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ABSTRACT 

From simulations, the orbit error can be assumed to be a slowly varying sine wave with a predominant 

wavelength comparable to the earth’s circumference. Thus, one can derive analytically the error committed in 

representing the orbit error along a segment of the satellite ground track by a bias; by a bias and a tilt (linear approx- 

imation); or by a bias, tilt and curvature (quadratic approximation). The result clearly agrees with what is obvious 

intuitively, i.e., (1) the fit is better with more parameters, (2) as the length of the segment increases, the approxima- 

tion gets worse. But more importantly, it provides a quantitative basis to evaluate the accuracy of past results and, 

in the future, to select the best approximaton according to the required precision and the efficiency of various 

approximations. 

1. Introduction 

Since the launch of GEOS-3, which was followed by SEASAT, GEOSAT and will be followed in the future 

by the planned TOPEX/POSEIDON and ERS-1 missions, satellite altimetry has become increasingly important as a 

tool to measure the global sea level. However, its progress has always been hampered by the orbit error problem. 

Since the orbit error (uncertainty of the altitude of the satellite) can range from 1 m (SEASAT and GEOSAT non- 

repeat era) to 4 m (GEOSAT exact-repeat era; the situation is expected to improve) and this error translates directly 

into altimetric sea level uncertainty, ways have to be found to remove it. At places where multiple readings of sea 

level are obtained (e.g., satellite ground track crossover points and along exact-repeat ground tracks), altimemc sea 

level changes of over 1 m are common occurences, which can only be attributed to the orbit error. 

Along track the orbit error is a very large-scale feature with a predominant spectral peak at the earth’s cir- 

cumference (the so-called once per revolution peak) (e.g., Cutting et ai., 1978; March and Williamson, 1980). 

Hence, one can think of the orbit error as a slowly varying sine wave with a predominant wavelength comparable to 

the earth’s circumference (approximately 40,000 km). If the orbit error along a ground track segment (a fraction of 

one revolution) is parameterized in terms of a large-scale function, one can solve for these parameters to minimize 

the altimemc sea level changes at crossover points and along repeat tracks. This is how the orbit error is usually 

removed. The following large-scale functions have been used to approximate the orbit error: bias, bias and tilt, bias 

tilt and curvature (Le., polynomials of the zeroth, first, and second degrees). Exactly how good these approxima- 
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tions are have never been investigated. The residual after removal of the orbit error is an indirect indicator; and cer- 

tain things are intuitively clear, i.e., the approximation gets better with more parameters, but gets worse as the seg- 

ment becomes longer. The purpose of this note is to fill in the gap. In the following, it is demonstrated that a 

rigorous error analysis is not only possible, but it can also be done analytically. 

2. Method 

Since the orbit error can be thought of as a slowly varying sinusoidal wave train with a dominant wavelength, 

the whole problem can be set up as a question of how accurately can a zeroth up to second degree polynomial 

approximate a sine wave over certain interval less than half the dominant wavelength (it will be most unusual to find 

a segment longer than half a revolution and no approximaton has ever been done using that long a segment anyway, 

while, in any case, the following derivation is valid for any length). The more complicated derivation involving the 

quadratic fit is presented below, whereas the results for the much less cumbersome cases of linear and bias-only 

representation will be stated without proof. 

So let the orbit error be represented by a sine wave over a segment from 0 to L with L S I C ,  i.e., A sin (t + $), 

where A is the amplitude and $ is the phase. And let a+bt+ct2 be the quadratic best fit over this segment, i.e., a, b, 

and c minimize the following quantity 

L 

J = dr [a+bt + et2 - A sin ( t  + +)I2 . 
0 

The strategy is to compute a, b, c, and J (i.e.. the square residual) for a particular $, then average J over all possible 

$, i.e., o I $  5 2 IC and normalize to get the root-mean-square ( R M S )  relative error. Differentiating J with respect to 

a, b, c respectively and setting the derivatives to zeros, we find 

L2 L3 u L + b - + c - = a ,  
2 3  

L2 L3 L4 
2 3 4  

a - + b - + c - = P ,  

L 3  L4 L5 a - + b - + c - = y ,  
3 4 5  

where 
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L 
a = AI sin (t + $)dt , 

p = A I  t sin(t + $)dr , 

y = A j  t 2  sin(t + $)a? . 

0 

L 

0 

L 

0 

1 
L 

l2 (-3L2a+ 16Lp - 15y) 

30 
L S  

a = 7 (9L2a- 3 6 ~ p  + 30y) 

b = L 4  
c =- ( L 2 a - 6 L p + 6 y )  

Substituting (7), (8), (9) into J, one would get after straightforward but somewhat tedious manipulations 

1 
L 

J = -3(-9L4a2- 192L2p2- 1 8 ~ + 7 2 L 3 a p - 6 0 L 2 a y + 3 6 0 L p y )  

L sin2(L +I$) ~ sin2I$ 
2 I -  4 

+ A 2 [ - -  

Let an overbar represent 

- 
a2 =A2(l-cosL) 

2 

p2 = A  2(l-cosL-LsinL--) 

L2 E = A 2-(L -sinL) 
2 

G=A2[(1-cosL)(--2) + LsinL] 

q=A2[4(1~Od.)  + 2L2cOd.4LSinL + -1 

q = A  2L -(l-cosL) 

12 
2 

- 

L2 
2 

14 
2 

Substituting these into 7 ,  one would get after another long process 

1440 1440 144 96 6 7 / L  
A 2/2 L L L4 1 12 - l - T ( l - c o s L ) +  ~ s i n L - - ( l + 4 c o s L ) -  --j-sinL + -(cosL-3). E=-- 

Note that the mean-square (MS) residual, 7 /L, has been normalized by the MS value of the sine wave, A 2/2, to give 
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us the MS relative error. Taking the square root of (lo), one would get the RMS relative error. One can check the 

validity of (10) with two limiting cases. As L goes to infinity, the error should become loo%, which is obviously 

the case for (10). As L goes to zero, there should be no error. It can be verified that as L goes to zero, 

36 
IO! 

E = - L ~  + o(L*) . 

