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ABSTRACT

A Comparison of Experimental and Theoretical Results for Labyrinth
Gas Seals with Honeycomb Stators. (May 1988)
Lawrence Allen Hawkins, B.S., Auburn University;

Chair of Advisory Committee: Dr. Dara Childs

Experimental results for the rotordynamic stiffness and damping coefficients
of a labyrinth-rotor/honeycomb-stator seal are presented. The coefficients are
compared to the coefficients of a labyrinth-rotor/smooth-stator seal having the
same geometry. The coefficients are also compared to analytical results from
a two-control-volume compressible low model. The experimental results show
that the honeycomb stator configuration is more stable than the smooth stator
configuration at low rotor speeds. At high rotor speeds and low clearance, the
smooth stator seal‘ is more stable. The theoretical model predicts the cross-
coupled stiffness of the honeycomb stator seal correctly within 25% of measured
values. The model provides accurate predictions of direct damping for large
clearance seals. Overall, the model does not perform as well for low clearance

seals as for high clearance seals.
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NOMENCLATURE

Cross sectional area of control volume (L?)

Height of labyrinth seal strip (L)

Direct and cross-coupled damping coefficients (Ft/L)
Radial clearance (L)

Rotor diameter (L)

Hydraulic diameter of cavity (L)

Seal reaction-force magnitude (F)

Direct and cross-coupled stiffness coefficients (F/L)
Pitch of seal strips (L)

Leakage mass flow rate (M/Lt)

Friction coefficients

Fluid pressure (F/L?)

Gas constant for air (L?/Tt?)

Radius of control volumes I & 1I (L)

Fluid temperature (T) ,

Average axial velocity for contro! volumes I & II (L/t)
Average circumferential velocity for control

volumes I & II (L/t)

Rotor to stator relative displacement components (L)
Kinematic viscosity (L?/t)

Density of fluid (M/L?)

Shaft precessional velocity (1/t)

Shaft angular velocity (1/t)

Subscripts

Control volume I value

Control volume II value

t¢5, chamber value

Reservoir value, radial component
Sump value



CHAPTER I

INTRODUCTION

Modern turbomachines are often subject to the problems of synchronous vi-
bration and instability. Synchronous vibration is caused by an unbalanced rotor.
An unbalanced rotor, which whirls at a frequency coincident with its running
speed, produces a vibration in the turbomachine at the same (synchronous) fre-
quency. The amplitude of vibration increases as the rotor speed approaches one
of its critical speeds. A critical speed is a speed that is coincident with a damped
natural frequency of the rotor. The critical speeds and the response of the rotor
to unbalance are influenced by forces developed in the rotor bearings and to a

limited extent by forces developed in labyrinth seals.

A second, less frequent type of vibration that can occur in high-perfdrmance
turbomachines is subsynchronous vibration. This vibration is characterized by
a rotor whirling at a natural frequency that is less than the rotational speed.
Subsynchronous vibration is usually unstable or self-ezcited. This type of motion
typically appears suddenly at some threshold speed with large amplitude which
sustains or grows as running speed is increased. This type of vibration often
results in catastrophic failure. The excitation mechanism for subsynchronous

vibration is a tangential force acting on the rotor in its whirl direction. Labyrinth

gas seals can produce this type of force.

Forces developed in labyrinth seals are characterized by the rotordynamic
stiffiness and damping coefficients. The first systematic test program for measur-

ing these coefficients was performed at at the Technical University of Stuttgart

Journal Model: ASME Journal of Tribology



by Benckert and Wachter [1,2,3]. Stifiness data were published for three types of
seals: a) teeth-on-stator, b) teeth on the rotor and stator, and c) teeth on the sta-
tor and steps or grooves on the rotor. Wright [4] has published data on equivalent
radial and tangential stiffnesses for single-cavity teeth-on-stator seals. Childs and.
Scharrer [5] have investigated teeth-on-rotor and teeth-on-stator labyrinth seals
at Texas A&M University. They measured stiffness and damping coeflicients

while varying inlet tangential velocity, rotor speed, inlet pressure, and clearance.

The first analysis of the labyrinth seal was performed by Alford [6]. Kostyuk
[7] performed the first comprehensive analysis — using a control volume approach
to derive governing equations for flow in the seal. Several authors, notably Iwat-
subo [8], Gans [9], and Childs and Scharrer [10] added various refinements to
the Kostyuk analysis in order to account for unmodeled effects. A two control
volume analysis of the labyrinth seal was introduced by Fujikawa et al. [11]. Re-
finements to this model have been added by Wyssmann et al. [12] and Scharrer
(13].

This report presents experimental measurements of stiffness and damping
coefficients f.or a teeth-on-rotor labyrinth seal with a honeycomb stator. Inlet
circumferential velocity, inlet pressure, rotor speed, and seal clearance are var-
jied. Collected data are compared to the data of Scharrer [13] for teeth-on-rotor
labyrinth seals with smooth stators. The data are also compared to theoretical

predictions using Scharrer’s analysis.

The labyrinth-sotor /honeycomb-stator configuration was chosen for several
reasons. This combination is a common industrial application, particularly for

gas turbine engine hot-section seals. No test data for this combination exists in



the published literature. Finally, the results of Elrod and Childs [14] indicate
that seals with honeycomb stators may have a stability advantage over smooth

stator seals.



CHAPTER 11

SEAL ANALYSIS

SEAL ANALYSIS OVERVIEW

As related to rotordynamics, seal analysis has the objective of determining
the reaction forces acting on the seal rotor arising from shaft motion within the
seal. For small motion about a centered position, as shown in figure 1, the model

[ ]
of equation (1) describes the force-motion relationship

S S A EA R BRI 14 TG
where the rotordynamic coefficients K, k, C, and ¢ represent the direct stiffness,
cross-coupled stiffness, direct damping, and cross-coupled damping respectively.
The cross-coupling terms result when motion in one plane results in a reaction
in an orthogonal plane. These cross-coupling terms depend on the magnitude
and direction of the fluid circumferential velocity relative to the rotor’s surface

velocity. This velocity may exist at entry to the seal or may develop as the fluid

passes through the seal.
Stability Analysis

Figure 2 shows the relationship of the seal forces for the simple case of
a rotor in a circular synchronous whirl orbit of amplitude A. The X and Y
components of force in the seal model of equation (1) may be resolved into radial
and tangential forces

F,= Fxcoswt+ Fysinwt

Fy = —Fx sinwt + Fy coswt
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Figure 1. Small motion of & seal rotor about a centered position. The
rotor spin speed is w and the precessional frequency is f).
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Figure 2. Forces on a precessing seal rotor.



Expressing the rotor motion as

X = Acoswt X = —Awsinwt

Y = Asinwt Y = Awcoswt

and using equation (1), the resultant radial and tangential forces are illustrated
.n the figure and are defined by
-F./[A=K+ ew

F/A=k-Cuw

If F¢/A is a positive quantity, the tangential force is destabilizing since it
supports the whirling motion of a forward whirling rotor. Conversely, if F;/A
is negative, it opposes the whirling motion of a forward whirling rotor, and is
therefore stabilizing. Both k and C are positive for most practical labyrinth seal
applications; hence, the most compelling reason for determining the rotordy-
namic seal coefficients is to determine the relative values of k and C. The whirl

frequency ratio, defined by
Whirl frequency ratio = k/Cuw,

is the parameter commonly used to compare k and C. From the above discussion,

if the whirl frequency ratio is less than one, the tangential force on the rotor is

stabilizing.

