ) THEN

ION - ION + NUMSAT(L)

NGT2 - NGT2 ÷ I

ENDIF

ITOTSA - NUMSAT(L) ÷ ITOTSA

CONTINUE

IKIM - (NGT2 * 2 ) + 1

ION - ION + 1

IM - 1

NSAT1 - 1

NSAT2 - NUMSAT(IM)

IB - 2

IC - 3

ID - 1

IE - 1

IX - 1

NGTT2 - NGT2

DO 8 IBULL - I,NGT2

DO 9 I - NSAT1,NSAT2

ICAT - I

IY m IB

IL - IC

NSAT - NSAT2

IA m IE

NUN - IEIM

DO 31 IZ * I,NGTT2

DO 41 K - ICAT,NSAT

DELMAX(I,K) - DELM(IX,I¥)
41 CONTINUE

IY - IY • 2

ICAT - NSAT + I

NSAT - NSAT + NUMSAT(IL)

31 CONTINUE

DO 51 K - IONtITOTSA

DELMAX(I,K_ : DELH(IA,NUM)

NUH - NUH + I

CONTINUE

CONTINUE

IE - IE + 2

IM - IM + 2
IX - IX + 2

IB - IB + 2

NSAT1 - NSAT2 ÷ 1

NSAT2 - NSAT1 + NUMSAT(IM) -i

6

C

51
9

C
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Program DELTA (cont.)

IC - IC + 2

NGTT2 - NGTT2 - 1

8 CONTINUE

C

NUN - IKIM - 1

DO 750 I - ION,ITOTSA
NUME - NUN
NUN m NUN ÷ 1

NUNE - NUN + 1

.IR-I+I

DO 725 E - IR,ITOTSA

DELNAX(I,E) - DELN(NUN,NUNE)

NUNK - NUME + i

725 CONTINUE

750 CONTINUE

C

-DO 200 I - I,ITOTSA -I

WRITE(7,952) (DELNAX(I,K),K-I+I,ITOTSA)

200 CONTINUE

C

952 FORNAT(13FS.2)

RETURN

END
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APPENDIX C

Program MISOUP: An Aggregate Interference Program

PROGRAM NISOUP

THIS IS A NEW VERSION OF THE STREAMLINED SOUP PROGRAM TO CALCULATE

AGGREGATE CARRIER TO INTERFERENCE RATIOS (C/I) WHICH INCLUDES
UPLINE INTERFERENCE. MOST OF THE SUBROUTINES ARE THE HAHE AS THOSE
FOUND IN IN THE DELTA-S (REQUIRED SATELLITE SEPARATION PROGRAM)

THE INPUT FILE TO THIS PROGRAM INCLUDES THE ORBITAL LOCATIONS
FOR THE SATELLITES, THE ANTENNA DATA FOR THE GROUND STATIONS AND

FOR THE SATELLITES, THE TEST POINTS WHICH DEFINE THE SERVICE AREAS

AND THE MINIMUM ELLIPSE DATA FOR THE ELLIPTICAL PATTERNS USED ON THE

SATELLITES.

THE OUTPUT FILE LISTS THE WORST SINGLE ENTRY C/I VALUES ON BOTH THE

UPLINH AND DOWNLINK FOR EVERY ADMINISTRATION. IT ALSO LISTS THE

WORST CASE AGGREGATE C/I VALUES ON BOTH THE UPLINE AND THE DOWNLINE.

FINALLY, IT LISTS A LINK AGGREGATE C/I VALUE

WRITTEN BY P. KOHNHORST, 4/87-5/87

IMPLICIT INTEGER(I-L,N),REAL(A-H,N,O-Z}

CRARACTER*S NANESA,SANAME

REAL LINEMG

C

COMMON /CONSTS/

I

C

conxoN /PARARS/

C

COMMON /VECTOR/

i

C

COMMON /VARHLS/

I

2

C

COMMON /HINELL/
I

2

C

COMMON /TPOINT/

I

C

COMMON /DIA/

C

COMMON /LOC/
C

COMMON /COOHD/

I

E,PI,RADIAN,DEGHEE,GCR,ER,EBDH,EAP,

PFD,ALOGE,ALNI0,COININ

NUMSAR,NANESA(100,2),NTPSA(100}

DSLON(100),RSLON(100),XO(100},YO(100),

XOAC(100),YOAC(100),ZOAC(100),ROAC(100)

UFREQ,DFHEQ,GAINS(100),RGAIN(100),TGAIN(100),

UCPBI0(100),DCPHI0(100),EIRP(100},IPTNER(100),

IPTNET(100),IPTNST(100),IPTNSR(100}

BCLAT(100},BCLON(100),DBCLAT(100),DBCLON(100},

REFLAT(100),REFLON(100),AXR(100),

ORIENT{100},AXRAJ(100}

RELON(100,20),RELAT(100,20},DELON(100,20},

DELAT(100,20),XE(100,20),YE(100,20),ZE(100,20)

DT(100),DR(100)

SLON

XH(100),YB(100),ZB(100),

XPO(100),YPO(100),ZPOII00)

COMMON /AREAS/ NUMSA

C ***********************************************************

C

OPEN (UNIT-5,FILE-'INFILE.DAT',TYPE''OLD')

OPEN (UNIT-6,FILE-'OUTFILE.DAT',TypEm'NEW'}

C

C INPUT NECESSARY CONSTANTS USED IN THE CALCULATIONS

C

CALL ICONST

C
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(Program MISOUP cont.)

