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SUMMARY

A concise mathematical framework is constructed to study the topology of steady

three-dimensional separated flows of an incompressible, or a compressible viscous fluid.

Flow separation is defined by the existence of a stream surface which intersects with

the body surface. It is shown that the line of separation is itself a skin-friction line.

Flow separation is classified as being either regular or singular, depending respectively

on whether the line of separation contains only a finite number of singular points or is

a singular line of the skin-friction field. The special cases of two-dimensional and

axisymmetric flow separation are shown to be of singular type.

In regular separation it is shown that a line of separation originates from a saddle

point of separation of the skin-friction field and ends at nodal points of separation. It

is also shown that a saddle point of the skin-friction field on the line of separation is

simultaneously a half-nodal point of the flow field on the separation stream surface

from which emanate all of the streamlines on the separation stream surface. Con-

versely, a nodal point of the skin-friction field on the line of separation is simultane-

ously a half-saddle point of the flow field on the separation stream surface.

Unsteady flow separation is defined relative to a coordinate system fixed to the

body surface. It is shown that separation of an unsteady three-dimensional incompres-

sible viscous flow at time t, when viewed from such a frame of reference, is topologi-

cally the same as that of the fictitious steady flow obtained by freezing the unsteady

flow at the instant t. Examples are given showing effects of various forms of flow

unsteadiness on flow separation.
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§ 1. INTRODUCTION

Three-dimensional separated flow represents a domain of fluid mechanics of great

practical interest that is now just beyond the reach of definitive theoretical analysis or

numerical computation. It has been a topic of intensive study over the past three

decades. Reliable theoretical analysis and numerical computation and proper interpre-

tation of experimental observations all depend crucially on a correct understanding of

the behavior of flow separation.

Steady three-dimensional flow separation has been studied by Maskell (1955),

Legendre (1956, 1965, 1972, 1977, 1982), Werlg (1962, 1979), Lighthill (1963), Wang

(1972, 1974, 1976), Perry and Fairlie (1974), Hsieh and Wang (1976), Hunt et. al.

(1978), Han & Patel (1979), Tobak & Peake (1979, 1980, 1982), Dallmann (1983), Hor-

nung _ Perry (1984), and Zhang (1985). Important advances in the understanding of

the nature of three-dimensional flow separation have been made which are well sum-

marized in a recent review paper by Chapman (1986). In particular, it is now esta-

blished (Lighthill, 1963) that the line of separation is itself a skin-friction line onto

which adjacent skin-friction lines converge asymptotically, and is not an envelope of

skin-friction lines as posed by Maskell (1955). However, issues concerning the origin of

three-dimensional flow separation, and especially the

separation, have not been completely resolved.

existence of Wang's "open"

Unsteady flow separation, on the other hand, is not well understood, particularly

in three dimensions. The often-quoted MRS (Moore 1958, Rott 1956, Sears 1956) cri-

terion seems supported by some numerical computations and the analytic solution of

Williams and Johnson (1974) to the unsteady boundary layer equations, but is difficult
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to apply in practice as the movement of the separation point is not known £ priori.

Virtually all theoretical studies on unsteady flow separation (e.g., Cebeci, 1982) are

based on the two-dimensional boundary-layer equations. These cease to be valid at the

onset of separation, so that no conclusion about the subsequent behaviour of flow

separation can be drawn from them.

It is clear that a correct theory of the onset of flow separation and of the subse-

quent separated flow must be based on the full Navier-Stokes equations and not the

boundary-layer equations. In this respect, it is interesting to note that whilst the solu-

tions to the boundary layer equations may possess singularities (e.g. the Goldstein

singularity on the line of separation), solutions of the Navier-Stokes equations are ana-

lytic everywhere. Therefore, it is not only more desirable but actually conceptually

simpler to base our study of flow separation on the properties of solutions to the full

Navier-Stokes equations rather than their boundary-layer approximation.

In this paper we shall restrict the scope of our investigation to the topological

aspects of unsteady three-dimensional separated flows. In this regard, we observe that

all results concerning the topology of steady three-dimensional separated flows that

have been reported to date are obtainable solely on the basis of the following proper-

ties of the velocity field V, namely

----b

(i) V is analytic

0i) v. v = o

(iii) V = 0

(1)

(2)

on the body surface (3)

Equation (3) expresses the no-slip boundary condition of the viscous fluid at the wall,
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whereas equation (2) is the continuity equation of an incompressible flow. * On the

other hand, as pointed out earlier, the analyticity condition (1) of _ is a property of

any solution to the Navier-Stokes equations; V would be singular (e.g. the Goldstein

singularity at the line of separation) if the flow were governed by the boundary-layer

equations. These properties are shared, of course, by all solutions of the Navier-Stokes

equations. On the other hand, separation properties that result from them are shared

by classes of solutions.