H the sum, K +cw, is positive then the radial seal force increases the stiffness
of the system, raising the critical speeds. This improves the stability of the sys-
tem. The direct stiffness of a labyrinth seal is usually negative and considerably
larger than cw; therefore, the radial force in a labyrinth seal decreases system
stability. Fortunately, the effect of labyrinth seal stiffness on critical speeds is

usually small, but there are situations in which seal stiffness is of consequence.



SCHARRER’S ANALYSIS

Most early attempts to model the fiow field in a labyrinth seal used a single
control volume, concentrating on the circumferential flow components. However,
Iwatsubo [15] has shown that the labyrinth seal has two distinct flow regimes:
a jet flow region in the leakage path and a recirculation region in the cavity
(see figure 3). Hence, Fujikawa et al. [11], Wyssmann et al. [12], and Scharrer
[13] have developed two-control-volume models to take advantage of the known
physics of the flow. Scharrer’s model is used in this report to generate theoretical

predictions to compare to experimental data.

Scharrer modeled the flow using the two-control-volume model shown in
figures 4 and 5. Scharrer’s model includes the recirculation velocity (Uz) as shown

in figure 4. The governing equations are derived using the following assumptions:
1) The fluid is an ideal gas.

2) Pressure variations within a chamber are small compared to the pressure

difference across a seal strip.

3) The lowest frequency of acoustic resonance in the cavity is much higher than

that of the rotor speed.
4) The eccentricity of the rotor is small compared to the radial seal clearance.

5) Although the shear stress is significant in the determination of the flow
parameters (velocity, etc.), the contribution of the shear stress to the force

on the rotor is negligible when compared to the pressure force.
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Figure 4. Two-control-volume model of Scharrer {13].
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Figure 5. Isometric view of control volumes.



6) The cavity flow is turbulent and isoenergetic.

7) The recirculation velocity, Uz, is unchanged by viscous stresses as it swirls

within a cavity.

The continuity equations for contro! volumes I and II are derived using

figures 4 and 5; they are:

8pA1 8le Al
ot R8160

+ 1yt = 1 + 1y = 0

OpAz | pWarA, .

ot T Reoe =0

The quantity ri, is the mass flow rate from control volume I to control volume II.
The momentum equations for control volumes I and II are derived using figures

6 and 7; they are :

8pW1A1 + 2pW1A1 8W1 + le 6A1 W1A1 gﬁ

Y Rs, 96 T Rey 00 T Rs, 08 Wi
. . A, 8P
+ i Wy — Wiy = _R_\;T?—G— + 750 — 108, L;

8pW3A2 + 2pW2A2 8W2 + pr 8.42 W2A2 2[1

3t Rss 90 ' Rs, 09 ' Rs; 00
. _ Az 9F _
+ eroi = —R82 30 f:th + rﬂariLl

where as and ar are the dimensionless length upon which the shear stresses act
and are defined by
as; =1 ar; = (2B¢ + L.')/L.'.

W,; is the circumferential velocity between the control volumes, and 1;; is the

free shear stress at the interface of the two control volumes.

10



Figure 6. Forces on control volumes.
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The shear stresses at the rotor and stator surfaces (1, and r,) are modeled

using the Blasius formula for turbulent pipe flow

_ 1 2 UmDh me
T= 2pU,,,no( ” )

where U,, is the mean flow velocity relative to the surface upon which the shear
stress is acting, and D}, is the hydraulic diameter of the particular control volume.
For the constants mo and no, Scharrer used the values given by Yamada [16] for

turbulent flow between smooth, annular surfaces:
mo = —0.25 no = 0.079.

Since no published data are available for the honeycomb stator surface used in
the tests reported here, the values were determined empiri;:ally from pressure

drop versus flow tests [17]. For the honeycomb surface, the values obtained were:
mo = —0.1083 no = 0.2820.
Smooth surface coefficients were obtained by the same procedure and they are:

mo = —0.2417 no = 0.0942.

These smooth surface coefficients are similar to those of Yamada. Using either
Yamada’s values or the empirical values produces essentially the same results in
Scharrer’s model. The empirical values for the smooth and honeycomb surfaces
are used to obtain the respective values of the rotor and stator shear stresses for

the theoretical results presented later in this report.

Scharrer uses a perturbation analysis to linearize the governing equations.
This approach is only valid for small motion about a centered position. Ex-

panding the governing equations in the perturbation variables yields a system of

12



twelve linear algebraic equations per cavity. Solution of these equations yields
the pressure distribution along and around the seal. Integration of the pressure

distribution leads to the solutions for the rotordynamic coefficients.
Required input for Scharrer’s analysis is as follows:
1) reservoir pressure, temperature, and kinematic viscosity,
2) sump pressure,
3) gas constant and ratio of specific heats,
4) inlet circumferential velocity and rotor speed,
5) seal radius, radial clearance, tooth pitch, height and tip width,
6) rotor and stator friction coefficients (mr,nr,ms,ns), and

7) number of teeth.

13



CHAPTER 111

TEST APPARATUS AND PROCEDURE

TEST APPROACH

The test method employed at the TAMU facility is the same as that used by
Iino and Kaneko [18]. An external hydraulic shaker is used to impart translatory
motion to the rotating seal, while rotor motion relative to the stator and reaction

force components acting on the stator are measured.

Figure 8 shows the manner in which the rotor is positioned and oscillated
in order to identify the dynamic coefficients of the seal for small motion about a

centered position. Equation (1), rewritten here,

AR A

defines the force-motion relationship. Small harmonic motion of the rotor in the

X direction about a centered position is described by
X = Asin{it + Bcos It

X = Aficos it — Bflsin Nt (3)
Y=Y=0
where 0 is the shake frequency. Similarly, the X and Y direction force compo-
nents of equation (2) can by expressed
Fx = —Fyxgsinflt — Fxc cos it

(4)

Fy = —Fygsin{lt — Fyc cos It

14
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Figure 8. External shaker method used for coeflicient identification.
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where Fxs, Fxc, Fys, and Fyc are Fourier coefficients of the reaction force
components on the stator. Substituting equations (3) and (4) into equation
(2) and equating coefficients of sine and cosine terms yields the following four
equations for the dynamic coefficients

Fxs= KA-CBfl

Fxc= KB+ CAf

(5)
Fys =—kA+ B0

Fyc =—kB — cAQ
Solving this system of four equations in four unknowns defines the dynamic

coefficients as ) )
K =( FxsA+ FxcB)/(A® + B?)

k = (~FysA— FycB)/(A? + B?)