C INPUT SATELLITE AND SERVICE AREA DATA

C

CALL INDATA

C

C CALL A SUBROUTINE TO INITIALIZE TEE NECESSARY PARAMETERS

C

CALL PAEAW

C

C DO AGGREGATE INTERFERENCE CALCULATION FOR ALL SIGNIFICANT

C SOURCES OF INTERFERENCE. E IS THE DESIRED SATELLITE, I

C IS THE INTERFERING SATELLITE

C

DO I-0 K-I,NUMSAR

C

WRITE(6,100) NANESA(R,I),DSLON(K)

100 FORMAT(2X,'ADMINISTRATION: ',A6, _ SATELLITE LOCATION|',

l F7.2)

C

C FIRST THE DOWNLINK INTERFERENCE

C

CALL DOWNCOI(K,JDW,DCOI}

C

C THEN THE UPLINK INTERFERENCE

C

CALL UPCOI(K,UCOI)

C

C THIS STATEMENT FINDS THE TOTAL LINK AGGREGATE C/I BY ASSUMING

C THAT THE C/I RATIO AT THE OUTPUT OF THE SATELLITE IS THE SAME
C AS THAT ON THE INPUT ...... NO ONBOARD PROCESSING

C

COIAGG--10.*ALOG10(10.**(-DCOI/10.)÷10.**(-UCOI/10.))

C

WRITE(6,110) DCOI,DELAT(K,JDW),DELON(K,JDW)

WRITE(6,120) UCOI

WRITE(6,130) COIAGG
C

110 FORMAT(4X,' WORST AGGREGATE DOWNLINK C/I:',F7.2,' AT

! TEST POINT (',F6.2,1X,F7.2,')'}

120 FORMAT(4X,' WORST AGGREGATE UPLINK C/I:',F7.2)

130 FORMAT(/,4X,' WORST LINK AGGREGATE C/I:',F7.2,//)

C

i0 CONTINUE

END

C

SUBROUTINE DOWNCOI(R,JDW,WCACOI)
C

C THIS ROUTINE CALCULATES THE AGGREGATE DOWNLINK INTERFERENCE AT EVERY

C TEST POINT IN TEE SERVICE AREA OF SATELLITE R. IT RETURNS THE WORST VALUE

C AND THE INDEX OF TEE TEST POINT AT WHICH THE WORST VALUE OCCURED. IT

C INCLUDES INTERFERENCE FROM ALL SATELLITES WITHIN 10 DEGREES OF THE

C DESIRED SATELLITE.

C

C ***************************************************************

C

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-I)

C

CHARACTER*8 NAMESA,SANAME

C

REAL LINKMG

C

COMMON /CONSTS/ E,PI,HADIAN,DEGREE,GCR,ER,ERDB,EAP,

1 PFD,ALOGE,ALN10,COIMIN

C

COMMON /PARAMS/ NUMSAR,NANESA(100,2},NTPSA(100}

C

COMMON /VECTOR/ DSLON(100),RSLON(100),XO(100),YO(100),
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O_ EOOR QUA_T_

I

C

COMMON /VARBLS/
1
2

C

COMMON /NINELL/
1
2

C

COMMON /TPOINT/
1

c COM_0N/DIA/
C

COMMON /LOC/
C

COMMON /COORD/
1

C

XOAC(IOO),YOAC(IOO),ZOAC(IOO),ROAC(IO0)

UFREQ,DFREQ,GAINS(100),RGAIN(100),TGAIN(100),

UCPHI0(100),DCPHI0(100),EIRP(100),IPTNER(100),

IPTNET(100),IPTNST(100),IPTNSR(100)

BCLAT(100),BCLON(100),DBCLAT(100),DBCLON(100),

REFLAT(100),REFLON(100),AXR(100),

ORIENT(100),AXMAJ(100)

RELON(100,20),RELAT(100,20),DELON(100,20),

DELAT(100,20),XE(100,20),YE(100,20),ZE(100,20)

DT(100),DR(100)

SLON

XB(IOO),YB(IOO),ZB(IO0),

XPO(IOO),YPO(IOO),ZPO(IO0)

COMMON /AREAS/ NUMSA
C

C e*e*eet**eeee**_eee*e**eee*e*****ee***ee,ee_eee_**teee._tt.

C

WCACOI-1000.

LOOP OVER ALL TEST POINTS IN SERVICE AREA OF SATELLITE K

DO 10 J-1,NTPSA(K)
SUMINT-0.

WDCI-1000.

CALL A SUBROUTINE TO FIND THE NUMERATOR OF THE C/I EQUATION

FOR TEST POINT J OF ADMINISTRATION K

CALL DPWR(K,J,DEPR)

LOOP OVER ALL INTERFERING SATELLITES

DO 20 I-1,NUMSAR

SKIP IF SATELLITE I IS THE DESIRED SATELLITE OR MORE THAN I0 DEGREES

AWAY FROM THE DESIRED SATELLITE

IF ((I .NE. K) .AND.