It is the existence of properties that are shared by classes of solutions that sug-

gests the adoption of a topological description of the flow, since topological properties

also are shared by classes of solutions. By restricting our attention to topological pro-

perties only, we are able to avoid invoking the momentum equation which would be

needed if we were to ask for the solution corresponding to specific boundary condi-

tions. Nevertheless, the literature cited has shown that a fairly complete (albeit non-

specific) topological description of separation in steady three-dimensional flow can be

drawn based on Eqs (1) - (3) alone. In sections 2 and 3 we shall construct a mathemat-

ical framework for steady three-dimensional flow separation, ending up with a precise

description of the class of flow separation we consider. The same framework will per-

mit us, in section 4, to draw an analogous description of unsteady three-dimensional

separated flow of the same class.

* The case of steady compressible flow is discussed in section 6.
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We note that the analysis given in this paper basedon the postulates (1) - (3) is

actually more generally applicable than to the Navier-Stokes equations alone. In par-

ticular, the analysis will be applicable to whatever modeled equations are used to

represent steady turbulent flow.
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§ 2. CLASSIFICATION OF STEADY FLOW SEPARATION

Consider a steady flow of an incompressible viscous fluid over a body whose sur-

face is B. Let _Tf be a local orthogonal curvilinear coordinate system such that f = 0

coincides with the body surface and the rl-uxis is along the line of separation (to be

defined more precisely in § 2.2 and § 3.5). Denote the scale coefficients by

hl(_,r/,f ), h2(_,_,f ) and 1, respectively, and the corresponding unit vectors by e"_, e-_ and

6 3 •

2.1 Properties of a Vector Field

Let U(_,r/,f) be a vector field in the three-dimensional space _-rlf, where U is ana-

lytic jointly in _, _ and f. A field line of U is a curve whose tangent is everywhere

parallel to U, whereas a field surface is one whose normal is everywhere perpendicular

to U. When the vector field is the flow velocity, its field lines are called streamlines

and its field surfaces are called stream surfaces.

By the theorems of existence and uniqueness of solutions of ordinary differential

equations, it is shown that through each regular point, where U :/= 0, there passes one

and only one field line. Consequently, if two field lines intersect with or are tangent to

each other, the point of intersection or of tangency must be a singular point of the vec-

....@

tor field where U --- 0. Moreover, a field line cannot end except at a singular point.

On the other hand, there exist two independent families of field surfaces whose nor-

mals, while both perpendicular to U, are different. Through a regular line on which

U :/: 0 (except possibly at a finite number of isolated points), there passes one and only

one field surface of each family. Consequently, no two field surfaces of the same family
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can intersect with or be tangent to each other except along a singular line on which

U----0. Also the boundary of a field surface, if it exists, must be a singular line.

Furthermore, if two field surfaces of different families intersect with each other, the

line of intersection must be a field line. On the other hand, they cannot be tangent to

each other except along a singular line, as they have different normals.

To sum up: (a) the field lines and field surfaces are determined solely by the

direction, and not the magnitude, of the vector field; (b) if two field lines intersect

with or are tangent to each other the point of intersection or of tangency must be a

singular point; (c) if two field surfaces intersect with each other, the line of intersection

must be a field line; (d) if two field surfaces are tangent to each other, the line of

tangency must be a singular field line.

In application to fluid flow we note that a stream surface must either originate

from (or terminate at) infinity, or else, it must originate from (or terminate at) the

body surface which, according to (3), is a singular field surface. This latter case is

relevant in the study of flow separation.

We now compare the properties of the velocity field V and that of O V/Of near

--4*

the body surface. The body surface is a singular surface of V according to Eq. (3), but

is not, in general, a singular surface of 0V/0 _. By its analyticity V is proportional to _"

as ;---*0, hence the direction of V is the same as that of V/¢ as _ ..--*0. By

L'Hospital's rule, V/_---*OV/O_ as _---*0. So the direction of V is the same as the

0V

direction of -_ as f ---* 0. Consequently, they have the same field lines and field sur-

faces near the body surface. Since is proportional to the skin-friction vector
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e_, the limiting streamlines coincide with the skin-friction lines. As the magnitude of a

vector field doesnot affect its field lines or field surfaces, we simply define

f0 /
e-+w= t Og" Js.=O (4)

OV

A field surface of _q
and that of V are said to be adjunct field surfaces if they

where

V-= ue 1 -4- "4- we 3 6

On the body surface, where (3) holds, Eq (5) reduces to

This shows that [07. e'_] = O, i.e.[ Of _=o

0 f "n_ _:0= 0 (s)

intersect with the body surface at the same line. Evidently, two adjunct field surfaces

are tangent to each other, and hence have the same normal along their line of intersec-

tion with the body surface.

Furthermore, from the continuity equation (2), we have

+ -o (5)
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where nB is the normal to the body surface. Accordingly, the body surface is a field

OV

surface of the .vector field -_, and it must therefore also be a limiting stream surface

of V.

