ORBITAL TRANSFER VEHICLE STUDIES

PRESENTATION TO THE
CRYOGENIC FLUID MANAGEMENT TECHNOLOGY WORKSHOP

DON PERTKINSON
APRIL 28, 1987
NASA/MSFC

PRECEDEING PAGE BLANK NOT FILMED

PAGE 138 INTENTIONALLY BLANK
ORBITAL TRANSFER VEHICLE CONCEPT DEFINITION
AND SYSTEM ANALYSIS STUDIES

OBJECTIVES:

● INVESTIGATE ALTERNATIVE OTV CONCEPTS AND CONDUCT PROGRAM LEVEL
STUDIES AND ASSESSMENTS WHICH WILL ALLOW FOCUSING THE OTV PROGRAM
TOWARD FUTURE DEVELOPMENT.

● DEFINE POTENTIAL SPACE STATION ACCOMMODATIONS HARDWARE ELEMENTS,
RESOURCES, AND INTERFACES NECESSARY TO SUPPORT A SPACE-BASED OTV FLEET.

CONTRACTOR DATA:

● TWO PARALLEL STUDIES UNDER COMPETITIVELY AWARDED CONTRACTS
- BOEING AEROSPACE COMPANY (SEATTLE, WA)
- MARTIN MARIETTA AEROSPACE (DENVER, CO)

● ONE PARALLEL STUDY CONDUCTED UNDER COMPANY FUNDS DURING PHASES I & II
- GENERAL DYNAMICS SPACE SYSTEMS DIVISION (SAN DIEGO, CA)

● $1.6 M EACH CONTRACTED STUDY

DURATION: 43 MONTHS, INITIATED JULY 1984 (CONTRACTS), PHASE III EXTENDS TO FEBRUARY 1988

MSFC TECHNICAL MANAGER: DONALD R. SAXTON, PF20

HEADQUARTERS MANAGERS: TED SIMPSON, MD
ORBITAL TRANSFER VEHICLE (OTV)

|-----|------|------|------|------|------|------|------|------|------|------|------|------|------|

KEY MILESTONES

- OTV Δ
- Ø B START
- OTV Δ
- Ø C/D START
- GBOTV Δ
- LAUNCH

REUSABLE OTV

- SYSTEM STUDIES
 - PHASE A
 - PHASE B
- AEROSAULT TECHNOLOGY
- VEHICLE TECHNOLOGY
- VEHICLE DESIGN & DEV.
- OTV ENGINE

GBOTV = GROUND-BASED OTV

FFC = FINAL FLIGHT CERTIFICATION
<table>
<thead>
<tr>
<th>MISSIONS</th>
<th>OTV PLD NO.</th>
<th>STAS PLD NO.</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>TO1</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO PLATEFORM</td>
<td>13006</td>
<td>2333</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>PLANETARY</td>
<td>17xxx</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>MULT. PLD. DEL.</td>
<td>18912</td>
<td></td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>84</td>
<td></td>
</tr>
<tr>
<td>IND. GEO SAT.</td>
<td>18xxx</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>UNMANNED SERV.</td>
<td>13xxx</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>SAT RETRIEVAL</td>
<td>18750</td>
<td>1020</td>
<td></td>
</tr>
<tr>
<td>MANNED GEO SORT.</td>
<td>15010</td>
<td>5005,5200</td>
<td></td>
</tr>
<tr>
<td>GEO SHACK</td>
<td>1500x</td>
<td>5006</td>
<td></td>
</tr>
<tr>
<td>GEO SHACK LOG.</td>
<td>15011</td>
<td>5010,5017</td>
<td></td>
</tr>
<tr>
<td>UNMAN. LUN. ORB.</td>
<td>1720x</td>
<td>5013,5015,5017</td>
<td></td>
</tr>
<tr>
<td>LUNAR ORBIT STA.</td>
<td>1720x</td>
<td>5019</td>
<td></td>
</tr>
<tr>
<td>LUN. SURF. SORT.</td>
<td>1720x</td>
<td>5020</td>
<td></td>
</tr>
<tr>
<td>DOD</td>
<td>190xx</td>
<td></td>
<td>15</td>
<td>240</td>
</tr>
<tr>
<td>SUBTOTAL</td>
<td></td>
<td></td>
<td>21</td>
<td>24</td>
<td>25</td>
<td>33</td>
<td>33</td>
<td>30</td>
<td>25</td>
<td>21</td>
<td>20</td>
<td>26</td>
<td>23</td>
<td>24</td>
<td>26</td>
<td>26</td>
<td>28</td>
<td>29</td>
<td>414</td>
</tr>
<tr>
<td>REFLIGHTS</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTALS</td>
<td></td>
<td></td>
<td>21</td>
<td>24</td>
<td>26</td>
<td>34</td>
<td>33</td>
<td>31</td>
<td>25</td>
<td>22</td>
<td>20</td>
<td>27</td>
<td>23</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>30</td>
<td>422</td>
</tr>
</tbody>
</table>

