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ABSTRACT
Three-Dimensional linear secondary instability is
investigated for boundary layers with pressure gradient and

suction in the presence of finite amplitude Tollmien-Schlichting
(TS) wave. The focus 1s on principle  parametric resonance
responsible for strong growth of subharmonics 1in low disturbance
environment. Calculations are presented for the effect of
pressure gradients and suction on controlling the onset and

amplification of the secondary instability.

PACS numbers 47.15.cb , 47.20.Ft



I. INTRODUCTION

In the study of boundary-layer control, it is well known that
suction can completely stabilize a laminar boundary layer .
Laminarization of the flow by suction, and subsequent viscous
drag reduction, is the principle and the most effective mean used
for laminar flow control (LFC) [l]. The overall efficiency of
an aircraft with LFC is reduced by the power consumed by suction
systems. Hence, it is necessary to keep the boundary layer
laminar with the least possible suction. To accomplish this one
needs to : 1) accurately calculate the stability characteristics
of the flow, 2) understand the laminar to turbulent transition
process, 3) evaluate the effect of suction control on some of
the early stages leading to transition, which is our concern in

this paper.

Most of the theoretical work for LFC has relied on linear
primary stability theory and the " method, where a limited
growth of the primary two-dimensional (2D) traveling disturbances
(TS waves) 1s accepted such that the power requierements are
minimized and almost all stages of transition are avoided. The
effect of suction on the primary TS instability 1is well
established and known to be d;astic. This work has been
summerized in the report of Saric [2] which lists most of the

important papers in the subject.



Three dimensionality is known to be a necessary prerequisite
for transition [26] . A key three-dimensional (3D) phenomenon in
the early stages of transition is characterized by a strong
secondary instability of 3D disturbances 1in the presence of
finite amplitude two-dimensional (2D) primary disturbances.
Primary 3D disturbances might be stable or very slowly growing
in the absence of the 2D waves. This secondary instability has
been recognized experimentally [3-7] in the wuncontrolled
boundary layer, and observed numerically in the uncontrolled
(8,9] and controlled [10] boundary layers. Several routes to
transition in boundary layer have been identified. One route 1is
characterized by subharmonic 3D disturbances that are excited in
the boundary layer at very low level of the TS amplitude. This
mechanism produces either the resonant wave interaction predicted
by Craik [1l1] (C-type), or the secondary instability of Herbert
[12] (H~type). The other route, the so called K-type (or peak-
valley splitting), occurs as the TS amplitude exceeds a certain
threshold value. This represent the path to transition under
conditions similar to Klebanoff et al.[3]. At sufficiently
large amplitude one of the routes or a mixture of both will

appear depending on the disturbance background.

In this paper, we are concerned with the subharmonic
secondary instability mechanism as a route to transition that
seams to be most dangerous in low-disturbance environments, as

they are found in free flight. We investigate the development



of a subharmonic secondary instability in a boundary layer with
pressure gradients controlled by suction. Our objective is to
evaluate the effect of suction control on this early stage
leading to transition. Several questions need to be answered.
Does suction delay the onset of the secondary instability? How
sensitive is the growth of the secondary instability to the
intensity of suction? What 1is the effect of the initial
amplitude of the primary wave on this sensitivity? What is the
effect of slight changes in the pressure gradient? Does the
effectiveness of suction as a method for delaying transition
depend on where it is applied, or on its intensity? Finally, 1if
the boundary layer would be kept laminar with the least possible
suction, then should one allow for a limited growth of the
primary wave, or should one increase suction to fully stabilize

the primary wave?.

