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Abstract

An analytical method has been developed to ensure closure of the
cubic form of the tensor polynomial strength criterion. The intrinsic
complexity of the cubic function is such that special conditions must
be met to close the failure surface in three-dimensional stress space.
These requirements are derived in terms of non-intersecting conditions
for asymptotes and an asymptotic plane. To demonstrate the validity
of this approach, closed failure surfaces were derived for two graphite/
epoxy material systems (3M SP288-T300 and IM7 8551-7). The agreement of test
data with this model clearly shows that it is possible to use a higher

order cubic failure theory with confidence.
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Fis Fijo Fijx

F12

Fi120 F1220 Frees Faes
S, S'

Nomenclature

Strength tensors
Quadratic interaction strength parameter
Cubic interaction strength parameter;

Positive and negative shear strengths measured in
the 1-2 plane
Tensile and compressive strengths measured along the
fiber (1) axis, respectively
Tensile and compressive strengths measured in the
direction orthogonal to fibers (2)
Normal plane stresses along the 1 and 2 axes,
respectively

Shear stress measured in the 1-2 plane



1. INTRODUCTION

With the advent of composite material primary structural components in
advanced high performance aircraft and helicopters, the need for proven
predictive %ormulations to quantify the strength of laminates 1is of
paramount concern, In aerospace construction, one usually encounters
relatively thin-walled structures and thus, to a first approximation, a
plane stress state can be assumed to exist for preliminary design purposes.
However, it 1is becoming 1increasingly evident that in many instances,
three-dimensional stress effects must be considered, particularly in the
vicinity of free edges (associated with joints, cutouts, fasteners, etc.).
Indeed, such effects can lead to delamination and/or crack initiation which
are of major interest to the analyst. Regardless of the stress state, the
requirements for lamina and overall structural failure criteria still
persist., The most desirable failure model 1is one which can provide
conservative maximum 1oa& estimates of reliable accuracy. However, the
model must not be so conservative that it jeopardizes the design itself in
terms of increasing the weight needlessly. On the other hand. it should be
relatively operationally easy to employ, and not be dependent on the
development of such an extensive data base using complex and expensive test
procedures that the user shuns its application. One might comment that the
presence of local stress concentrations (due to cracks, free edges, holes,
etc,) does not influence the form of a lamina strength criterion. Rather,
such considerations can be taken 1into account in the formulation of the
stress analysis and the failure criterion one adopts for the whole laminate.
For example, if one is performing a finite element analysis, including
three-dimensional stress terms, failure is determined not only by the lamina

failure model, but equally as important, by the laminate failure model one

assumes,




Lamina failure models can essentially be grouped into three categories
of increasing operational complexity. The simplest approach is to design to
maximum stress or strain (which are not equivalent criteria).
Unfortunately, these models lead to substantial "over-estimates" of strength
in the "corner" regions of the failure surface envelope. The next class of
models are those which approximate the failure surface by quadratic
polynomials of different forms. Many variations of quadratic models can be
found in the literature, including ones which define the surface using
different functions for each quadrant. Again, it has been demonstrated
that, for certain load cases, quadratic formulations can overestimate
strength as well (Ref. 1). In some instances, such as biaxial loading, the
quadratic criterion can under-predict strength by as much as 30%-40%
(Ref, 2). The third category of failure criteria is termed “"higher order
models", the most common one of which is the "cubic® polynomial (Refs. 1,
2, 3). It should be noted that all of the above mentioned formulations
represent approximations encompassed by the general "tensor polynomial®
criterion advocated in Ref., 3., The one feature that is common to all of
these lamina failure models is that they represent a phenomenological,
macro-mechanics approach to predicting lamina failure. They all attempt to
describe the real failure surface in stress (or strain) space. Table 1
presents a summary of the test data and interaction strength parameters that
one would require for each classification of failure model. It becomes
quite apparent that the higher order cubic model demands more baseline
strength data. This of course raises the question as to whether or not the
additional complexity (and cost) is warranted. As noted earlier, there do
exist regions of the failure surface (for a plane stress state) where indeed
such a criterion is required. However, it should also be noted that recent
work has shown that for laminates fabricated from orthogonal woven fabric
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prepreg materials, a quadratic model provides quite accurate strength
predictions even under biaxial stress states (Refs. 4, 5). One of the main
difficulties encountered when attempting to ‘'model' the failure surface with
a single cubic polynomial representatioﬁ is due to the mathematical nature
of the cubic equation. It has been found in previous work that the failure
surface in stress space (ol, 02 06) is not necessarily closed and hence
situations can occur where 'infinite' strengths are predicted. For example,
this was observed in earlier work (Refs. 6, 7) in the
compression-compression quadrant where experimental data were not available
to assist in the evaluation of the strength coefficients,