REVISION NUMBER: 9 (STAS)
OTV SIZING MISSIONS

- SPACE BASED, FULLY REUSABLE OTV
- LOX/LH, 483 SEC, BALLUTE AEROASSIST

<table>
<thead>
<tr>
<th>MISSION</th>
<th>SMALL STAGE</th>
<th>LARGE STAGE</th>
<th>TWO STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVIL & DOD S/C (MULTIPLE P/L)</td>
<td>47</td>
<td>60.8</td>
<td>140</td>
</tr>
<tr>
<td>GEOLOGISTICS & MAN SORTIE</td>
<td>70.5</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>LUNAR SURF. DELIVERY</td>
<td></td>
<td></td>
<td>130</td>
</tr>
<tr>
<td>PLUTO ORBITER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MASS (K-LB)
14.6 (12/2) 21.8 12/10 33 (L.O.) 73 (L.O.) 32.3 (C3=49)

FIRST FLIGHT

QUANTITY
342 2 54 1 4 1
WEIGHTS

<table>
<thead>
<tr>
<th>Description</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>AEROBRAKE</td>
<td>1746</td>
</tr>
<tr>
<td>TANKS</td>
<td>422</td>
</tr>
<tr>
<td>STRUCTURE</td>
<td>1815</td>
</tr>
<tr>
<td>SUPPORT (ASE)</td>
<td>272</td>
</tr>
<tr>
<td>ENVIRONMENTAL CONTROL</td>
<td>180</td>
</tr>
<tr>
<td>MAIN PROPULSION</td>
<td>1288</td>
</tr>
<tr>
<td>ORIENTATION CONTROL</td>
<td>265</td>
</tr>
<tr>
<td>ELECTRIC SYSTEMS</td>
<td>533</td>
</tr>
<tr>
<td>G, H&C</td>
<td>160</td>
</tr>
<tr>
<td>CONTINGENCY (15%)</td>
<td>1002</td>
</tr>
<tr>
<td>DRY WEIGHT</td>
<td>7683</td>
</tr>
<tr>
<td>PROPELLANTS, ETC</td>
<td>74015</td>
</tr>
<tr>
<td>LOADED WEIGHT</td>
<td>81698</td>
</tr>
</tbody>
</table>

SPACE BASED OTV

PAYLOAD 12,000 up/10,000 DN

- INFLATED TORUS
- TANK SURFACE 2090 ALUM ALY (TYP)
- METEOROID SHIELD (TYP)
- AVIONICS MODULE GRAPHITE EPOXY
- GRAPPLE
- 48 FT DIA AEROBRAKE
- RCS (2 PLCS)
- GRAPHITE POLYMIDE HONEYCOMB COVERED WITH CERAMIC FOAM TILES
- MULTI-Ply NICALON, Q FELT AND SEALED NEXTEL ON GRAPHITE POLYMIDE FRAME
- CRADLE INTERFACE
- GRAPHITE EPOXY STRUCTURE
BOEING SPACE BASED OTV

BALLUTE BRAKED

UNIQUE FEATURES

- BALLUTE
 - NEXTEL/CS 105
 - 1500°F BACKWALL
 - TURNDOWN RATIO = 1.5
 - 1 USE
- HEAT SHIELD—RSI
 - 20 USES
- NO INITIAL ON-ORBIT ASSEMBLY

STAGE WEIGHT SUMMARY (LBS)

- DRY 9189
- MAIN PROP. 63,890
- OTHER FLUIDS 1,061
- STARTBURN 74,140

FOR MANNED GEO SORTIE (7.5K R.T.) OR 20K GEO DELIV
GENERAL DYNAMICS

MODULAR SPACE-BASED OTV

![Diagram of Modular Space-Based OTV](image)

Twin engines (5,000 lb, 485 sec Isp)

36 ft-10 in. Growth

<table>
<thead>
<tr>
<th>Tanksets</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle ignition</td>
<td>48,300 lb</td>
<td>134,900</td>
<td>177,500</td>
<td>220,500</td>
<td>306,000</td>
</tr>
<tr>
<td>Usable propellant</td>
<td>40,800 lb</td>
<td>122,500</td>
<td>163,500</td>
<td>204,200</td>
<td>285,900</td>
</tr>
<tr>
<td>Payload to GEO</td>
<td>13,500 lb</td>
<td>59,100</td>
<td>83,000</td>
<td>106,800</td>
<td>154,200</td>
</tr>
<tr>
<td>Payload roundtrip</td>
<td>6,450 lb</td>
<td>31,450</td>
<td>42,840</td>
<td>55,400</td>
<td>80,490</td>
</tr>
</tbody>
</table>
OTV TECHNOLOGY REQUIREMENTS