II. PRIMARY INSTABILITY

We consider a 2D boundary-layer flow of an 1incompressible
fluid with inviscid flow field given by U = U(x) and distributed
suction given by v = vw(x) at the wall, where x is the streamwise
direction and y is the vertical direction. The flow is governed

by the nonsimilar boundary-layer equation,

(1) Eqgq + Eoy +,§( 1- f; ) -?fv? =258 fn £gq = £5 f99 )



with boundary conditions,

(2) (5,00 =0 , £(5,0 +2%fg (5,0 =0
(5, > =1

given in Gdrtler variables,

(3) dE = Uedx d = ( U/ V28 ) dy

Then the velocity components u and v in terms of the new variables

are,
(5) v=ww - (Ue/V23)[ £+ 2585+ (F- 1)ty ]
and
(6) Y(§) = (f23/ Ug) wi(¥)

A 2
(1) B (&) = ( 28/ Ue )(dUe/dx)

If both the suction and pressure gradient functions are constant
( equal to Yo and A respectively), then f( § ,"] ) is a function

of ”] only and we have a similar boundary layer governed by,

2
(8) Emmm + £ £qn+t A1 = fn) = Yng =0
(9) £(0) = f,yl(O) =0 , f,,)-’l as ">
where the condition Y (5 ) = constant demands that vw be

proportional to Ue / ﬁg . For the case of flat plate ww

is proportional to 1/ yrx_



Stability calculations were carried out for similar suction

‘:= constant and similar pressure gradient /% = constant using
the similar equations (8)-(9), and for constant continuous
suction vw(g) = SL (given by equation (6)) using the nonsimilar
equations (1)-(2). Negative Y; and negative SL 1indicate
suction, while mnegative Ai indicates unfavorable pressure
gradient. Equations (8)-(9) were numerically integrated using
a shooting technique with a Runge—-Kutta integrator, while
equations (1)-(2) were solved using a second-order finite
difference technique. The mean-flow results were scaled to
conform with the way stability equations were

nondimensionalized.

Now we consider the primary instability of the calculated mean
flow with respect to 2D quasi-parallel spatially growing TS
disturbance;. Squire”s theorem implies that the critical
disturbance is 2D. Dimensionless quantities are introduced by
using the reference velocity Ue and the referece length

V2

L= (ux / Ug) ,60 that Reynolds number is given by
T}

R = ( Ugx /+) , where x measures the distance from the leading

edge of the plate, and & is the fluid kinematic viscosity.

At sufficiently large distance from the leading edge, primary
instability of the 1laminar flow occurs with respect to TS

disturbances. These disturbances take the travelling wave form,



(10)  (upsvppe) = Ag [ u(y),v(y),0(y) 1 exp [L(fxdx —wE)] + cuc.

where for the spatial stability analysis « 1is a complex
wavenumber given by & =X+ iol{ and W 1s a real disturbance
frequency, and CeCoe denotes complex conjugate terms. The
eligensolutions u,v,and p are governed by a fourth-order system
of equations that is given in the Appendix. This system is
numerically integrated as initial value problem using a
combination of shooting [13] and Newton-Raphson iteration

technique that employs a Gram-Schmidt orthonormalization

procedure.

The linear stability theory of primary instability provides o«
for a given w and R. Then the integration of the growth rate

-; gives the amplification factor (or the amplitude ratio),
R

(i1) ln(A/A°)=-2/oqdR
R°P
where A, 1is an arbitrary initial amplitude of the primary

instability at R°P (R where the onset of the primary wave) .
The eigensolutions may be normalized such that A measures
directly the maximum r.m.s. value of the streamwise disturbance,

that is

2
(12) max | u(y)l
ogY¥<w

1/2




Since the primary instability of boundary -layer flows is induced
by wviscosity, the growth rates and amplification factors here

are typically very small compared to the convective length

scale.

III. SECONDARY SUBHARMONIC INSTABILITY

The basic state under consideration is the calculated 2D flow

with suction and pressure gradient at finite amplitude A of the

primary TS wave, that is

(13) (we,vp 5 ) = (U,0,B) + A [ u(y),v(y),p(y) | exp(i©)

Where

A° exp(iﬁx;Jx), assumed constant, and

>
[}

D
0

We consider the 3D quasi-parallel spatial subharmonic

i instability of the basic flow given by (13). The finite
amplitude primary wave acts as a parametric exitation on the

secondary instability. Following the analysis of Herbert [12,14]

and Nayfeh [15], we apply Floquet theory and express the

secondary wave using the normal mode concept,

(ug2v5.,) = exe( [Yan) (5,500 3)] exp(§10) cosfz + cuc.




