ORBITAL TRANSFER VEHICLE STUDIES

PRESENTATION TO THE
CRYOGENIC FLUID MANAGEMENT TECHNOLOGY WORKSHOP

DON PERKINSON
APRIL 28, 1987
NASA/MSFC

PRECEDEING PAGE BLANK NOT FILMED
ORBITAL TRANSFER VEHICLE CONCEPT DEFINITION
AND SYSTEM ANALYSIS STUDIES

OBJECTIVES:

- INVESTIGATE ALTERNATIVE OTV CONCEPTS AND CONDUCT PROGRAM LEVEL STUDIES AND ASSESSMENTS WHICH WILL ALLOW FOCUSING THE OTV PROGRAM TOWARD FUTURE DEVELOPMENT.

- DEFINE POTENTIAL SPACE STATION ACCOMMODATIONS HARDWARE ELEMENTS, RESOURCES, AND INTERFACES NECESSARY TO SUPPORT A SPACE-BASED OTV FLEET.

CONTRACTOR DATA:

- TWO PARALLEL STUDIES UNDER COMPETITIVELY AWARDED CONTRACTS
 - BOEING AEROSPACE COMPANY (SEATTLE, WA)
 - MARTIN MARIETTA AEROSPACE (DENVER, CO)

- ONE PARALLEL STUDY CONDUCTED UNDER COMPANY FUNDS DURING PHASES I & II
 - GENERAL DYNAMICS SPACE SYSTEMS DIVISION (SAN DIEGO, CA)

- $1.6 M EACH CONTRACTED STUDY

DURATION: 43 MONTHS, INITIATED JULY 1984 (CONTRACTS), PHASE III EXTENDS TO FEBRUARY 1988

MSFC TECHNICAL MANAGER: DONALD R. SAXTON, PF20

HEADQUARTERS MANAGERS: TED SIMPSON, MD
ORBITAL TRANSFER VEHICLE (OTV)

Key Milestones

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>KEY MILESTONES</td>
<td>OTV</td>
<td>Δ</td>
<td>o B</td>
<td>START</td>
<td>OTV</td>
<td>Δ</td>
<td>o C/D</td>
<td>START</td>
<td>GBO TV</td>
<td>Δ</td>
<td>LAUNCH</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reusable OTV

- **System Studies**
 - Phase A
 - Phase B

- **Aeroassist Technology**

- **Vehicle Technology**

- **Vehicle Design & Dev.**

- **OTV Engine**
 - Definition
 - Engine Design & Dev.

GBOTV = GROUND-BASED OTV

FFC = FINAL FLIGHT CERTIFICATION
<table>
<thead>
<tr>
<th>MISSIONS</th>
<th>OTV PLD NO.</th>
<th>STAS PLD NO.</th>
<th>95</th>
<th>96</th>
<th>97</th>
<th>98</th>
<th>99</th>
<th>00</th>
<th>01</th>
<th>02</th>
<th>03</th>
<th>04</th>
<th>05</th>
<th>06</th>
<th>07</th>
<th>08</th>
<th>09</th>
<th>10</th>
<th>TO1</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO PLATFORM</td>
<td>13006</td>
<td>2333</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>PLANETARY</td>
<td>17xxx</td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>MULT. PLD. DEL.</td>
<td>18912</td>
<td></td>
<td>4</td>
<td>7</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>11</td>
<td>6</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>IND. GEO SAT.</td>
<td>18xxx</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>UNMANNED SERV.</td>
<td>13xxx</td>
<td></td>
</tr>
<tr>
<td>SAT. RETRIEVAL</td>
<td>18750</td>
<td>1020</td>
<td></td>
</tr>
<tr>
<td>MANNED GEO SORT.</td>
<td>15010</td>
<td>5005,5200</td>
<td></td>
</tr>
<tr>
<td>GEO SHACK</td>
<td>1500x</td>
<td>5006</td>
<td></td>
</tr>
<tr>
<td>GEO SHACK LOG.</td>
<td>15011</td>
<td>5010,5017</td>
<td></td>
</tr>
<tr>
<td>UNMANN. LUN. ORB.</td>
<td>1720x</td>
<td>5013,5015,5017</td>
<td></td>
</tr>
<tr>
<td>UNMANN. LUN. SURF.</td>
<td>17203</td>
<td>5018</td>
<td></td>
</tr>
<tr>
<td>LUNAR ORBIT STA.</td>
<td>1720x</td>
<td>5019</td>
<td></td>
</tr>
<tr>
<td>LUN. SURF. SORT.</td>
<td>1720x</td>
<td>5020</td>
<td>15</td>
<td>240</td>
<td></td>
</tr>
<tr>
<td>DOD</td>
<td>190xx</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISSIONS</th>
<th>MISSIONS/FY</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEO PLATFORM</td>
<td>1</td>
</tr>
<tr>
<td>PLANETARY</td>
<td>14</td>
</tr>
<tr>
<td>MULT. PLD. DEL.</td>
<td>10</td>
</tr>
<tr>
<td>IND. GEO SAT.</td>
<td>0</td>
</tr>
<tr>
<td>UNMANNED SERV.</td>
<td>2</td>
</tr>
<tr>
<td>SAT. RETRIEVAL</td>
<td>16</td>
</tr>
<tr>
<td>MANNED GEO SORT.</td>
<td>37</td>
</tr>
<tr>
<td>GEO SHACK</td>
<td>3</td>
</tr>
<tr>
<td>GEO SHACK LOG.</td>
<td>5</td>
</tr>
<tr>
<td>UNMANN. LUN. ORB.</td>
<td>5</td>
</tr>
<tr>
<td>UNMANN. LUN. SURF.</td>
<td>0</td>
</tr>
<tr>
<td>LUNAR ORBIT STA.</td>
<td>0</td>
</tr>
<tr>
<td>LUN. SURF. SORT.</td>
<td>240</td>
</tr>
<tr>
<td>DOD</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MISSIONS</th>
<th>MISSIONS/FY</th>
</tr>
</thead>
<tbody>
<tr>
<td>SUBTOTAL</td>
<td>414</td>
</tr>
<tr>
<td>REFLIGHTS</td>
<td>8</td>
</tr>
<tr>
<td>TOTALS</td>
<td>422</td>
</tr>
</tbody>
</table>
OTV SIZING MISSIONS