(6)

C =( FxcA-FxsB)/(A®+ B%)n

c=( FysB+ chA)/(A2 + B2)n
Therefore, by measuring the reaction forces due to known rotor motion, deter-
mining the Fourier coefficients, and substituting into the above definitions, the

rotordynamic coefficients can be identified independently.
APPARATUS OVERVIEW

Detailed design of the TAMU gas seal apparatus was carried out by J.B.
Dressman of the University of Louisville. The test apbaratus, shown in figure
9, was designed to identify the rotordynamic coefficients for various inlet pres-
sures, inlet swirl velocities, rotor speeds, and seal configurations. Each of these
parameters can be varied in the theoretical analysis as well. Thus, the influence
of each independent parameter can be measured and compared to theoretical

predictions.

16



17

b

2

‘Ajquesse snjeredde 3s8] 6 °InBIg

SATVA T0MLNGD

;_
AN

.\Wﬁ

VANVNS

~
\ JUNLONULS LUOeeNs WaNYNE

I

. WOLON BANG




A discussion of the apparatus is presented in three sections. The first sec-
tion, Test Hardware, describes how the various seal parameters are physically
executed and controlled. The second section, lnstrunientation, deéscribes how
these controlled parameters are measured. Finally, the Data Acquisition and
Reduction section explains how these measurements are used to provide the de-

sired information.
TEST HARDWARE
Static Displacement Control

The test apparatus is designed to provide control over the static eccentricity
position both horizontally and vertically within the seal. The rotor shaft is sus-
pended pendulum-fashion from an upper, rigidly mounted pivot shaft, as shown
in figures 10 and ll.. This arrangement controls the side-to-side motion of the

rotor, and a cam within the pivot shaft controls the vertical position of the rotor.

The cam which controls the vertical position of the rotor is driven by a
remotely-operated DC gearhead motor, allowing accurate positioning of the ro-
tor during testing. Horizontal positioning of the rotor is accomplished by a Zonic
hydraulic shaker head and master controller, which provide independent static
and dynamic displacement or force control. The shaker head is mounted on an
I-beam support structure, and can supply up to 4450 N (1000 Ibf) static and 4450
N dynamic force at low frequencies. The dynamic force decreases as frequency
is increased. As illustrated in figure 10, the shaker head output shaft acts on
the rotor shaft bearing housing, and works against a return spring mounted on

the opposite side of the bearing housing. The return spring maintains contact

18
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between the shaker head shaft and the bearing housing, thereby preventing ham-
mering of the shaker shaft and the resulting loss of control over the horizontal

motion of the rotor.
Dynamic Displacement Control

The dynamic motion of the seal rotor within the stator is horizontal. In
addition to controlling the static horizontal position of the rotor, the Zonic shaker
head moves the rotor through horizontal harmonic oscillations as the test is run.
A Wavetek function generator provides the sinusoidal input signal to the Zonic
controller, and both the amplitude and frequency of the rotor oscillations are

controlled.

In addition to providing control over the rotor’s static position and dynamic
motion, the test apparatus allows other seal parameters to be controlled inde-
pendently, providing insight into the influence these parameters have on seal
behavior. These parameters coincide with the variable input parameters for the
analysis, and they include:

1) pressure ratio across the seal,
2) prerotation of the incoming fluid,
3) seal configuration, and

4) rotor rotational speed.
Pressure Ratio

The inlet air pressure and attendant mass flow rate through the seal are
controlled by an electric-over-pneumatically actuated Masonelian Camflex II flow

control valve located upstream of the section. An Ingersoll-Rand SSR-2000 single

20



stage screw compressor rated at 34 m3/min @ 929 kPa (1200 scfm @ 120 psig) °

provides compressed air, which is then filtered and dried before entering a surge
tank. Losses through the dryers, filters, and piping result in an actual maximum
inlet pressure to the test section of approximately 825 kPa (105 psig) at a flow
rate of 10 m3/min (350 scfm). A four inch inlet pipe from the surge tank supplies
the test rig, and after passing through the seal, the air exhausts to atmosphere

through a manifold with muffier.
Inlet Circumferential Velocity

In order to determine the effects of fluid rotation on the rotordynamic co-
efficients, the test rig design also allows for prerotation of the incoming air as it
enters the seal. This prerotation introduces a circumferential component to the
air flow direction, and is accomplished by guide vanes which direct and accelerate
the flow towards the annulus of the seal. Figure 12 illustrates the vane configura-
tion. Three sets of guide vanes were used; two rotate the flow in the direction of
rotor rotation at different speeds, and a third introduces no fluid rotation. The
important difference between the first two vanes is the gap height, A. The vanes

with a smallest gap height produce the highest inlet tangential velocity.
Seal Configuration

The design of the test section, figure 13, permits the installation of various
rotor/stator combinations. The stator is supported in the test section housing by
three Kistler quartz load cells in a trihedral configuration, as shown in figure 14.
Different seal stator designs are obtained by the use of inserts. The smooth and
honeycomb inserts used for the 0.4 mm (0.016 in) radial clearance seal tests are

shown in figure 15. The labyrinth rotor and the tooth detail are shown in figures

21
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Figure 12. Inlet-guide-vane detail.
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16 and 17. Seals with different geometries (i.e., clearances, tapers, lengths) can

be tested, as well as seals with different surface roughnesses.

Rotor Speed

A Westinghouse 50-hp variable-speed electric motor drives the rotor shaft
through a belt-driven jackshaft arrangement. A Square D Omegapak 1500 fre-
quency controller provides speed control from 0 - 16,000 cpm. The shaft is
supported by two sets of Torrington hollow- roller bearings. These bearings,
described by Bowen and Bhateje [19], are extremely precise, radially preloaded,
and have a predictable and repeatable radial stiffness. The shaft bearings are

lubricated by positive-displacement gear-type oil pump.
INSTRUMENTATION

Three types of measurements are necessary to obtain the desired data:
1) rotor motion
2) reaction-force measurements, and

3) fluid flow measurements.
Each of these categories is described below.

Rotor Motion Measurements

The position of the seal rotor within the stator is monitored by four Bently-
Nevada eddy-current proximity probes mounted in the test section housing.
These probes are located 90 degrees apart, and correspond to the X and Y
directions. The proximity probes are used to determine the static position and

dynamic motion of the rotor, and their resolution is 0.0025 mm (0.1 mil).



Reaction-Force Measurements

Reaction forces arise due to the motion of the seal rotor within the stator.
The reaction forces (Fx, Fy) exerted on the stator are measured by the three
Kistler quartz load cells which support the stator in the test section housing.
When the rotor is shaken, vibration is transmitted to the test section housing,
both through the thrust bearing and through the housing mounts. The accel-
eration of the housing and stator generates unwanted inertial ma forces which
are sensed by the load cells, in addition to those pressure forces developed by
the relative motion of the seal rotor and stator. For this reason, PCB piezo-
electric accelerometers with integral amplifiers are mounted in the X and Y
directions on the stator, as shown in figure 14. These accelerometers allow a
(stator mass) x (stator acceleration) subtraction to the forces (Fx,Fy) indi-
cated by the load cells. With this correction, which is described more fully in the

next section, only the pressure forces due to relative seal motion are measured.