To overcome this problem of 'openness' of the failure surface, a new
approach was taken with a view to establishing the necessary criteria to
ensure 'local' closure of the cubic polynomial. It is well known that some
cubic curves, such as the 'Folium of Descartes' (i.e., x3 + y3 - 3axy = 0),
possess a locally closed region., It 1is shown in the following report that
indeed the cubic form of the tensor po]ynomiai failure surface can be closed
providing one satisfies certain criteria associated with asymptotes of the
image of this function. Such closure conditions are presented and the model

is successfully applied to two different composite material systems,

2.  ANALYTICAL MODEL

The most general failure criterion available for unflawed composite
materials is the tensor polynomial which was advocated as early as 1966 by
Malmeister (Ref. 8) and developed extensively by Tsai and Wu (Ref. 3) in
quadratic and higher order forms. The failure surface in stress space can

be described by the equation,



1 no failure
1 failure (1)
1 exceeded failure

F.o. + F o. +F veo = flo)

1% 7 54599 Y Mgedioo Y

vV oA

for 1, j, k=1...6. F., F.. and F,. are strength tensors of the 2nd, 4th
o i ij ijk

and 6th rank, respectively.

Plane Stress State

If one restricts the analysis to a plane stress state and considers
only a cubic formulation as being a reasonable representation of the failure

surface, then Eq. (1) can be reduced to

2 2 2
Flop + Faop + Flyoy2 + Fpp0p? + Fegog? + 2F 5010, *+ 3F) 50,20,

+ 3F 990y%0) + 3F 5601062 + 3Fy5005042 = 1 (2)

From the analysis by Wu (Ref. 9), it was shown that the principal strength
tensor components (F1 and F11) can be readily calculated from the
experimentally determined values of the unfaxial tensile and compressive
failure stresses in the fiber direction (X and X'), perpendicular to the
fibers (Y and Y') and from positive and negative pure shear failure stresses

(S and S', respectively). The appropriate relations are given by:

1 1 1 1
Fib=x-vw P2 =y-y Fe =0
(3)
1 1 1
F s oo F 2 e F g —
11 X 22 YY 66 52

where for the materials considered, S = S°',
The problem that one is confronted with {is the evaluation of the

remaining interaction strength parameters such that Eq. (2) yields a



'locally closed' failure surface. This can be accomplished in two stages.

First, let us re-write Eq. (2) in the form,

-(Fyoy + Fyop + F1y012 + Fpp002 + 2F 5010y + 3F))50) 20,

+ 3F122010'22 - 1)

2 -
% Fee * 3F1660) + 3Fg660; (4)

It is now possible to fonnulate the conditions for closure:

(a) ensure that the cubic curve describing the intersecting
0,-0, plane is closed.
(b) for given values of o), 0y, real values for g5 must exist;
thus the asymptotic plane defined by
Fee * 3F16601 * 3Fp6692 = 0

cannot intersect the cubic curve in (a).