1 (ABS(DSLON(I)-DSLON(K)) .LT. 10.)) THEN

CALL A SUBROUTINE TO FIND THE DENOMINATOR OF THE SINGLE ENTRY

C/I EQUATION FOR SATELLITE I

CALL DOWNINT(K,I,J,PWRINT)

CALCULATE SINGLE ENTRY C/T

CHECK TO SEE IF SATELLITE I IS THE WORST SOURCE OF SINGLE ENTRY

INTERFERENCE SO FAR. IF SO, SAVE THIS C/I VALUE AND I

COImDEPR-PWRINT

IF (COI .LT. WDCI) THEN

WDCI-COI

IWDTPmI

END IF

ADD INTERFERENCE FROM SATELLITE I TO THE SUMMATION OF SINGLE ENTRY

DOWNLINK INTERFERENCE POWERS AT POINT J
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SUMINTmSUMINT+10.**(PWRINT/10.)

END IF

20 CONTINUE

SUMINT-10.*ALOGI0(SUMINT}

C CALCULATE AGGREGATE C/I AT THIS TEST POINT

AGGCOI-DEPR-SUMINT

C

C CHECK TO SEE IF THE AGGREGATE C/I AT TEST POINT J IS TEE

C LOWEST YET FOUND. IF SO SAVE THIS VALUE, THE INDEX OF TEE TEST

C POINT, THE INDEX OF TEE WORST INTERFERING SATELLITE

C

IF (AGGCOI .LT. WCACOI) THEN

WCACOI-AGGCOI

JDWmJ

WSECOI-WDCI

IWDSEmlWDTP

END IF

10 CONTINUE

C

WRITE(6,101)WSECOI,NAMESA(IWDSE,I)

101 FORMAT(4X,'WORST DOWN SINGLE ENTRY C/I_',F6.2,' FROMz',A6)

C

RETURN

END

SUBROUTINE UPCOI(E,UCOI)

C
C THIS ROUTINE FINDS TEE WORST CASE AGGREGATE C/I RATIO FOR

C THE UPLINK OF ADMINISTRATION K'S SATELLITE LIN_. IT ALSO

C FINDS THE WORST CASE SINGLE ENTRY VALUE

C

C ***************************************************************

C

IMPLICIT INTEGER(I-L,N},REAL(A-H,N,O-Z)

C

CHARACTER*S NAMESA,SANANE

REAL LINEMG

C

COMMON /CONSTS/

i

C

COMMON /PARANS/

C

COMMON /VECTOR/

I

C

COMMON /VARBLS/

1

2

C

COMMON /MINELL/
I

2

C

COMMON /TPOINT/

1

C

COMMON /DIA/

C

COmqON /LOC/

C

COMMON /COORD/

I

E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,

PFD,ALOGE,ALNI0,COIMIN

NUMSAR,NANESA(100,2),NTPSA(100)

DSLON{100},RSLON(100),XO(100),YO(100),

XOAC(100),YOAC(100),ZOAC(100),ROAC(100)

UFREQ,DFREQ,GAINS(100),RGAIN(100),TGAI_(100),

UCPHI0(100),DCPHI0(100),EIRP(100),IPTNER(100),

IPTNET(100),IPTNST(100),IPTNSR(100)

BCLAT(100),BCLON(100),DECLAT(100),DECLON(100),

REFLAT(100),REFLON(100),AXR(100),

ORIENT(100),AXMAJ(100_

RELON(100,20),RELAT(100,20),DELON(100,20),

DELAT(100,20),XE(100,20),YE(100,20),ZE(100,20)

DT(100),DR(100)

SLON

XR(100),YB(100),ZB(100),

XPO(100),YPO(100),ZPO(100)

COMMON /AREAS/ NUMSA
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OR/GIN_L .......• _,_, T__

O._ J_)OR QUALITY

C

C CALL A SUBROUTINE WHICH FINDS THE TEST POINT IN SATELLITE

C R'S SERVICE AREA WHICH IS CLOSEST TO THE -3 DB CONTOUR OF

C ITS SATELLITE ANTENNA. THIS VALUE IS LABELED DISMIN AND

C IS THE NUMERATOR IN THE C/I EQUATION. THE LOCATION OF THE

C DESIRED TRANSMITTER IS ALWAYS LOCATED AT THIS WORST POINT

C

CALL NINDIS(E,DISMIN)

C

WORSTCOI-100.0

SUMINT-0.

C
C THIS IS A LOOP OVER ALL INTERFERING SATELLITES

C

DO 20 I-I,NUNSAR

C

C SKIP IF THE SATELLITES ARE MORE THAN I0 DEGREES AWAY

C OR THE DESIRED SATELLITE AND INTERFERING SATELLITES

C ARE THE SAME

C

IF ((I .NE. E) .AND.
I (ABS(DSLON(I)-DSLON(E)) .LT. I0.)) THEN

UINT--50.0

C

C THIS LOOP CALCULATES THE DENOMINATOR OF THE C/I EQUATION
C FOR ALL POSSIBLE TEST POINTS FOR THE INTERFERING TRANSMITTER

C

DO 30 J-I_NTPSA(I|

CALL UPINT(K,I,J,PWRINT)
C

C CHECK IF THIS TEST POINT IS THE SITE FOR THE INTERFERING TRANSMITTER

C WHICH PROVIDES THE MOST INTERFERENCE

C

IF {PWRINT .OT. UINT) THEN

UINT-PWRINT

END IF

30 CONTINUE

C

C COMPUTE WORST SINGLE ENTRY C/I FOR ADMINISTRATION E WITH INTERFERENCE

C FROM ADMINISTRATION I. SAVE THIS IF IT IS THE WORST VALUE FOUND FOR

C ANY ADMINISTRATION

C

SECOI - DISMIN-UINT

IF (SSCOI .LT. WORSTCOI) THEN

WORSTCOImSECOI

IWUPI-I

END IF

C

C ADD WORST VALUE OF INTERFERENCE TO TOTAL INTERFERENCE

C

SUMINTmSUMINT+10.**(UINT/10.)
END IF

20 CONTINUE

C

C FIND TOTAL INTERFERENCE IN dB

C

SUNINT-10.*ALOG10(SUMINT)