Force measurement resolution is a function of the stator mass and the res-
olution of the load cells and accelerometers. Accelerometer resolution is 0.005
g, which must be multiplied by the stator mass in order to obtain an equivalent
force resolution. The mass of the stator used in the test program reported here

is 11.5 kg (25.3 1b). Hence, the force resolution for the accelerometers is 0.560

N (0.126 1b). Resolution of the load cells is 0.089 N (0.02 1b). Therefore, the

resolution of the force measurement is limited by the accelerometers.
Fluid Flow Measurements

Fluid flow measurements include the leakage (mass flow rate) of air through



the seal, the pressure gradient along the seal axis, and the inlet fluid circumfer-

" ential velocity.

Leakage is measured with a Filow Measurement Systems Inc. turbine flowme-
ter located in the piping upstream of the test section. Resolution of the flowmeter
is 0.0005 acf, and pressures and temperatures up and downstream of the meter

are measured for mass flow rate determination.

For measurement of the axial pressure gradient, the stator has pressure
taps drilled along the length of the seal in the axial direction. These pres-
sures, as well as all others, are measured with a 0-1.034 MPa (0-150 psig) Scani-
valve differential-type pressure transducer through a 48 port, remotely-controlled
Scanivalve model J scanner. Transducer resolution is 0.552 kPa (0.08 psi). Over-
all accuracy of the pressure measurements is limited by the resolution of the
12 bit A/D converter which can only resolve the pressure signal to +0.62 kPa
(0.09 psi). Combined linearity and hysteresis error for the pressure transducer is

0.06%.

In order to determine the circumferential velocity of the air as it enters

the seal, the static pressure at the guide vane exit is measured. This pressure,
in conjunction with the measured flow rate and inlet air temperature, is used

to calculate a guide vane exit Mach number. The compressible flow continuity

. A {,, (-MEN\]Y?
e bt (1 E 28

is rearranged to provide a quadratic equation for M,.

4(»1-1)121‘,( h )’
, 1+\/” 2 4 \P.A.

M2 = 3

equation
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where 7 is the ratio of specific heats and R is the gas constant for air, T; is the
stagnation temperature of the air, P., is the static pressure at the vane exit,
and A.; is the total exit area of the guide vanes. Since all of the variables in
the equation are either known or measured, the vane exit Mach number, and

therefore the velocity, can be found.

In order to determine the circumferential component of this inlet velocity, a
flow turning angle correction, in accordance with Cohen [20] is employed. The
correction has been developed from guide vane cascade tests, and accounts for
the fact that the fluid generally is not turned through the full angle provided
by the shape of the guide vanes. With this flow deviation angle calculation, the
actual flow direction of the air leaving the vanes (and entering the seal) can be
calculated. Hence, the magnitude and direction of the inlet velocity is known,

and the appropriate component is the measured inlet circumferential velocity.

DATA ACQUISITION AND REDUCTION

Data acquisition is directed from a Hewlett-Packard 9816 (16-bit) computer.
The computer controls an H-P 6940B multiprogrammer which has 12-bit A/D
and D/A converter boards. The multiprogrammer transfers control commands

to and test data from the instrumentation.

As previously stated, the major data groups are seal motion/reaction force
data and fluid flow data. The motion/reaction force data are used for dynamic
coefficient identification. The fluid flow data are used as input parameters for

the theoretical analysis.
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The hardware involved in obtaining the force/motion data includes the load
cells, accelerometers, X direction motion probe, a Sensotec analog filter unit, a
tuneable bandpass filter, and the A/D converter. The operation of these compo-
nents is illustrated in figure 18, and their outputs are used in a serial sampling
scheme which provides the computer with the desired data for reduction. Recall-
ing the discussion of the reaction force measurements in the preceding section,
a (stator mass) X (stator acceleration) subtraction from the indicated loadcell
forces is necessitated due to vibration of the stator and test section housing. This
subtraction is performed with an analog circuit, and results in corrected Fx and
Fy force components due to relative seal motion. The forced oscillatory shaking
motion of the seal rotor is the key to the operation of the serial synchronous sam-
pling (SSS) routine which is employed. The frequency of the rotor oscillations
is set by a function generator, and rotor motion is sensed by the X direction
motion probe. The motion signal is filtered by the narrow bandpass filter, and is
used as a trigger signal for the SSS routine. Upon the operator’s command, the
SSS routine is enabled, and the next positive- to-negative crossing of the filtered
motion signal triggers a quartz crystal clock/timer. Ten cycles of the corrected
Fx (t) signal are sampled, at a rate of 100 samples/cycle. The second positive-to-
negative crossing of the filtered motion signal triggers the timer and initiates the
sampling of ten cycles of the Fy (t) signal. Finally, the third positive-to-negative
crossing triggers the timer again, and ten cycles of the corrected X(t) signal are
sampled. Thus, at every test condition, 1000 data points are obtained for Fx(¢;),

Fy (t;), and X(t;), and the data arrays are stored in computer memory.

Note that the bandpass filter is used only to provide a steady signal to trig-
ger the timer/clock. Any modulation of the motion signal due to rotor runout is

eliminated by this filter, provided the rotational frequency and shake frequency
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are adequately separated, and the shake frequencies are selected to provide ade-
quate separation with running speeds. However, the rotor motion and corrected
force signals which are sampled and captured for coeflicient identification are
filtered only by a low-pass filter (500 Hz cutoff), and the effects of runout as
well as shaking motion are present in the recorded data. A second point worth
noting is that the sample rate depends directly on the shake frequency. As the
shake frequency is increased, the sample rate (samples/second) also increases. In
order to get the desired 100 samples/cycle, shake frequencies must be chosen to
correspond to discrete sample rates which are available. Hence, the frequency
at which the rotor is shaken is carefully chosen to provide the desired sampling
rate and a steady trigger signal. The uncertainty in the shake frequency is 0.13

Hz for the 74.6 Hz case.
PROCEDURE

At the start of each day’s testing, the force, pressure, and flowmeter systems
are calibrated. The total system, from transducer to computer, is calibrated for
each of these variables. The force system calibration utilizes a system of pulleys
and known weights applied in the X and Y directions. An air-operated dead-
weight pressure tester is used for pressure system calibration, and flowmeter
system calibration is achieved with an internal precision clock which simulates a

known flow rate.

A typical test begins by centering the seal rotor in the stator with the static
capability of the Zonic hydraulic shaker, starting the air flow through the seal,
setting the rotor speed, and then beginning the shaking motion of the rotor.

Data points are taken at rotor speeds of 3000, 6000, 9500, 13,000, and 16,000



cpm with a tolerance of 10 cpm. At each rotor speed, data poinis are taken at
pressures of 3.08 bar (30 psig), 4.46 bar (50 psig), 5.84 bar (70 psig), 7.22 bar

(90 psig), and 8.25 bar (105 psig), as measured upstream of the flowmeter with a

tolerance of + 0.069 bar (1.0 psig). For each test case (i.e., one particular rotor .

speed, shake frequency, inlet pressure, and prerotation condition), the measured

leakage, rotordynamic coefficients, and axial pressure distribution are determined

and recorded.