(14) A
wg = exp(JY dx)w(y) exp(-‘iie) sin,@z + c.c.

where ;g is a spanwise real wavenumber, and Y= Y,«+ iY{ is a
characteristic exponent. The spatial growth rate of the
secondary wave 1is given by \}, while Y& can be interpreted as a
shift in the streamwise wavenumber. In our calculations, we
consider only the case of \ﬁ = 0, that is the secondary wave is

perfectly synchronized with the basic state.

The secondary wave (l4) is superposed on the basic state (13)
and the result 1is substituted into the dimensionless
Navier-Stokes equations. The meam flow plus the 2D TS
quantities are substracted, and the resulting equations are
linearized in the secondary disturbances. Then one obtains an
eigenvalue problem that can be written as six first-order system

of ordinary differential equations in the form,

(15) DZ, = Z,

(16) DZ, = 2, +RDU Zg + R ( Ye+iio) 2

+ AR [(Ye+lio) uzy +vZ, +DuZg ]

(17) pZy = - (Ye+tixe) z, -z,



(18) DZ, = Zg

(19) Dzs=xz4-R,@z6+AR[(Yr—lziur)u'z'q+v'z's]

(20) DZg = - R (Y +3icxe) 2 - KX 2,-K B s
+ A { (\’,-%iwr) vZy = [ (Yp-%i%) u +Dv ]| Zg

+ﬁV-Z_q}

where (-) indicates a complex conjugate quantity, D=d/dy,

2 2
Xo=R [ (Vetgioe) U-510] - (Yetgiote) +f,

A A~ ~
Z|=u Za=Du 23=V

A A
Zq =p Z5 =w Zg = Dw ,

and the boundary conditions are
Zy, =ly3=12g=0 at y= 0
(21

z, , Z4 , Zg » O as y —» o0

When A=0,the system of equations (15)-(21) govern a primary
subhamonic wave.For A#0, this system was numerically integrated
as initial value problem from y = Ve (edge of the boundary

layer) to the wall. The eigenvalue search used a

10



Newton-Raphson iteration technique to satisfy the last boundary
condition at the wall. A well tested code SUPORT [13] is used
which is coupled with an orthonormalization test based on the
modefied Gram-schmidt procedure to overcome the stiffness of
the integrated system of equations. For more details omn the

numerical procedure, the reader is refered to El-Hady [16].

The linear stability theory of the secondary instability
provides Y for a given /gand R. Then the integration of the

growth rate 7; gives the amplification factor,

R
(22) ln(B/B°)=2fYrdR
Ros

where B is an arbitrary initial amplitude of the secondary
instability at R ¢ (R where the onset of the secondary wave) .
Since the secondary subharmonic instability originates from a

strong mechanism of combined tilting and stretching of the
vortices [18], the growth rates and amplification factors here

are large and occur on a convective length scale.

IV. RESULTS AND DISCUSSION

For the case of no suction and zero pressure gradient, our
results are in full agreement with those obtained by Herbert et

al.[1l4] and by Nayfeh and Ragab [17]. The first authers used

spectral collecation methods to solve both the primary and

11



secondary stability problems,while the others used a numerical

technique similar to what is being used in this paper.

Results are presented in this section to show the effect of
similar suction parameter Y;, continuous suction SL , and similar
pressure gradient parameter Ai on the development of the
subharmonic secondary instability. All results reported here are
for the nondimensional frequency F = W/ R = 60 % UJS , that
remains fixed as a wave of fixed physical frequency travels
downstream. In the present analysis, we limited our
calculations to a spesific frequency and to small suction and
pressure gradient parameters. This was done to satisfy the
assumptions that are inherent in the approximate theory of
linear secondary instability, namely the periodicity of the
basic state and the weak variation of the TS amplitude. We
note that higher frequences and higher suction rates will
increase nonparallel effects, violating the periodicity
assumption of the basic state. While lower frequences and
higher unfavorable pressure gradients will increase the
variation of the TS amplitude in the unstable range, violating
the second assumption.