We note here that in what follows only the continuity equation on the body sur-

face (7) is needed, but we do not need the full continuity equation (5). In other words,

all the topological properties given in sections 2-3 are derived based on (1), (3) and (7).

This point is important and will be used in extending (in section 6) the incompressible

flow analysis to the compressible flow case.

2.2 Classification of Flow Separation

In what follows we shall define flow separation in a way that will exclude con-

sideration of what Wang (1974) has called "open" separation. This is not to deny the

existence of such a category of flow but simply to affirm that it escapes our classifica-

tion. A flow is said to separate from the body surface B if there exists a stream sur-

face S that intersects B on the line F and if streamlines on S in the vicinity of F all

originate from F and are directed away from F. We call S a separation stream surface

and F a line of separation; the latter will be taken to be the _?-axis. Flow attachment

differs from flow separation merely in having an opposite flow direction, but otherwise

has identical topological properties. For simplicity we shall refer, wherever no confu-

sion may arise, only to flow separation with the understanding that whatever we say

can be made to apply to flow attachment as well by a suitable reversal of flow direc-

tions.
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Two mutually exclusive casesexist:

t

i'

(1) The separation stream surface S is tangent to the body surface B along the whole

OV

of the separation line F. In this case the adjunct field surface of -_ must also

be tangent to the body surface along the same separation line F. This is possible

f0 /
only if the separation line is itself a singular line of the vector field [ 0 f J_=0 ' i.e.

a singular line of the skin-friction vector field e"_w. This type of separation will be

called singular tangent separation.

(2) The separation stream surface S intersects with the body surface B non-

tangentially, i.e. at a non-zero finite angle along the line of separation F. In this

OV

case the adjunct separation field surface of _ also intersects with the body sur-

face at non-zero angle along the same separation line F. Since the body surface is

OV
, the line of separation must be a field line of

shown to be a field surface of 0

OV
m_, and hence is itself a skin-friction line.
0f

Due to the analyticity of-_w the line

of separation F must either be a singular skin-friction line, along which e-_w---0

everywhere, or a regular skin-friction line containing, possibly, a finite number of

isolated singular points of-_w. In the former case the separation is called singular

separation, whereas the latter case is called regular separation.

To sum up, within our classification, there exist two and only two types of flow

separation of an incompressible viscous fluid:
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(a) Regular separation, where the line of separation is itself a regular skin-friction line

(containing, possibly, a finite number of singular points), from which the separa-

tion stream surface leavesthe body surface at a non-zero angle.

(b) Singular separation, where the line of separation is a singular skin-friction line,

from which the separation stream surface leavesthe body surface either at a non-

zero angle or tangentially along the line of separation.

Regular separation is the common type of flow separation in genuinely three-

dimensional flow (Peake & Tobak, 1980) and will be studied in the next section. By

contrast, two-dimensional and axisymmetric flow separation must be of singular type

due to flow symmetry. If there exists a singular point of the skin-friction field from

which a streamline leaves the body surface, symmetry requires that the singular point

must lie on a singular line and the streamline must lie on a stream surface which leaves

the body surface, rendering the separation singular.

As an example of tangent separation we cite the high Reynolds number flow past

a slender body, e.g., a cone or a delta wing, at small incidence where the lines of

separation are only slightly inclined to the direction of the main flow. F.T. Smith

(1978) presented evidence showing that the limiting form of the flow at infinite Rey-

nolds number is a potential flow in which are embeddedvortex sheets carrying concen-

trated vorticity. He also showed that the vortex sheets must separate tangentially

from the body surface. This type of flow separation at infinite Reynolds number thus

belongs to the class of singular tangent separation. Tangent separation will be shown

(in section 5) to prevail as well when flow separation first appears in the impulsively

started flow past a circular cylinder.
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§ 3. REGULAR SEPARATION

J In this section we shall study the local behavior of the flow field near the line of

separation.

3.1. Existence of a Singular Point on the Line of Separation

In regular separation, the separation stream surface S leaves the body surface B

with a non-zero angle along the separation line F. Consequently

s x r ÷ o (9)

where n-_s is the unit normal of the separation stream surface.

Now, streamlines on the separation stream surface S in the vicinity of the separa-

tion line F originate from F. If all such streamlines on S intersect with F tangentially

body surface B, then [_'s X _3)r :0 along the separation line F, contradictingto the

(9). Hence, there must be at least one streamline on S that intersects with the body

surface B at some point P on F, making a non-zero angle to the body surface. Let

the equation of this streamline

_= _I(T), /7 = _2(T), _ = k3(V ). Then

dr )p

be given parametrically by

÷0 (10)

Since the direction of this streamline at the point of intersection P is parallel to the

limiting direction of V at P, which, in turn, is parallel to [ 0 f Jp' we get



i

- 15-

Ou,/O f Ov/O f Ow/'O f
dkl/dr - dk2/dT -- dk3/dr at P (11)

With condition (10) and [0-_f]p =0from(7),Eqs.(ll)yield

So the point of intersection P is a singular point of the skin-friction field _'w-

(12)

We conclude that there must exist at least one singular point of the skin-friction

e'_w on the line of separation in regular separation. The above arguments alsofield

show that any streamline on the separation stream surface that intersects with the

body surface must do so at a singular point on F. Such singular points are isolated on

F in regular separation. They, together with the remaining singular points in the

skin-friction field, must obey certain topological rules as described by Hunt, et. al.