C

C FIND THE AGGREGATE C/I RATIO FOR ADMINISTRATION E

C

UCOI-DISMIN-SUNINT

C

WRITE(6,201)WORSTCOI,NAMESA(IWUPI,1}

201 FORMAT(4X,'WORST UP SINGLE ENTRY :',F7.2,' FROM:',A6)

C
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RETURN

END

SUBROUTINE NINDIS(K,DISMIN)

FIND THE NUMERATOR OF THE AGGREGATE UPLINK C/l
EXPRESSION. THIS IS DONE BY FINDING THE WORST CASE---

THAT IS, THE DESIRED EARTH TRANSMITTER THAT IS CLOSEST

TO THE -3 dB CONTOUR OF THE RECEIVING ANTENNA.

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)

CHARACTER*8 NARESA,SANAME

RRAL LINXMG

C

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,

I PFD,ALOGE,ALN10,COIMIN

C

COMMON /PARAMS/ NUNSAR,NAMESA(100,2),NTPSA(100)

C

COMMON /VECTOR/ DSLON(100},RSLON(100),XO(100),YO(100),
1 XOAC(100),YOAC(100),ZOAC(100),ROAC(100)

C

COMMON /VARBLS/ UFREQ,DFREQ,GAINS(100},RGAIN(100),TGAIN(100),

1 UCPHI0(100),DCPHI0(100),EIRP(100),IPTNER(100),

2 IPTNET(100),IPTNST(100},IPTNSR([00)

C

COMMON /HINELL/ BCLAT(100),BCLON(100),DHCLAT(100),DBCLON(100),
1 REFLAT(100),REFLON(100),AXR(100),

2 ORIENT(100),AXMAJ(100)

COMMON /TPOINT/ RELON(100,20},RELAT{100,20),DELON(100,20),
1 DELAT(100,20),XE(100,20),YE(100,20),ZE(100,20)

COMMON /DIA/ DT(100),DR(100)

COMMON /LOC/ SLON

COMMON /COORD/ XD(IOO),¥B(IOO),ZB(IO0),
1 XPO(IOO),¥PO(IOO),ZPO(IO0)

COMMON /AREAS/ NUMSA

C

C e,e,eee,eee,eeee****e,e*****e,eeteeee***ee**ee*ee*eeee*****

C

GE-GAINS(K)

DISMIN - I00.

C

DO 10 Jml,NTPSA(K)

C

C FIRST FIND THE NEEDED ANGLES:

C

C THIS FINDS THE OFF AXIS ANGLE AS SEEN AT SATELLITE K

C BETWEEN ITS AIMPOINT AND TEST PO_ '

CALL KPHI(K,K,J,PH)

C

C THIS FINDS THE ELLIPTICAL HALF POWER BEAMWIDTH FOR

C THE RECEIVING ANTENNA OF K IN THE DIRECTION OF J

CALL XPHI0(K,K,J,PO)

C

C NOW, FIND THE RECEIVING DISCRIMINATION AND COMPARE IT TO

C THE WORST VALUE

C

J
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C

110

C

120

C
130

C
140

C
150

C
160

C
10

C

C
C

C

C

C

C

C

GO TO(110,120,130,140,150),IPTNST(K)

CALL PTNSTI(PH,POpGK,RDISC}

GOTO 160

CALL PTNST2(PH,PO,GE,RDISC)

GOTO 160

CALL PTNST3(PH,PO,Gg,RDISC)
GOTO 160

CALL PTNST4(PH,PO,GK,RDISC)

OOTO 160

CALL PTNSTS(PH,PO,GK,RDISC)

IF (RDISC .LT. -3.) THEN

RDZSC--3.

END IF

IF (RDISC .LT. DISNIN) THEN

DISMIN-RDISC

END IF

CONTINUE

RETURN

END

SUBROUTINE PARAN

IMPLICIT INTEGER(I-L,N),REAL(A-H,N,O-Z)

CNARACTER*8 NANESA,SANANE

REAL LINKMG

COMMON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDB,EAP,

1 PFD,ALOGE,ALN10,COIMIN

COMMON /PARAMS/ NUMSAR,NAMESA(100,2),NTPSA(100)

COMMON /VECTOR/ DSLON(100),RSLON(100),XO(100),YO(100),

1 XOAC(100),YOAC(100),ZOAC(100),ROAC(100)
C

COMMON /VARBLS/ UFREQ,DFREQ,GAINS(100),RGAIN(100),TGAIN(100),

i UCPHI0(100),DCPHI0(100),EIRP(100),IPTNER(100),

2 IPTNET(100),IPTNST(100),IPTNSR(100)

C

COMMON /NINELL/ H_t.A_fI00),BCI.ON(_O),DBCLA_(100)oW_CLON(100),

1 REFLAT(100),REFLON(100),AXR(100),

2 ORIENT(100),AXNAJ(100_

C

COMMON /TPOINT/ RELON(100,20),RELAT(J'_0,20),DELON(100,20),

1 DELAT(100,20),XE(100,_0),YE(100,20),ZE(100,20)

C

COMMON /DIA/ DT(100),DR(100)
C

COMMON /LOC/ SLON
C

COMMON /COORD/ XB(100),YB(100),ZB(100),
1 XPO(100),¥PO(100),ZPO(100)