This test sequence is followed for each of two different shake frequencies,
and for three inlet swirl directions. Therefore, twenty-five data points are taken

per test with a total of six tests per seal.
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CHAPTER 1V

INTRODUCTION TO TEST RESULTS

Test results for six teeth-on-rotor labyrinth gas seal configurations are pre-
sented. Three of the seals have honeycomb stators, each with a different rotor-to-
stator clearance. The other three seals have smooth stators, each with a different
clearance, corresponding to one of the honeycomb-stator seals. The seals are de-
scribed in figure 19 and table 1. As noted in table 1, seals 1, 2 and 3 have
honeycomb stators with nominal radial clearances of .008, .012 and .016 inch
respectively. Seals 4, 5 and 6 have smooth stators and nominal radial clearances
of .008, .012 and .016 inch respectively. Throughout this report, the seals will
be referred to by their number designations. Seals 1, 2, 3 and 4 were tested
for this study, and the data for these seals is reported here for the first time.
Seals 5 and 6 were tested previously and documented by Scharrer [13]. The data
are presented here again to provide comparison to the corresponding honeycomb

stator seals (seals 2 and 3).
The objectives of this study were as follows:

1) Test three labyrinth-rotor/honeycomb-stator gas seals with different clear-
ances for stiffness and damping rotordynamic coefficients as a function of

rotor speed, pressure drop, and inlet circumferential velocity.

2) Compare the rotordynamic stability of labyrinth-rotor/honeycomb-stator
gas seals to labyrinth-rotor /smooth-stator gas seals by comparing the mea-
sured rotordynamic coefficients to previously measured rotordynamic coef-

ficients for labyrinth-rotor /smooth-stator gas seals.
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Table 1. Seal descriptions.

36

Honeycomb Stator

Smooth Stator

Seal Designation
Number of Teeth

Nominal Radial Clearance
Stator Inside Diameter
Seal Length

Seal 1
16

0.203mm (0.008in)
151.71mm (5.973in)
50.8mm (2.00in)

Seal 4
16

.203mm (0.008in)
151.71mm (5.973in)
50.8mm (2.00in)

Seal Designation
Number of Teeth

Nominal Radial Clearance
Stator Inside Diameter
Seal Length

Seal 2
16

0.304mm (0.012in)
151.92mm (5.981in)
50.8mm (2.00in)

Seal 5
16

.203mm (0.012in)
151.92mm (5.981in)
50.8mm (2.00in)

Seal Designation
Number of Teeth

Nominal Radial Clearance
Stator Inside Diameter
Seal Length

Seal 3
16

0.406mm (0.016in)
152.2mm (5.989in)
50.8mm (2.00in)

Seal 6
16

.406mm (0.016in)
152.2mm (5.989in)
50.8mm (2.00in)




3) Use the experimental data to evaluate the validity of theoretical predictions
for the rotordynamic coeflicients of labyrinth-rotor/honeycomb-stator gas

seals.

The parameters varied during the tests were rotor speed, reservoir pressure,
circumferential velocity of the inlet air, frequency of translatory rotor motion,
and seal configuration. Two shake frequencies, 56.8 and 74.6 Hz, were used
during testing with essentially the same results. The results presented here were
obtained using the 74.6 Hz shake frequency at an amplitude between 0.0025
and 0.0035 inches. The seal configurations are identified in table 1. The actual
test points for rotor speed, supply pressure and inlet circumferential velocity are

shown in table 2.

Figures 20-22 show the inlet circumferential velocity ratio for the configura-
tions described in table 2. The inlet circumferential velocfty ratio is the ratio of
inlet circumferential velocity to rotor surface velocity. Calculation of circumferen-
tial velocity is described in the previous section. Note that curve 1 (representing
gero inlet circumferential velocity) lies on the horizontal axis in each figure. Inlet
circumferential velocity ratio ranged from 0 to about 3.5. When reviewing the
following data, table 1, table 2 and figures 20-22 should be consulted for the

definitions of symbols used.

One data point that appears in several figures of the following two chapters
is obviously erroneous. The data point of concern is the value of direct stiffness
for seal 4 at 16,000 cpm, 3.08 bar, and inlet circumferential velocity 1. Figure
23 shows the erroneous data point clearly. Both plots in figure 23 show direct

stiffness versus rotor speed for seal 4. The left hand plot contains data taken at
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Table 2. Definition of symbols used in figures.

Supply Pressure

Rotor Speeds

Inlet Circumferential Velocities

1- 3.03 bar
2 - 4.46 bar
3 - 5.84 bar

4 - 7.22 bar

5 - 8.25 bar

1- 3,000 cpm
2- 6,000 cpm
3 - 9,500 cpm
4 - 13,000 cpm
5 - 16,000 cpm

1 - Zero tangential velocity
2 - Low velocity with rotation
3 - High velocity with rotation

Table 3. Growth of rotor with rotational speed.

Rotor speed

Diametrical Growth
(cpm) (mm) (inches x 1000)

3,000
6,000
9,500

13,000

16,000

0.01 0.3
0.02 0.8
0.03 1.2
0.05 1.8
0.11 44
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the 74.6 Hz shake frequency. The right hand plot contains data taken at the 56.8
Hz shake frequency. Corresponding data points in the two plots are essentially

the same, except for the data point mentioned above.
INTERDEPENDENCE OF PRIMARY VARIABLES

In any experiment, each primary variable should be varied independently
and any other parameters that might affect the result should be controlled. In
this study, rotor speed, supply pressure, inlet circumferential velocity, shake fre-
quency, and clearance are primary variables. Rotor speed, supply pressure and
shake frequency can be adjusted independently as desired and therefore are not
of concern. Inlet circumferential velocity is set by using different inlet swirl vane
configurations. The vane configurations are fixed; therefore, inlet circumferential
velocity is adjusted by installing different swirl vanes in the test rig. Unfortu-
nately, this prevents adjustment of inlet velo.city during a test. Seal clearance
is adjusted by using different seal stators having different inside diameters. As
with inlet circumferential velocity, seal clearance can only be varied over fixed
values. Figures 24 and 25 show the effect of changing the seal clearance on cir-
cumferential velocity ratio. The change is quite substantial over the range that
clearance is varied in these tests. Clearance also changes with rotor speed, due
to rotor centrifugal and thermal growth. Table 3 shows the effect of rotor speed

on rotor diameter. This effect begins to be important only at the highest rotor

speed.

The rotordynamic coefficients cannot be plotted versus clearance because
the inlet circumferential velocity changes substantially when the clearance is

changed. The effect of clearance is displayed by plotting the coefficients versus
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inlet circumferential velocity for each seal on the same plot. This procedure
allows only one rotor speed and one supply pressure per plot. Data are presented

for the highest and lowest rotor speed and the highest and lowest pressure.
UNCERTAINTY ANALYSIS

The uncertainty of the rotordynamic coefficients was calculated using the
method described by Holman [21] for estimating the uncertainty in a calculated
result based on the uncertainties in primary measurements.. The uncertainty wg
in a result R which is a function of n primary measurements z,,z,, z3...2, with

uncertainties w;,wy,ws...w,, is

_ler N (22N s (2R, V]
YR = o0z, w1 0z, w2 oz, Wn )

Since the rotordynamic coefficients are calculated using equation (6), the pri-
mary measurements are forces, displacements, and frequency. The uncertainty
in these measurements on the TAMU test apparatus are 0.89 N (0.2 Ib), 0.0013
mm (0.05 mils), and 0.13 Hz, respectively. For the six seals tested, the maximum
uncertainties in the stiffness and damping coefficients were 15 N/mm (86 1b/in)
and 32 N-s/m (0.18 Ib-s/in), respectively.The uncertainty in the cross-coupled
damping coefficients are of the same order of magnitude as the coefficients them-
selves. Since the uncertainties in the cross-coupled damping values are so high,
and since the cross-coupled damping forces are of minor significance compared
to other damping and stiffness forces, comparisons of the cross-coupled damping

coefficients are omitted from this report.
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SELECTION OF REPORT DATA

Test results are presented for the labyrinth-rotor/honeycomb-stator and

labyrinth-rotor/smooth-stator seal configurations. There are 225 data points

at the 74.6 Hz shake frequency for each configuration. Data were selected for the

report as described below. The remaining data are included in the Appendix.

