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MTUNNEL WALL INTERFERENCE RESEARCH

About a decade ago, interest in alleviating wind tunnel wall
interference was renewed by advances in computational aerodynamics,
concepts of adaptive test section walls, and plans for high Reynolds
number transonic test facilities. Selection of the NASA Langley
cryogenic concept for the National Transonic Facility (NTF) tended

to focus our renewed wall interference efforts. A brief overview
and current status of some Langley sponsored transonic wind tunnel
wall interference research are presented. Included are continuing

efforts in basic wall flow studies, wall interference assess-
ment/correction (WIAC) procedures, and adaptive (flexible) wall
technology. It should be pointed out that for transonic flow
conditions, wind tunnel wall interference 1is coupled ¢to other
tunnel flow phenomena not generally associated with subsonic flow
and classical (linear) wall interference theory. Some of these
related phenomena, such as flow quality, support interference, flow
diagnostics, and transition studies, are discussed in other papers
in this compilation. Understanding these phenomena 1is basic to
proper unbounded-flow simulation in wind tunnels; however, it is
not appropriate to repeat the material in this brief overview.
Furthermore, much of what should be included here cannot be; a list
of publications from Langley sponsored research over the past decade
or so 1is 1included in order to summarize the total effort and to

identify some of the individual researchers who have been involved.

NASA Langley focus is transonic

@ Basic wall flow studies
® Assessment/correction procedures - WIAC

@ Adaptive wall technology - flexible
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BASIC WALL FLOW STUDIES

In order to emphasize specific wall interference aspects, the basic
wall flow studies summarized here have been grouped as slotted wall
test sections, sidewall boundary-layer phenomena, wall interference
data bases, and tunnel simulator code development. Activities
pertaining to slotted test section walls include parametric studies
of wall properties, use of such information in NTF test section
design, and subscale design verification tests. These efforts are
considered as customary wall interference research. Activities
dealing with the response of the (solid) sidewall boundary layer to
the model pressure field and its resulting influence on the test
conditions are not so customary. It is primarily observed in airfoil
testing and should be accounted for or alleviated; its influence is
much less in 3-D. NASA Langley work in this area includes theory,
experiment, and applications. Wall interference data bases and
numerical wind-tunnel flow simulator codes are required for the
development and verification of assessment/correction (WIAC)
procedures; in addition, these pursuits have their own intrinsic
value. Both 2-D and 3-D data bases, including wall pressure signa-
ture data, are being generated. Tunnel simulator CFD codes are
being continually developed; governing flow equations 1include
linear, transonic potential, and nonpotential approximations. The
paper by South et al. in session 1 of this compilation is an example
of our work in this area.

® Slotted test section walls

e 6- by 19-inch TT parametric studies
e NTF design/subscale NTF tests

® Sidewall boundary layer phenomena

e Theory and experiment
e Applications

® Wall interference data bases

e 2D and 3D
e Wall pressure data

® Tunnel simulator code development

e linear and transonic potential
e Nonpotential
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SLOTTED WALL PARAMETRIC STUDIES

§- by 43-Tach I ORIGINAL PACE 15
OF POOR QUALITY

The experimental phase of Langley’s most recent parametric slotted
wall flow study was conducted by Joel Everhart throughout 1984 in
the 6- by 19-inch Transonic Tunnel (TT). His experimental setup is
shown in the photograph; the single-slot test section wall config-
uration standing at the right has been removed, exposing the airfoil
and opposite wall. A flow angularity probe is visible in the slot
of the far wall, just ahead of the 1leading edge of the model.
Pressure data were taken on the walls and model; flow angularity

data were also taken 1in the test section. Variation of wall
parameters was by means of readily interchangeable test-section
"upper and lower" slotted-wall configurations. Wall parameters

varied in this study include geometric openness ratio, number of
slots at fixed openness, slat thickness, slat 1lip radius-of-
curvature, and sidewall boundary-layer thickness. This was done
using a 6-inch-chord NACA 0012 airfoil over a range of angles of
attack (-4° to +4°) and tunnel Mach numbers (0.1 to 0.95). Data
from this study are now being reduced; hopefully these data will aid

in understanding the role of such parameters in the slotted-wall
boundary condition.
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8- by 24-Inch Airfoil Test Section, 0.3-M TCT