(1978). In particular, the number of nodal points must exceed the number of saddle

points by two on any smooth body surface that is topologically equivalent to a sphere.

3.2. A Necessary Condition

As shown in § 2.2, the line of separation F is itself a skin-friction line.

tion may then be given by

Its equa-

Since F is taken to be the r/-axis, we also have

on r (13)
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d_:dr/ =0:1 on F

Therefore, from (13) and (14) we get

(i4)

(15)

The above analysis shows that (15) is a necessary condition for the r/ -axis, (i.e.

= f = 0) to be a line of separation. However, contrary to Zhang's (1985) conclusion,

it is not a sufficient condition for the r/-axis to be a line of separation.

3.3 The Flow Reversal Condition

In the situation of flow separation, it is clear that the body surface B and the

separation stream surface S constitute two barriers to the flow such that near and on

opposite sides of the line of separation F a certain component of the flow must reverse

Ou 8u

direction. In particular, (-0-f")__7_+ < 0 and (--_)_3_ > 0 for flow separation where

Ou

fluid flowsaway from the bodysurface Likewise, and

Ou

( _-'_--.)¢=0_us ____ < 0 for flow attachment where fluid flows toward the body surface. Conse-

Oeu ]
n(_) _= (o ¢o¢J¢=_-o< o

quently we obtain

for flow separation (16)

2u ]
n(,7) = ( a Ca_-)¢=_=o> o

for flow attachment (17)
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These flow reversal conditions, which are direct generalizations of the conditions

for two-dimensional flow, were first obtained by Zhang (1985).

3.4 Types of Singular Points on the Line of Separation

(1) Velocity field near a singular point

Without loss of generality, we let the singular point 0 on F be at _----r/ ---- q = 0.

Expanding the velocity components u,v,w as Taylor series about the point 0 and using

(3) yield

= (al _ + b,_ + c1_)_+ ... (18a)

v =(a 2_+b 2_ +c2_)_+ ''' (18b)

w =(a 3_+ b 3r/ +c 3_')1"+ "'" (18c)

where al, ..., c 3 are constants, and "+..." denotes higher order terms in _, r/, q.

As (15) and (7)imply, respectively,

bi =0, (lOa)

a3--b3--0, (19b)

the streamlines near the singular point 0(0,0,0) on the line of separation are therefore

given by the following differential equations

h lod_ h2odrl dq
m m

al_ + Clq a2_ + b2_? + c2q c3q
(20)

where hio = (hi)_=_=_= o , i=1,2 . We now investigate the behavior of the streamlines

near the singular point, first on the body surface B and [ben on the separation stream
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As the body surface is approached, _"--_ 0 and the streamlines coincide with the

skin-friction lines as noted in section 2.1. The equations for the skin-friction lines are

obtained from (20) with _"= 0:

hlod_ al_
m

h2odrl a2_ + b2rl
(21)

According to singularity theory of ordinary differential equations and the fact that

hi0 > 0 and h20 > 0, the nature of the singular point 0 of the skin-friction field is

determined by the sign of

qB ---- alb2 (22)

In particular, a node (including a focus) corresponds to qB > O, whereas a saddle point

corresponds to qB < 0.

(3) On the separation stream surface S

Let the equation of the separation stream surface be given by

S: q = F(_c,r/) (23)

As S intersects the body surface _" = 0 along the r/-axis, we have

F(0,_/) ---- 0 (24)

Expanding F(_,r/) as a Taylor series about the point _= r/ = 0 and using (24) we get

= F(5 ) = + (25)
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The equations of the streamlines on the separation stream surface S are obtained

by substituting (25)in (20):

hlod_ h2od_? d_
= - (26)

Accordingly, we get

k = (hl0C 3 -- al)/C 1 (27)

and

1 d_ c3_
E

h20 dr/ (a 2 + kc2) _+ b2_7
(28a)

d_

d_ -- k (28b)

Equation (27) determines the local slope k of the separation stream surface S at the

singular point 0, whereas Eqs (28) determine the streamlines on S. With _y as the sur-

face coordinates of S, singularity theory of ordinary differential equations again asserts

that the nature of the singular point 0 of the flow field V on the separation stream sur-

face is determined by the sign of

qs =c3b2 (29)

In particular, a node (including a focus) corresponds to qs > 0, whereas a saddle point

corresponds to qs < 0.