C

COMMON /AREAS/ NUMSA

C

C ***********************************************************
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C
C FIND THE

C

C

C FIND THE

C

C
C FIND THE

C

!
C

FIND THE UPLINK AND DOWNLINE WAVELENGTHS

DLAMDA-3.E+08/(DFREQ*I.0E+09)

ULANDA-3.E+08/(UFREQ*I.0E+09)

X2-223./180.
C

DO 10 R-I,NUNSAR

DO 20 J-1,NTPSA(R)
C

C FIND RECTANGULAR COORDINATES OF THE EARTH STATIONS

C

C X AXIS ........ POSITIVE X AXIS THROUGH POINT 0 DEG. LONGITUDE

C Y AXIS ........ POSITIVE Y AXIS THROUGH POINT 90 DEG. EAST

C Z AXIS _ ....... EARTH'S AXIS, POSITIVE Z IS NORTH POLE

C

XE(K,J)mCOS(RELAT(R,J))*COS(RELON(E,J)}

YE(R,J)-COS(RELAT(R,J)}*SIN(RELON(E,J)}

ZE(R,J)-SIN(RELAT(E,J))
C

20 CONTINUE

C
C FIND THE EARTH CENTER POINTS OF THE AIMPOINT

C

XE(R)-COS(ECLAT(K))*COS(ECLON(K))

YD(R)-COS(BCLAT(K)}*SIN(ECLON(K))

ZB(R)mSIN(BCLAT(K))

C

C FIND THE EARTH CENTER POINTS OF THE SATELLITE LOCATION

C

XO(R)mCOS(RSLON(K))*GCR

YO(R)mSIN(RSLON(K))*GCR

COMPONENTS OF THE VECTOR FROM THE AIMPOINT TO THE SATELLITE

XOAC(R)ICOS(BCLAT(E))*COS(BCLON(R}}-XO(K)

YOAC(R)-COS(BCLAT(R}}*SIN(SCLON(K))-YO(E)

ZOAC(R)-SIN(BCLAT{R))

RANGE FROM THE AINPOINT TO THE SATELLITE

ROAC(E)mSORT(XOAC(E)**2.+YOAC(R)**2.÷ZOAC(E)**2.)
C

CALL REFCAL(K)

SATELLITE ANTENNA GAIN

GAINS(R)-10.*ALOG10(EAP*AXR(E)

*(PI*223./180./AXNAJ(E))**2.)

X0mDR(R)/_LAMDA

XI-DT(R}/ULARDA

C

C FIND THE RECEIVNG AND TRANSMITTING GAIN FOR THE ANTENNAS

C OF ADMINISTRATION K'S GROUND STATIONS
C

RGAIN(E)-10.0*ALOG10(PI*PI*EAP*_0*X0}

TGAIN(K)-10.0*ALOG10(PI*PI*EAP'_I)
C

C FIND THE UPLINK AND DOWNLINK HALF POWER SEAMWIDTHS FOR THE

C ANTENNAS OF ADMINISTRATION K'S GROUND STATIONS

C

UCPHI0(K)-X2/Xl

DCPHI0(E)-X2/X0
C

C FIND THE EFFECTIVE ISOTROPICALLY RADIATED POWER FOR THE DOWNLINE

C OF ADMINISTRATION R. IT IS ASSUMED IN THIS PROGRAM THAT EVERY
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,°

C ADMINISTRATION HAS THE SANE POWER FLUX DENSITY AT THE AIMPOINT

C OF ITS SERVICE AREA.

C

EIRP(R)-PFD+10.*ALOG10(4.*PI*ROAC(E)*ROAC(R)*ER*ER)

C

i0 CONTINUE

C

RETURN

END

C

SUBROUTINE INDATA

C

C THIS l_ A SUBROUTINE WHICH INPUTS PARAMETERS DESCRIBING THE SERVICE

C AREAS, THE SATELLITE AND GROUND STATION ANTENNAS, THE FEASIBLE
C ORBITAL ARCS AND THE ELLIPSE DATA IF ELLIPTICAL PATTERNS ARE

C BEING USED.

C ***************************************************************

C

IMPLICIT INTEGER(I-L,N),REAL(A-R,M,O-Z)

C

CHARACTER*8 NANESA,SANANE

REAL LINKMG

C

COMMON /CONSTS/

I

C

COMMON /PARANS/

C

COMMON /VECTOR/
i

C

COMMON /VARBLS/
I

2

C

COMMON /NINELL/
I

2

C

COMMON /TPOINT/
I

C

COMMON /DIA/
C

COMMON /LOC/

C

COMMON /COORD/

1
C

C

E,PI,HADIAN,DEGREE,GCR,ER,ERDB,EAP,

PFD,ALOGE,ALNI0,COIMIN

NUNSAR,NANESA(100,2),NTPSA(100)

DSLON(100),RSLON(100),XO(100),YO(100},

XOAC(100),YOAC(100),ZOAC(100),ROAC(100)