-6

At F=60x 10 , a primary instability grows between Rop = 554
and Ryp = 1052 (first and second neutral points), reaching a
maximum amplification factor of A/A, = 41.679 for Blasius flow

(Y,= o , ﬁi = 0). A broad band of spanwise wavenumbers of

12



primary 3D subharmonic waves are subject to amplification in this
region, but the time and length scales of this instability is so
small to bear any resemblance to experimentally observed
transition. A strong growth of subharmonic disturbance can be
due to parametrical exitation by the finite amplitude TS wave

[25].

4.a Effect of suction

At R=1050, growth rates of the secoundary {instability is
shown 1n figures 1 and 2 as function of the spanwise wavenumber
b= 103/5/ R, for various amplitudes A of the primary wave.
Figure 1 shows results for Blasius flow, while figure 2 shows
results for Y;=—.1,/2=-0. These figures illustrate first of
all the destabilizing effect of A at fixed F and R. Second, at
very small amplitudes, considerable growth rates exist 1in a
small band of wavenumbers ,that extends to larger values as
the amplitude increases. Third, the maximum growth shifts
slightly to occur at higher b as the amplitude A 1increases.
Fourth, small suction rates has strong stabilizing effect on the
subharmonic secondary 1instability. As R increases, a similar

increase in the growth rates exist at fixed F and A .

13



At R = 1050, figure 3 shows the effect of various suction
rates on the secondary growth for A =.01l. Increasing
suction at fixed R and A decreases the growth rate of the
subharmonic instability and 1limit the band of dangerous
spanwise wavenumbers . The wavenumber of maximum growth rate

is b = .17 and is not affected by suction.

By specifying the initial amplitude of the primary, say
A_=.001, we can combine the effect of increasing amplitude A and
increasing R for various suction rates at fixed F. For
comparison purposes, the amplification factor of the subharmonic

is calculated using equation (22) from R,g to any R. All
results shown here are for spanwise wavenumber b=.1l5 which is an
avarage value for wavenumbers of maximum growth at various A .
Figure 4 shows the variation of growth rates \; of the
secondary wave with R for various suction rates, while figure 5
shows their amplification factors. The growth rates -=%; and
amplification factors of the primary wave ( 1n A/A,;) are also
shown in these figures and indicated by dotted curves.
Initially, the primary instability sets in at ROF and - X{ grows,
then the secondary subharmonic instability sets in at R,g and
starts to grow strongly due to the increase in A with
increasing R. Ultimitly, - & decays, while k; reaches a
maximum at a location where the amplitude of the primary starts
to decrease. Small suction rates at fixed A delays the onset

of the subharmonic secondary instability , and decreases

14



significantly 1its growth rate as well as 1its amplification
factor. Figure 5 shows a reduction of the amplification factor
of the secondary wave (ln B/B,) from nearly 28 to 8 due to an
increase in Y; from 0 to -.05. Increasing suction rate to -.l
dampen completely the subharmonic 1imstability, although the
primary shows some growth. This indicates that the onset of the
subharmonic instability requires that the primary amplitude
exceeds a threshold value. Notice that this threshold value
depends on Reynolds number, it decreases as R increases. For
example, for \Q = 0 the onset of the subharmonic secondary
instability 1s at R=740 with a threshold amplitude A = .0029,
while for 32== -.05, the onset of the subharmonic secondary
instability is at R=850 with a threshold amplitude A = .0024.

ForY:== -.1, the primary amplitude reaches a maximum of only
.0014 which apparantly is below the value needed to inducé

secondary subharmonic instability at R > 850.

The onset of the subharmonic secondary instability as well as
the maximum amplification factor it reaches arealso dependent
on the initial amplitude A_. Figure 6 ,a case of suction rate
Y;=-.05, shows a primary instability that sets in at R = 650.
The onset of the subharmonic 1imstability occurs at R = 850 for
A,=.001, at R =775 for A,=.002, and at R = 635 for A= .0066
(well before the onset of the primary) . The amplification

factor reaches a value of 8,14.5, and 30 respectively. When the

initial amplitude A, is large enough, the initial instability

15




can be so strong and secondary instability occurs directly
by-passing the usual growth of the linear primary instability.
This phenomenon has been documented in cases of roughness and
high freestream turbulence. In a situation like this the flow
quickly becomes turbulent [23] and transition prediction schemes

based on linear primary theory fail completely.