- ZERO G PROPELLENT TRANSFER
 - PROPELLENT PUMP/PRESSURIZATION
 - CHILL DOWN & VENT SYSTEM
 - PROPELLENT ACQUISITION (TANKER/STORAGE)
 - ABORT DUMP/TRANSFER (OTV)
 - QUICK CONNECT/DISCONNECTS

- PROPELLENT MASS GAUGING
 - ZERO G MEASUREMENT
 - PROPELLENT MASS TRANSFERRED
 - PROPELLENT REMAINING DURING BURN

- INSULATION
 - MLU ONLY FOR SPACE BASED OTV
 - MLU/FOAM/INERT GAS FOR GROUND BASED OTV

PROPELLENT PUMP/PRESSURIZATION

- DEMONSTRATE PROPELLENT TRANSFER BETWEEN TANKS BY CRYOGENIC COMPATIBLE PUMPS AND/OR TANK PRESSURIZATION

- MEASURE HEAT ADDED TO CRYOGEN BY PUMP

- DETERMINE EFFECTS OF ZERO G ON PUMP OPERATION, BUBBLE FORMATION, SUCTION LINE FLUID FLOW, ETC

- DETERMINE EFFECTS OF ZERO G ON PRESSURANT GAS/FLUID SEPARATION

- MEASURE G NECESSARY TO SETTLE FLUID, FLUID SLOSH IN LOW G, ETC

- BUBBLE UP/AUTOGNOSIS PRESSURIZATION
CHILL DOWN & VENT SYSTEM

- CHILL DOWN OF A WARM TANK
- ULLAGE VENTING AND FILL OF A PARTIALLY FILLED TANK
- A THERMODYNAMIC VENT SYSTEM HAS BEEN DESIGNED FOR THE CENTAUR AND DEMONSTRATED ON THE GROUND
- DEMONSTRATE THERMODYNAMIC VENT SYSTEM IN ZERO G
- DEVELOP AND DEMONSTRATE A ZERO G HELIUM VENT SYSTEM (?)

PROPELLANT ACQUISITION/MANAGEMENT
(TANKER/STORAGE FACILITY)

- DEMONSTRATE LIQUID ACQUISITION AND VAPOR FREE OUTFLOW
- DETERMINE SPACECRAFT DYNAMICS DURING PROPELLANT TRANSFER
- COMPARE STORAGE TANK/TANKER REQUIREMENTS TO OTV DETANK REQUIREMENTS
- CONTROL FLUID DYNAMICS (SLOSH, SETTLING)

ABORT DUMP/TRANSFER
(OTV)

- PROPELLANT RECOVERY AFTER MISSION ABORT NEAR THE SPACE STATION
- PROPELLANT DUMP
- RETURN OF RESIDUAL PROPELLANT TO STORAGE FACILITY
QUICK CONNECT/DISCONNECT FLUID INTERFACES

- "ZERO LEAKAGE" CONNECTIONS
- MINIMIZE ALIGNMENT REQUIREMENTS
- PROVIDE SEAL VENTING FOR PRESSURIZED SYSTEMS
- CONSIDER LEAK DETECTION, SEAL REPLACEMENT, INSPECTION, ETC
- MINIMIZE PRESSURE DROP ACROSS INTERFACE

ZERO G MASS GAUGING

- NO PROVEN METHOD FOR LARGE TANKS IN ZERO G
- NEED METHOD PROVIDING 1% OR BETTER ACCURACY
- ADDRESS SENSITIVITY TO PRESSURE OR TEMPERATURE

PROPELLANT MASS TRANSFERRED

- MEASURE PROPELLANT TRANSFER RATE AND TOTAL TRANSFERRED
- CORRECT FOR TEMPERATURE EFFECTS
- DETERMINE AND CORRECT FOR PRESENCE OF BUBBLES IN FLUID
- PROPELLANT UTILIZATION/MANAGEMENT IN MULTI-TANK OTV CONFIGURATIONS
PROPELLANT REMAINING DURING BURN

- MEASURE PROPELLANT DURING 0.01 TO 1.0 G ACCELERATION
- PROVIDE RAPID MEASUREMENT UPDATE

INSULATION

- SPACE BASED OTV
 - THICK ML1 WITH LONG LIFE IN VACUUM
 - INSULATE LH2 TANK FROM LOX TANK TO PROVIDE LONGER CAPABILITY AND TO MINIMIZE IMPACT OF SLOW FILL/DRAIN
 - MINIMIZE MICROMETEOROID/DEBRIS DAMAGE

- GROUND BASED OTV
 - ML1 ON LOX TANK
 - ML1 FOAM/INERT GAS ON LH2 TANK TO PREVENT CRYOPUMPING
 - INSULATE LH2 TANK FROM LOX TANK TO PROVIDE LONGER CAPABILITY

OTV SUPPORT TECHNOLOGY
(SPACE BASED)

- LONG TERM CRYOGENIC STORAGE
- VAPOR COOLED SHIELDS
- PARAVORTEX CONVERSION
- REFRIGERATION
- RELIQUEFACTION
- PROPELLANT DELIVERY