Now, in the case of flow separation we have c 3 > 0, but a_ ----R(0) < 0 from (16),

so c3 and al, and hence qB and qs, are of opposite signs. We conclude that a singular
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point of the flow field on the line of separation must be either

(a) a saddle point in the skin-friction field on the line F and, at the same location, a

nodal point on the separation stream surface S. Because of the presence of the

body surface B, the node on S is one-sided and hence can only be a regular node,

not a focus. The streamlines on S all originate at the nodal point and are

directed away from it. In effect, they have entered the stream surface through

the saddle point in the skin-friction field on the line of separation. We call the

saddle point a saddle point of separation. The flow is illustrated in Fig. 1.

or

(b) a nodal point in the skin-friction field on the line F and, at the same location a

half-saddle point on the separation stream surface S. In this case, there is only

one streamline on S that has entered through the node in the skin-friction field.

This node may be either a regular node or a focus, but in either case it must be a

node of separation. The flow is illustrated in Fig. 2.

3.5 Distribution of Singular Points on the Line of Separation

is the r/-axis, is determined by

The flow direction of the skin-friction field e'_walong the line of separation, which

[0__..}_=_=0 _ D(r/). Near the singular point 0(0,0,0)we

have, from (18b)

D(r/) = b2r/ 4- 0(r/2) (30)

At a saddle point of separation a 1 = R(0) < 0 and qB = alb2 < 0, hence b 2 > 0 and

the flow is away from the saddle point. Similarly, at a nodal point of separation
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a 1 < 0 and qB = alb2 > 0, hence b2 < 0 and the flow is toward the nodal point.

Furthermore, on the line of separation Fwhere _---_=0, we have [cg-_]r

from (15). Hence, every point P on F where

=0

D(r/)per ----0 (31)

is a singular point of e'_w. Consequently, D(r/) changes sign only when passing a singu-

lar point on F.

Combining the above two results, we see that along the line of separation e-'*w must

always flow from a saddle point of separation ($8) toward a node of separation (Ns).

(By reversing the direction of the flow field we see also that along a line of attachment

e-*w must always flow from a node of attachment (Na) toward a saddle point of attach-

ment (Sa).)

It is now evident that a line of separation F in regular separation must originate

at a saddle point of separation. If F is closed it must also contain a node of separation,

this being a consequence of the continuity of flow direction along P and of condition

(31). On the other hand, if F is an open curve on the surface of u three-dimensional

finite body its end-points must be singular points of-_w. The rule governing the direc-

tion of flow along the line of separation then requires that these end-points be nodes of

separation.
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3.8 Summary of Properties of Regular Flow Separation

The mathematical properties of regular flow separation derived in sections 2 and 3

are summarized as follows.

(a) The line of separation F is itself a skin-friction line. Consequently, when it is

chosen as the r/-axis of a curvilinear orthogonal coordinates (rlq it is necessary that

Also

0 GOf ]_=_=0 < 0 for flow separation (33a)

(b)

(c)

I 2u ]
0 G0 q ]_=_=0 > 0 for flow attachment (33b)

The line of separation must originate from a saddle point of the skin-friction field.

It must end at a nodal point of separation if it is a closed curve or at a pair of

nodal points of separation if it is an open curve.

A saddle point of the skin-friction field on the line of separation is simultaneously

a half-nodal point of the flow field on the separation stream surface (cf. Fig. 1). A

nodal point of separation of the skin-friction field on the line of separation is

simultaneously a half-saddle point of the flow field on the separation stream sur-

face (el. Fig. 2).
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§ 4. UNSTEADY THREE-DIMENSIONAL FLOW SEPARATION

.

By unsteady flow separation we mean time-dependent flow separation relative to

an observer on the body surface. An unsteady flow is said to separate from the body

surface B at time t if there exists a stream surface S at t that intersects B on the line

F and if the streamlines on S at time t in the vicinity of F all originate from F and are

directed away from it. The stream surface S is called the instantaneous separation

stream surface at the instant t, and F the instantaneous line of separation. Flow

attachment at time t is defined analogously with flow directions reversed.

To describe unsteady flow separation relative to an observer on the body surface,

it is imperative that we use a frame of reference that is fixed to the body surface. The

body in question may be a rigid body performing a given motion, or it may be a

deformable body.

Now for an unsteady incompressible flow viewed in a frame of reference fixed to

the body surface, the continuity equation at any instant of time remains the same as

that of steady flow, i.e.

V" V(r;t) = 0 (34)

Furthermore,

V(r;t) is analytic in the spatial variables r (35)

being a consequence of the Navier-Stokes equations. With our choice of the frame of

reference, the boundary condition that there be no slip at the body surface remains
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"_(7;t) ----0 on the body surface (36)

even though the flow above the surface may be unsteady.