- SPACE BASED, FULLY REUSABLE OTV
- LOX/LH, 483 SEC, BALLUTE AEROASSIST

<table>
<thead>
<tr>
<th>MISSION</th>
<th>SMALL STAGE</th>
<th>LARGE STAGE</th>
<th>TWO STAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIVIL & DOD S/C (MULTIPLE P/L)</td>
<td>47</td>
<td>60.8</td>
<td>140</td>
</tr>
<tr>
<td>GEO LOGISTICS & MAN SORTIE</td>
<td>70.5</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>LUNAR SURF. DELIVERY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LUNAR SURF. DELIVERY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PLUTO ORBITER</td>
<td></td>
<td></td>
<td>130</td>
</tr>
</tbody>
</table>

MASS (K-LB) | 14.6 (12/2) | 21.8 | 12/10 | 33 (L.O.) | 73 (L.O.) | 32.3 (C3=49) |
QUANTITY | 342 | 2 | 54 | 1 | 4 | 1 |
BOEING SPACE BASED OTV
BALLUTE BRAKED

UNIQUE FEATURES

• BALLUTE
 • NEXTEL/CS 105
 • 1500°F BACKWALL
 • TURNDOWN RATIO = 1.5
 • 1 USE
• HEAT SHIELD—RSI
 • 20 USES
• NO INITIAL ON-ORBIT ASSEMBLY

STAGE WEIGHT SUMMARY (LBS)

• DRY 9189
• MAIN PROP. 63,890
• OTHER FLUIDS 1,061
• STARTBURN 74,140

FOR MANAGED GEO SORIE (7.5K R.T.) OR 20K GEO DELIV
GENERAL DYNAMICS

MODULAR SPACE-BASED OTV

Avionics
Oxygen tank
Hydrogen tank
Geotruss aerobrake

Twin engines (5,000 lb, 485 sec Isp)

Growth

36 ft-10 in.

<table>
<thead>
<tr>
<th>Tanksets</th>
<th>1</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vehicle ignition</td>
<td>48,300 lb</td>
<td>134,900</td>
<td>177,500</td>
<td>220,500</td>
<td>306,000</td>
</tr>
<tr>
<td>Usable propellant</td>
<td>40,800 lb</td>
<td>122,500</td>
<td>163,500</td>
<td>204,200</td>
<td>285,900</td>
</tr>
<tr>
<td>Payload to GEO</td>
<td>13,500 lb</td>
<td>59,100</td>
<td>83,000</td>
<td>106,800</td>
<td>154,200</td>
</tr>
<tr>
<td>Payload roundtrip</td>
<td>6,450 lb</td>
<td>31,450</td>
<td>42,840</td>
<td>55,400</td>
<td>80,490</td>
</tr>
</tbody>
</table>
OTV TECHNOLOGY REQUIREMENTS

- ZERO G PROPELLANT TRANSFER
 - PROPELLANT PUMP/PRESSURIZATION
 - CHILL DOWN & VENT SYSTEM
 - PROPELLANT ACQUISITION (TANKER/STORAGE)
 - ABORT DUMP/TRANSFER (OTV)
 - QUICK CONNECT/DISCONNECTS