UFREO,DFREO,GAINS(i00),RGAIN(100),TGAIN(100),

UCPHI0(100),DCPHI0(100),EIRP(100),IPTNER(100),

IPTNET(100),IPTNST(100),IPTNSR(100)

RCLAT(100),RCLON(100),DBCLAT(100),DBCLON(100),

REFLAT(100),REFLON(100),AXR(100},

ORIENT(100),AXHAJ(100)

RELON(100,20),RELAT(100,20),DELON(100,20),

DELAT(100,20),XE(100,20),YE(100,20),ZE(100,20)

DT(100),DR(IO0)

SLON

XB(100),YB(100),ZB(100),
XPO(100),YPO(100),ZPO(100)

COMMON /AREAS/ NUMSA

C ***********************************************************

C

100

C

C

110

C

115

C

MEAD(5,*) NUMSAR,COIMIN,UFREO,DFREO

FORNAT(IS,FS.1,F6.2,F6.2)

DO I0 NS-I,NUHSAR

READ(5,110) NANESA(NS,I),NANESA(NS,2)

FORNAT(A6,A6)

READ(5,*) DSLON(NS)

FORNAT(2X,FT.2)

RSLON(NS)-RADIAN*DSLON(NS)
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C
C

C

C

C

C

C

C

C

READ(5,*) IPTNER(NS),IPTNET(NS),IPTNST(NS),IPTNSR(NS)

120 FORMAT(2X,13,I3,I3,I3)

C

READ(5,*) DT(NS),DR(NS)

125 FORRAT(2X,F7.2,FT.2)

C

READ(5,*) NTPSA(NS)

130 FORMAT(2X,IS)

C

DO 20 K-1,NTPSA(NS)

READ(5,*) DELAT(NS,K),DELON(NS,K)

140 FORMAT(2X,FT.2,F7.2)

RELAT(NS,K)mDELAT(NS,K}*RADIAN

RELON(NS,K)-DELON(NS,E}*RADIAN

20 CONTINUE
C

RLM)(5,*) DBCLAT(NS),DBCLON(NS),ORAN,_J(NS),AMN

150 PORNAT(2X,F6.2,FT.2,F6.2,F6.2,F6.2)

C

BCLAT(NS}-RADIAN*DBCLAT(NS)

BCLON(NS)-RADIAN*DBCLON(NS)

ORIENT(NS)-RADIAN*ORAN

AXR(NS)mAXMAJ(NS)/AMN

AXMAJ(NS)-RADIAN*AXMAJ(NS)

10 CONTINUE

RETURN

END

SUBROUTINE DOWNINT(K,I,J,PWRINT)

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)

CHARACTER*8 NARESA,SANAME

REAL LINKMG

CO/O_ON /CONSTS/ E,PI,RADIAN,DEGREE,GCR,ER,ERDBeEAP_

1 PFD,ALOGE,ALN10,COIMIN

COMMON /PARARS/ NUNSAR,NAMESA(100,2),NTPSA(100}

COMMON /VECTOR/ DSLON(100),RSLON(100),XO(100),YO(100),

1 XOAC(100),YOAC(100),ZOAC(100},ROAC(100)

COMMON /VARBLS/ UPREQ,DFREQ,GAINS(IOO),RGAIN(IOO),TGAIN(IO0},

1 UCPHI0(100),DCPHI0(100),EIRP(100),IPTNER(100),

2 IPTNET(100),IPTNST(100),IPTNSR(100)

C

COMMON /MINELL/ BCLAT(J00),BCLON(100),DSCt,AT(100),DBCLON(100),

1 REFLAT(IOO),REFLON(IOO),AXR(IO0),

2 ORIENT(100),AXMAJ(100)

C

COMMON /TPOINT/ RELON(100,20),RELAT(tO0,20),DELON(100,20),

1 DELAT(100,20),XE(100,20),YE(100,20),ZE(100,20)

C

COMMON /DIA/ DT(100),DR(100)

C

COMMON /LOC/ SLON

C

COMMON /COORD/ XS(100),YB(100),ZB(100),

1 XPO(100),YPO(100),ZPO(100)
C

COMMON /AREAS/ NUMSA

C

C ***********************************************************
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C

110

C

120

C

130

C

140

C

150

C

THIS IS A SUBROUTINE TO CALCULATE THE DENOMINATOR OF THE

DOWNLINK C/I EQUATION FOR A TRANSMISSION FROM THE SATELLITE

OF ADMINISTRATION K TO TEST POINT J IN THE SERVICE AREA OF K

WITH THE SATELLITE FROM ADMINISTRATION I INTERFERING.

FIRST, CALCULATE THE NECESSARY AN_LES:

THE ELLIPTICAL HALF POWER BEAMWIDTH FOR THE BEAM OF SATELLITE

I IN THE DIRECTION OF TEST POINT J

CALL XPHI0(I,K,J,AO)

THE OFF AXIS ANGLE AS SEEN BY SATELLITE I FROM THE AIMPOINT OF

I TO TEST POINT J

CALL XPHI(I,K,J,AL}

THE ANGLE BETWEEN THE TWO SATELLITES, I AND K, AS SEEN FROM TEST

POINT J OF ADMINISTRATION K

CALL ZPHI(I,K,J,TH)

GI-GAINS(I)

FIND THE INTERFERING SATELLITE TRANSMITTING DISCRIMINATION

GO TO(lI0,120,130,140,150),IPTNST(I)

CALL PTNSTI(ALtAO,GI,TDISC)