The 0.3-m TCT sidewall boundary layer removal hardware consists of a
pair of perforated panels inserted (flush-mounted) in the tunnel
sidewalls upstream of the model location. These perforated panels
extend from the floor to the ceiling of the test section and are
approximately 6 inches wide, as shown in the top view photograph of
the test section (top of the plenum chamber and the slotted wall

removed). Visible in this photograph are the airfoil model,
boundary 1layer bleed ducting, one of the four ©boundary 1layer
sidewall rakes, and one of the two perforated panels. The holes

in it were drilled using an electron beam technique and the surface
was etched; this results in an unusually smooth surface considering
the large number of holes in the plate. Two different hole
configurations giving different porosities have been tested. The
amount of the boundary layer mass flow removed from either of the
sidewalls 1is controlled independently by two digital flow control
valves and discharged directly to the atmosphere (passive system).
At a Mach number of 0.76, the maximum bleed flow rate 1is about
2 percent of the test section mass flow rate; this amount of bleed
capability 1is sufficient to significantly reduce the sidewall
boundary layer displacement thickness. Recently, a cryogenic
reinjection compressor (active system) has been 1installed and
validated; the sidewall boundary layer mass removal capability has
been expanded to cover the entire operating envelope of the 0.3-m
TCT.
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EFFECT OF SIDEWALL BOUNDARY LAYER BLEED

The adverse influence of the sidewall boundary layer/model pressure
field interaction on an airfoil test is most pronounced at super-
critical flow conditions. Barnwell and Sewall have shown that
for attached flow on the sidewall, the Mach number correction 1is
approximately -~28" /b, where b is the tunnel span. When the airfoil
shock waves intersecting the sidewall separate the sidewall boundary
layer, then the resulting flow is very 3-D in nature; one tries to
prevent this situation. In the 0.3-m TCT airfoil tests, the effect
of upstream sidewall boundary layer bleed is most easily observed at
supercritical flow conditions with high 1ift. Shown in the figure
are midspan chordwise and several spanwise presure distributions on
an airfoil at the nominal tunnel conditions shown in the subtitle.
Results are for tests without (Q) and with (1) bleed (passive
system); test section Mach numbers (Mt) and their corrected values
(Mc), using Barnwell-Sewall approximations, are also given. As can
be seen on the left, with bleed applied, there is an improvement of
the midspan pressure recovery on the upper surface near the trailing
edge of the airfoil; this suggests that with bleed the separation on
the upper surface 1is significantly reduced. The more downstream
location of the shock wave and higher normal force coefficient for
the lower test section Mach number also indicate less separation.
The spanwise distributions are on the right; at x/c = 0.5 it is seen
that the separation induced by the shock is at the sidewalls. The
flow appears to be less 3-D with bleed applied.
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LFC Experiment, 8-Ft TPT

Suction requirements under the turbulent boundary layer of the
contoured test-section liner near the model and on the model
surfaces near the liner were determined as part of the liner-design
procedure. This was done in the process of determining the
effective displacement correction which had to be accounted for in
the liner shape. Determination of the suction requirements in these
turbulent-flow regions is not to be confused with what is required
to determine the laminar-flow-region suction rates over most of the
model., Suction is required on the liner "endplates" near the model
juncture in order to keep the turbulent boundary layer attached
through the adverse pressure-gradient regions which occur in the

following regions: on approaching the model leading edge, through
the aft-portion pressure-recovery regions, and near the concave
corners on the lower surface. The liner blocks in these regions

form a collar about the model containing suction panel blocks with
slot/plenum/duct construction very similar to that wused on the
wing. These blocks are metal, but with molded fiberglass outer
skin; they move with the model through angle-of-attack adjust-
ments. The figure 1is a photograph looking downstream through the
channel "above" the wing surface, and the suction panel blocks are
the dark areas on the top and bottom liner "endplates."