Condition (a)

To satisfy condition (a), one must examine the crossing of the failure
surface on the o;-o, plane, which occurs when o5 = 0. This yields the cubic

equatton

2
Fiop * Faop * F10y2 * Fpp002 * 2F 5010 + 3F)) 50120,

+ 3F ,5000,2 - 120 (5)

Noting that the principal strength parameters are given by Eq. (3), it is
necessary at this point to set up criteria that must be satisfied by the

interaction terms F;,, Fyy, and Fy55. These can be constructed by examining

the asymptotes of Eq. (5), which can readily be obtained if one re-writes



the equation as a quadratic in either o or oj. The corresponding

asymptotes are given by,

3F 500, * Fpp = 0 (6a)
3F)1200 + F1) = 0 (6b)

2 2 2 2
3F 112 Frooo + 3F 19F 10905 = FiaFion + Foafyyn 7 2F 5F 15F 00 (6c)

Closure of the curve (5) results if none of the asymptotes (Eq. (6)) passes
through the defined region. Hence the following conditions (derived from

Eq. (5)) are necessary to ensure closure:

I I (1f Fi,p > 0)  or -—F—2—2——>X(1fF < 0)
3F122 122 3F122 122

Uy (£ Fu.>0) o L, (1f F,1, < 0)
F 112 112 3F112 112

(7)

T (fd=<0) e = 5x (1f—=>0)

112 112 Fi12 Fi12

T T T T
= < =Y' (if =/ < 0) or = »Y (if=—>0

Fi22 ( F122 F122 ( F122 )

where

2 2
FliFi22 * Faaf 112 = 2F5F 19F 27
3F112F122

Evaluation of F,,, F  5s Fip

Suppose one performs a set of 'n' biaxial load tests (i.e., with

gg = 0) to generate 'n' data sets (oyy, op¢) {1 =1, 2, ...n). Note that



the uniaxial tests required to evaluate the principal strength parameters in
Eq. (3) are excluded. Using these data it is possible to evaluate Fy,, Fj);
and F,,, by a least-squares fit of the cubic Eq. (5). This simple approach
is often sufficient to produce a closed curve in o)-0, space (thus
satisfying the criteria of Eq. (7)), as will be demonstrated later.

If closure does not occur, then removal of one or more of the
asymptotes from intersecting the failure plane is required. To demonstrate
how this can be done, let us consider the following example. Suppose the

following asymptote

3F)g00) + Fpp = 0

penetrates the cubic curve (Eq. (5)) between (-X', 0, 0) and the origin.
Clearly, by shifting it to the left of the line o + X' = 0 will lead to
closure. In the 1imiting case when the asymptote is allowed to pass through
(-x*, 0, 0), it then becomes a part of the failurecurve. The cubic curve
thus degenerates into a quadratic curve and a straight line.

Substituting o, = -X' into Eq. (5) gives

(-3F)0oX' + Fpplap? + (3F) X' 2 - 2F X' + F))a,

+ (FX'2- FX' = 1) = 0 (8)

As there must exist an infinity of roots, o,, then the following conditions

hold:

'3F122X' + F22 = 0 (9)
3F 1X'2 - 2F X" + Fy= 0 (10)
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FyX'2 - FiX* =120 (11)

Equation (11) is the solution one obtains by setting 0, = gg = 0 and
o, = -X' in Eq. (2). This leads to the results.shown in Eq. (3) for F, and
Fiy as derived in Ref, 9. Equations (9) and (10) define constraint
conditions that must now be met by F,,, F,;, and F,,,. One may now proceed
to use the method of Lagrange multipliers to incorporate these 'side
conditions' in evaluating the least-squares best fit curve to the available

test data. This is accomplished by formulating the following functional:

n
F = izl (Fyoyq + Faopy + Fryopq2 + Fpp042 + 2F 5010y
+ 3F 190142055 + 3F 2040942 - 1)2
+ A (=3Fy X" + Fpp) + ap(3F) oX'2 = 2F X' 4 F,) (12)

where A,, A, are Lagrangian multipliers,

Fy» Fas Fyys Fpp are determined by experiment (see Eq. (3)). The

minimum value of 'F' yielding a “best" least squares fit is obtained from

n
oF
3F 1, 4 121 013024 (Frony *+ Faopy + Fry0142 + Fap0942 + 2F 5010y,
*+ 3F 19014205 * 3Fpp0p 407 - 1) - 'R, = 0 (13)

10



n
dF
oF 10 6 121 0152095 (Froyy + Faopy + Fryo42 + Fpp0p42 + 2F 50140y
+ 3F1126112°Zi + 3F1220110212 - 1) + 3X'2k2 =0 (14)
oF 2 -
oF 15y 6 izl 011021 2(Fyoy + Fpopy + Fryo) 2 + Fap0p2 + 2Fj50) 0y,
+ 3F1120)4205; + 3F 500140942 - 1) - 3X'A = 0 (15)

dF ‘ -

any - SF12akt * Fpr = 0 (16)
QE_ 12 [
6)\2 = 3F112X - 2F12X + F2 =0 (17)

Resolving the simultaneous equations (13)-(17), one can obtain Fy,, Fy ;5 and
Fipp. Thus one can now construct a closed cubic curve (Eq. (5)) that

represents a 'best fit' to test data.