GOTO 160

CALL PTNST2(AL,AO,GI,TDISC)

GOTO 160

CALL PTNST3(AL,AO,GI,TDISC}

GOTO 160

CALL PTNST4(AL,AO,GI,TDISC)
GOTO 160

CALL PTNST5(AL,AO,GI,TDISC)

C FIND THE RECEIVING ANTENNA DISCRIMINATION FOR THE GROUND STATION

C AT TEST POINT J RECEIVING THE INTERFERING SIGNAL FROM I

C

160 GO TO(210,220,230,240,250),IPTNER(E)

C

210 CALL PTNERI(TH,DCPHI0(K),DFREQ,RGAIN(E},RDIR|

GOTO 260

C

220 CALL PTNER2(TH,DCPHI0(E},DFREQ,RGAIN(E),RDIR)

GOTO 260

C

230 CALL PTNER3(TR,DCPHI0(K),DFREO,RGAIN(K),RDIR}

GOTO 260

C

240 CALL PTNER4(TH,DCPHI0(K},DFREQ,RGAIN(_),RDIR)

GOTO 260

C

250 CALL PTNER5(TH,DCPHI0(K),DFREQ,EGA_(w'*.RDT_)

C

C CALCULATE DISTANCE FROM INTERFERING SATELLITE I TO TEST POINT J

C

260 ROAIJ-XE(K,J)-XO(I)

YOAIJ-YE(E,J)-YO(I)

ZOAIJmZE(E,J)

ROAIJ-SORT(XOAIJ*XOAIJ+¥OAIJ*YOAIJ+ZOAIJ*ZOAIJ}

C

C FIND THE DENOMINATOR Of THE C/I CALCULATION IN dB
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C

C

C

C
C

C

C

C

C

C

C

PWRINT-EIRP(I)+TDISC+RDIR-20.0eALOG10(RO&IJeER)

RETURN
END

SUBROUTINE UPINT(K,I,J,PWRINT)

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)

CHARACTER*S NAMESA,SANAME

REAL LINRMG

COMMON /CONSTS/ E,PI,RADXAN,DEGREE,GCR,ER,ERDB,EAP,

1 PFD,ALOGE,ALNI0,COININ

COMMON /PARRRS/ NUMSAR,NAMESA(X00,2),NTPSA(100)

COMMON /VECTOR/ DSLON(100),RSLON(I00),XO(I00),YO(X00),

1 XOAC(100),YOAC(100),ZOAC(100),ROAC(X00)

C

CONNON /VARBLS/ UFREQ,DFREQ,GAINS(100),RGAIN(100),TGAIN(100),

i UCPHI0(100),DCPHI0(100),EIRP(100),IPTNER(100),

2 IPTNET(100),IPTNST(100},IPTNSR(100)
C

COMMON /MINELL/ SCLAT(I00),SCLON(100),DBCLAT(I00),DBCLON(100),

I REFLAT(100),REPLON(100),AXR(I00),

2 ORIENT(100),AXMAJ(100)
C

COMMON /TPOINT/ RELON(100,20},RELAT(100,20},DELON(100,20),

1 DELAT(100,20),XE(100,20),YE(100,20),ZE(I00,20)

C

COMMON /DIA/ DT(100),DR(100)
C

COMMON /LOC/ SLON

C

COMMON /COORD/ XB(IOO),YB(XOO),ZB(XO0),
1 XPO(X00),YPO(X00),ZPO(X00)

C

COMMON /AREAS/ NUMSA

C

C ***********************************************************

C

C THIS IS A SUBROUTINE TO CALCULATE THE DENOMINATOR IN THE

C UPLINK C/I EQUATION FOR THE UPLINE TRANSMISSION FROM THE

C SERVICE AREA OF ADMINISTRATION E RECEIVING INTERFERENCE

C PROM AN UPLINE TRANSMISSION PROM TEST POINT J IN THE

C SERVICE AREA OF ADMINISTRATION I

C

C FIRST, CALCULATE THE NEEDED ANGLES:
C

C THIS FINDS THE OFF AXIS ANGLE AS SEEN BY THE RECEIVING ANTENNA

C OF SATELLITE E, BETWEEN THE AIMPOINT OF g'S SERVICE AREA AND

C THE POINT J IN THE SERVICE AREA OF I

CALL EPHI(E,I,J,AL)
C

C THIS FINDS THE ELLIPTICAL HALF POWER BEAMWIDTH FOR THE RECEIVING

C ANTENNA OF SATELLITE K IN THE DIRECTION OF THE INTERFERING TRANSMITTER

C AT J

CALL XPHI0(K,I,J,AO)

C

C THIS FINDS THE TOPOCENTRIC ANGLE BETWEEN THE SATELLITES AS SEEN AT THE

C TRANSMITTING ANTENNA AT TEST POINT J IN THE SERVICE AREA OF I
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CALL ZPHI(K,I,J,TR}

C
C FIND THE DISCRIMINATION FOR THE RECEIVING ANTENNA OF SATELLITE K
C TO THE INTERFERING SIGNAL
C

GO TO(llwl2wI3,14,15)IPTNSR(K)
C

II CALL PTNSTI(AL,AO,GAINS(K},RDISC)