We note that the time variable t appears only as a parameter in Eqs. (34) - (36)

which are otherwise identical to Eqs. (1) - (3). Of course, the time t appears as a

ov
genuine independent variable through the term _ in the momentum equation. The

time-history effects of the unsteady motion of the fluid are thus introduced only

through the momentum equation, which now contains an inertia force term F i arising

from the motion, or deformation, of the body in addition to the external force G*. For

instance,

--* dVc --" _ --* -- --- d_

Fi=-- T + 2n x v + n x (n x v) + --_-- x (37)

for a rigid body where Vc is the velocity of the center of mass of the body and _ is its

angular velocity.

As we have noted in § 1, the momentum equation for steady flow, which would be

needed to determine the separated flow field uniquely, could be by-passed if we asked

only for a topological description of the flow near the body surface. Analogously, we

can avoid invoking the unsteady momentum equation by again asking only for a topo-

logical description of unsteady flow separation, this time based on Eqs (34)- (36)

instead of gqs. (1) - (3). By comparing the two sets of equations, we conclude that

separation of an unsteady incompressible viscous flow at time t, when viewed from a

frame of reference fixed to the body surface, is topologically the same as that of the

fictitious steady flow obtained by freezing the unsteady flow at the instant t. In other

words, the topological properties of unsteady flow separation at time t, as recorded by,
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say, a snapshot of the flow, are governed by the same rules that govern separation in

steady flow. In this sense, all results in §§ 2 and 3 for steady separation apply to

unsteady flow separation instantaneously.

We further remark that the MRS criterion of unsteady flow separation aims at

answering the question of "massive" flow separation which is determined by the

momentum equation with an inertia force term, whereas our theory based on equations

(34) - (36) and ignoring the momentum equation describes only the local behavior of

flow separation near the body surface. Of course, the behavior of flow separation as

described in this paper must always be present locally in any "massively" separated

flow field.
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§ 5. APPLICATIONS

This section is devoted to a preliminary, qualitative discussion of some aspects of

unsteady flow separation.

5.1 The Stream Functions

It is well known that the continuity equation (34) may be replaced by introducing

two stream functions ¢(r_t) and X(_t), namely

y = v¢ × Vx (3s)

Evidently, Eq (34) is automatically satisfied, and _" is analytic in 7 provided ¢ and X

are. Also ¢(7;t) = const, and X(_t) -_ const, represent two families of instantaneous

stream surfaces at time t.

The equation of the body surface in the body surface-fixed coordinates must be

independent of time, and hence must be of the form

= 0 (3g)

As the body surface is a stream surface for all time, we choose the _-family of stream

surfaces such that ¢(7;t) = 0 contains the body surface. To satisfy condition (36) it is

then necessary and sufficient that _ be of the form

¢(r_t ) ----B2(r-'_ S(_',t ) (40)

where S and B are functionally independent. It is easily shown that the surface
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s(7;t) = 0 , (41)

if it exists, is also a stream surface. Furthermore, if it intersects with the body surface

at the instant t, it is an instantaneous separation stream surface and the intersection is

an instantaneous line of separation. An important problem is to study the evolution of

the surface S(7;t) ----0, especially near the time t ---- T s when it first intersects with the

body surface.

5.2 Onset of Separation for Impulsively Started Flow past a Circular

Cylinder

As an example of the problem just cited, consider the two-dimensional impulsive

incompressible flow U_ past a stationary circular cylinder of radius a. For high Rey-

nolds number flow, R e --
U_a

/2
_ 1, C.Y. Wang (1967) used the method of matched

asymptotic expansions to obtain a uniformly valid solution to the third order in

e = 1/R e that is valid for small time.

coordinates (r,0) is

= sin 0 (r - 1) + E 4
r

We 2 4t [

sin 0 [ 4

His solution for the stream function in polar

3_f-_ rl2 erfc _7 -- rl e -_2
erf _? -I- 7 --_

+ e2 8t 3/2 sin 0 cos 0 G 3 (_?) + 0(e 3) (42)

where all the lengths are measured in units of a, velocity components in units of U_.

Hence ¢ is measured in units of U_a and we choose to measure time t in units of

ea//U_. The variable r/ is related to r by r/ ---- (r -- 1)/(2e %//'). Tho first term in (42)



T

i •

- 28 -

represents the inviscid potential flow at the initial instant, t = 0.

may also be written

¢(rl,O;t ) = 4_ _/-t'sin O [Gl(rl) -b e_/'t{G2(rl) + 2%/rt G3(rl) cos O}]

The solution (42)

(43)

where

1 (e -_- 1) (44)

2 1 erf rl + 3 rl2 erfc 3
G2(r/) = -- r/2 -[.- _ r/ -- T 2- rl - _ _ e-'_ (45)

ii 8 _72
G3(_) : _ e-'2erfc _ -- _ erfc %¢/2_ + 3 erfc2 _?