Finally one should note that if 'openness' of the cubic curve (5)
occurs in a different quadrant, then the same procedures can be applied by
substituting different values for o or o, into Eq. (5) to obtain the

appropriate constraint equations,

11



Condition (b) - Evaluation of Fyce and Foc,

Closure of the cubic failure surface is dependent on the location of

the plane defined by

F +3F o +3F o
66 166 1 266 2

0 (18)

The image of Eq. (18) is a line on the 0;-0, plane as illustrated in Fig, 1,
where the shaded areas shown represent the 'positive side' of the line (18),
assuming Fge > 0, Fige < 0 and Foee < 0. In case (a) all points in the
closed region are situated on the positive side and thus 062 > 0 (see
Eq. (4)). Because og = 0 on the boundary of the closed region, and the
function defined by Eq. (4) 1is continuous, one can conclude that the cubic
failure surface is closed. Case (b) is opposite to (a) in that for every
point (o), o,) in the closed region, one cannot obtain a real value for o.
In this case, the failure surface is open above and below the closed region
shown in the o,-0, plane. This particular circumstance cannot actually
occur because the points (0, 0, +S) are located on the failure surface.
Case (c) 1s more typical where a region of the failure surface (above the
line) is open. As one approaches this 1line (Eq. (18)), o » t =,
Consequently, one can define the necessary condition for closure as:

the straight 1ine (18) must not 'intersect' the closed cubic curve (5)

In general, one can derive the required constraint conditions for Fig¢
and F,eqe by making the straight line (18) tangent to the cubic curve (5).
The coordinates of the point of intersection can be calculated for these
equations by first substituting for o, (from Eq. (18)) into Eq. (5) to

obtain

2 2 2
27(F122F 166 = F112F166F266)01° * 9(F11F266 * FaaFies = 2F12F 166F 266
12



F

2
- F66F112F266 + 2FeF 02 166)01

2 2
+ 3(FegF1aa - 2F oFe6Fa66 + 2F2aFesF16s = 3F2F166F 266 + 3F1F266)01
2
+ (FoFge? - 3F FgeFoge - IFog6) = 0 (19)

Because the tangent 1is a ‘'limit point' of the secant, then the
o)-coordinate of the point of tangency will correspond to the repeat real

roots of Eq. (19). Thus

3 2n 2 - R2.3
1 (zB 9ABC + 27A%D)% 2% (3AC - B%" . g (20)
27A3 3A2

where

A= 27(Fy9F 1662 F112F166F 266)

B = 9(F) Faee? + FaaF1662 = 2F)2F 166F266 = FesF112F266 + 2FgeF122F166)
C = 3(F,Foee? = 3F,F 66F266 * 2F22Fs6F166 = 2F12FesF266 * Fos2F122)
D = FpoFee? - 3F,FesFa6s = IF266” (21)

Simplifying Eq. (20) yields the following constraint condition:

27A2p2 - 18ABCD + 4AC3 - B2C2 + 4B3D = O (22)

As in the previous analysis, one can use the Lagrange multiplier method and

obtain the least squares 'best-fit' closed failure surface. Assuming one

has 'n' data sets (o;4, o055, ogy)» (1 =1, 2, ..un), the following

functional can be formulated:
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n
2
" 121 (Fyopg + Faopq * Fiyopq2 + Fppopq? * Feeagq® + 2F 150140

2
+ 3F 190142051 + 3F 1550119942 + 3F 166011 06¢2 + 3Fpgg027%42 - 1)2
+ A(27A2D2 - 18ABCD + 4AC3 - B2C2 + 4B3D) (23)

where X is a Lagrangfan multiplier. 'F' can reach an extreme value only if

of of
= ( =0, — =0 (24)
8F g6

Thus one can obtain a set of nonlinear simultaneous equations that will

yield a solution for F,.. and F .