Contoured
slot suction
panels

Contoured
slot suction
panels—

VAL

Y
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SIDEWALL BOUNDARY LAYER CONTROL

LTPT

In order to reasonably. approach two dimensionality in low-speed
flows when testing multielement airfoils, some form of tunnel
sidewall boundary layer control 1is needed. The 1large adverse
pressure gradients induced by the high-1ift airfoil can cause
the tunnel sidewall boundary layer to separate and result 1in a
decrease 1in airfoil 1lift. Tangential blowing was selected to
provide local sidewall BLC near the airfoil; overall boundary layer
thinning upstream of the model is accomplished by single suction

slots on each sidewall. Five blowing boxes with tangential slots
are available for each side of the tunnel and can be positioned
around the airfoil within the confines of the endplates. High-

pressure air is supplied to each box through a flexible hose
connected to a mobile blowing-box control cart. The tangential wall
blowing energizes the sidewall boundary layer, appreciably reducing
its displacement thickness. The photograph is a view looking into
the trailing edge of a '"poor man’s" split flap model. Single
blowing-box tangential slots are seen on each turntable above the
model in the adverse pressure recovery region above the wupper
airfoil surface. Ahead of the leading edge, the sidewall suction
slots are visible. These span each sidewall from top to bottom. 1In
earlier tests on an NACA 4416 airfoil with flap, it was found that
tangential blowing through slots 1located on the model endplates
eliminated flow separation at the flap and sidewall juncture. It
is required to obtain useful results from two-dimensional tests of
high-1ift multielement airfoils.

O Scicwall
e suction -
‘ slots — e
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SIDEWALL BOUNDARY LAYER CONTROL

6—- by 28-Inch TT Studies

e )

COALITY
Experimental studies on controlling the sidewall boundary layer in
airfoil tests at transonic flow conditions via suction through a
few discrete orifices have been initiated by Bill Sewall. The
photograph shows a 3-inch-chord NACA 0012 model mounted on endplates
for the 6- by 28-Inch Transonic Tunnel. Pressure orifices on the
model upper surface are visible near midspan. Discrete sidewall
orifices are seen on the endplate at the top of the photograph; each
of these can be connected to either measure pressure or provide
local sidewall boundary layer suction. The tubing stubs for this
interchangeable connection are seen on the endplate at the bottom of
the photograph; the tubing bundle is from the model wupper-surface
pressure orifices. The discrete endplate orifices are located along
the model-endplate juncture, including one at the leading edge, and
in the aft adverse pressure gradient region where shocks would form
and tend to separate the sidewall boundary layer. The hardware has
not yet been put into the tunnel.
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HYPERSONIC MODELS USED IN SUBSCALE NTF INTERFERENCE EXPERIMENT

Three-dimensional transonic data bases suitable for testing
and validating WIAC procedures are being taken on this pair of
(previously existing) hypersonic models in a subscale NTF facility -
the Diffuser Flow Apparatus (DFA). These models are the same shape
but differ in size; some wall interference assessment can be made by
comparing certain force and moment data between the two models.
However, using the measured wall pressures as boundary data in a
WIAC code, one would hope to get very similar corrected results
independent of the model size. The differences caused by the
inability to match the model Reynolds number at the same Mach number
have been minimized by the selection of this configuration, which
has a highly swept planform and a sharp nosed airfoil.

ORIGINAL PAGE IS
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SUBSCALE NTF WITH LARGE HYPERSONIC MODEL

The wall pressure orifice layout on the DFA floor, ceiling, and
sidewall is shown in this schematic. Location of these orifices
with respect to the large hypersonic model, its supporting sting,
the floor and ceiling wall slots, and reentry flaps can be seen.
This particular pattern was determined by NTF slotted wall
constraints and a linear theory wall interference code. The
suitability of using data obtained with this particular orifice
layout in existing 3-D linear and transonic simulation and WIAC
codes 1s being analyzed at present. Another entry and additional
testing is to be done in the DFA.

Wall pressure orifice locations

Slots

Floor and ceiling
=
-—:’“———--——‘_,___,—/———-——)
_____ NIRRT '
— )

Sidewall
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SUBSCALE NTF (DFA) SAMPLE RESULTS

Sample results for Mach number distributions along the centerline of
the test section floor are given in the figure. These were for a
nominal tunnel Mach number of 0.9 and at very-near-zero 1lift for
both models. The tunnel was initially run empty, without either
model or sting support system, to investigate the uniformity of the
Mach number distribution in the test section and provide a Mach
number calibration for the model tests. Wall Mach number signatures
for both models are also shown; the influence of the sting flare can
be seen downstream of the model 1location. This effect must be
accounted for either in the WIAC procedure or by taking the sting
signature out as a tare-type correction to the wall data. Tests of
sting only have also been made.