Leakage data are presented as a function of clearance. Whirl frequency ratio
is presented as a function of rotor speed and seal clearance. The following four

types of plots are given for each rotordynamic coefficient:

1) Rotor speed dependence — coefficient versus rotor speed for various pres-

sures. Data are presented for smallest clearance (seals 1 & 4) and highest

circumferential velocity (swirl 3).

2) Circumferential velocity dependence — coefficient versus circumferential ve-
locity ratio for various pressures. Data are presented for smallest clearance

(seals 1 & 4) and highest rotor speed (16,000 cpm).

3) Pressure dependence — coefficient versus pressure for various rotor speeds.
Data are presented for smallest clearance (seals 1 & 4) and highest circum-

ferential velocity (swirl 3).

4) Clearance dependence — coefficient versus circumferential velocity ratio for
various clearances. Four plots are presented, each with a different fixed rotor

speed and -prwsure.

Additional plots are included where they provide additional information.
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CHAPTER V

TEST RESULTS

In this chapter, experimental results are presented for the labyrinth-
rotor/honeycomb-stator seal configuration, and compared to the labyrinth-
rotor /smooth-stator results. Leakage data are presented first, followed by direct
stiffness, cross-coupled stiffness, direct damping, and whirl frequency ratio. The
following rules apply to all figures except those containing leakage data: (1) hon-
eycomb stator results are shown on the left hand side of each figure, (2) smooth
stator results are shown on the right hand side of each figure, and (3) symbols

in the figures are defined in table 1, table 2, and figures 20-22.

LEAKAGE

Leakage is represented by the flow coefficient,

my/RT,

®= xDCrP,’

Figures 26-29 are plots of flow coefficient versus seal clearance for different values
of pressure and rotor speed. In each plot, curve 1 represents the honeycomb
stator seals and curve 4 represents the smooth stator seals. Leakage did not
vary with inlet circumferential velocity ratio, thus the data presented are for
inlet circumferential velocity 1 only. Examination of the four figures reveals that
the honeybcomb stator seal leaks more at the smallest clearance and the smooth
stator seal leaks more at the largest clearance. Also, leakage increases as inlet

pressure increases. These results are consistent with those of Stocker et al. [22].
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Figure 30 and 31 are similar to figures 26 and 27, except they represent
leakage by the dimensional mass flow rate. These figures show that leakage
increases as clearance increases. Leakage also decreases slightly as rotor speed

increases because of the loss of clearance with rotor speed discussed previously.
DIRECT STIFFNESS

Direct stiffness is plotted versus rotor speed for various pressures in figure

32. The left hand plot is for seal 1, the honeycomb stator seal with the smallest

‘clearance. The right hand plot is for seal 4, the smooth stator seal with the

smallest clearance. The direct stiffness is negative and shows a small increase in
magnitude with rotor speed. The smooth stator seal has a similar characteristic,
but has a larger direct stiffness magnitude. Direct stiffness is plotted versus
circumferential velocity ratio for various pressures in figure 33. Direct stiffness
evidently does not depend on the magnitude of inlet cifcumferential velocity for
either stator surface. Direct stiffness is plotted versus pressure ratio across the
seal for various rotor speeds in figure 34. Magnitude of direct stiffness increases
as pressure increases for both stator surfaces. The trends in direct stiffness are

the same for all three clearances tested. Data for seals 2,3,5 and 6 are given in

the Appendix.

The next four plots, figures 35-38, show direct stifiness versus circumferen-
tial velocity ratio. Data for three seals are shown on each plot. These plots are
used to show the eflect of clearance on direct stiffness. Figure 35, for a pressure
of 3.08 bar and a rotor speed of 3000 cpm, shows that the direct stifiness mag-
nitude increases as clearance increases for the honeycomb stator seals. However,

for the smooth stator seals, direct stifiness decreases in magnitude as clearance
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increases. The smooth seal result agrees with intuition; 'one would expect the
direct stiflness to tend toward zero as clearance becomes large. Also, due to the
opposing trends, the honeycomb stator seal has the larger direct stiffness magni-
tude at large clearance and the smooth stator seal has the larger direct stiffness
magnitude at small clearance. In figure 36, for the same pressure and a rotor
speed of 16,000 cpm, the trend of figure 35 for the honeycomb stator seal appears
to be reversing. Seal 2 has a much larger direct stiffness than seal 1, but seal 3,
the largest clearance seal, has a smaller direct stiffness than seal 2. The smooth
stator seal has the same direct stiffness versus clearance trend regardless of rotor
speed. Figures 37 and 38 are similar to figure 35 and 36 except that the pressure
is 8.25 bar. The change in direct stiffness with clearance follows the trend of
figure 36. The magnitudes of direct stifiness are larger than those in figures 35

and 36 due to the higher pressure.
CROSS-COUPLED STIFFNESS

Cross-coupled stiffness is plotted versus rotor speed for various pressures
in figure 39. Cross-coupled stiffness increases with rotor speed for both seals.
For the honeycomb stator seal, cross-coupled stiffiness is negative at low speed
and increases to about 300 N/mm at the highest rotor speed. For the smooth
stator seal, cross-coupled stiffness has a small positive value at low rotor speeds,
increasing to about 350 N/mm at the highest rotor speed. Due to the results
of Elrod and Childs [14], cross-coupled stifiness was expected to be less positive
for the honeycomb stator seal compared to the smooth stator seal for all rotor
speeds. The data show that the cross-coupled stiffness of the two seals have

similar magnitudes at high rotor speeds.
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The comparisons of cross-coupled stiffness versus rotor speed for seals 2 &
5 and seals 3 & 6 are somewhat different than for seals 1 & 4; therefore, these
plots are included hére. Figure 40 is the plot of cross-coupled stiffness versus
rotor speed for seals 2 and 5. Note the cross-coupled stiffness begins to peak
at 16,000 cpm for the honeycomb stator seal. The smooth stator seal shows
a speed dependence only at the higher rotor speeds, whereas figure 39 (seal 4)
shows a speed dependence at all rotor speeds. Again, the honeycomb stator seal
has a cross-coupled stiflness that is better (negative or smaller magnitude) at
low speeds, but worse (larger) at higher speeds. Figure 41 shows cross-coupled
stiffness versus rotor speed for seals 3 & 6. In this plot, cross-coupled stifiness
does not show a speed dependence for the smooth seal, whereas the trend for the

honeycomb seal is the same as that of figure 40.