Figure 7 shows the effect of suction on the subharmonic
instability at various initial amplitude of the primary . The
maximum of 1ln B/B, is used as a basis for comparison . The
effect of suction on the primary is also shown in the figure and
indicated by the dotted curve. The figure suggests that
secondary subharmonic instability 1s very sensetive to and can

be controlled by slight suction rates.

The onset of the subharmonic secondary instability 1is one
important feature of the transition process. For LFC purposes,
one might try to avoid or delay this instability by wusing
suction. Then, one faces the question whether suction should be
applied before or after the onset of the secondary instability.
To answer this, we take Blasius case as a  basis for comparison
where R°P= 554, R|P= 1052, R,q= 740, Rig= 1250, and maximum 1n
B/B, = 28.5. Continuous suction SL =-.035( Y, =-.05 at R = 1000)
was applied starting at R = 554 (R°P for Blasius flow). As a
result, the onset of the subharmonic instability is delayed to

R = 800 and continuous to R =1245. reaching maximum 1ln B/B,

16



= 12.5. When continuous suction with the same level SL =-.035
was delayed and applied at R = 740 (RoS for Blasius case), the
onset of the secondary instability was almost not affected, it
occurs at R = 750 but the maximum of 1ln B/B, reaches 18.5.
Doubling the suction level SL =-.070 ( Y; =-,1 at R = 1000) that
begins at R = 740 shows no effect on delaying the onset of
secondary instability but bring the maximum of 1n B/B, down to

10.

Two factors can affect the aforementioned behavior of the
subharmonic 1instability ,the initial amplitude A, of the primary
and its evolution. The first factor 1s held fixed in the
previous comparison, its effect is given before in figure 6 .

To explain the effect of the evolution of the primary
amplitude,we included the amplification factor curves of the
primary amplitude (dotted curves) in figure 8 together with
those of the secondary instability for theosforementioned
cases.The figure indicates that continuous suction resulted 1in
delaying the onset of the primary instability allowing the
primary wave to travel further downstream such that its
amplitude will reach a threshold value needed to induce a
secondary subharmonic instability . While 1in cases where
suction started at R = 740, the primary instability was not
delayed but its amplification factor 1is only enhanced by
applying suction, resulting in reduced primary and hence

reduced secondary amplification factors. These calculations

17



show that suction should be applied further upstream near R°P
to control the development of the primary amplitude and not
near the onset of the secondary instability. Similar

conclusions were reached by Reed and Nayfeh [19] and by Saric
and Reed [20] investigating the effect of suction on primary TS
waves, that suction should be concentrated not in the region of

maximum growth but near R .

4.b Effect of suction and pressure gradients

At R = 1050, the growth rate ‘; of the secondary subharmonic
instability as function of the spanwise wavenumber b=U§§/R for
various amplitudes A of the primary exhibits the same features
given before in figures 1 and 2. As an example, figure 9
shows a case for Y;=-.l and /i=-.04, that illustrates again the
destabilizing effect of A at fixed F and R. Notice that
};=-.1 has a stabilizing effect, while ﬁi =-.04 has a

destabilizing effect on the secondary instability.

Figures 10 and 11 show the effect of pressure gradients alone
on the growth rates and amplification factors of the subharmonic
instability when combine the effect of 1increasing A and
increasing R at fixed F. Also 1included in the figure (dotted
curves) the primary 1instability for comparison. These

calculations are for A°=.001 and b =.15. Curve b for ﬁi = -,02

18



reaches a value of maximum 1ln B/B°= 57, while curve c¢ for
fi= -.04 1is estimated to reach a value of 80. The figure
indicates that small unfavorable pressure gradient is strongly
destabilizing. Similar results were given by Bertolotti [24]
studying the secondary instability of Falkner-Skan flows.

Figures 10 and 11 also show that pressure gradients produce

small changes in R,g but large changes in the maximum of 1ln (B/B,)

A similar conclusion was reached by Saric and Nayfeh [21]

for the primary 2D instability.