Mach numbers along ¢ of test-section floor
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ASSESSMENT/CORRECTION PROCEDURES - WIAC

Wind tunnel wall interference assessment/correction (WIAC)
procedures have evolved over the past decade; they are based upon
ideas and capabilities from classical wall interference theory,
adaptive wall concepts, and computational fluid dynamics. Specific
representations have varied from classical-like pretest prediction
methods to adaptive-like post-test correction methods; however, it
is now generally believed that some flow-field data taken during the
test are required in order to make an adequate assessment of or
correction for transonic wall interference. The basic 1idea 1is to
first numerically simulate the tunnel flow field, subject ¢to
measured boundary data, and then to search for a corresponding
numerical solution in free air., Differences between such solutions
are associated with wall interference corrections. When flight Mach
and Reynolds numbers are both nearly matched in the tunnel test,
then the corrections deduced by this correspondence may be valid
well into the transonic flow regime. A nonlinear, transonic small-
disturbance equation WIAC procedure has been developed for the
airfoil test section of the 0.3-m TCT. It utilizes measured wall
pressure data and accounts for interference from all four test
section walls. For the NTF, both 1linear and nonlinear 3-D
correction procedures are being developed. Nine longitudinal rows
of wall pressure taps are being installed in the test section, and
specific wall interference experiments are scheduled. Transonic
nonpotential WIAC codes are being developed in order to determine
the importance of nonisentropic effects in wall corrections.

® 0.3 m TCT, 8- by 24-inch airfoil TS

o Vall pressure taps
e Nonlinear, four-wall correction
e Advanced technology airfoil test data

® NTF

e Linear and nonlinear correction codes
e Subscale NTF (DFA) data

e Wall pressure taps being installed

e Planned NTF wall interference tests

@ Nonpotential WIAC code development
e Flow Industries, Inc.
e NCSU
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UNCORRECTED LIFT CURVES, CAST 10-2/DOA 2

A sample of wall interference corrections for airfoil data taken in
the 8- by 24-inch test section of the 0.3-m TCT is given in the next
two figures. These data were taken in cooperation with the DFVLR as
part of NASA’s Advanced Technology Airfoil Test program, in which
U.S. 1industry also participated. On the 1left, uncorrected 1lift
curve data from three tests (identified in the key) are compared
with an independent free-air calculation from the GRUMFOIL 2-D
transonic (full-potential equation with viscous interaction) airfoil
code at the uncorrected tunnel conditions. Test 136 was run about
2 years prior to the other tests, and it was later deemed to have
a -0.3° bias in the tunnel angle-of-attack. This bias has been
accounted for and is the only difference in the figure on the
right. It can be seen that the data are not collapsed in either
case; furthermore, none agree with the free-air calculation.

0.3 m TCT data, M~0.73, R ~ 10 million

2 5o
o
s (o3
Cpt o  r Test 136 data with 0.3° a shift
© O o
E; DOD %oo o
B P
C, <>o
a & o Test 136} .
8 . Test 169 6-in, chord
8° o Test 159 } 3-in. chord
— Grumfoil code, free air
a
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FOUR WALL CORRECTED LIFT CURVES, CAST 10-2/DOA 2

The transonic airfoil WIAC procedure for the 8- by 24-inch test
section of the 0.3-m TCT determines corrections for the tunnel Mach
number and angle-of-attack. Corrections were obtained for some of
the CAST 10-2/DOA 2 airfoil data before we realized that there was
an angle-of-attack bias in one of the tests; these results are shown
on the left. It can be seen that the corrected data are nearly
collapsed and 1lie very close to the GRUMFOIL free-air results
calculated at the corrected conditions. WIAC corrections were then
made to the shifted Test 136 data, and these latter results are
shown at the right. These results are essentially the same as those
on the left, indicating that the WIAC procedure accounted for the
bias automatically. In this procedure, the quoted tunnel Mach
number and angle-of-attack are more properly only reference values.