3. DERIVATION OF CLOSED FAILURE SURFACES
Graphite/Epoxy: 3M SP288 - T300

This material was first studied in Refs. 1, 10, 11 where it was found
that the cubic failure surface was open in the compression-compression
quadrant in the 0}- 0, plane (see Fig. 2). The material properties used to
derive this curve are contained in Tables 2-5. It should be noted that no
biaxial test data were used, and as a result, two asymptotes (given by Eq.
(6b), (6¢c)) were found to penetrate the failure curve, Eq. (5). Biaxial
tests were then performed (see Table 6) and closure of the curve (Eq. (5))
was obtained, as is evident in Fig. 3. One can now see that all three
asymptotes 1lie outside the failure plane. The corresponding modified
coefficients F,,, F;,, and F,,, are given in Table 5. For comparison

purposes, the 'original' and ‘'revised' failure curves are plotted in Fig. 4
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together with the quadratic model which can be seen to significantly
overestimate the failure stresses in the compression-compression quadrant.
Thus it would appear that a minimum of three biaxial tests in the o-0,
plane can be used to obtain a closed failure curve. However, subsequent
analysis (Ref. 3) using these coefficients together with F g and Fygq, as

determined in Refs. 1, 2, showed that the failure surface was 'open' in a

limited region of og values (Fig. 5). It is interesting to note that Eq.
(18) passes through the 'points of intersection' A and B (in Fig, 5). Thus,
if one varies F g¢ and Foee, in the limiting case when A+B, Eq. (18) becomes
the tangent plane and closure of the failure surface (Eq. (2)) occurs.
Closure is only guaranteed if one imposes the constraint condition, Eq.
(22). To demonstrate this, additional failure tests were conducted with
0)-0g and o,-o, loading (see Table 6) and new estimates for F .. and F,
made, Using these revised coefficients (see Table 5) without imposing the
constraint condition led to the results shown 1in Figs. 6 and 7 (i.e., an
open failure surface). However, closure was obtained employing the same
data and solving for Fyqc and Fyge using Eqs. (23) and (24). The results of
this analysis are presented in Figs. 8 and 9. Now one can see (Fig. 8) that
Eq. (18) 1is indeed a tangent plane to the failure curve (Eq. (5)) and
closure of the complete failure surface (Eq. (2)) was achieved (Fig. 9).
For comparison purposes, failure tests were undertaken using (:e)s
lTaminated tubes subject to internal pressure loading. Figure 10 presents
the test data (reported in Ref, 6) and the predicted strength curve using
the coefficients of Table 5 for the 'closed' surface. The agreement is very
good and for most cases, the model 1is somewhat conservative.. Once again,
however, it s clearly evident that the quadratic criterion is far too

conservative, particularly in the 'optimal' fiber angle region.
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Graphite/Epoxy: Hercules IM7/8551-7

A new graphite/epoxy material was investigated to determine its elastic
and strength properties, the results of which are summarized in Tables 2 and
3, respeciively. The corresponding principal strength parameters are given
in Table 4., As in the previous case, a first estimate of the interaction
strength coefficients was made based on the test data in Table 8, Least
squares analysis was used but no constraint conditions were applied. The
results of these calculations are presented in Table 5. It can be seen in
Fig. 11 that the 0,-0, curve is closed (for Og = 0) but that the straight
line (18) does pass through the failure region. This of course leads to an
open failure surface and indeed such is the case in Fig. 12 for a range of
og loading.

However, 1f the constraint condition {is imposed and Fiees Faes
evaluated according to Eqs. (23) and (24), one does obtain a closed failure
surface. This is first evident in Fig. 13 where the image of Eq. (18) is
now a tangent to the o)-o0, curve. One can also see in Fig. 14 that the
failure plane o,-o; is closed. Finally, a series of failure planes shown in
Fig. 15 clearly demonstrate that the whole failure surface is now closed.
Note that 1in Figs. 13-15 some 1limited test results are 1included for
comparison purposes, over and above the data employed to estimate the

interaction strength parameters.