2 712e-_2 erfc + 1 rle_2n2 _ rI erfc 2 rl

31 [ 4} 3e -_2- 1 + erfc2

2

rl2 e -'t_ + _ er fc rI +

]8 4
1 / • (46)
)

2 _ _2
Here erf is the error function, erf _ = _ fo e- d{, and the complementary error

function erfc _7 = 1 -- erf _7. It can easily be shown that at the body surface, r/ = 0,

Gi(O ) = G'i(O ) = 0, i = 1,2,3. Hence (43) is of the form

¢ = 4 e _ sin 0 rl2 S(rl,O;t ) (47)

in conformity with Eq (36). In Eq (47)
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S(7,O;t) = gl(7) T _ _/_ [g2(_) T 2_/'t g3(7) cos O ] (4s)

where gi(7) = Gi(7)/72, i = 1,2,3. The functions gi(7) are plotted in Fig. 3. In par-

ticular, near the body surface, i.e. for r/small, we get

1
g (7) = + 2)

1 4

g2(7) = 2 3X7";'_ 7 + 0(72)

1 4 2
g3(7) = -_ (1 + -_-;-)-- -_-7 + 0(721

' Hence

1

S(7,0;t) = /} { ]+ e %/_-- 4 4 2
3 7 +2ct 1 + 3_" 3 7 cos

)

(49)

The function S given by (49) is now used to study the behavior of flow separation near

the body surface.

Although Wang's analysis is based on the assumption of small time, the solution

may be used to give qualitative results for larger times. For this purpose we let time T

be measured in units of a/q/co, i.e. T = et. Eq. (49) then becomes

1

S(7,0;T) = _- ' 2 3 +2T 1 + 3_ 3 cos (50)

We observe from (50) that
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(a) Only after a finite time can it happen that S ----0.

(b) The time T when the surface S = 0 intersects with the body surface 77 ----0 is

given by

4

2 -k- %/_ -k- 4(1 -k- "_-)T cos 0 ---- 0 (51)

It is clear from (51) that the surface S ----0 will first intersect with the body sur-

face at 0 = lr, i.e. at the rear stagnation point.

(c) The separation time Ts, defined as the time when the surface S ----0 first inter-

sects with the body surface, is given by

T_

cTr+ V'2"_c_42(_ + -2y_)+
4

8(1 + -fig-)

+ o(d/_)

----"0.35 "4- 0(g 1/2) (52)

We note that the separation time Ts calculated above as the time when the

separation surface first appears is identical to Wang's estimate of the time when

the surface shear stress first becomes zero.

(d) From (50) we see that at the separation time Ts, whence 0 _- 7r,

= o (53)
T=T.

This shows that initially the separation surface S----0 leaves the body surface
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tangentially, i.e., initial separation is a tangent singular separation.

any later time T > T 8 it is a non-tangential singular separation as

T>T_

However, at

(54)

In Fig 4 are shown the stream surfaces, including S ----0, at three different times

T----0,T---- T_ and T= 1 >Ts, all cases for R e ---- 100. It is seen that the sur-

face S = 0 emerges from inside the cylinder; as soon as it moves into the flow

field, the flow becomes separated.

Impulsive flow past a stationary sphere can be studied similarly by taking

X -- _(r,0;t)= ¢ (55)

for symmetric flow, where (r,0,¢) are spherical coordinates. The flow separation pro-

perties are expected to be qualitatively the same as those for the impulsive flow past a

circular cylinder: at some finite time T 8 after starting, a separation stream surface will

first appear tangentially at the rear stagnation point; it will grow with time, immedi-

ately becoming non-tangential to the body surface as it emerges into the flow field.

5.3 Effects of Expansion of a Circular Cylinder on Flow Separation

An interesting numerical study has just been made by Lin, Mekala, Chapman and

Tobak (1986) on the migration of the separation point on a deforming cylinder. The

qualitative aspects of the effects of deformation of the cylinder on the onset of flow

separation can now be discussed from a frame of reference fixed to the body surface.

From this frame of reference the effect of acceleration and of deformation of the
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cylinder surface is equivalent to adding appropriate inertia forces.

i: /

To consider the effect of surface deformation alone on flow separation, let a(t) be

the radius of the cylinder and r the distance of a fluid particle from the surface of the

cylinder (Fig. 5). Let _ and _ be unit vectors in the ratial and azimuthal directions

respectively. The absolute acceleration of the fluid particle is

A-*----(h" + 7); + 2(d + - (a + r) 2; + (a + r)Y 

= [{_:--(a +r)(_2}_ + {(a +r)_ +2_:_}_] + [a'_ +2a_]

_---A 0 + A D (56)

where A0, the quantity in large brackets, is the acceleration of the particle that would

be present alone if there were no deformation of the cylinder, and A D is the additional

acceleration arising from the deformation. Relative' to the cylinder surface at time t

the inertia force F i of a particle of unit mass is thus

F i = --A D = --a'_ -- 2ab_ (57)