GOTO 20

C

12 CALL PTNST2(AL,AO,GAINS(E),RDISC}

GOTO 20
C

13 CALL PTNST3(AL,AO,GAINS(K),RDISC)

GOTO 20

C

14 CALL PTNST4(AL,AO,GAINS(E),RDISC)

GOTO 20

C

15 CALL PTNSTS(AL,AO,GAINS(E),RDISC)

C

20 GO TO(I10,120,130,140,150),IPTNET(I)

C

C FIND THE TRANSMITTING DIRECTIVITY OF THE ANTENNA AT

C TEST POINT J

C

110

C
120

C
130

C

140

C
150

C

CALL PTNERI(TH,UCPHI0(I),UFREQ,TGAIN(1),TDIRC)

GOTO 160

CALL PTNRR2(TH,UCPRI0(I),UFREQ,TGAIN(1),TDZRC}

GOTO 160

CALL PTNEH3(TN,UCPRI0(I),UFREQ,TGAIN(I),TDIRC)

GOTO 160

CALL PTNER4(TN,UCPHI0(I},UFREQ,TGAIN(I),TDIRC)

GOTO 160

CALL PTNRRS(TH,UCPHI0(I),UFREQ,TGAIN(1),TDIRC)

C SUBTRACT THE ON AXIS GAIN OF THE INTERFERING TRANSMITTING

C ANTENNA FROM THE CALCULATED DIRECTIVITY TO FIND THE

C TRANSMITTING DISCRIMINATION

C

160 TDIEC-TDIRC-TGAIN(I)

C

C FIND THE DENOHINATOR OF THE UPLINK C/I EQUATION

C

PWRINT-RDISC+TDISC

C

RETURN

END

SUBROUTINE DPWR(K,J,DESPWR)

C

C THIS CALCULATES THE NUMERATOR OF THE _OWNLINK C/I EQUATION

C AT TEST POINT J IN THE SERVICE AREA Or ADMINISTRATION K

C ***************************************************************

C

IMPLICIT INTEGER(I-L,N),REAL(A-H,M,O-Z)

C

CHARACTER*8 NANESA,SANANE

C

REAL LINEMG

C

CORMON /CONSTS/ E,PI,NADIAN,DEGREE,GCR,EH,EHDB,EAP,

I PFD,ALOGE,ALNI0,COIMIN
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C

COMMON /PAEANS/

C

COMMON /VECTOR/

1

C

COMMON /VARBLS/

1

2

C

COMMON /NINELL/

I

2

C

COMMON /TPOINT/

1

C

COMMON /DIA/
C

COMMON /LOC/

C

cOMMON /COORD/
1

NUMSAR,NANESA(100,2),NTPSA(100}

DSLON(IOO),RSLON(ZOO),XO(IO0),¥O(IO0),
XOAC(100),YOAC(100),ZOAC(100),ROAC(100)

UrREQ,DFREO,GAINS(IOO),RGAIN(IOO),TGAIN(200),

UCPHI0(I00),DCPHI0(I00),EIRP(100),IPTNER(100),

IPTNET(100),IPTNST(100),IPTNSR(100)

ECLAT(100),BCLON(100),DBCLAT(100),DBCLON(100),

REPLAT(100),REPLON(100),AXR(100),

ORIENT(100),AXNAJ(100)

RELON(100,20),RELAT(100,20),DELON(100,20},

DELAT(100,20),XE(100,20),YE(100,20),ZE(100,20)

DT(100),DR(100)

SLON

XS(IOO),YS(IOO),ZB(IO0),
XPO(IOO),YPO(IOO),ZPO(IO0)

COP, NON /AREAS/ NUMSA
C

C ee**ee*e**t**_Qte_e*e***t*e*ee**ee*e*e*ee**eee**_e*Qt_*eQ*

C

C FIRST FIND THE NEEDED ANGLES:

C

C THIS FINDS THE OFF AXIS ANGLE AS SEEN BY SATELLITE K FROM

C ITS AINPOINT TO TEST POINT J

CALL KPHI(K,K,J,PH)
C

C THIS FINDS THE ELLIPTICAL HALF POWER BEA_IDTH FOR THE

C REAM OF SATELLITE K IN THE DIRECTION OF TEST POINT J

CALL XPHI0(K,K,J,PO}
C

GK-GAINS(K)

C

C FIND THE TRANSMITTING DISCRIMINATION

C

GO TO(10,20,30,40,50),IPTNST(K)

C

10 CALL PTNSTI(PH,PO,GE,TDISC)

GOTO 60

C

20 CALL PTNST2(PH,PO,GK,TDISC)

GOTO 60

C

30 CALL PTNST3(PH,PO,GE,TDISC}

GOTO 60

C

40 CALL PTNST4(PH,PO,GK,TDISC)

GOTO 60

C

50 CALL PTNSTS(PH,PO,GK,TDISC)

C

60 IF (TDISC .LT. -3.) THEN

TDISC--3.

END IF

C

C CALCULATE DISTANCE FROM SATELLITE TRANSMITTER TO EARTH RECEIVER

C

XOAEJ-XE(K,J)-XO{K)

YOAKJ-YE(K,J)-YO(K)
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ZOAEJ-ZE(K,J)
ROAKJ.SQRT(XOAKJ*XOAKJ+YOAKJ*YOAKJ+ZOAKJ*ZOAKJ)

CALCULATE NUMERATOR OF C/I EQUATION FOR THE DOWNLINK

DESPWR.EIRP(K)+RGAIN(K)+TDISC-20.0*ALOGI0(RO&K3 _ER)

RETURN
END
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