4, CONCLUSIONS
An analytical method has been presented utilizing constraint conditions
that permits one to construct a closed cubic polynomial faflure surface.
The procedure is based on three stages of testing and analysis:
(1) Calculate the principal strength parameters (Fys Fas Fyys Faas Fge)
based on standard tension, compression and shear tests.
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(2) Conduct biaxial 1load tests (og = 0) at a minimum of three different
stress levels and evaluate the interaction parameters (F;,, Fij5, Fip2)
in the cubic failure equation (5) in the o)-o, plane using the method
of least squares. If this failure curve is open, invoke closure
conditions described in this report,

(3) Conduct combined loading tests involving shear stress preferably at two
different stress levels and invoke the closure condition (Eq. (22))

to evaluate F, . and F, . using Eqs. (23), (24).

This report presents closed failure surfaces for two different
graphite/epoxy materials using the methodology described. The analyst and
designer now have available for the first time a closed form of the cubic

polynomial failure criterion.

REFERENCES

1. Tennyson, R. C., Nanyaro, A. P., Wharram, G. E., "Application of the
Cubic Polynomial Strength Criterion to the Failure Analysis of
Composite Materials", J. Composite Materials Supplement, Vol. 14, 1980,
pp. 28-41,

2. Tennyson, R. C., Elliott, W. G., "Failure Analysis of Composite
Laminates Including Biaxial Compression®, NASA CR 172192, Aug. 1983.

17



10.

11,

Tsai, S. W., Wu, E. M,, "A General Theory of Strength for Anisotropic
Materials*, J. Composite Materials, Vol. 5, 1971,

Tennyson, R, C. and Wharram, G, E., "Development of Failure Criterion
for Kevlar/Epoxy Fabric Laminateg". NASA CR 172465, July 1984,
Tennyson, R. C. and Wharram, G. E., "Evaluation of Failure Criterion
for Graphite/Epoxy Fabric Laminates", NASA CR 172547, Feb. 1985,
Tennyson, R. C., MacDonald, D., Nanyaro, A, P.,, "Evaluation of the
Tensor Polynomial Failure Criterion for Composite Materials", J.
Composite Materials, Vol., 12, 1978, pp. 63-75.

Nanyaro, A. P., "Evaluation of the Tensor Polynomial Failure Criterion
for Composite Materials", M,A.Sc. Thesis, University of Toronto, 1978,
Malmeister, A. K., "Geometry of Theories of Strength", Mekhanika
Polimerov, Vol, 2, No. 4, 1966,

Wu, E. M., "Optimal Experimental Measurements of Anisotropic Failure
Tensors®, J. Composite Materials, Vol. 6, 1972,

Tennyson, R, C., "Application of the Cubic Strength Criterion to the
Failure Analysis of Composite Structures®, NASA CR 165712, May 1981,
Tennyson, R. C,, "“Experimental Evaluation of the Tensor Polynomial
Failure Criterion for Designing Composite Structures®™, NASA CR-155219,

October 1977.

18



Table 1

Plane Stress Failure Model Test Requirements*

Failure Model

Test Requirements

Maximum Stress

0° tension, compression

or Strain 90° tension, compression
(1) 0° or 90° shear
Quadratic Same as (1) with option to evaluate interaction
(2) term F,, analytically (using "closure" condition)
or witﬁ biaxial tension test
Cubic Minimum requirements:
(3) (a) 3 biaxial load tests (o;-0,) + Fyps Fiyps Fipo

b) Solve for F and F from constraint Eq.
iZZ) and Eq. (2§6§ased o%si ‘shear' test using

either g)-og Or oy-04 l0ading,
Preferab{e: (a) + two 'shear' tests (o;-o¢) and
{o,-0¢)» and solving Eqs. (23), (24) for Flee:

Faes

*These hold for an orthotropic material, such as unidirectional prepreg or
woven (orthotropic) fabric. In the latter case 0° and 90° refer to warp
and fill directions, respectively.