In the case of a flow U past a circular cylinder whose surface is expanding at con-

stant rate (Fig. 5) (_ _ 0 , a" ----0, the inertia force acting on the particle is equal to

--25_. This force acts in the direction just opposite to the motion (_ _ 0) of the par-

ticles near the body surface, and, like an adverse pressure, has the effect of hastening

the separation time. In the case of constant-rate contraction of the body surface, the

inertia force is 2 Id I_ which acts in the same direction of motion as the particles near

the body surface, and therefore has the effect of delaying the separation time. These

qualitative conclusions agree with those resulting from the numerical computation of
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Lin, et. al. for an impulsively starting flow past a cylinder deforming at constant rate.

The effect of non-constant rate of expansion or contraction can also be discussed

by adding a term --h'_ to the inertia force. There are four different cases depending on

the combination of the signs of d and h'. It can be shown that in the case when d > 0

and h" < 0 flow separation is hastened the most, whereas in the case d < 0 and h" > 0

flow separation is delayed the most.

If the flow is not started impulsively but rather, is started from rest, accelerating

constantly over a time interval T c followed by a constant velocity, the effect on the

motion of the fluid particles as viewed from the body surface-fixed frame of reference is

equivalent to adding an inertia force U over T c. Such a force is a favorable one and

tends to delay flow separation. Therefore, with the same constant U, larger T c will

delay flow separation further. This conclusion is also in agreement with that resulting

from the numerical computation of Lin et. al. (Fig. 6).
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§ 6. CONCLUDING REMARKS

In this paper a concise mathematical framework is constructed to study the topol-

ogy of steady three-dimensional separated flow of an incompressible viscous fluid.

With flow separation defined by the existence of a stream surface which intersects with

the body surface, it is shown that the line of separation is itself a skin-friction line.

Flow separation is classified as being either regular or singular, depending respectively

on whether the line of separation contains only a finite number of singular points or is

a singular line of the skin-friction field.

In regular separation a line of separation originates from a saddle point of separa-

tion of the skin-friction field and ends at nodal points of separation. It is also shown

that a saddle point of the skin-friction field on the line of separation is simultaneously

a half-nodal point of the flow field on the separation stream surface. Conversely, a

nodal point of the skin-friction field on the line of separation is simultaneously a half-

saddle point of the flow field on the separation stream surface.

The same mathematical framework proves useful for a study of the topology of

unsteady three-dimensional incompressible flow separation when the flow is defined

relative to a coordinate system fixed to the body surface. It is shown that separation

of an unsteady incompressible viscous flow at time t, when viewed from such a frame

of reference, is topologically the same as that of the fictitious steady flow obtained by

freezing the unsteady flow at the instant t. Several applications of this result showing

effects of various forms of flow unsteadiness on flow separation are discussed qualita-

tively.
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Finally, extension of the results for steady three-dimensional incompressible flow

separation to the case of steady compressible flow is straightforward. In the latter case

we still have

(i) V is analytic (58)

(ii) V = 0 on the body surface B (59)

But, instead of (2), the continuity equation now reads

V.(pV) = V.Vp + pV.V = 0 (60)

where p is density of the fluid. However, by using (59), equation (60) reduces to

(V'V)B ---- 0 (61)

which, after using (59) once again, in turn implies that

Equations (58), (59) and (62) for a compressible flow are seen to be identical to (1), (3)

and (7) for an incompressible flow. It has been noted earlier (section 2.1) that all topo-

logical properties of steady three-dimensional flow separation of an incompressible fluid

are derived solely on the basis of equations (1), (3) and (7). As these latter equations

are also shared by a compressible fluid, it is concluded that the topology of separation

of a steady three-dimensional compressible flow is identical to that of an incompressi-

ble flow. We remark, however, that the topologies will not be identical in the case of

unsteady flow, in view of the additional term Op/Ot that will appear in the continuity

equation for compressible unsteady flow.
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Fig 1. Flow near a saddle point of separation 0 of the skin,friction field on the line of

separation r. With flow directions reversed this figure also represents the flow near a

saddle point of attachment.

Fig 2a. Flow near a regular nodal point of separation 0 of the skin-friction field on

the lines of separation r and IV. With flow direction reversed this figure also

represents the flow near a nodal point of attachment.

Fig 2b. Flow near a focus of separation of the skin-friction field.

Fig 3. The functions g1(r/), g2(7/), g3(_) •

Fig 4. Impulsive flow past a stationary cylinder, R e -- 100.

Fig 5. Uniform flow past a deforming circular cylinder showing notation.
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Fig 2a. Flow near a regular nodal point of separation 0 of the skin-friction field on

the lines of separation F and rv. With flow direction reversed this figure also

represents the flow near a nodal point of attachment.
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Fig 2b. Flow near a focus of separation of the skin-friction field.
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