Figures 12 and 13 show the effect of both suction and
pressure gradients on Y} and 1n B/B, at fixed F using A, =.001
and b =.15. The figure illustrates the sensitivity of the
secondary subharmonic instability to small suction and pressure
gradients. Comparing with figure 11, we find that maximum In
(B/B, ) goes from 80 for Y,= o, ,5; =—.04 to 9 for X°= -.1, /5; =

—0040

Figure 14 shows the effect of suction and pressure gradient
on the secondary subharmonic instability using maximum 1n B/B,
as a basis for comparison. The primary initial amplitude for
these calculations is A3z .00l and the spanwise wavenumber
b = .15. Increasing A, will have a destabilizing effect that

can be infered from Fig.7.
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V. CONCLUDING REMARKS

Previous calculations show that stabilization of the boundary
layer by active means ( suction) or by passive means (
modifying pressure gradients) or by a combination 1is a very
sensetive process. Weak suction rates produce strong
stabilizing effect on the subharmonic secondary instability
(decrease growth rates ,amplification factors and limit the band
of dangerous spanwise wavenumbers). While weak unfavorable
pressure gradients produce strong destabilizing effect on the

subharmonic secondary instability.

The onset of the subharmonic secondary instability requires
that the primary amplitude exeeds a threshold value. This value
is Reynolds number dependent, it decreases as Reynolds number

increases.

When the initial amplitude of the primary is large enough,
the initial instability can be 80 strong and secondary
instability may occur directly by-passing the wusual growth of

the linear primary instability.

For laminar flow control purposes , suction should be applied
near the onset of the primary instability to control the
evolution of the primary amplitude and not near the onset of the

secondary instability.

20



Recent progress in understanding secondary instabilities may
prompt modifications to transition prediction schemes to rely on
a secondary instability theory instead of the primary instability
theory. A modefied e <criterion can be reached that envolve the
amplitude of the primary disturbance or a measure of the
background disturbance. But the means by which freestream
disturbances enter the boundary layer (receptivity

problem ([22}) will remain the key for any transition prediction

method,
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APPENDIX

The primary 2D eigenvalue problem can be written as,

R e TN Y T Ty

————— "

DX‘=XZ
2
DXZ=[iR(°(U-u))+°‘]x‘+RDUX3+it><RX4
DX3=-1NX|
-1 -1
DX, = - R iXX, - [1 (xU-W)+R

with boundary conditions
X, = X3 =0 at y = 0

X, , X3 0 as y-» o0
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Figure 2 .  Effect of the amplitude A of the primary on the
subharmonic secondary growth for Y: ==,1, and fi =Q.

a) A =.01, b) A =.006, ¢) A =.004, d) A =.002.
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Figure 3 Effect of suction parameter Yo on the subharmonic
secondary growth for a primary amplitude A =.01l.

a) V,=0., b)Y, ==.05, )Y, =.1.
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Figure 4 Effect of suction parameter Y; on the primary and

secondary growth rates. The primary initial amplitude A°=.001.

a) Y, =0., ) ¥ =.05, o) Y,=-.1.
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Figure 5 Effect of suction parameter Y; on the primary and

- secondary  amplification factors. The primary initial amplitude

a=.001. a) Y, =0., b)Y, =.05, ¢) Y, =.1.
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Fiqure 6 Effect of the initial amplitude A, of the primafy on
the omnset and amplification factors of the subharmonic
secondary instability at suction rate \2 ==.05. a) A, =.001,

b) AO =0002, c) A° =.0066t
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Figure 9 Effect of the amplitude A of the primary on
the subharmonic secondary growth for Y; =-.01, /% =-.04.

a) A =.01, b)A =.008, c) A =.004, d) A =.002.
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Figure 10 Effect of pressure gradient parameter /-’3, on the
primary and subharmonic secondary growth rates. The primary
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Figure 11 Effect of pressure gradient parameter /é on the
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Figure 12 Effect of suction and pressure gradient parameters on
the primary and subharmonic secondary growth rates. The
primary initial amplitude Ag=.001. a) Yo=0., f8 =0.,
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Figure 13 Effect of suction and pressure gradient parameters on
the primary and subharmonic secondary amplification factors.

Same conditions as in Fig. 12
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