Table 2

Graphite/Epoxy Material Properties

En Es Gy, Vi2
Material GPa GPa GPa
3M SP288-T300 141,35 9,65 4,10 0.260
Hercules
IM7/8551-7 162.03 8.34 2.07 0.339
Table 3

Summary of Average Failure Strengths for Graphite/Epoxy Materials

No. X X' Y Y' S=5'
Material Tests MPa MPa MPa MPa MPa
3M Sp288 8 1279.92 + 7%
-T300 4 876.25 + 10%

5 51.82 + 3%

4 233.07 + 6%

6 95.88 + 9%
Hercules 5 2417.39 + 2%
IM7/8551-7 5 1034.94 + 6%

4 73.09 + 1%

4 175.82 + 4%

4 183.41 + 10%

Note: % variation shown denotes maximum in number of samples tested.

Table 4

Summary of Principal Strength Parameters

Fi F1i Fa Faz Fe Fes
Material (MPa)-1  (MPa)-2 (MPa)-1 (MPa)-2 (MPa)-1 (MPa)-2
3M Sp288
-T300 -3.600x10-% 8,917x10-7 1.501x10-2 8.279x10-5 0 1.088x10-%
Hercules

IM7/8551-7 -5.526x10~"% 3,997x10-7 7,994x10-3 7,783x10-5 0 2,972x10°5




Table §

Summary of Interaction Strength Parameters

-

F12 Fl12 F122 Fies Fa6s
Material (MPa)-2 (MPa)-3 (MPa)-3 (MPa)-3 (MPa) -3
3M SP288-T300
Original
Est. (Refs. -9.306x10-6 1,577x10-9 -1.826x10-8 -1,237x10-8 -6,919x10-7
1,10,11)
Revised
(Ref, 2) -4.697x10-6 -8,841x10-10 -1,549x10"8 -1,272x10"8 -3,130x10"7
Revised* -4,697x10-6 -8.841x10-10 -1,549x10-8 -7.090x10-9% -7,032x10"7
Closed
Eqs. (23,24) -4.697x10-6 -8,841x10-10 -1,549x10-8  6,147x10-8 -5,415x10-7
Hercules IM7/8551-7
First Est.** 8,412x10-7 -1,243x10-9 1.627x10°8  4,939x10-8  4.482x10"8
Closed
Eqs. (23,24) 8.412x10-7 -1.243x10"9 1.627x10-8 9,250x10~8  1.897x10-7
*F1e6s Fosg estimated from test data in Table 6 (no constraint conditions;.
**Fi1ge> Foge ©Stimated fram test data in Table 8 (no constraint conditions).




Table 6

Summary of Test Data Used to Evaluate Interaction Parameters for

3M SP288-T300

Test g dy Og
Laminate Condition MPa MPa MPa
90° Compression-torsion* 0 -81.278 80.637
90° Compression-torsion* 0 -43.280 83.912
0° Tension-torsion* 66.623 0 101.246
0° Tension-torsion* 61.611 0 98.061
90° Internal pressure
-axial compression* 160,8 -120.663 0
0° Tension-tension* 187.2 48,265 0
0° Biaxial-cross -184.7 -77.914 0

(Ref, 2)

*Tubes, R = 2,525 cm



Combined Loading Failure Tests for IM7/8551-7

Table 7

0] g2 o6
Laminate' Test Condition (MPa) (MPa) (MPa)

90° Pressure 137.90 68.74 0
90° Pressure 131.70 66.19 0
90° Pressure-compression 224.78 76.54 0
90° Pressure-compression 590.21 -155.83 0
90° Pressure-compression 817.75 -124.80 0
90° Pressure-compression 495,06 64.81 0
0° Pressure-compression -448,18 47,58 0
0° Pressure-compression -169.62 62.75 0
90° Torsion-tension 0 11.03 170.31
0° Torsion-compression 285.45 0 182.03
90°* Torsion-compression 0 13.79 148,93
90°* Torsion-compression 0 -33.10 185.48
o°* Torsion-tension 20,69 0 177.20

*These results were used for comparison purposes and not for calculating

;nteraction strength parameters.
See Table 8 for geometry of tubular test specimens,