- PROPELLANT MASS GAUGING
 - ZERO G MEASUREMENT
 - PROPELLANT MASS TRANSFERRED
 - PROPELLANT REMAINING DURING BURN

- INSULATION
 - MIL ONLY FOR SPACE BASED OTV
 - MIL/FOAM/INERT GAS FOR GROUND BASED OTV

PROPELLANT PUMP/PRESSURIZATION

- DEMONSTRATE PROPELLANT TRANSFER BETWEEN TANKS BY CRYOGENIC COMPATIBLE PUMPS AND/OR TANK PRESSURIZATION

- MEASURE HEAT ADDED TO CRYOGEN BY PUMP

- DETERMINE EFFECTS OF ZERO G ON PUMP OPERATION, BUBBLE FORMATION, SUCTION LINE FLUID FLOW, ETC

- DETERMINE EFFECTS OF ZERO G ON PRESSURANT GAS/FLUID SEPARATION

- MEASURE G NECESSARY TO SETTLE FLUID, FLUID SLOSH IN LOW G, ETC

- BUBBLE UP/AUTOGENOUS PRESSURIZATION
CHILL DOWN & VENT SYSTEM

- CHILL DOWN OF A WARM TANK
- ULLAGE VENTING AND FILL OF A PARTIALLY FILLED TANK
- A THERMODYNAMIC VENT SYSTEM HAS BEEN DESIGNED FOR THE CENTAUR AND DEMONSTRATED ON THE GROUND
- DEMONSTRATE THERMODYNAMIC VENT SYSTEM IN ZERO G
- DEVELOP AND DEMONSTRATE A ZERO G HELIUM VENT SYSTEM (?)

PROPELLANT ACQUISITION/MANAGEMENT
(TANKER/STORAGE FACILITY)

- DEMONSTRATE LIQUID ACQUISITION AND VAPOR FREE OUTFLOW
- DETERMINE SPACECRAFT DYNAMICS DURING PROPELLANT TRANSFER
- COMPARE STORAGE TANK/TANKER REQUIREMENTS TO OTV DETANK REQUIREMENTS
- CONTROL FLUID DYNAMICS (SLOSH, SETTLING)

ABORT DUMP/TRANSFER
(OTV)

- PROPELLANT RECOVERY AFTER MISSION ABORT NEAR THE SPACE STATION
- PROPELLANT DUMP
- RETURN OF RESIDUAL PROPELLANT TO STORAGE FACILITY
QUICK CONNECT/DISCONNECT FLUID INTERFACES

- "ZERO LEAKAGE" CONNECTIONS
- MINIMIZE ALIGNMENT REQUIREMENTS
- PROVIDE SEAL VENTING FOR PRESSURIZED SYSTEMS
- CONSIDER LEAK DETECTION, SEAL RE replacement, INSPECTION, ETC
- MINIMIZE PRESSURE DROP ACROSS INTERFACE

ZERO G MASS GAUGING

- NO PROVEN METHOD FOR LARGE TANKS IN ZERO G
- NEED METHOD PROVIDING 1% OR BETTER ACCURACY
- ADDRESS SENSITIVITY TO PRESSURE OR TEMPERATURE

PROPELLANT MASS TRANSFERRED

- MEASURE PROPELLANT TRANSFER RATE AND TOTAL TRANSFERRED
- CORRECT FOR TEMPERATURE EFFECTS
- DETERMINE AND CORRECT FOR PRESENCE OF BUBBLES IN FLUID
- PROPELLANT UTILIZATION/MANAGEMENT IN MULTI-TANK OTV CONFIGURATIONS
PROPELLANT REMAINING DURING BURN

- MEASURE PROPELLANT DURING 0.01 TO 1.0 G ACCELERATION
- PROVIDE RAPID MEASUREMENT UPDATE

INSULATION

- SPACE BASED OTV
 - THICK MLI WITH LONG LIFTS IN VACUUM
 - INSULATE LH2 TANK FROM LOX TANK TO PROVIDE LOXER CAPABILITY AND TO MINIMIZE IMPACT OF SLOW FILL/DRAIN
 - MINIMIZE MICROMETEOROID/DEBRIS DAMAGE

- GROUND BASED OTV
 - MLI ON LOX TANK
 - MLI FOAM INERT GAS ON LH2 TANK TO PREVENT CRYOPUMPING
 - INSULATE LH2 TANK FROM LOX TANK TO PROVIDE LOXER CAPABILITY

OTV SUPPORT TECHNOLOGY
(SPACE BASED)

- LONG TERM CRYOGENIC STORAGE
- VAPOR COOLED SHIELDS
- PARAVORTHO CONVERSION
- REFRIGERATION
- RELIQUEFICATION
- PROPELLANT DELIVERY