Figure 42 illustrates cross-coupled stiffness versus circumferential velocity for
various pressures for seals 1 and 4.Cross-coupled stifiness increases significantly
from gzero inlet tangential velocity to the first positive value of inlet velocity for
the honeycomb stator seal. However, from the first positive inlet velocity to the
second positive inlet velocity, the cross-coupled stiffness increases only slightly
or in some cases decreases. Cross-coupled stiffness in the smooth stator seal
increases continuously as inlet circumferential velocity increases. Figure 43 is
a plot of cross-coupled stiffness versus pressure ratio for various rotor speeds.
For the honeycomb stator seal, cross-coupled stifiness decreases as pressure ratio
increases at the two lowest rotor speeds. Cross-coupled stiffness increases as
pressure ratio increases for the higher rotor speeds. In the smooth stator seal,
cross-coupled stiffness increases as pressure ratio increases, regardless of rotor

speed.
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Figures 44—47 show how increasing seal clearance affects cross-coupled stiff-
ness. In each figure, cross-coupled stiffness is plotted versus circumferential

velocity ratio for three seals. Figure 44 shows the effect of seal clearance on

cross-coupled stiffness for a pressure of 3.08 bar and a rotor speed of 3000 cpm. -

For the honeycomb stator seal, cross-coupled stifiness becomes more positive as
seal clearance increases. Increasing seal clearance results in a small increase in
the cross-coupled stiffness of the smooth stator seal. Figure 45 is for the same
pressure as figure 44, but for a rotor speed of 16,000 cpm. At this rotor speed,
clearance does not seem to affect the cross-coupled stiffness of the honeycomb
stator seal. However, for the smooth stator seal, the smallest clearance has a
cross-coupled stiffness that is much higher than the other two clearances. This

effect was seen previously, in figures 39-41, where the smallest clearance smooth
stator seal has much more rotor speed dependence than the other two smooth
seals. Figures 46 and 47 correspond to figures 44 and 45 respectively, where
the pressure has been increased to 8.25 bar. The trends observed at the lower

pressure are repeated at the higher pressure.
DIRECT DAMPING

Direct damping is plotted versus rotor speed for various pressures in figure
48. Direct damping has essentially the same magnitude for either stator sur-
face. However, damping for the honeycomb stator seal first increases and then
decreases with increasing rotor speed, while damping in the smooth stator seal
does not depend on rotor speed. Figure 49 is a plot of direct damping versus inlet
circumferential velocity ratio for various pressures. Direct damping is insensitive

to circumferential velocity ratio for either stator surface. Figure 50 shows direct
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damping versus pressure ratio for various rotor speeds. As with the other ro-
tordynamic coefficients, direct damping increases directly with pressure. Similar
trends were obtained for seals 2,3,5, and 6. The data for these seals are given in

the Appendix.

The effect of seal clearance on direct damping is shown in figures 51-54.
Figure 51 shows the effect of seal clearance on direct damping at a pressure of
3.08 bar and a rotor speed of 3000 cpm. Damping increases somewhat from seal
1 (the smallest clearance seal) to seal 2. However, damping in seal 2 and seal 3 is
roughly the same. In the smooth stator seal, there is no clear effect of clearance
on damping. Figure 52 shows the same information as figure 51 except that the
rotor speed has been increased to 16,000 cpm. The trends are the same as for
figure 51. Thus, rotor speed does not play a part in the relationship between
direct damping and clearance. Figures 53 and 54 show the same information
as figures 51 and 52 except that the pressure has been increased to 8.25 bar.
The influence of clearance on direct damping is the same as it was at the lower

pressure.
WHIRL FREQUENCY RATIO

The effect of rotor speed on whirl frequency ratio is shown in figures 55 and

56. Inlet circumferential velocity is at its highest velocity with rotation for both

plots.

Figure 55 is a plot of whirl frequency ratio versus rotor speed for a pressure
of 3.08 bar. Whirl frequency ratio decreases with rotor speed for the two larger
clearance seals for both stator surfaces. In the smallest clearance honeycomb

stator seal, whirl frequency ratio increases with rotor speed. In the smallest
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clearance smooth stator seal, whirl frequency ratio initially decreases with rotor
speed, but begins increasing at higher rotor speeds. Figure 56 is a plot of whirl

frequency ratio versus rotor speed for a pressure of 8.25 bar. The trends observed

in figure 55 are repeated here.

Figures 57-60 are plots of whirl frequency ratio versus circumferential veloc-
ity ratio for three clearances. Pressure and rotor speed are held constant on each
plot. These plots show the effect of clearance on whirl frequency ratio. Figure
57 is for a pressure of 3.08 bar and a rotor speed of 3000 cpm. Whirl frequency
ratio for the smallest clearance honeycomb stator seal is much lower than for the
two larger clearances. There is not a clear trend for whirl frequency ratio versus
clearance in the smooth stator seal. Figure 58 is similar to figure §7, except the
rotor speed is 16,000 cpm. This time, the highest whirl frequency ratio is for
the smallest clearance seal for both stator surfaces. Figures 59 and 60 show the

same trends as figures 57 and 58 for a pressure of 8.25 bar.

These results indicate that the honeycomb stator seals are more stable at low
rotor speeds. At the highest rotor speeds tested, the smallest clearance smooth
seal is more stable than the smallest clearance honeycomb stator seal, and the

stator surface does not affect stability at the larger clearances.
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CHAPTER VI

COMPARISON OF RESULTS TO THEORETICAL MODEL

In this chapter, experimental results for the labyrinth-rotor/honeycomb-
stator and the labyrinth-rotor /smooth-stator configurations are compared to the
predictions of Scharrer’s [13] theoretical model. The model input is described
below. In the figures that follow, the honeycomb stator results are presented on

the left and the smooth stator results are presented on the right.

MODEL INPUT

The required input for the model and the values used are shown in table 4.
The values marked with an asterisk are approximate; the true values used are
those recorded for each particular test. Kinematic viscosity was calculated from
recorded values using Sutherland’s formula from Schlichting [23]. Seal clearance

was corrected for rotor speed using the values from table 3.
DIRECT STIFFNESS

Experimental values of direct stiffness are compared to the predictions of
Scharrer’s model in figures 61-66. Figure 61 is a plot of direct stiffness versus
rotor speed. The model predicts an increase in the magnitude of direct stiff-
ness with rotor speed that is not present in the experimental data. Also, the
model predicts that direct stiffness is positive at low rotor speeds, whereas the
experimental data show that it is negative. Figure 62 is a plot of direct stiffness

versus circumferential velocity ratio. The model predicts that direct stiffness is

87



Table 4. Input parameters for theoretical model.