0.3 m TCT data, M~0.73, R~ 10 million

L J
L J
Cyt * Test 136 data with 0.3° a shift
L 3
e o PY
* ....
Cy A
L L )
) I * Test 136 6-in. chord
. Test 169 ‘
. . Test 159 3-in. chord
—— Grumfoil code, free air
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PLANNED NTF WALL INTERFERENCE EXPERIMENTS

NTF experiments specifically designed to study wall interference
will be performed wusing several sizes of geometrically similar
simple bodies of revolution and two sizes of Pathfinder I models.
Both pointed and blunt bodies of revolution will be tested in order
to study Reynolds number effects on blockage corrections and wave
drag at Mach numbers near unity. The pointed bodies study will be
directed toward very low supersonic flow conditions near maximum
drag, whereas the blunt bodies, which are supercritical bodies of
revolution, will be studied at very high subsonic flow conditions.
Studies on the Pathfinder I model and a 1/2-scale Pathfinder I will
evaluate combined blockage and 1ift interference on this general
transport configuration. In all studies, tunnel wall pressures
required by the wall interference assessment/correction procedures
will be measured.

® Pointed bodies of revolution
® Blunt bodies of revolution

® Pathfinder I models
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PATHFINDER I MODELS OF POOR QUALITY

An uninstrumented wing was fabricated to be tested on the
Pathfinder I fuselage; this model will be wused in conjunction
with a 1/2-scale Pathfinder I model to evaluate the wall inter-
ference techniques for the NTF. Care was taken to assure that
these two models were as geometrically and structurally similar as
possible. Both of the wings were fabricated from the same material
with the full-sized wing having a fabrication tolerance of *0.004
inch and the 1/2-scale model having a fabrication tolerance of
£0.002 inch. Six-component strain-gauge balance data obtained from
these models will be wused in conjunction with static pressures
measured on the test section floor, ceiling, and one sidewall to
validate wall interference assessment/correction techniques for
the NTF. The primary objective of these tests will be to study
Reynolds and Mach number effects on combined blockage and 1lift
interference at high subsonic flow conditions appropriate to
transport configurations.
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ADAPTIVE WALL TECHNOLOGY - FLEXIBLE

The adaptive wall test section concept, using solid flexible walls,
attempts to reduce or eliminate wall interference while providing a
boundary condition more suitable for mathematical analysis than
that of the ventilated wall concepts. Therefore, contouring the
solid walls of the test section along free-air streamlines is the
basis of the adaptive wall test section concept being pursued at
Langley and the University of Southampton under an NASA grant. The
concept uses a wind tunnel together with the high-speed digital
computer. Both the wind tunnel and the computer are used to
provide a part of the total flow field, each working in the region
best suited to its unique capability. That 1is, the tunnel solves
the real, viscous, rotational, inner flow field about the model,
while the computer solves the imaginary outer flow field extending
to infinity. An adaptive wall test section configured for 2-D
testing is being installed in the 0.3-m Transonic Cryogenic Tunnel
(TCT) circuit. The design of this test section 1s based upon the
work undertaken at Southampton. The self-streamlining wall test
section (SSW TS) of the 0.3-m TCT is 13 by 13 inches, whereas
that of the transonic self~streamlining wall tunnel (TSSWT) at
Southampton is 6 by 6 inches. Initial airfoil tests in the 0.3-m
TCT will be for models in two sizes; early attempts at 3-D testing
in it will use the AEDC wall interference model. Current research
studies at Southampton concern shockwave/adaptive wall interaction
control and 3-D model/2-D adaptive wall testing.

® 0.3 m TCT (NASA Langley)
® 13- by 13-inch SSW TS being installed
e Airfoil models in two sizes initially
e AEDC wall interference model for 3D

® TSSWT (Univ. of Southampton)
e 6- by 6-inch test section
e Shockwave/wall interaction studies
e 3D model/2D adaptive testing
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13- by 13-INCH SELF STREAMLINING WALL TEST SECTION, 0.3-M TCT