As a matter of fact, E vanishes so fast for small L that double precision had to be used on a CRAY machine (over 30 

digits of accuracy) to evaluate (10) correctly. 

For linear representation, the MS relative error is 

24 24 4 
L4 L L 

E = 1 --(1-cosL) + -j-sinL - T ( 2  +cod.) 

L4 
6! 

As L 0, E = - + 0 (L7. For bias-only representation, 

2 
E = 1--(l-cod) 

L2 

3. Results and Discussions 

The results represented by (10). ( l l ) ,  and (12) are tabulated and presented in Table 1. L is presented in units 

of degree (with 360" representing one wavelength), and RMS relative errors are presented in units of percentage 

points. It is somewhat surprising to find how well a quadratic curve fits a sine wave segment and, in contrast, how 

poor the bias-only representation really is. To illustrate this point, one commits less error on the average in fitting a 

115" sine wave segment with a quadratic curve than fitting a 5 O  segment with a bias. However, the RMS value can 

be very deceiving. Near the ends of a long segment being fitted, the fit is usually much worse then the situation near 

the middle. 

Let us try to review some old results with this new perspective starting with the bias-only approximation. Fu 

and Chelton (1985) have used the bias-only approximation to remove the orbit error in their investigation of the 

Antarctic Circumpolar Current. They have chosen the bias-only method so as to avoid removing oceanic signal 

[acutally, a bias-only crossover adjustment can and do remove some oceanic signal, see Tai (1987)l. The bias-only 

adjustment reduces the crossover difference from 146 cm to 34 cm and to 24 cm if outliers exceeing 60 cm are 

deleted. The geographical extent is from 40"s to 60"S, which translates to about 30" for the maximum segment 

length; and from table 1, we get a RMS relative error about 15%, which translates to about 22 cm residual RMS 
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crossover difference from the original 146 cm. This is in good agreement with the 24 cm, since besides the residual 

orbit error, there are other error sources and the oceanic signal, which can contribute to the residual crossover differ- 

ences (actually, a contribution of 10 cm from other sources would combine with 22 cm from the residual orbit error 

to make the total residual 24 cm). But one would have to say this residual crossover difference is dominated by the 

residual orbit error. 

Marsh et al. (1982) have applied the bias and tilt crossover adjustment to a 5000 x 5000 km region of the 

eastern North Pacific. They have been able to reduce the RMS crossover difference from 1 m to 12 cm and to 8 cm 

if costal areas are deleted (the reason of which they attribute to the noise introduced by measoscale features and 

nonlinear tides). From table 1,5000 km corresponds to 45' @e., one eighth the wavelength), and one would expect 

a RMS relative error abut 2.3%. this translates to 2.3 cm residual crossover difference due to the residual orbit 

error. Thus unlike the previous case, the residual orbit error is of minor importance here. Yet closer inspection of 

their Figure 2 reveals that crossover differences are generally larger near the boundaries than near the center (less so 

for the deep sea boundary than the costal boundary), which is compatible with the notion that least-square line 

fitting is least accurate near the ends. 

Rapp (1983), using the bias and tilt method, has undertaken the formidable job of adjusting the entire 

SEASAT record to remove the orbit error. In his primary adjustment (global in extent), the RMS crossover differ- 

ence is reduced from 165 crn to 28 cm, which is a reduction to about 17% of the original value. 549 segments are 

used in this adjustment, of which about 38 are greater than 2300 seconds in duration, which can have RMS relative 

error over 20% (note that one revolution is 6000 seconds in duration). Withoud further details, one can only say this 

is in rough agreement with Table 1. However, for segments less than 212 seconds in duration, only the bias is 

adjusted in Rapp's adjustment, which can cause RMS errors as large as 6.5% versus 0.2% if bias and tilt are used (in 

retrospect, this is not a good choice). 

Cheney et al. (1986) have applied the quadratic fit to the first 24 days of GEOSAT in the Pacific between 

40"N and 40"s. The RMS crossover difference after adjustment is 8 cm (it is not clear what the value is before 

adjustment, but typically it is around 1 m). A segment spanning 4OoN and 40"s measures (in degrees) 85', which 

has a RMS error of only 1% according to Table 1. The residual orbit error is clearly not a significant factor in the 

residual crossover differences. 
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It is clear that the quadratic representation is by far the most accurate approximaton, but even it would be in 

serious error when the segment length is approaching half a wavelength. One can not help wondering why a 

sinusoidal representation has never been contemplated before, especially when the segment length is approaching 

half a wavelength, such as in a global adjustment (strictly speaking, the sinusoidal representation is also an approxi- 

mation, albeit much more accurate than others). There are other reasons to prefer or avoid the sinusoidal represen- 

tation, which are discussed at length in Tai (1987). There is not a so-called best representation suitable for all situa- 

tions. It is hoped, however, that equations (lo), (11). (12). and Table 1 will assist the effort in choosing the best 

representation for a particular problem after considering the efficiency and the required accuracy. 
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