Honeycomb Stator

Smooth Stator

Reservoir Pressure (bar)
Sump Pressure (bar)
Reservoir Temp. (K)
Clearance (mm)

Rotor Radius (mm)
Tooth Pitch (mm)
Tooth Height (mm)
Tooth Tip Width (mm)
Friction Coefficients

Rotor - mr
-nr

Stator - ms
-ns

Specific Heat Ratio
Kinematic Viscosity (m?/s)
Inlet Swirl Ratio

Rotor Speed (cpm)
Compressibility

Gas Constant (J/kg-K)
Number of Teeth

Table 2*
1.0*
300.0*
Table 1,3*
75.17
3.175
3.175
0.150

-0.2417
0.0942
-0.1083
0.2820
"~ 1.40

2.3E-6*

Table 2*

Table 2*
1.0
287.1
16

Table 2*
1.0*
300.0*
Table 1,3*
75.77
3.175
3.175
0.150

-0.2417
0.0942
-0.2417
0.0942
1.40

2.3E-6*

Table 2*

Table 2*
1.0
287.1
16

* Value is approximate (see text).
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not aflected by changes in the circumferential velocity ratio. This agrees with

the experimentail data.

Figures 63-66 show the effect of clearance on direct stifiness. The model
predicts that direct stiffness becomes more positive as clearance increases. The
experimental data for the honeycomb stator seal show that the stiffness initially
becomes more negative as clearance increases and as the clearance gets large the
stiffness begins to become more positive. The trend predicted by the model is

correct for the smooth stator seal.
CROSS-COUPLED STIFFNESS

Experimental values for cross-coupled stiffness are compared to Scharrer’s
model in figures 67-73. Figure 67 is a plot of cross-coupled stiffness versus
rotor speed for various pressures for the smallest clearance seal. The theory
predicts the rise in cross-coupled stiffness with rotor speed for the honeycomb
stator seal. For the smooth stator seal, the theory predicts an initial decrease in
cross-coupled stiffness with rotor speed, but an increase beyond 9500 cpm. The
test data indicates that cross-coupled stiffness rises with increasing rotor speed
regardless of the rotor speed. Figure 68 is a plot of cross-coupled stiffness versus
rotor speed for seals 3 and 6. The theory predicts that cross-coupled stiffness
rises with rotor speed for the honeycomb stator seal. This result agrees with the
test data. For the smooth stator seal, the theory predicts a speed dependence
that is not present in the test data. In general, the model slightly underpredicts
the speed dependence of the honeycomb stator seals and overpredicts the speed
dependence of the smooth stator seals. However, the mode! consistently predicts

the magnitude of cross-coupled stiffness within a factor of 2.
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Figure 69 is a plot of cross-coupled stiffness versus circumferential velocity
ratio for the smallest clearance seals. The theory predicts a linear increase in
cross-coupled stiffness with increasing tangential velocity for both seals. The test

data indicate a somewhat less than linear trend.

Figures 70-73 show the effect of clearance on cross-coupled stiffness. The
model predicts that there is a weak increase in cross-coupled stiffness with clear-
ance at low rotor speeds and a weak decrease in cross-'coppled stiffness with
clearance at high rotor speeds. This trend is generally supported by the data
except for the smallest clearance. Also, the model prediction of cross-coupled

stiffness magnitude is much better for the two larger clearance seals.
DIRECT DAMPING

Figures 74-79 provide comparisons of theoretical direct damping to exper-
imental data for both stator surfaces. Direct damping is plotted versus rotor
speed in figure 74. The theoretical model predicts a rise in direct damping with
rotor speed for both stator surfaces. This does not agree with the test data
in either case. Tile model also predicts that damping is always higher for the
honeycomb stator seal compared to the smooth stator seal, whereas this is not
consistently observed in the test data. Direct damping is plotted versus circum-
ferential velocity ratio in figure 75. The theoretical model correctly predicts that

direct damping is insensitive to changes in inlet tangential velocity.

Figures 76-79 show the effect of clearance on direct damping. The model
predicts a small increase in damping with clearance. For the honeycomb stator
seal, the experimental data show this trend between the two larger clearances;

however, there is much less damping at the smallest clearance. For the smooth
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stator seal, the experimental data again agree with the predicted trend at the
larger clearances; but, damping at the smallest clearance is larger than at the
larger clearances. Ad.ditionally, the model predicts direct damping well at high
rotor speeds for the larger clearances. The model prediction is about 50% low

for the larger clearances at low rotor speeds.

110



1i1

CHAPTER VII

CONCLUSIONS

The test data support the following conclusions for the labyrinth-

rotor /honeycomb-stator seals:

1) Direct stiffness is negative. Direct stifiness becomes more negative with
clearance when clearance is small, but begins to become more positive as

clearance gets large.

2) Cross-coupled stiffness is generally positive. Cross-coupled stifiness increases
with rotor speed and with inlet tangential velocity. At the lower rotor speeds,
cross-coupled stifiness is much lower for the smallest clearance seal than for
the other two seals. At the higher rotor speeds, cross-coupled stiffness is

approximately the same value regardless of clearance.

3) Direct damping is positive. Direct damping is much lower in the smallest

clearance seal than in the two larger clearance seals.

By comparison of the results for the honeycomb stator seals to the results

for the smooth stator seals, the following conclusions may be drawn:

1) The honeycomb stator seals leak more than the smooth stator seals when the
clearance is low. The honeycomb stator seals leak less when the clearance

is high. This result is consistent with the results of Stocker et al. [22].



2)

The honeycomb stator seal is more stable at low rotor speeds. For high rotor
speeds and small clearance, ihe smooth stator seal is more stable. For high

rotor speeds and larger clearance, the two seals are equally stable.

By comparison of the experimental results to theoretical predictions, the

following conclusions may be draw:

1)

2)

3)

The model predicts that direct stiffness depends on rotor speed, whereas the
experimental data shows that it does not. The model predicts that direct
stiffness magnitude of the smooth stator seal is always higher than for the
honeycomb stator seal. This conclusion is not supported by the data either.

The model also predicts incorrectly that direct stiffness is positive at low

rotor speeds.

The mode! underpredicts the rotor speed dependence of cross-coupled stiff-
ness in the honeycomb stator seal. The model overpredicts the rotor speed
dependence of cross-coupled stiffness in the smooth stator seal, particularly

at the larger clearances.

The model consistently predicts the value of cross-coupled stiffness of the
honeycomb stator seal correctly within 25% of the measured values. The
model correctly predicts that the dependence of cross-coupled stiffness on

clearance is very weak.

4) The model incorrectly predicts that direct damping increases with speed,

and does not predict the decrease in damping at small clearance. For the two

larger clearance seals the model produces good results for rotor speeds above

112



12,000 cpm. Below 12,000 cpm, the model underpredicts direct damping by
50%.

In general, Scharrer’s model gives useful results for cross-coupled stiffness
in the honeycomb-stator/labyrinth-rotor seal for the range of variables tested.
Scharrer’s model can give good results for direct damping in the honeycomb-
stator/labyrinth-rotor seal by applying a correction factor to increase the damp-
ing at low rotor speeds. Overall, the model produces better results for the larger

clearances.

Values of the rotordynamic coefficients for the two larger clearance seals
tend to be much closer together than to the smaller clearance seal. This is
true for both the honeycomb-stator/labyrinth-rotor seal and for the previously
untested smallest clearance smooth-stator /labyrinth-rotor seal. Since there are
many practical applications where labyrinth seals are used with clearances below

the tested range, further testing with smaller clearances are required.
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