The 13- by 13-inch self streamlining wall test section is now being
installed in the 0.3-m TCT. This new test section, shown in the
photograph, 1is configured for two-dimensional testing. The test
section is 56 inches 1long, and all four walls are solid with the
top and bottom walls being flexible. Stepping motors, which drive
the wall jacks, can be seen at the top and bottom of the photo-
graph. Models with chords up to 13 inches can be tested over an
angle-of-attack range of *20 degrees. Windows located in the top
portion of the turntable allow limited viewing of the region above
the model. A traversing mechanism may be installed at several
downstream locations. One of the plates for the optional sidewall
boundary-layer removal system is barely visible through the test
section access port.
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ATIRFOIL MODELS IN TWO SIZES

Initial tests in the 13- by 13-inch SSW TS of the 0.3-m TCT will
be for tunnel systems checkout, performance, flow quality, and
wall adaptation to wuniform flow at various conditions. Upon
completion of these initial tests, two tests of airfoil pairs
are scheduled to determine the operational capabilities of the
adaptation software and to investigate 2-D wind tunnel wall
interference at high Reynolds numbers. Two NACA 0012 airfoil
models, one with a 6.5-inch chord and the other with a 13-inch
chord, as shown in the photograph, will be tested to assess the
software at values of tunnel height to model chord down to 1.0.
The results from these tests can be compared with results from
tests of the NACA 0012 in the 0.3-m TCT and other facilities. Two
joint cooperative programs, one an NASA/ONERA/DFVLR effort and
the other an NASA/NAE effort, have been established to test DOA
CAST-10 airfoil models of 7- and 9-inch chords, respectively.
These joint data will be wused to assess the effects of model
manufacturing differences and to compare the results on the same
airfoil model in different facilities.
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TRANSONIC SELF STREAMLINING WALL TUNNELQF PoCH

University of Southampton

Adaptive wall work at the University of Southampton under NASA
Langley sponsorship has been going on for a little more than a
decade. Recent accomplishments include successful transonic
testing of airfoils down to tunnel height-to-chord ratios of
about one and at flow conditions where the supercritical flow
region extends to the adapted walls. The facility is automated
and has a reasonably rapid response. Good agreement has been
seen between results from the TSSWT and several other 2-D adaptive
flexible wall tunnels. Current 2-D research is toward use through
Mach numbers of wunity. Initial research on 3-D model testing
within 2-D adaptable walls has also begun. The photograph shows a
3-D model mounted in the University of Southampton TSSWT.

Pz |5
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3-D MODEL/2-D WALL ADAPTATION

The 3-D model is viewed here through the access port of the TSSWT
as shown on the previous photograph. The edge of the 2-D flexible
wall above the model is also seen through the port. Here, the
goal of testing free from wall interference cannot be met. The
philosophy adopted is to provide the test section with sufficient
static pressure taps around and along its length to allow various
measures of interference to be quantified. The principal inter-
ferences that the model experiences are wall-induced velocities in
the streamwise and vertical directions. This induced velocity
field can be manipulated by 2-D wall movement, and hence the level
of interference can be reduced. Assessment of and correction for
residual interference will be made using the wall pressure and
location data measured for the final 2-D adapted wall setting in a
given test run.
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A DECADE OF RENEWED WIND TUNNEL WALL INTERFERENCE RESEARCH

This last chart characterizes NASA Langley’s recently renewed wind
tunnel wall interference research. In addition to the points
listed, it should be added that most of our wall 1interference
research to date has been directed toward conventional slotted-
wall transonic tunnels; solid, flexible, adaptive-wall, transonic
tunnels; and assessment/correction methods related to them. The
publications 1list does not include work related to high-1ift
(v/sTOL), supersonic-hypersonic, and unsteady wall interference
research, which have also been pursued during this past decade at
Langley. Furthermore, one should not assume from the number of
researchers listed on the publications that our transonic effort
is a large one; few are full-time wall interference players. One
tends to become interested in transonic wall interference only
when a promising new idea comes along or when all other
explanations fail in trying to understand the test results.

® NASA Langley focus is transonic flow
® Both analytical and experimental aspects being pursued

® Applications for prediction, assessment/correction,
avoidance, and verification continue

® Work best summarized by publications
( list in handout)
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I. GENERAL

A DECADE OF RENEWED NASA LANGLEY SPONSORED TRANSONIC
WIND TUNNEL WALL INTERFERENCE RESEARCH
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