Geometry of IM7/8551-7 Test Specimens

Table 8

Length Width Radius Thickness
Test Specimen (cm) (cm) (cm) (cm)
0° Tension C 15.24 1.27 - 0.0559 (4 ply)
0° Compression o 1.59 1.27 - 0.1745 (12 ply)
90° Tension o 15.24 2.54 - 0.2301 (16 ply)
90° Compression o 1.59 2.54 - 0.2253 (16 ply)
90° Torsion* T 10,16 - 2.55 0.0523 (4 ply)
0° Torsion** T 10.16 - 2.56 0.0785 (6 ply)

C = coupon, T = tube
*Same nominal geometry
compression-pressure)

for combined tests (e.g., torsion-tension,

**Same nominal geometry for combined tests



(c)
Fig. 1




ASYMPTOTE -
EQ. (60) O’| = 1,511 GPa 2

9 0, (MPa)

0, =-188.2 MPa

o Test Data

ASYMPTOTE EQ.(6¢)

-14001 x6.9

Fig. 2 Penetration of o; - o Failure Curve by Asymptotes



DIDQ 1904 [ouoiippy Buisn) san) sunpey %0 - !0 Jo smeoy) ¢ Big

o)
)
*

DN 81°'9¢E = 20
(99)'03 3LOLJWASY

040Q ise) ©

o el g (°9) 03 3LOLdNASY



O, (MPa)
————— N\
\
|
/
/
/
V]
v/
v
L/
i
|
il
. . 0>(MPa)
-40 10 26)(6.9
/
/|
I
[
ll \
/ \ | FAILURE - CRITERIA
/ PN | :_._ N
/ e / — Revised Cubic
/ P —— Ref[10]
/ ’,/’ / ~—— Quadratic
/ - /I-zso-L
[
/
/ -3001x6,9

Fig. 4 Planar Failure Surface, Oy = 0



O-| (MPa)

103 MPq

-40

Eq. (I18)

=200+ x 6.9

Fig. 5 Failure Surface Contours for Varying (o)



15. - x 6.9




i ] i i

L ., 91(MPa)

"-400

- x 69

Fig. 7

100. 180.

00. 250.x69

O MPq



0, (MPa)

18, ~x 69

. . 4 .1, Oi(MPa)

100. 1850. 00.x69




o, (MPa)
20. — X 6.9

[ | O.I(MPQ)
00. 250.x69

O MPa

:

—40. Lx 69

Fig. 9 Closed Failure Surface for Graphite/Epoxy (3M SP288-T300)



Failure Pressure (Pg)

Strength of Symmetric Balanced Laminated

3000.

x 69

2500.

(M
0
o
o)

18500.

1000.

500.

Tubes Under Internal Pressure Loading

[ [4—Ply (+@) 3M SP288 T300 GRE]
Radius = 2.54 cm
A
o/
Closed Cubic ’
————cCuble (Ref.2) [[°
. —— = —-= Quadratic I
o Experiment I’

1 " 1 i | 2 d A i " ] s 1 N 1 N J

0. 10. 20. 30. 40. 50. 80. 70. 80. 90.

Lamination Angle 8 (deg)

Fig. 10



o (MPa)
2

15. - x69

1 0 (MPG)
400.x69

-35.L,69

Fig. Il



|
&

o (MPa)
400. FXG.g

Test Point

X For Calculating
Parameters

© For Comparison

o = 0(MPg)
2

I DT Os (MPa)

80. 80.x69

az= - 138 (MPa)




1

L

1 OT(AAPG)

—200. w

100.

. =x69

Fig. I3

200.

300.

400. X 6.9



1

o, (MPa)
40, - X 6.9

20. |-

10. |

Test Point

X For Calculating

Parameters

For Comparison

o, (MPa)
-J

-30.

20.x69




o (MPa)

400. - x69
Test Point

X For Calculating
Parameters

© For Comparison

o = 0(MPaq)
2

azB - 138 (MPa)

N S B L Lty 0s(MPa)
‘-800 -600 —400 2 0] 40. 600 ) 80- X 6.9
T o= - 172 (MPa)

W,

—-200. Lx869

Fig. 15 Closed Failure Surface for Graphite/ Epoxy ( Hercules IM7/8551-7)




